WO2018201786A1 - 一种多波束的csi反馈信息的传输方法和装置 - Google Patents

一种多波束的csi反馈信息的传输方法和装置 Download PDF

Info

Publication number
WO2018201786A1
WO2018201786A1 PCT/CN2018/077843 CN2018077843W WO2018201786A1 WO 2018201786 A1 WO2018201786 A1 WO 2018201786A1 CN 2018077843 W CN2018077843 W CN 2018077843W WO 2018201786 A1 WO2018201786 A1 WO 2018201786A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
feedback information
csi feedback
type
beams
Prior art date
Application number
PCT/CN2018/077843
Other languages
English (en)
French (fr)
Inventor
李慧玲
那崇宁
柿岛佑一
永田聪
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to US16/609,598 priority Critical patent/US10892809B2/en
Priority to CN201880015609.2A priority patent/CN110383711A/zh
Publication of WO2018201786A1 publication Critical patent/WO2018201786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting CSI feedback information of multiple beams.
  • Full-dimensional multiple input multiple output (Full Dimensional MIMO, FD-MIMO) and large-scale multiple input multiple output (Massive MIMO) antennas have been proposed.
  • FD-MIMO and Massive MIMO systems base stations can use more beams to transmit data to user equipment.
  • the base station may statically, semi-statically or dynamically transmit a channel state reference signal (CSI-RS) for the plurality of candidate beams to the user equipment, so that the user equipment performs channel measurement on each beam. . Further, the base station may select, from the plurality of candidate beams, a beam for subsequent transmission to the user equipment according to the feedback of the user equipment to the CSI-RS (hereinafter referred to as CSI feedback).
  • CSI feedback channel state reference signal
  • An aspect of the present invention provides a method for transmitting CSI feedback information of a multi-beam, the method comprising: transmitting information for indicating a type of CSI feedback information; and transmitting CSI feedback information of multiple beams by using a first type of CSI feedback manner
  • the first type of CSI feedback information wherein the first type of CSI feedback information includes at least first transmission order information, first channel quality information, and feedback information of the first beam in the multiple beams; using the second type of CSI
  • the second type of CSI feedback information is sent by the second type of CSI feedback information, where the second type of CSI feedback information includes at least second transmission order information, second channel quality information, and multiple beams except for the first beam. Feedback information from other beams.
  • Another aspect of the present invention provides a multi-beam CSI feedback information transmission apparatus, where the apparatus includes: a sending unit, configured to send information for indicating a type of CSI feedback information; and a sending unit, configured to use the first
  • the first type of CSI feedback information includes at least first transmission order information, first channel quality information, and multiple beams in the multi-beam CSI feedback information.
  • a sending unit configured to send, by using a second type of CSI feedback manner, a second type of CSI feedback information, where the second type of CSI feedback information includes at least second transmission order information, and a second Channel quality information, feedback information of beams other than the first beam in the multiple beams.
  • multiple beams are transmitted by different types of CSI feedback modes (for example, a first type of CSI feedback mode and a second type of CSI feedback mode).
  • the CSI feedback information, and the corresponding CSI feedback information in the CSI feedback information of the multi-beam is transmitted for different types of CSI feedback manners, so that the radio resources are allocated reasonably while ensuring the complete transmission of the multi-beam CSI feedback information. Saves money.
  • FIG. 1 shows a flow chart of a method for transmitting CSI feedback information of multiple beams according to an embodiment of the present invention
  • FIG. 2 shows a schematic diagram of allocation of radio resources of type II CSI feedback information in CSI feedback information of a multi-beam using a second type of CSI feedback manner according to an example
  • FIG. 3 is a schematic diagram showing the allocation of radio resources of type II and type II shown in FIG. 2;
  • FIG. 4 is a flowchart showing a method of transmitting a second type of CSI feedback information in CSI feedback information of a multi-beam using a second type of CSI feedback manner, according to an example of the present invention
  • FIG. 5 is a schematic diagram showing allocation of radio resources of type II CSI feedback information in CSI feedback information of a multi-beam using a second type of CSI feedback manner according to another example
  • FIG. 6 is a schematic diagram showing the allocation of radio resources of type II and type II shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a transmission apparatus of CSI feedback information of multiple beams according to an embodiment of the present invention.
  • FIG. 8 shows a schematic diagram of a hardware structure of a user equipment involved, in accordance with one embodiment of the present invention.
  • a channel state information reference signal transmitting method and a base station will be described below with reference to the accompanying drawings.
  • the same reference numerals are used to refer to the same elements.
  • the embodiments described herein are illustrative only and are not intended to limit the scope of the invention.
  • the UEs described herein may include various types of user terminals, such as mobile terminals (or mobile stations) or fixed terminals, however, for convenience, the UE and the mobile station may sometimes be used interchangeably.
  • the base station may be a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a receiving point, a femto cell, a small cell, and the like, which are not limited herein.
  • eNB eNodeB
  • the base station may be a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a receiving point, a femto cell, a small cell, and the like, which are not limited herein.
  • the UE obtains the CSI feedback information of the multi-beam by measuring the downlink reference signal (for example, the cell-specific reference signal or the CSI-RS) sent by the base station, and reports the CSI feedback information of the multi-beam to the downlink.
  • the base station thereby enabling the base station to take into account the channel quality of each beam during downlink scheduling.
  • FIG. 1 shows a flow diagram of a method 100 of transmitting CSI feedback information for multiple beams, in accordance with one embodiment of the present invention.
  • the method illustrated in Figure 1 can be used for a User Equipment (UE).
  • UE User Equipment
  • step S101 information for indicating the type of CSI feedback information is transmitted.
  • the type of CSI feedback information may include two types.
  • the first type of CSI feedback information and the second type of CSI feedback information where the first type of CSI feedback information may be CSI feedback information for one beam, and the second type of CSI feedback information may be for multiple beams.
  • the CSI feedback information may alternatively be CSI feedback information for all beams in the multiple beams.
  • the first type of CSI feedback information may include CSI feedback information of the first beam in the multiple beams
  • the second type of CSI feedback information may include CSI feedback information of other beams in the multiple beams except the first beam.
  • CSI feedback information of all beams in the multiple beams may be included.
  • the information for indicating the type of CSI feedback information may be a CSI type indicator (CTI).
  • CTI may include one or more bits, and the different values of the bits indicate different types of CSI. For example, when the value of the bit is “1”, the CSI feedback information is sent by using the first type of CSI feedback manner. When the bit value is “0”, it indicates that the corresponding CSI feedback information is sent by using the second type of CSI feedback manner.
  • the UE may independently transmit information indicating the type of CSI feedback information.
  • step S101 is performed before step S102 and step S103 as shown in FIG. Therefore, before receiving the CSI feedback information of the multi-beam, the base station can know which type of CSI feedback information is to be received, so that after receiving the CSI feedback information, the corresponding processing can be accurately performed, and the received CSI feedback is improved. Information processing efficiency.
  • the UE may transmit information indicating the type of CSI feedback information to be included in the first type of CSI feedback information in the CSI feedback information of the multi-beam.
  • steps S101 and S102 shown in Fig. 1 can be simultaneously performed. Therefore, the base station receives the information indicating the type of the CSI feedback information while receiving the CSI feedback information of the first type, and implements the one-time transmission of the type of the CSI feedback information and the specific content of the CSI feedback information, thereby improving the transmission efficiency.
  • the UE may also transmit information indicating the type of CSI feedback information to be included in the second type of CSI feedback information in the CSI feedback information of the multi-beam.
  • steps S101 and S103 shown in Fig. 1 can be simultaneously performed.
  • the CSI feedback information of the first type in the CSI feedback information of the multi-beam is sent by using the CSI feedback mode of the first type, where the first type of CSI feedback information includes at least the first transmission order information, the first Channel quality information and feedback information of the first beam in the multiple beams.
  • the multiple beams are L beams, and specifically may include one of the most powerful leading beams and (L-1) relatively weak beams (combined beams), where L ⁇ 2 and is a positive integer.
  • the first beam in the multiple beams may be the most powerful beam among the multiple beams, or may be one of the multiple beams with relatively weak power.
  • the first transmission order information may be transmission order information of a bandwidth occupied by the first beam in the plurality of beams.
  • the first transmission order information may be the transmission order information of the bandwidth occupied by the most powerful beam in the multiple beams, or may be the transmission order information of the bandwidth occupied by a relatively weak beam in the multiple beams.
  • the first transmission order information may be a transmission order indication (RI) of the first beam in the multiple beams, where the RI is a transmission order that the UE proposes to use in the downlink transmission by the base station. For example, it is recommended that the base station use a layer in the downlink transmission.
  • the UE can report an RI within a valid bandwidth.
  • the first channel quality information may be channel quality information for a first one of the plurality of beams.
  • the first channel quality information may be channel quality information of a beam with the strongest power in the multiple beams, or may be channel quality information of a beam with a relatively weak power in the multiple beams.
  • the first channel quality information may be a channel quality indicator (CQI) of the first beam in the multiple beams, where the CQI is the channel quality information learned by the UE on the UE side reported by the UE. .
  • CQI channel quality indicator
  • the feedback information of the first beam may include a Precoding Matrix Indicator (PMI) of the first beam, where the PMI indicates a precoding matrix that the UE proposes to use in the downlink transmission by the base station,
  • the precoding matrix is selected based on the number of layers indicated by the RI.
  • the selection of the precoding matrix may be frequency selective, and the UE may suggest different precoding matrices for different portions of the downlink bandwidth. Therefore, the UE can report one or more PMIs at the same time.
  • the precoding matrix may include a first matrix (represented by W 1 ) and a second matrix (represented by W 2 ), and generally W 1 may be a matrix of N*L, where N is a number of ports and is a positive integer. L is the number of beams in a multi-beam and a positive integer, typically matrix W 2 may, therefore, the first beam feedback information may include the index of the first horizontal beam W 1, W index of the first vertical beam 1 The matrix information of W 2 of the first beam. PMI index may indicate horizontal and vertical index W 1 and W 2 of the matrix information.
  • the feedback information of the first beam may further include power information of the first beam.
  • the power information of the first beam may be a Relative Power Indicator (RPI), and the relative power is a common logarithm of the ratio of the signal power of the measured point in the communication system to the reference point signal power.
  • the RPI may be used to indicate the relative value.
  • the first beam is the most powerful beam among the multiple beams. Therefore, the RPI of the first beam can be defaulted to a maximum value of 1 without being reported to the base station, thereby saving signaling overhead.
  • the content of the first type of CSI feedback information is represented here by type I.
  • the feedback information of the first beam may include i1, 1-1, i1, 2-1, i2-1, and the first type of CSI feedback information may include i1, 1-1, i1, 2- 1.
  • first beam is represented by a first beam
  • the first transmission order information is represented by RI-I
  • the first channel quality information is represented by CQI-I
  • first The first matrix W 1 in the precoding matrix of the first beam in the feedback information of the beam is represented by i1-1 and the second matrix W 2 is represented by i2-1, wherein the horizontal index of W 1 of the first beam is i1 , 1-1 indicates that the vertical index of W 1 of the first beam is represented by i1, 2-1.
  • the UE may transmit information indicating the type of CSI feedback information to be included in the first type of CSI feedback information in the CSI feedback information of the multi-beam.
  • the information used to indicate the type of CSI feedback information may be sent together with the RI, CQI, PMI in the first type of CSI feedback information, or may be respectively related to the RI, CQI, PMI in the first type of CSI feedback information. Any combination is sent together and is not limited here.
  • step S103 the second type of CSI feedback information in the multi-beam CSI feedback information is sent, where the second type of CSI feedback information includes at least the second transmission order information, Two-channel quality information, feedback information of beams other than the first beam in the multiple beams.
  • the multiple beams may comprise one of the most powerful beams and (L-1) beams of relatively weak power.
  • the beams other than the first beam in the multiple beams may be (L-1) relatively weak beams in the multiple beams;
  • the beams other than the first beam in the multiple beams may be the most powerful beam and the remaining (L-2) of the multiple beams. Relatively weak beam.
  • the second transmission order information may be transmission order information of a bandwidth occupied by the second beam in the multiple beams.
  • the second transmission order information may be (L-1) powers in the multiple beams.
  • the transmission order information of the bandwidth occupied by the relatively weak beam when the other beam other than the first beam in the multiple beams is the most powerful beam among the multiple beams and the remaining (L-2) beams having relatively weak power, the second transmission order information may be multiple.
  • the second transmission order information may be an RI of other beams than the first one of the multiple beams, where the RI has been described above and will not be described herein.
  • the second channel quality information may be channel quality information of other beams than the first one of the multiple beams.
  • the second channel quality information may be (L-1) relative powers in the multiple beams.
  • Channel quality information for weaker beams when the other beam other than the first beam in the multiple beams is the most powerful beam among the multiple beams and the remaining (L-2) beams having relatively weak power, the second channel quality information may be multiple beams. The channel quality information of the most powerful medium beam and the remaining (L-2) relatively weak power beams.
  • the second channel quality information may be a CQI of other beams than the first beam in the multiple beams, where the CQI has been described above and will not be described herein.
  • the feedback information of the beams other than the first beam in the multiple beams may be the PMI of the beams other than the first beam.
  • a multi-beam feedback information other beams other than the first beam may include a plurality of beams each beam other than the first index of W horizontal beam 1, the vertical index W 1, W 2 of the matrix information.
  • the feedback information of the beams other than the first beam in the multiple beams may further include power information of each of the plurality of beams except the first beam, wherein the first beam is included in the multiple beams.
  • the power information of each beam other than the beam may also be an RPI. The RPI has been described above and will not be described here.
  • the content of the second type of CSI feedback information in this example is represented here by type II.
  • the beams other than the first beam are respectively represented by the second beam, ..., the ith beam, ..., the Lth beam, where 2 ⁇ i ⁇ (L-1) and a positive integer
  • the feedback information of the ith beam may include i1, 1-i, i1, 2-i, i2-i, pi
  • the second type of CSI feedback information may include ⁇ i1, 1-2, ..., i1, 1- 2, ... i1, 1-L ⁇ , ⁇ i1, 2-2, ..., i1, 2-2, ... i1, 2-L) ⁇ , ⁇ i2-2, ..., i2-i,...
  • RI-II the second transmission order information
  • CQI-II the second channel quality information Indicated by CQI-II
  • the first matrix W 1 in the precoding matrix of the ith beam in the feedback information of the ith beam is denoted by i1-i
  • the second matrix W 2 is denoted by i2-i, wherein the ith beam
  • the horizontal index of W 1 is represented by i1, 1-i
  • the vertical index of W 1 of the ith beam is represented by i1, 2 -i
  • the power information of the ith beam is represented by pi.
  • the UE may obtain the second channel quality information according to the channel quality of the first beam and the channel quality of other beams than the first beam.
  • the second transmission order information, the second channel quality information, and the feedback information of other beams other than the first beam in the second type of CSI feedback information may be transmitted as a whole.
  • the second channel quality information is obtained from the channel qualities of all beams in the multiple beams. That is, in this example, the second channel quality information is one channel quality information.
  • FIG. 2 is a schematic diagram showing the allocation of the radio resource 200 of the second type of CSI feedback information in the CSI feedback information of the multi-beam transmission using the second type of CSI feedback manner according to the example of the above type II.
  • the radio resource 200 indicates a resource block allocated by the base station to the UE
  • the black block indicates the resource block 210 in the radio resource 200
  • the resource block 210 is used to transmit type II, RI-II, CQI in type II.
  • Horizontal index of W 1 of the second beam to the Lth beam ⁇ i1, 1-2, ..., i1, 1-2, ...
  • FIG. 2 above shows an example of a schematic diagram of allocation of radio resources of Type II CSI feedback information in Type II CSI feedback information of Type II using a second type of CSI feedback manner.
  • FIG. 3 shows a schematic diagram of allocation of the type II radio resource 300 of the type II and FIG.
  • the radio resource 300 indicates a resource block allocated by the base station to the UE
  • the black block indicates the resource block 310 in the radio resource 300
  • the resource block 310 is used to transmit the type II
  • the shaded block indicates the resource block in the radio resource 300.
  • resource block 320 is used to transmit type I.
  • Type I occupies resource block 320 and is transmitted
  • Type II occupies resource block 310 as a whole and is transmitted.
  • the second transmission order information, the second channel quality information, and the feedback information of other beams other than the first beam in the second type of CSI feedback information may be used as a whole. send.
  • the second type of CSI feedback information may also be divided into a plurality of parts, and the respective parts are separately transmitted to further reduce the signaling overhead required each time the CSI feedback is performed.
  • 4 is a flow diagram showing a method 400 of transmitting a second type of CSI feedback information in CSI feedback information for a multi-beam using a second type of CSI feedback mode, in accordance with one example of the present invention.
  • the second type of CSI feedback information is divided into multiple parts, wherein each part may include feedback information of one or more beams, channel quality information corresponding to the part.
  • the second transmission order information may be included in one of the plurality of parts, and further, the second channel quality information is channel quality information of the plurality of parts.
  • the first type of CSI feedback information includes feedback information of the first beam
  • the second type of CSI feedback information includes the remaining (L-1) beams.
  • the second type of CSI feedback information may be divided into a plurality of parts by, but not limited to, the following manner.
  • the second type of CSI feedback information may be divided into (L-1) parts in step S1031.
  • Channel quality information corresponding to each portion can be obtained based on the channel quality of one beam in each portion.
  • Each part of the (L-1) partial CSI feedback information may include feedback information of one beam, and the second channel quality information specifically represents a set of channel quality information of each part in (L-1) parts. That is to say, the feedback information of the second beam, ..., the feedback information of the ith beam, ..., the feedback information of the Lth beam are respectively transmitted, and in the process of transmitting separately, the ith beam has a corresponding channel.
  • the quality information is to say, the feedback information of the second beam, ..., the feedback information of the ith beam, ..., the feedback information of the Lth beam are respectively transmitted, and in the process of transmitting separately, the ith beam has a corresponding channel.
  • the second channel quality information is specifically expressed as a channel quality information of the second beam, ..., channel quality information of the i-th beam, ..., and a set of channel quality information of the L-th beam.
  • the portion of the (L-1) partial CSI feedback information that is first transmitted to the base station includes the second transmission order information.
  • FIG. 5 is a schematic diagram showing the allocation of the radio resource 500 of the second type of CSI feedback information in the CSI feedback information of the multi-beam transmitted by using the second type of CSI feedback manner according to the example.
  • the radio resource 500 indicates a resource block allocated by the base station to the UE, and the black block indicates the resource block 510, the resource block 530, the resource block 540, the resource block 510, the resource block 530, and the resource block 540 in the radio resource 500. It is used for the second beamforming portion of the transmission type II, the ith beam forming portion, and the Lth beam forming portion, respectively.
  • W i th horizontal index feedback information in the i-th beam of the beam 1, the vertical index W 1, W 2, i power information and the second beam as a part of CQI-i, i.e., ⁇ i1,1-i, i1 , 2-i, i2-i, pi, CQI-i ⁇ , as a part, occupy resource block 530 and are transmitted.
  • the feedback information of the second beam and the CQI-2 of the second beam are transmitted as a partial occupied resource block 510, and the feedback information of the Lth beam and the CQI-L of the Lth beam are used as a partial occupied resource block 540.
  • RI-II can be included in the first part to be sent.
  • FIG. 5 above shows an example of a schematic diagram of allocation of radio resources of Type II CSI feedback information in Type II CSI feedback information of Type II using a second type of CSI feedback manner.
  • FIG. 6 shows a schematic diagram of allocation of the type II radio resource 600 of the type I and FIG. 5 described above.
  • the radio resource 600 indicates a resource block allocated by the base station to the UE, and the black block indicates the resource block 610, the resource block 630, the resource block 640, the resource block 610, the resource block 630, and the resource block 640 in the radio resource 600.
  • the portion for the second beamforming in the transmission type II, the portion of the ith beamforming, the portion of the Lth beamforming, the shaded block indicates the resource block 620 in the radio resource 600, and the resource block 620 is used to transmit the type I.
  • the type I occupies the resource block 620 and is transmitted, and the second beamforming portion, the ith beam forming portion, and the Lth beam forming portion of the type II occupy the resource block 610, the resource block 630, and the resource block 640, respectively, and are transmitted. .
  • the feedback information of the beams other than the first beam in the multi-beam may also include the RPI of each beam of the beams other than the first beam in the multi-beam.
  • the RPI of each beam has been considered in the process of calculating the CQI of each section, that is, the RPI of each beam. Implicitly embodied in the CQI of each beam. Therefore, in this case, the RPI of each beam can no longer be calculated and transmitted.
  • the second type of CSI feedback information is divided into (L-1) parts in step S1031, and the channel quality corresponding to each part can be obtained according to the channel quality of one beam in each part information.
  • the invention is not limited thereto.
  • the second type of CSI feedback information is divided into (L-1) parts in step S1031, and each part may also be obtained according to the channel quality of the first beam and the channel quality of one beam in each part.
  • the RPI of each beam can be calculated and transmitted. Specifically, when calculating the CQI corresponding to each part, not only the channel quality of one beam in each part but also the channel quality of the first beam can be considered.
  • the channel quality of the first beam is considered more in the process of calculating the CQI of each part, and therefore, the CQI of each part cannot accurately represent the RPI of each beam. Therefore, in this way, in this case, the RPI of each beam can be calculated and transmitted.
  • the second type of CSI feedback information is divided into (L-1) parts in step S1031, and each part may contain feedback information of one beam.
  • the second type of CSI feedback information may also be divided into a plurality of parts in step S1031, and each part may include feedback information of at least one beam.
  • the second type of CSI feedback information may be divided into P parts, where 1 ⁇ P ⁇ (L-1) and P is a positive integer, and each part of the P parts includes feedback information of at least one beam, Channel quality information corresponding to each portion may be obtained according to the channel quality of at least one beam in each portion. And, in this case, the RPI of each beam can no longer be calculated and transmitted.
  • the RPI of each beam has been considered in the process of calculating the CQI of each portion, that is, each The RPI of the beams is implicitly reflected in the CQI of each part. Therefore, in this case, the RPI of each beam can no longer be calculated and transmitted.
  • the second type of CSI feedback information is divided into P parts in step S1031, and each part may also be obtained according to the channel quality of the first beam and the channel quality of at least one beam in each part. Channel quality information.
  • the RPI of each beam can be calculated and transmitted. Specifically, when calculating the CQI corresponding to each part, not only the channel quality of at least one beam in each part but also the channel quality of the first beam is considered. It is also because the channel quality of the first beam is considered more in the process of calculating the CQI of each part, and therefore, the CQI of each part cannot accurately represent the RPI of each beam in each part. In this case, the RPI of each beam in each section needs to be calculated and transmitted.
  • the second type of CSI feedback information is divided into multiple partial transmissions by the method shown in FIG. 4, which reduces the bit error rate.
  • the UE may send the foregoing first type on a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH), respectively.
  • CSI feedback information and/or second type of CSI feedback information For example, the UE may transmit both the first type of CSI feedback information and the second type of CSI feedback information on the PUSCH; or transmit the first type of CSI feedback information on the PUSCH and transmit the second type of CSI feedback on the PUCCH Information; or, transmitting the first type of CSI feedback information on the PUCCH and transmitting the second type of CSI feedback information on the PUSCH; or transmitting the first type of CSI feedback information and the second type of CSI feedback information on the PUCCH.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the UE may transmit the first type of CSI feedback information on the PUCCH or the PUSCH, and transmit the second type of CSI feedback information on the PUSCH.
  • the second type of CSI feedback information with a relatively large amount of data is transmitted on the PUSCH, thereby consuming less radio resources of the PUCCH, and saving the overhead of the PUCCH.
  • the UE may include information indicating the type of CSI feedback information in the second type of CSI in the CSI feedback information of the multi-beam.
  • Send feedback within the message may be sent together with the RI, PMI, CQI in the second type of CSI feedback information, or may be respectively related to the RI, PMI, CQI in the second type of CSI feedback information. Any combination is sent together and is not limited here.
  • the method illustrated in FIG. 1 further includes transmitting information indicating a number of beams in the second type of CSI feedback information.
  • the information used to indicate the number of beams in the second type of CSI feedback information may be a Beam Number Indicator (BNI).
  • BNI Beam Number Indicator
  • the BNI may be sent in the first type of CSI feedback information, for example, may be sent together with the RI, PMI, CQI in the first type of CSI feedback information, or respectively, and the first type of CSI feedback information. Any combination of RI, PMI, CQI is sent together.
  • the second type of CSI feedback information may be sent separately with the RI, PMI, CQI in the second type of CSI feedback information, or may be separately related to the second type of CSI feedback. Any combination of RI, PMI, and CQI in the message is sent together.
  • the BNI can be sent with the RI in the second type of CSI feedback information.
  • information for example, BNI
  • BNI information for indicating the number of beams in the second type of CSI feedback information
  • the information indicating the number of beams in the second type of CSI feedback information is only included in one of the plurality of parts.
  • it is transmitted in the first part of the multiple parts, so that after receiving the first part, the base station dynamically adjusts the radio resources occupied by the remaining part according to it, thereby saving the overhead.
  • the CSI feedback information of the multi-beam is transmitted through different types of CSI feedback modes (for example, the first type of CSI feedback mode and the second type of CSI feedback mode), And transmitting the corresponding CSI feedback information in the CSI feedback information of the multi-beam for different types of CSI feedback manners, thereby ensuring the complete transmission of the CSI feedback information of the multi-beam, and allocating the radio resources reasonably, thereby effectively saving the overhead.
  • different types of CSI feedback modes for example, the first type of CSI feedback mode and the second type of CSI feedback mode
  • the second type of CSI feedback information may include partial information of the first type of CSI feedback information. Therefore, even if the first type of CSI feedback information is not transmitted using the first type of CSI feedback manner, only the second type of CSI feedback information is transmitted to ensure complete transmission of the multi-beam CSI feedback information.
  • FIG. 7 is a block diagram showing the structure of a multi-beam CSI feedback information transmission apparatus according to an embodiment of the present invention.
  • the apparatus 700 shown in Figure 7 can be used for a User Equipment (UE).
  • the apparatus 700 includes a transmitting unit 710 for transmitting information indicating a type of CSI feedback information.
  • the apparatus 700 may include other components in addition to this unit, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein.
  • the specific details of the operations described below performed by the apparatus 700 according to an embodiment of the present invention are the same as those described above with reference to FIGS. 2-3 and 5-6, the same details are omitted herein to avoid repetition. Repeat the description.
  • the type of CSI feedback information may include two types, for example, a first type of CSI feedback information (Normal) and a second type of CSI feedback information (Advanced), wherein the first type of CSI
  • the feedback information may be CSI feedback information for one of the multiple beams
  • the second type of CSI feedback information may be CSI feedback information for the remaining beams in the multiple beams or may be CSI feedback information for all beams in the multiple beams.
  • the first type of CSI feedback information may include part of CSI feedback information of the multi-beam
  • the second type of CSI feedback information may include part of CSI feedback information of the multi-beam other than the first type of CSI feedback information.
  • Remaining information of CSI feedback information of multiple beams other than information may include not only the remaining information of the CSI feedback information of the multi-beam other than the partial information of the CSI feedback information of the multi-beam in the first type of CSI feedback information, but also Part of the CSI feedback information of the multi-beam in the first type of CSI feedback information.
  • the information for indicating the type of CSI feedback information may be a CSI type indicator (CTI).
  • CTI may include one or more bits, and the different values of the bits indicate different types of CSI. For example, when the value of the bit is “1”, the CSI feedback information is sent by using the first type of CSI feedback manner. When the bit value is “0”, it indicates that the corresponding CSI feedback information is sent by using the second type of CSI feedback manner.
  • the transmitting unit 710 may independently transmit information indicating a type of CSI feedback information.
  • the sending unit 710 may send information indicating a type of CSI feedback information before transmitting the first type of CSI feedback information and the second type of CSI feedback information. Therefore, before receiving the CSI feedback information of the multi-beam, the base station can know which type of CSI feedback information is to be received, so that after receiving the CSI feedback information, the corresponding processing can be accurately performed, and the received CSI feedback is improved. Information processing efficiency.
  • the transmitting unit 710 may transmit information indicating a type of CSI feedback information to be included in the first type of CSI feedback information in the CSI feedback information of the multi-beam.
  • information indicating the type of CSI feedback information and the first type of CSI feedback information may be simultaneously transmitted. Therefore, the base station receives the information indicating the type of the CSI feedback information while receiving the CSI feedback information of the first type, and implements the one-time transmission of the type of the CSI feedback information and the specific content of the CSI feedback information, thereby improving the transmission efficiency.
  • the transmitting unit 710 may also transmit information for indicating the type of CSI feedback information to be included in the second type of CSI feedback information in the CSI feedback information of the multi-beam.
  • information indicating the type of CSI feedback information and the second type of CSI feedback information may be simultaneously transmitted.
  • the sending unit 710 is further configured to send the first type of CSI feedback information in the multi-beam CSI feedback information by using the first type of CSI feedback manner, where the first type of CSI feedback information includes at least the first transmission order Information, first channel quality information, and feedback information of the first beam in the multiple beams.
  • the multiple beams are L beams, and specifically may include one of the most powerful leading beams and (L-1) relatively weak beams (combined beams), where L ⁇ 2 and is a positive integer.
  • the first beam in the multiple beams may be the most powerful beam among the multiple beams, or may be one of the multiple beams with relatively weak power.
  • the first transmission order information may be transmission order information of a bandwidth occupied by the first beam in the multiple beams.
  • the first transmission order information may be the transmission order information of the bandwidth occupied by the beam with the strongest power in the multiple beams, or may be the transmission order information of the bandwidth occupied by the beam with a relatively weak power in the multiple beams.
  • the first transmission order information may be a transmission order indication (RI) of the first beam in the multiple beams, where the RI is a transmission order that the UE proposes to use in the downlink transmission by the base station. For example, it is recommended that the base station use a layer in the downlink transmission.
  • the UE can report an RI within a valid bandwidth.
  • the first channel quality information may be channel quality information for a first one of the plurality of beams.
  • the first channel quality information may be channel quality information of a beam with the strongest power in the multiple beams, or may be channel quality information of a beam with a relatively weak power in the multiple beams.
  • the first channel quality information may be a channel quality indicator (CQI) of the first beam in the multiple beams, where the CQI is the channel quality information learned by the UE on the UE side reported by the UE. .
  • CQI channel quality indicator
  • the feedback information of the first beam may include a Precoding Matrix Indicator (PMI) of the first beam, where the PMI indicates a precoding matrix that the UE proposes to use in the downlink transmission by the base station,
  • the precoding matrix is selected based on the number of layers indicated by the RI.
  • the selection of the precoding matrix may be frequency selective, and the UE may suggest different precoding matrices for different portions of the downlink bandwidth. Therefore, the UE can report one or more PMIs at the same time.
  • the precoding matrix may include a first matrix (represented by W 1 ) and a second matrix (represented by W 2 ), and generally W 1 may be a matrix of N*L, where N is a number of ports and is a positive integer. L the number of beams in a multi-beam and a positive integer, typically matrix W 2 may, therefore, the first beam feedback information may include the index of the first horizontal beam W 1, W index of the first vertical beam 1 The matrix information of W 2 of the first beam.
  • the feedback information of the first beam may further include power information of the first beam, where the power information of the first beam may be a Relative Power Indicator (RPI).
  • the first beam is the most powerful beam among the multiple beams, and therefore, the RPI of the first beam can be defaulted to a maximum value of 1 without being reported to the base station, thereby saving signaling overhead.
  • the transmitting unit 710 may include information indicating a type of CSI feedback information in the first type of CSI feedback information in the CSI feedback information of the multi-beam. send.
  • the information used to indicate the type of CSI feedback information may be sent together with the RI, CQI, PMI in the first type of CSI feedback information, or may be respectively related to the RI, CQI, PMI in the first type of CSI feedback information. Any combination is sent together and is not limited here.
  • the sending unit 710 is further configured to send the second type of CSI feedback information in the multi-beam CSI feedback information by using the second type of CSI feedback manner, where the second type of CSI feedback information includes at least the second transmission order information.
  • Second channel quality information feedback information of beams other than the first beam in the multiple beams.
  • the multiple beams may comprise one of the most powerful beams and (L-1) beams of relatively weak power.
  • the beams other than the first beam in the multiple beams may be (L-1) relatively weak beams in the multiple beams;
  • the beams other than the first beam in the multiple beams may be the most powerful beam and the remaining (L-2) of the multiple beams. Relatively weak beam.
  • the second transmission order information may be transmission order information of a bandwidth occupied by the second beam in the multiple beams.
  • the second transmission order information may be (L-1) in the multiple beams.
  • the second transmission order information may be the transmission order information of the bandwidth of the most powerful beam and the remaining (L-2) relatively weak beams in the multiple beams.
  • the second transmission order information may be an RI of other beams than the first one of the multiple beams, where the RI has been described above and will not be described herein.
  • the second channel quality information may be channel quality information of other beams than the first one of the multiple beams.
  • the second channel quality information may be (L-1) powers in the multiple beams.
  • Channel quality information of a relatively weak beam when other beams other than the first beam in the multiple beams are the most powerful beam among the multiple beams and the remaining (L-2) beams having relatively weak power, the second The channel quality information may be channel quality information of the most powerful beam and the remaining (L-2) relatively weak beams in the multiple beams.
  • the second channel quality information may be a CQI of other beams than the first beam in the multiple beams, where the CQI has been described above and will not be described herein.
  • the feedback information of the beams other than the first beam in the multiple beams may be the PMI of the beams other than the first beam.
  • a multi-beam feedback information other beams other than the first beam may include a plurality of beams each beam other than the first index of W horizontal beam 1, the vertical index W 1, W 2 of the matrix information.
  • the feedback information of the beams other than the first beam in the multiple beams may further include power information of each of the plurality of beams except the first beam, wherein the first beam is included in the multiple beams.
  • the power information of each beam other than the beam may also be an RPI. The RPI has been described above and will not be described here.
  • the transmission device further includes a processing unit 720, as shown in FIG.
  • the processing unit 720 can be configured to obtain second channel quality information according to channel quality of the first beam and channel quality of other beams than the first beam.
  • the sending unit 710 sends the second type of CSI feedback information
  • the second transmission order information, the second channel quality information, and the feedback of other beams other than the first beam in the second type of CSI feedback information may be used.
  • the information is sent as a whole.
  • the second channel quality information is obtained from the channel qualities of all beams in the multiple beams. That is, in this example, the second channel quality information is one channel quality information.
  • the processing unit 720 can be configured to divide the second type of CSI feedback information into multiple parts and separately transmit the respective parts to further reduce the signaling overhead required each time the CSI feedback is performed.
  • the processing unit 720 may divide the second type of CSI feedback information into multiple parts, where each part may include feedback information of one or more beams, channel quality information corresponding to the part, and second transmission
  • the order information may be included in one of the plurality of sections, and further, the second channel quality information is channel quality information of the plurality of sections.
  • the processing unit 720 divides the second type of CSI feedback information into multiple parts, where each part may include feedback information of one or more beams, channel quality information corresponding to the part, and second transmission order information may be It is included in one of the plurality of sections, and further, the second channel quality information is channel quality information of a plurality of sections.
  • the first type of CSI feedback information includes feedback information of the first beam
  • the second type of CSI feedback information includes the remaining (L-1) beams.
  • the processing unit 720 may divide the second type of CSI feedback information into a plurality of parts by, but not limited to, the following manners.
  • processing unit 720 can divide the second type of CSI feedback information into (L-1) portions.
  • Channel quality information corresponding to each portion can be obtained based on the channel quality of one beam in each portion.
  • Each part of the (L-1) partial CSI feedback information may include feedback information of one beam, and the second channel quality information specifically represents a set of channel quality information of each part in (L-1) parts. That is to say, the feedback information of the second beam, ..., the feedback information of the ith beam, ..., the feedback information of the Lth beam are respectively transmitted, and in the process of transmitting separately, the ith beam has a corresponding channel.
  • the quality information is to say, the feedback information of the second beam, ..., the feedback information of the ith beam, ..., the feedback information of the Lth beam are respectively transmitted, and in the process of transmitting separately, the ith beam has a corresponding channel.
  • the second channel quality information is specifically expressed as a channel quality information of the second beam, ..., channel quality information of the i-th beam, ..., and a set of channel quality information of the L-th beam.
  • the portion of the (L-1) partial CSI feedback information that is first transmitted to the base station includes the second transmission order information.
  • the feedback information of the beams other than the first beam in the multi-beam may also include the RPI of each beam of the beams other than the first beam in the multi-beam.
  • the RPI of each beam has been considered in the process of calculating the CQI of each section, that is, the RPI of each beam. Implicitly embodied in the CQI of each beam. Therefore, in this case, the RPI of each beam can no longer be calculated and transmitted.
  • the second type of CSI feedback information is divided into (L-1) parts in the processing unit 720, and the channel corresponding to each part can be obtained according to the channel quality of one beam in each part Quality information.
  • the processing unit 720 divides the second type of CSI feedback information into (L-1) parts, and may also obtain each part according to the channel quality of the first beam and the channel quality of one beam in each part. Corresponding channel quality information.
  • the RPI of each beam can be calculated and transmitted. Specifically, when calculating the CQI corresponding to each part, not only the channel quality of one beam in each part but also the channel quality of the first beam can be considered.
  • the channel quality of the first beam is considered more in the process of calculating the CQI of each part, and therefore, the CQI of each part cannot accurately represent the RPI of each beam. Therefore, in this way, in this case, the RPI of each beam can be calculated and transmitted.
  • the processing unit 720 divides the second type of CSI feedback information into (L-1) portions, each of which may contain feedback information for one beam.
  • the processing unit 720 may further divide the second type of CSI feedback information into a plurality of parts, each of which may include feedback information of at least one beam.
  • the second type of CSI feedback information may be divided into P parts, where 1 ⁇ P ⁇ (L-1) and P is a positive integer, and each part of the P parts includes feedback information of at least one beam, Channel quality information corresponding to each portion may be obtained according to the channel quality of at least one beam in each portion. And, in this case, the RPI of each beam can no longer be calculated and transmitted.
  • the RPI of each beam has been considered in the process of calculating the CQI of each portion, that is, each The RPI of the beams is implicitly reflected in the CQI of each part. Therefore, in this case, the RPI of each beam can no longer be calculated and transmitted.
  • the processing unit 720 divides the second type of CSI feedback information into P parts, and may also obtain corresponding to each part according to the channel quality of the first beam and the channel quality of at least one beam in each part. Channel quality information. And, in this case, the RPI of each beam can be calculated and transmitted. Specifically, when calculating the CQI corresponding to each part, not only the channel quality of at least one beam in each part but also the channel quality of the first beam is considered. It is also because the channel quality of the first beam is considered more in the process of calculating the CQI of each part, and therefore, the CQI of each part cannot accurately represent the RPI of each beam in each part. In this case, the RPI of each beam in each section needs to be calculated and transmitted.
  • the transmitting unit 710 transmits the divided plurality of sections, respectively.
  • the second type of CSI feedback information is divided into a plurality of partial transmissions by the processing unit 720, which reduces the bit error rate.
  • the sending unit 710 may send the foregoing first on a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH), respectively.
  • Type of CSI feedback information and/or second type of CSI feedback information For example, the sending unit 710 may transmit both the first type of CSI feedback information and the second type of CSI feedback information on the PUSCH; or transmit the first type of CSI feedback information on the PUSCH and transmit the second type on the PUCCH CSI feedback information; or transmitting the first type of CSI feedback information on the PUCCH and transmitting the second type of CSI feedback information on the PUSCH; or transmitting the first type of CSI feedback information and the second type of CSI feedback on the PUCCH information.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the sending unit 710 may transmit the first type of CSI feedback information on the PUCCH or the PUSCH, and transmit the second type of CSI feedback information on the PUSCH.
  • the second type of CSI feedback information with a relatively large amount of data is transmitted on the PUSCH, thereby consuming less radio resources of the PUCCH, and saving the overhead of the PUCCH.
  • the sending unit 710 may include the information indicating the type of the CSI feedback information in the second type in the CSI feedback information of the multi-beam.
  • the CSI feedback information is sent within.
  • the information used to indicate the type of CSI feedback information may be sent together with the RI, PMI, CQI in the second type of CSI feedback information, or may be respectively related to the RI, PMI, CQI in the second type of CSI feedback information. Any combination is sent together and is not limited here.
  • the sending unit 710 is further configured to send information indicating a number of beams in the second type of CSI feedback information.
  • the information used to indicate the number of beams in the second type of CSI feedback information may be a Beam Number Indicator (BNI).
  • BNI Beam Number Indicator
  • the BNI may be sent in the first type of CSI feedback information, for example, may be sent together with the RI, PMI, CQI in the first type of CSI feedback information, or respectively, and the first type of CSI feedback information. Any combination of RI, PMI, CQI is sent together.
  • the second type of CSI feedback information may be sent separately with the RI, PMI, CQI in the second type of CSI feedback information, or may be separately related to the second type of CSI feedback. Any combination of RI, PMI, and CQI in the message is sent together.
  • the BNI can be sent with the RI in the second type of CSI feedback information.
  • information for example, BNI
  • BNI information for indicating the number of beams in the second type of CSI feedback information
  • the information indicating the number of beams in the second type of CSI feedback information is only included in one of the plurality of parts.
  • it is transmitted in the first part of the multiple parts, so that after receiving the first part, the base station dynamically adjusts the radio resources occupied by the remaining part according to it, thereby saving the overhead.
  • the CSI feedback information of the multi-beam is transmitted through different types of CSI feedback modes (for example, the first type of CSI feedback mode and the second type of CSI feedback mode), And transmitting the corresponding CSI feedback information in the CSI feedback information of the multi-beam for different types of CSI feedback manners, thereby ensuring the complete transmission of the CSI feedback information of the multi-beam, and allocating the radio resources reasonably, thereby effectively saving the overhead.
  • different types of CSI feedback modes for example, the first type of CSI feedback mode and the second type of CSI feedback mode
  • the second type of CSI feedback information may include partial information of the first type of CSI feedback information. Therefore, even if the first type of CSI feedback information is not transmitted using the first type of CSI feedback manner, only the second type of CSI feedback information is transmitted to ensure complete transmission of the multi-beam CSI feedback information.
  • each structural unit can be implemented by any combination of hardware and/or software.
  • the means for realizing each structural unit is not particularly limited. That is, each structural unit may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated, directly and/or indirectly (eg, This is achieved by a plurality of devices as described above by a wired and/or wireless connection.
  • the user equipment in the embodiment of the present invention can function as a computer that performs processing of the multi-beam CSI feedback information transmission method of the present invention.
  • FIG. 8 shows a schematic diagram of a hardware structure of a user equipment involved, in accordance with one embodiment of the present invention.
  • the user equipment 800 described above may be configured as a computer device that physically includes a processor 810, a memory 820, a memory 830, a communication device 840, an input device 850, an output device 860, a bus 870, and the like.
  • the hardware structure of the user device 800 may include one or more of the devices shown in the figures, or may not include some of the devices.
  • processor 810 is only illustrated as one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 810 can be installed by more than one chip.
  • Each function in the user device 800 is realized, for example, by reading a predetermined software (program) into hardware such as the processor 810, the memory 820, and the like, thereby causing the processor 810 to perform an operation to perform communication by the communication device 840. Control is performed and control of reading and/or writing of data in the memory 820 and the memory 830 is performed.
  • a predetermined software program
  • the processor 810 for example, causes the operating system to operate to control the computer as a whole.
  • the processor 810 may be constituted by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit, call processing unit, and the like can be implemented by the processor 810.
  • the processor 810 reads out programs (program codes), software modules, data, and the like from the memory 830 and/or the communication device 840 to the memory 820, and executes various processes in accordance therewith.
  • programs program codes
  • the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
  • the control unit of the user device 800 can be implemented by a control program stored in the memory 820 and operated by the processor 810, and can be implemented similarly for other functional blocks.
  • the memory 820 is a computer readable recording medium, and may be, for example, a read only memory (ROM), an EEPROM (Erasable Programmable ROM), an electrically programmable read only memory (EEPROM), or an electrically programmable read only memory (EEPROM). At least one of a random access memory (RAM) and other suitable storage medium is used.
  • the memory 820 may also be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 820 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
  • the memory 830 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.). Digital Versatile Disc, Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database At least one of a server, a server, and other suitable storage medium. Memory 830 may also be referred to as an auxiliary storage device.
  • the communication device 840 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 840 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-described transmitting and receiving antenna, amplifying unit, transmitting and receiving unit, transmission path interface, and the like can be realized by the communication device 840.
  • the input device 850 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 860 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 850 and the output device 860 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 810, the memory 820, and the like are connected by a bus 870 for communicating information.
  • the bus 870 may be composed of a single bus or a different bus between devices.
  • the user equipment 800 may include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and field programmable.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • processor 810 can be installed by at least one of these hardware.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as an RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier may also be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be referred to as a subframe.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed length of time (eg, 1 ms) that is independent of the numerology.
  • the time slot may have one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM), Single Carrier Frequency Division Multiple Access (SC-FDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA) Symbols, etc.).
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
  • a minislot can also be referred to as a subslot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
  • one subframe may be referred to as a Transmission Time Interval (TTI), and a plurality of consecutive subframes may also be referred to as a TTI.
  • TTI Transmission Time Interval
  • One slot or one minislot may also be referred to as a TTI. That is to say, the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
  • a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • the radio base station performs scheduling for all user terminals to allocate radio resources (bandwidth, transmission power, etc. usable in each user terminal) in units of TTIs.
  • the definition of TTI is not limited to this.
  • the TTI may be a channel-coded data packet (transport block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval e.g., the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini time slot
  • more than one TTI ie, more than one time slot or more than one micro time slot
  • the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • a short TTI eg, a compressed TTI, etc.
  • TTI length of the TTI may be replaced with 1 ms.
  • a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
  • a TTI and a subframe may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like. .
  • the resource block may also be composed of one or more resource elements (REs, Resource Elements).
  • REs resource elements
  • Resource Elements For example, one RE can be a subcarrier and a symbol of a radio resource area.
  • radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
  • the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), and upper layer signaling (for example, radio resource control).
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Media Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying the other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) from a website, server, or other remote source
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • base station (BS, Base Station)", “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier”, and “component carrier”
  • BS Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell a cell
  • cell group a carrier
  • component carrier a component carrier
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small indoor base station (RFH, remote head (RRH), Remote Radio Head))) to provide communication services.
  • the term "cell” or “sector” refers to a portion or the entirety of the coverage area of a base station and/or base station subsystem that performs communication services in the coverage.
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the wireless base station in this specification can also be replaced with a user terminal.
  • each mode/embodiment of the present invention can be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user-to-device (D2D) devices.
  • D2D user-to-device
  • the function of the above-described wireless base station can be regarded as a function of the user terminal.
  • words such as "upstream” and "downstream” can also be replaced with "side”.
  • the uplink channel can also be replaced with a side channel.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • the function of the above-described user terminal can be regarded as a function of the wireless base station.
  • the node may be considered, for example, but not limited to, a Mobility Management Entity (MME), a Serving-Gateway (S-GW, etc.), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long-Term Evolution
  • LTE-Beyond Long-Term Evolution
  • Super 3rd generation mobile communication system SUPER 3G
  • IMT-Advanced advanced international mobile communication
  • 4th generation mobile communication system (4G, 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • future radio access FAA
  • new radio access technology New-RAT, Radio Access Technology
  • NR New Radio Access Technology
  • NX new radio access
  • FX Next Generation Wireless Access
  • GSM Registered trademark
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra Wideband
  • any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used in this specification as a convenient method of distinguishing between two or more units. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
  • determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, looking up (eg, table, database, or other) may be performed. Search in the data structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, receiving information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
  • judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judging (determining)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)".
  • connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access”.
  • two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
  • the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供了一种多波束的CSI反馈信息的传输方法和装置。根据本发明实施例的方法包括:发送用于指示CSI反馈信息的类型的信息;使用第一类型的CSI反馈方式发送多波束的CSI反馈信息中的第一类型的CSI反馈信息,其中,第一类型的CSI反馈信息至少包括第一传输阶数信息、第一信道质量信息和多波束中的第一波束的反馈信息;使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息,其中,第二类型的CSI反馈信息至少包括第二传输阶数信息、第二信道质量信息、多波束中除了第一波束以外的其他波束的反馈信息。

Description

一种多波束的CSI反馈信息的传输方法和装置 技术领域
本发明涉及通信领域,尤其涉及一种多波束的CSI反馈信息的传输方法和装置。
背景技术
为了提高通信***的吞吐量,已经提出了全维度多输入多输出(Full Dimensional MIMO,FD-MIMO)和大规模多输入多输出(Massive MIMO)天线。与传统的MIMO***相比,在FD-MIMO和Massive MIMO***中,基站能够使用更多波束与用户设备进行数据传输。
为了确定用于向用户设备发送数据的波束,基站可静态、半静态或动态地向用户设备发送对于多个候选波束的信道状态参考信号(CSI-RS),以便用户设备对各个波束进行信道测量。进而,基站可根据用户设备对CSI-RS的反馈(以下简称CSI反馈),从多个候选波束中选择用于向该用户设备进行后续传输的波束。然而,随着天线数量的增加,用户设备进行CSI反馈所需要的信令开销也随之增加。
发明内容
希望提供一种用于多波束的CSI反馈方式,以减少每次用户设备进行CSI反馈时所需要的信令开销。
本发明的一个方面提供了一种多波束的CSI反馈信息的传输方法,方法包括:发送用于指示CSI反馈信息的类型的信息;使用第一类型的CSI反馈方式发送多波束的CSI反馈信息中的第一类型的CSI反馈信息,其中,第一类型的CSI反馈信息至少包括第一传输阶数信息、第一信道质量信息和多波束中的第一波束的反馈信息;使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息,其中,第二类型的CSI反馈信息至少包括第二传输阶数信息、第二信道质量信息、多波束中除了第一波束以外的其他波束的反馈信息。
本发明的另一个方面还提供了一种多波束的CSI反馈信息的传输装置, 装置包括:发送单元,用于发送用于指示CSI反馈信息的类型的信息;发送单元,还用于使用第一类型的CSI反馈方式发送多波束的CSI反馈信息中的第一类型的CSI反馈信息,其中,第一类型的CSI反馈信息至少包括第一传输阶数信息、第一信道质量信息和多波束中的第一波束的反馈信息;发送单元,还用于使用第二类型的CSI反馈方式发送第二类型的CSI反馈信息,其中,第二类型的CSI反馈信息至少包括第二传输阶数信息、第二信道质量信息、多波束中除了第一波束以外的其他波束的反馈信息。
在根据本发明实施例的多波束的CSI反馈信息的传输方法和装置中,通过不同类型的CSI反馈方式(例如,第一类型的CSI反馈方式和第二类型的CSI反馈方式)传输多波束的CSI反馈信息,并且针对不同类型的CSI反馈方式传输多波束的CSI反馈信息中相应的CSI反馈信息,从而在保证了多波束的CSI反馈信息的完整传输的同时,合理地分配了无线资源,有效地节省了开销。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1示出了根据本发明一个实施例,多波束的CSI反馈信息的传输方法的流程图;
图2示出了类型II根据一个示例,使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的无线资源的分配示意图;
图3示出了类型I和图2所示的类型II的无线资源的分配示意图;
图4示出了根据本发明的一个示例,使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的方法的流程图;
图5示出了类型II根据另一示例,使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的无线资源的分配示意图;
图6示出了类型I和图5所示的类型II的无线资源的分配示意图;
图7示出了根据本发明一个实施例,多波束的CSI反馈信息的传输装置的结构示意图;
图8示出了根据本发明一个实施例,所涉及的用户设备的硬件结构的示意图。
具体实施方式
下面将参照附图来描述根据本发明实施例的信道状态信息参考信号发送方法及基站。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。此外,这里所述的UE可以包括各种类型的用户终端,例如移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用UE和移动台。此外,基站可以为固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等,在此不做限定。
在根据本发明的实施例中,UE通过测量基站发送的下行参考信号(例如,小区特定的参考信号或者CSI-RS)来获取多波束的CSI反馈信息,并把多波束的CSI反馈信息上报给基站,从而使得基站在下行调度时将各个波束的信道质量考虑在内。
以下,参照图1描述根据本发明实施例的多波束的CSI反馈信息的传输方法。图1示出了根据本发明一个实施例,多波束的CSI反馈信息的传输方法100的流程图。根据本发明的示例,图1中所述所示的方法可用于用户设备(UE)。
如图1所示,在步骤S101中,发送用于指示CSI反馈信息的类型的信息。
在根据本发明的实施例中,CSI反馈信息的类型可以包括两类。例如,第一类型的CSI反馈信息和第二类型的CSI反馈信息,其中,第一类型的CSI反馈信息可以为针对一个波束的CSI反馈信息,第二类型的CSI反馈信息可以为针对多个波束的CSI反馈信息或者可以为针对多波束中所有波束的CSI反馈信息。此外,第一类型的CSI反馈信息可以包括多波束中第一波 束的CSI反馈信息,第二类型的CSI反馈信息可以包括多波束中除了第一波束的其他波束的CSI反馈信息。关于第二类型的CSI反馈信息,可替换地,可以包括多波束中所有波束的CSI反馈信息。
根据本发明的一个示例,用于指示CSI反馈信息的类型的信息可以为CSI类型指示(CSI类型Indicator,CTI)。具体地,CTI可以包括一个或多个比特,并且,比特的不同取值表示CSI的不同类型,例如,比特取值为“1”时表示使用第一类型的CSI反馈方式发送相应的CSI反馈信息,比特取值为“0”时表示使用第二类型的CSI反馈方式发送相应的CSI反馈信息。
根据本发明的一个示例,UE可以独立地发送用于指示CSI反馈信息的类型的信息。例如,如图1所示在步骤S102和步骤S103之前执行步骤S101。从而基站可在接收多波束的CSI反馈信息之前,获知即将接收到的CSI反馈信息属于哪种类型,从而当接收到CSI反馈信息之后可准确地进行相应的处理,提高了对接收到的CSI反馈信息的处理效率。
然而本发明不限于此。根据本发明的另一示例,UE可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第一类型的CSI反馈信息内发送。在此情况下,可同时执行图1中所示的步骤S101和S102。从而基站在接收到第一类型的CSI反馈信息的同时接收到指示CSI反馈信息的类型的信息,实现了CSI反馈信息的类型及CSI反馈信息的具体内容的一次性传输,提高了传输效率。
可替换地,根据本发明的又一示例,UE也可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第二类型的CSI反馈信息内发送。在此情况下,可同时执行图1中所示的步骤S101和S103。
在步骤S102中,使用第一类型的CSI反馈方式发送多波束的CSI反馈信息中的第一类型的CSI反馈信息,其中,第一类型的CSI反馈信息至少包括第一传输阶数信息、第一信道质量信息和多波束中的第一波束的反馈信息。
在根据本发明的实施例中,多波束为L个波束,具体可以包括一个功率最强的波束(leading beam)和(L-1)个功率相对较弱的波束(combined beam),其中,L≥2且为正整数。多波束中的第一波束可以为多波束中功率最强的波束,也可以为多波束中一个功率相对较弱的波束。
在根据本发明的实施例中,第一传输阶数信息可以为多波束中的第一波 束所占带宽的传输阶数信息。具体地,第一传输阶数信息可以为多波束中功率最强的波束所占带宽的传输阶数信息,也可以为多波束中一个功率相对较弱的波束所占带宽的传输阶数信息。
根据本发明的一个示例,第一传输阶数信息可以为多波束中的第一波束的传输阶数指示(Rank Indicator,RI),其中,RI是UE建议基站在下行传输中使用的传输阶数,例如,建议基站在下行传输中使用的层数(layer)。在一个有效的带宽内UE可上报一个RI。
在根据本发明的实施例中,第一信道质量信息可以为多波束中的第一波束的信道质量信息。具体地,第一信道质量信息可以为多波束中功率最强的波束的信道质量信息,也可以为多波束中一个功率相对较弱的波束的信道质量信息。
根据本发明的另一示例,第一信道质量信息可以为多波束中的第一波束的信道质量指示(Channel Quality Indicator,CQI),其中,CQI是UE上报给基站的UE侧获知的信道质量信息。
根据本发明的另一示例,第一波束的反馈信息可包括第一波束的预编码矩阵指示(Precoding Matrix Indicator,PMI),其中,PMI指示UE建议基站在下行传输中使用的预编码矩阵,该预编码矩阵是在RI指示的层数的基础上进行选择的。例如,预编码矩阵的选择可以是频率选择性的,UE可以对下行带宽的不同部分建议使用不同的预编码矩阵。因此,UE可以同时上报1个或多个PMI。
又例如,预编码矩阵可以包括第一矩阵(用W 1表示)和第二矩阵(用W 2表示),通常W 1可以为N*L的矩阵,其中,N为端口数目且为正整数,L为多波束中波束的数目且为正整数,通常W 2可以为单位矩阵,因此,第一波束的反馈信息可以包括第一波束的W 1的水平索引、第一波束的W 1的垂直索引、第一波束的W 2的矩阵信息。PMI可以指示W 1的水平索引和垂直索引以及W 2的矩阵信息。
根据本发明的另一示例,第一波束的反馈信息还可以包括第一波束的功率信息。例如,第一波束的功率信息可以为相对功率指示(Relative Power Indicator,RPI),相对功率是通信***中被测点的信号功率与参考点信号功率比值的常用对数值,RPI可以用于指示相对功率。可替换地,第一波束是 多波束中功率最强的波束,因此,可将第一波束的RPI默认为最大值1,而不上报给基站,从而节省了信令开销。
在此用类型I表示第一类型的CSI反馈信息的内容。根据本发明的示例,第一波束的反馈信息可以包括i1,1-1、i1,2-1、i2-1,则第一类型的CSI反馈信息可以包括i1,1-1、i1,2-1、i2-1、RI-I和CQI-I,其中,第一波束用第1波束表示,第一传输阶数信息用RI-I表示、第一信道质量信息用CQI-I表示,第一波束的反馈信息中的第一波束的预编码矩阵中的第一矩阵W 1用i1-1表示以及第二矩阵W 2用i2-1表示,其中,第一波束的W 1的水平索引用i1,1-1表示,第一波束的W 1的垂直索引用i1,2-1表示。
另外,在上文已经提到,在本发明的一个示例中,UE可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第一类型的CSI反馈信息内发送。例如,用于指示CSI反馈信息的类型的信息可以分别与第一类型的CSI反馈信息中的RI、CQI、PMI一起发送,也可以分别与第一类型的CSI反馈信息中的RI、CQI、PMI的任意组合一起发送,在此不做限定。
然后在步骤S103中,使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息,其中,第二类型的CSI反馈信息至少包括第二传输阶数信息、第二信道质量信息、多波束中除了第一波束以外的其他波束的反馈信息。
在上文已经提到,在根据本发明的实施例中,多波束可以包括一个功率最强的波束和(L-1)个功率相对较弱的波束。当多波束中的第一波束为多波束中功率最强的波束时,多波束中的第一波束以外的其他波束可以为多波束中(L-1)个功率相对较弱的波束;当多波束中的第一波束为多波束中一个功率相对较弱的波束时,多波束中的第一波束以外的其他波束可以为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束。
在根据本发明的实施例中,第二传输阶数信息可以为多波束中的第二波束所占带宽的传输阶数信息。例如,当多波束中的第一波束以外的其他波束为多波束中(L-1)个功率相对较弱的波束时,第二传输阶数信息可以为多波束中(L-1)个功率相对较弱的波束所占带宽的传输阶数信息。又例如,当多波束中的第一波束以外的其他波束为多波束中功率最强的波束和剩余的(L- 2)个功率相对较弱的波束时,第二传输阶数信息可以为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束所占带宽的传输阶数信息。
根据本发明的一个示例,第二传输阶数信息可以为多波束中的第一波束以外的其他波束的RI,其中,RI在上文已经介绍过,在此不再赘述。
在根据本发明的实施例中,第二信道质量信息可以为多波束中的第一波束以外的其他波束的信道质量信息。例如,当多波束中的第一波束以外的其他波束为多波束中(L-1)个功率相对较弱的波束时,第二信道质量信息可以为多波束中(L-1)个功率相对较弱的波束的信道质量信息。又例如,当多波束中的第一波束以外的其他波束为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束时,第二信道质量信息可以为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束的信道质量信息。
根据本发明的另一示例,第二信道质量信息可以为多波束中的第一波束以外的其他波束的CQI,其中,CQI在上文已经介绍过,在此不再赘述。
根据本发明的另一示例,多波束中除了第一波束以外的其他波束的反馈信息可以为除第一波束以外的其他波束的PMI。例如,多波束中除了第一波束以外的其他波束的反馈信息可以包括多波束中除了第一波束以外的每一个波束的W 1的水平索引、W 1的垂直索引、W 2的矩阵信息。
根据本发明的另一示例,多波束中除了第一波束以外的其他波束的反馈信息还可以包括多波束中除了第一波束以外的每一个波束的功率信息,其中,多波束中除了第一波束以外的每一个波束的功率信息也可以为RPI,RPI在上文已经介绍过,在此不再赘述。
在此用类型II表示该示例中第二类型的CSI反馈信息的内容。根据本发明的示例,第一波束以外的其他波束分别用第2波束、……、第i波束、……、第L波束表示,其中,2≤i≤(L-1)且为正整数,第i波束的反馈信息可以包括i1,1-i、i1,2-i、i2-i、p-i,则第二类型的CSI反馈信息可以包括{i1,1-2、……、i1,1-2、……i1,1-L}、{i1,2-2、……、i1,2-2、……i1,2-L)}、{i2-2、……、i2-i、……i2-L}、{p-2、……、p-i、……、p-L)}、RI-II和CQI-II,其中,第二传输阶数信息用RI-II表示、第二信道质量信息用CQI-II表示,第i波束的反馈信息中的第i波束的预编码矩阵中的第一矩阵W 1用i1-i表示以及第二矩阵W 2用i2-i表示,其中,第i波束的W 1的水平索引用i1,1-i表示,第i波 束的W 1的垂直索引用i1,2-i表示,以及第i波束的功率信息用p-i表示。
根据本发明的另一示例,UE可以根据第一波束的信道质量及第一波束以外的其他波束的信道质量获得第二信道质量信息。相应地,在步骤S103中,可将第二类型的CSI反馈信息中的第二传输阶数信息、第二信道质量信息、第一波束以外的其他波束的反馈信息作为整体发送。
在该示例中,第二信道质量信息是根据多波束中的所有波束的信道质量获得的。也就是说,在该示例中,第二信道质量信息是一个信道质量信息。
图2示出了上述类型II根据该示例,使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的无线资源200的分配示意图。如图2所示,无线资源200指示基站分配给UE的一段资源块,黑色方块指示无线资源200中的资源块210,资源块210用于传输类型II,类型II中的RI-II、CQI-II、第2波束至第L波束的W 1的水平索引{i1,1-2、……、i1,1-2、……i1,1-L}、第2波束至第L波束的W 1的垂直索引{i1,2-2、……、i1,2-2、……i1,2-L}、第2波束至第L波束的W 2的矩阵信息{i2-2、……、i2-i、……i2-L}、第2波束至第L波束的功率信息{p-2、……、p-i、……、p-L}作为一个整体占用资源块210并被发送。
上述图2示出了类型II使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的无线资源的分配示意图的一个示例。此外,根据本发明的另一示例,图3示出了类型I和图2所示的类型II的无线资源300的分配示意图。如图3所示,无线资源300指示基站分配给UE的一段资源块,黑色方块指示无线资源300中的资源块310,资源块310用于传输类型II,阴影方块指示无线资源300中的资源块320,资源块320用于传输类型I。类型I占用资源块320并被发送,类型II作为一个整体占用资源块310并被发送。
另外,在上文已经提到,在步骤S103中,可将第二类型的CSI反馈信息中的第二传输阶数信息、第二信道质量信息、第一波束以外的其他波束的反馈信息作为整体发送。可替换地,还可将第二类型的CSI反馈信息划分为多个部分,并且分别发送各个部分,以进一步减少每次进行CSI反馈时所需的信令开销。图4是示出根据本发明的一个示例,使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的方法400的 流程图。
如图4所示,在步骤S1031中,将第二类型的CSI反馈信息划分为多个部分,其中,每个部分可包含一个或者多个波束的反馈信息、与该部分相对应的信道质量信息,第二传输阶数信息可被包含在多个部分中的一个部分内,此外,第二信道质量信息是多个部分的信道质量信息。
在上文已经提到,假设多波束的波束数目为L,第一类型的CSI反馈信息包含了第一波束的反馈信息,第二类型的CSI反馈信息包含了其余(L-1)个波束,其中L≥2且为正整数。在步骤S1031中,可通过但不限于以下方式来将第二类型的CSI反馈信息划分为多个部分。
例如,在步骤S1031中可将第二类型的CSI反馈信息划分为(L-1)个部分。可根据每个部分中一个波束的信道质量获得与每个部分相对应的信道质量信息。在(L-1)个部分CSI反馈信息中的每个部分可包含一个波束的反馈信息,第二信道质量信息具体表现为(L-1)个部分中各部分的信道质量信息的集合。也就是说,第2波束的反馈信息、……、第i波束的反馈信息、……、第L波束的反馈信息分别发送,而且在分别发送的过程中,第i波束都具有相对应的信道质量信息,因此,在该示例中,第二信道质量信息具体表现为第2波束的信道质量信息、……、第i波束的信道质量信息、……、第L波束的信道质量信息的集合。此外,可仅在(L-1)个部分CSI反馈信息中的一个部分中,优先地,在(L-1)个部分CSI反馈信息中最先发送给基站的部分中包含第二传输阶数信息。
图5示出了上述类型II根据该示例,使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的无线资源500的分配示意图。如图5所示,无线资源500指示基站分配给UE的一段资源块,黑色方块指示无线资源500中的资源块510、资源块530、资源块540,资源块510、资源块530、资源块540分别用于传输类型II中的第2波束形成的部分、第i波束形成的部分、第L波束形成的部分。第i波束的反馈信息中的第i波束的W 1的水平索引、W 1的垂直索引、W 2、功率信息与第i波束的CQI-i作为一个部分,即{i1,1-i、i1,2-i、i2-i、p-i、CQI-i}作为一个部分,占用资源块530并被发送。类似的,第2波束的反馈信息与第二波束的CQI-2作为一个部分占用资源块510并被发送,第L波束的反馈信息与第L波束 的CQI-L作为一个部分占用资源块540并被发送。并且,RI-II可以包含在第一个部分中被发送。
上述图5示出了类型II使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息的无线资源的分配示意图的一个示例。此外,根据本发明的另一示例,图6示出了上述类型I和图5所示的类型II的无线资源600的分配示意图。如图6所示,无线资源600指示基站分配给UE的一段资源块,黑色方块指示无线资源600中的资源块610、资源块630、资源块640,资源块610、资源块630、资源块640分别用于传输类型II中的第2波束形成的部分、第i波束形成的部分、第L波束形成的部分,阴影方块指示无线资源600中的资源块620,资源块620用于传输类型I。类型I占用资源块620并被发送,类型II中的第2波束形成的部分、第i波束形成的部分、第L波束形成的部分分别占用资源块610、资源块630、资源块640并被发送。
在上文已经提到,多波束中除了第一波束以外的其他波束的反馈信息还可以包括多波束中除了第一波束以外的其他波束的每个波束的RPI。当根据每个部分中一个波束的信道质量获得与每个部分相对应的CQI时,在计算每个部分的CQI的过程中已经考虑了每个波束的RPI,也就是说,每个波束的RPI隐含地体现在每个波束的CQI中。因此,在这种情况下,每个波束的RPI可以不再计算及发送。
在上文已经提到,在步骤S1031中将第二类型的CSI反馈信息划分为(L-1)个部分,可根据每个部分中一个波束的信道质量获得与每个部分相对应的信道质量信息。然而本发明不限于此。可替换地,在步骤S1031中将第二类型的CSI反馈信息划分为(L-1)个部分,还可根据第一波束的信道质量和每个部分中一个波束的信道质量获得与每个部分相对应的信道质量信息。并且,在这种情况下,每个波束的RPI可被计算及发送。具体地,在计算每个部分相对应的CQI时,不仅可以考虑每个部分中一个波束的信道质量,而且还可以考虑第一波束的信道质量。也正因为在计算每个部分的CQI的过程中多考虑了第一波束的信道质量,因此,每个部分的CQI不能准确地体现每个波束的RPI。因此,在这种方式下,在这种情况下,每个波束的RPI可被计算及发送。
此外,在上文已经提到,在步骤S1031中将第二类型的CSI反馈信息划分为(L-1)个部分,每个部分可以包含一个波束的反馈信息。然而本发明不限于此。可替换地,在步骤S1031中还可将第二类型的CSI反馈信息划分为多个部分,每个部分可以包含至少一个波束的反馈信息。例如,可将第二类型的CSI反馈信息划分为P个部分,其中,1≤P<(L-1)且P为正整数,P个部分中的每个部分包含至少一个波束的反馈信息,可根据每个部分中至少一个波束的信道质量获得与每个部分相对应的信道质量信息。并且,在这种情况下,每个波束的RPI可以不再计算及发送。具体地,当根据每个部分中至少一个波束的信道质量获得与每个部分相对应的CQI时,在计算每个部分的CQI的过程中已经考虑了每个波束的RPI,也就是说,每个波束的RPI隐含地体现在每个部分的CQI中。因此,在这种情况下,每个波束的RPI可以不再计算及发送。
然而本发明不限于此。可替换地,在步骤S1031中将第二类型的CSI反馈信息划分为P个部分,还可根据第一波束的信道质量和每个部分中至少一个波束的信道质量获得与每个部分相对应的信道质量信息。并且,在这种情况下,每个波束的RPI可被计算及发送。具体地,在计算每个部分相对应的CQI时,不仅考虑每个部分中至少一个波束的信道质量,而且还考虑第一波束的信道质量。也正因为在计算每个部分的CQI的过程中多考虑了第一波束的信道质量,因此,每个部分的CQI不能准确地体现每个部分中每个波束的RPI。在这种情况下,每个部分中每个波束的RPI需计算及发送。
然后,在步骤S1032中分别发送所划分的多个部分。
通过图4所示的方法,将第二类型的CSI反馈信息划分为多个部分发送,降低了误码率。
此外,根据本发明的另一示例,UE可分别在物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)上发送上述第一类型的CSI反馈信息和/或第二类型的CSI反馈信息。例如,UE可在PUSCH上传输第一类型的CSI反馈信息和第二类型的CSI反馈信息二者;或者,在PUSCH上传输第一类型的CSI反馈信息且在PUCCH上传输第二类型的CSI反馈信息;或者,在PUCCH上传输第一类型的CSI反馈信息且在PUSCH上传输 第二类型的CSI反馈信息;或者,在PUCCH上传输第一类型的CSI反馈信息和第二类型的CSI反馈信息。优选地,UE可以在PUCCH或者PUSCH上传输第一类型的CSI反馈信息,在PUSCH上传输第二类型的CSI反馈信息。通过该可选实施方式,使得数据量相对较大的第二类型的CSI反馈信息在PUSCH上传输,从而较少地占用PUCCH的无线资源,节省了PUCCH的开销。
另外,在上文已经提到,在本实施例的另一个可选实施方式中,UE可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第二类型的CSI反馈信息内发送。例如,用于指示CSI反馈信息的类型的信息可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI一起发送,也可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI的任意组合一起发送,在此不做限定。
根据本发明的另一示例,图1中所示的方法还包括发送指示第二类型的CSI反馈信息中波束的数目的信息。根据本发明的一个示例,用于指示第二类型的CSI反馈信息中波束的数目的信息可以为波束数目指示(Beam Number Indicator,BNI)。例如,BNI可以被包含在第一类型的CSI反馈信息中发送,比如,可以分别与第一类型的CSI反馈信息中的RI、PMI、CQI一起发送,或者,分别与第一类型的CSI反馈信息中的RI、PMI、CQI的任意组合一起发送。又例如,也可以被包含在第二类型的CSI反馈信息中发送,比如,可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI一起发送,也可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI的任意组合一起发送。优选地,BNI可以与第二类型的CSI反馈信息中的RI一起发送。
在将第二类型的CSI反馈信息划分为多个部分的情况下,用于指示第二类型的CSI反馈信息中波束的数目的信息(例如,BNI)可以被包含在第二类型的CSI反馈信息中发送,在该示例中,用于指示第二类型的CSI反馈信息中波束的数目的信息只包含在多个部分中的一个部分内发送。优选地,将其包含在多个部分中的第一部分内发送,使得基站在接收到第一部分后,根据其动态地调整剩余部分所占的无线资源,进而节省了开销。
在根据本实施例的多波束的CSI反馈信息的传输方法,通过不同类型的CSI反馈方式(例如,第一类型的CSI反馈方式和第二类型的CSI反馈方式) 传输多波束的CSI反馈信息,并且针对不同类型的CSI反馈方式传输多波束的CSI反馈信息中相应的CSI反馈信息,从而在保证了多波束的CSI反馈信息的完整传输的同时,合理地分配了无线资源,有效地节省了开销。
此外,根据本发明的另一示例,第二类型的CSI反馈信息可以包括第一类型的CSI反馈信息的部分信息。因此,即使不使用第一类型的CSI反馈方式传输第一类型的CSI反馈信息,只需传输第二类型的CSI反馈信息也可保证多波束的CSI反馈信息的完整传输。
以下,参照图7描述根据本发明实施例的多波束的CSI反馈信息的传输装置。图7示出了根据本发明一个实施例,多波束的CSI反馈信息的传输装置的结构示意图。根据本发明的示例,图7中所述所示的装置700可用于用户设备(UE)。如图7所示,装置700包括发送单元710,用于发送用于指示CSI反馈信息的类型的信息。除了这个单元以外,装置700还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的装置700执行的下述操作的具体细节与在上文中参照图2-3和图5-6描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
在根据本发明的实施例中,CSI反馈信息的类型可以包括两类,例如,第一类型的CSI反馈信息(Normal)和第二类型的CSI反馈信息(Advanced),其中,第一类型的CSI反馈信息可以为针对多波束中的一个波束的CSI反馈信息,第二类型的CSI反馈信息可以为针对多波束中的剩余波束的CSI反馈信息或者可以为针对多波束中所有波束的CSI反馈信息。具体地,第一类型的CSI反馈信息可以包括多波束的CSI反馈信息中的部分信息,第二类型的CSI反馈信息可以包括除了第一类型的CSI反馈信息中的多波束的CSI反馈信息的部分信息以外的多波束的CSI反馈信息的剩余信息。关于第二类型的CSI反馈信息,可替换地,其不仅可以包括除了第一类型的CSI反馈信息中的多波束的CSI反馈信息的部分信息以外的多波束的CSI反馈信息的剩余信息,还可以包括第一类型的CSI反馈信息中的多波束的CSI反馈信息的部分信息。
根据本发明的一个示例,用于指示CSI反馈信息的类型的信息可以为CSI类型指示(CSI类型Indicator,CTI)。具体地,CTI可以包括一个或多 个比特,并且,比特的不同取值表示CSI的不同类型,例如,比特取值为“1”时表示使用第一类型的CSI反馈方式发送相应的CSI反馈信息,比特取值为“0”时表示使用第二类型的CSI反馈方式发送相应的CSI反馈信息。
根据本发明的一个示例,发送单元710可以独立地发送用于指示CSI反馈信息的类型的信息。例如,发送单元710可以在发送第一类型的CSI反馈信息和第二类型的CSI反馈信息之前发送用于指示CSI反馈信息的类型的信息。从而基站可在接收多波束的CSI反馈信息之前,获知即将接收到的CSI反馈信息属于哪种类型,从而当接收到CSI反馈信息之后可准确地进行相应的处理,提高了对接收到的CSI反馈信息的处理效率。
然而本发明不限于此。根据本发明的另一示例,发送单元710可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第一类型的CSI反馈信息内发送。在此情况下,可同时发送用于指示CSI反馈信息的类型的信息和第一类型的CSI反馈信息。从而基站在接收到第一类型的CSI反馈信息的同时接收到指示CSI反馈信息的类型的信息,实现了CSI反馈信息的类型及CSI反馈信息的具体内容的一次性传输,提高了传输效率。
可替换地,根据本本发明的又一示例,发送单元710也可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第二类型的CSI反馈信息内发送。在此情况下,可同时发送用于指示CSI反馈信息的类型的信息和第二类型的CSI反馈信息。
然后,发送单元710,还用于使用第一类型的CSI反馈方式发送多波束的CSI反馈信息中的第一类型的CSI反馈信息,其中,第一类型的CSI反馈信息至少包括第一传输阶数信息、第一信道质量信息和多波束中的第一波束的反馈信息。
在根据本发明的实施例中,多波束为L个波束,具体可以包括一个功率最强的波束(leading beam)和(L-1)个功率相对较弱的波束(combined beam),其中,L≥2且为正整数。多波束中的第一波束可以为多波束中功率最强的波束,也可以为多波束中一个功率相对较弱的波束。
在根据本发明的实施例中,第一传输阶数信息可以为多波束中的第一波束所占带宽的传输阶数信息。具体地,第一传输阶数信息可以为多波束中功率最强的波束所占带宽的传输阶数信息,也可以为多波束中一个功率相对较 弱的波束所占带宽的传输阶数信息。
根据本发明的一个示例,第一传输阶数信息可以为多波束中的第一波束的传输阶数指示(Rank Indicator,RI),其中,RI是UE建议基站在下行传输中使用的传输阶数,例如,建议基站在下行传输中使用的层数(layer)。在一个有效的带宽内UE可上报一个RI。
在根据本发明的实施例中,第一信道质量信息可以为多波束中的第一波束的信道质量信息。具体地,第一信道质量信息可以为多波束中功率最强的波束的信道质量信息,也可以为多波束中一个功率相对较弱的波束的信道质量信息。
根据本发明的另一示例,第一信道质量信息可以为多波束中的第一波束的信道质量指示(Channel Quality Indicator,CQI),其中,CQI是UE上报给基站的UE侧获知的信道质量信息。
根据本发明的另一示例,第一波束的反馈信息可包括第一波束的预编码矩阵指示(Precoding Matrix Indicator,PMI),其中,PMI指示UE建议基站在下行传输中使用的预编码矩阵,该预编码矩阵是在RI指示的层数的基础上进行选择的。例如,预编码矩阵的选择可以是频率选择性的,UE可以对下行带宽的不同部分建议使用不同的预编码矩阵。因此,UE可以同时上报1个或多个PMI。
又例如,预编码矩阵可以包括第一矩阵(用W 1表示)和第二矩阵(用W 2表示),通常W 1可以为N*L的矩阵,其中,N为端口数目且为正整数,L为多波束中波束的数目且为正整数,通常W 2可以为单位矩阵,因此,第一波束的反馈信息可以包括第一波束的W 1的水平索引、第一波束的W 1的垂直索引、第一波束的W 2的矩阵信息。
根据本发明的另一示例,第一波束的反馈信息还可以包括第一波束的功率信息,其中,第一波束的功率信息可以为相对功率指示(Relative Power Indicator,RPI)。可替换地,第一波束是多波束中功率最强的波束,因此,可将第一波束的RPI默认为最大值1,而不上报给基站,从而节省了信令开销。
另外,在上文已经提到,在本发明的一个示例中,发送单元710可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第 一类型的CSI反馈信息内发送。例如,用于指示CSI反馈信息的类型的信息可以分别与第一类型的CSI反馈信息中的RI、CQI、PMI一起发送,也可以分别与第一类型的CSI反馈信息中的RI、CQI、PMI的任意组合一起发送,在此不做限定。
然后,发送单元710还用于使用第二类型的CSI反馈方式发送多波束的CSI反馈信息中的第二类型的CSI反馈信息,其中,第二类型的CSI反馈信息至少包括第二传输阶数信息、第二信道质量信息、多波束中除了第一波束以外的其他波束的反馈信息。
在上文已经提到,在根据本发明的实施例中,多波束可以包括一个功率最强的波束和(L-1)个功率相对较弱的波束。当多波束中的第一波束为多波束中功率最强的波束时,多波束中的第一波束以外的其他波束可以为多波束中(L-1)个功率相对较弱的波束;当多波束中的第一波束为多波束中一个功率相对较弱的波束时,多波束中的第一波束以外的其他波束可以为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束。
在根据本发明的实施例中,第二传输阶数信息可以为多波束中的第二波束所占带宽的传输阶数信息。具体地,当多波束中的第一波束以外的其他波束为多波束中(L-1)个功率相对较弱的波束时,第二传输阶数信息可以为多波束中(L-1)个功率相对较弱的波束所占带宽的传输阶数信息;当多波束中的第一波束以外的其他波束为多波束中功率最强的那个波束和剩余的(L-2)个功率相对较弱的波束时,第二传输阶数信息可以为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束所占带宽的传输阶数信息。
根据本发明的一个示例,第二传输阶数信息可以为多波束中的第一波束以外的其他波束的RI,其中,RI在上文已经介绍过,在此不再赘述。
在根据本发明的实施例中,第二信道质量信息可以为多波束中的第一波束以外的其他波束的信道质量信息。具体地,当多波束中的第一波束以外的其他波束为多波束中(L-1)个功率相对较弱的波束时,第二信道质量信息可以为多波束中(L-1)个功率相对较弱的波束的信道质量信息;当多波束中的第一波束以外的其他波束为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束时,第二信道质量信息可以为多波束中功率最强的波束和剩余的(L-2)个功率相对较弱的波束的信道质量信息。
根据本发明的另一示例,第二信道质量信息可以为多波束中的第一波束以外的其他波束的CQI,其中,CQI在上文已经介绍过,在此不再赘述。
根据本发明的另一示例,多波束中除了第一波束以外的其他波束的反馈信息可以为除第一波束以外的其他波束的PMI。例如,多波束中除了第一波束以外的其他波束的反馈信息可以包括多波束中除了第一波束以外的每一个波束的W 1的水平索引、W 1的垂直索引、W 2的矩阵信息。
根据本发明的另一示例,多波束中除了第一波束以外的其他波束的反馈信息还可以包括多波束中除了第一波束以外的每一个波束的功率信息,其中,多波束中除了第一波束以外的每一个波束的功率信息也可以为RPI,RPI在上文已经介绍过,在此不再赘述。
根据本发明的另一示例,传输装置还包括处理单元720,如图7所示。处理单元720可以用于根据第一波束的信道质量及第一波束以外的其他波束的信道质量获得第二信道质量信息。相应地,在发送单元710发送第二类型的CSI反馈信息时,可将第二类型的CSI反馈信息中的第二传输阶数信息、第二信道质量信息、第一波束以外的其他波束的反馈信息作为整体发送。
在该示例中,第二信道质量信息是根据多波束中的所有波束的信道质量获得的。也就是说,在该示例中,第二信道质量信息是一个信道质量信息。
可替换地,处理单元720可用于将第二类型的CSI反馈信息划分为多个部分,并且分别发送各个部分,以进一步减少每次进行CSI反馈时所需的信令开销。具体地,处理单元720可将第二类型的CSI反馈信息划分为多个部分,其中,每个部分可包含一个或者多个波束的反馈信息、与该部分相对应的信道质量信息,第二传输阶数信息可被包含在多个部分中的一个部分内,此外,第二信道质量信息是多个部分的信道质量信息。
处理单元720将第二类型的CSI反馈信息划分为多个部分,其中,每个部分可包含一个或者多个波束的反馈信息、与该部分相对应的信道质量信息,第二传输阶数信息可被包含在多个部分中的一个部分内,此外,第二信道质量信息是多个部分的信道质量信息。
在上文已经提到,假设多波束的波束数目为L,第一类型的CSI反馈信息包含了第一波束的反馈信息,第二类型的CSI反馈信息包含了其余(L-1)个波束,其中L≥2且为正整数。处理单元720可通过但不限于以下方式来 将第二类型的CSI反馈信息划分为多个部分。
例如,处理单元720可将第二类型的CSI反馈信息划分为(L-1)个部分。可根据每个部分中一个波束的信道质量获得与每个部分相对应的信道质量信息。在(L-1)个部分CSI反馈信息中的每个部分可包含一个波束的反馈信息,第二信道质量信息具体表现为(L-1)个部分中各部分的信道质量信息的集合。也就是说,第2波束的反馈信息、……、第i波束的反馈信息、……、第L波束的反馈信息分别发送,而且在分别发送的过程中,第i波束都具有相对应的信道质量信息,因此,在该示例中,第二信道质量信息具体表现为第2波束的信道质量信息、……、第i波束的信道质量信息、……、第L波束的信道质量信息的集合。此外,可仅在(L-1)个部分CSI反馈信息中的一个部分中,优先地,在(L-1)个部分CSI反馈信息中最先发送给基站的部分中包含第二传输阶数信息。
在上文已经提到,多波束中除了第一波束以外的其他波束的反馈信息还可以包括多波束中除了第一波束以外的其他波束的每个波束的RPI。当根据每个部分中一个波束的信道质量获得与每个部分相对应的CQI时,在计算每个部分的CQI的过程中已经考虑了每个波束的RPI,也就是说,每个波束的RPI隐含地体现在每个波束的CQI中。因此,在这种情况下,每个波束的RPI可以不再计算及发送。
在上文已经提到,在处理单元720中将第二类型的CSI反馈信息划分为(L-1)个部分,可根据每个部分中一个波束的信道质量获得与每个部分相对应的信道质量信息。然而本发明不限于此。可替换地,在处理单元720将第二类型的CSI反馈信息划分为(L-1)个部分,还可根据第一波束的信道质量和每个部分中一个波束的信道质量获得与每个部分相对应的信道质量信息。并且,在这种情况下,每个波束的RPI可被计算及发送。具体地,在计算每个部分相对应的CQI时,不仅可以考虑每个部分中一个波束的信道质量,而且还可以考虑第一波束的信道质量。也正因为在计算每个部分的CQI的过程中多考虑了第一波束的信道质量,因此,每个部分的CQI不能准确地体现每个波束的RPI。因此,在这种方式下,在这种情况下,每个波束的RPI可被计算及发送。
此外,在上文已经提到,在处理单元720将第二类型的CSI反馈信息划 分为(L-1)个部分,每个部分可以包含一个波束的反馈信息。然而本发明不限于此。可替换地,在处理单元720还可将第二类型的CSI反馈信息划分为多个部分,每个部分可以包含至少一个波束的反馈信息。例如,可将第二类型的CSI反馈信息划分为P个部分,其中,1≤P<(L-1)且P为正整数,P个部分中的每个部分包含至少一个波束的反馈信息,可根据每个部分中至少一个波束的信道质量获得与每个部分相对应的信道质量信息。并且,在这种情况下,每个波束的RPI可以不再计算及发送。具体地,当根据每个部分中至少一个波束的信道质量获得与每个部分相对应的CQI时,在计算每个部分的CQI的过程中已经考虑了每个波束的RPI,也就是说,每个波束的RPI隐含地体现在每个部分的CQI中。因此,在这种情况下,每个波束的RPI可以不再计算及发送。
然而本发明不限于此。可替换地,在处理单元720将第二类型的CSI反馈信息划分为P个部分,还可根据第一波束的信道质量和每个部分中至少一个波束的信道质量获得与每个部分相对应的信道质量信息。并且,在这种情况下,每个波束的RPI可被计算及发送。具体地,在计算每个部分相对应的CQI时,不仅考虑每个部分中至少一个波束的信道质量,而且还考虑第一波束的信道质量。也正因为在计算每个部分的CQI的过程中多考虑了第一波束的信道质量,因此,每个部分的CQI不能准确地体现每个部分中每个波束的RPI。在这种情况下,每个部分中每个波束的RPI需计算及发送。
然后,发送单元710分别发送所划分的多个部分。
通过处理单元720将第二类型的CSI反馈信息划分为多个部分发送,降低了误码率。
此外,根据本发明的另一示例,发送单元710可分别在物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)上发送上述第一类型的CSI反馈信息和/或第二类型的CSI反馈信息。例如,发送单元710可在PUSCH上传输第一类型的CSI反馈信息和第二类型的CSI反馈信息二者;或者,在PUSCH上传输第一类型的CSI反馈信息且在PUCCH上传输第二类型的CSI反馈信息;或者,在PUCCH上传输第一类型的CSI反馈信息且在PUSCH上传输第二类型的CSI反馈信息;或者,在PUCCH上传输第一类型的CSI 反馈信息和第二类型的CSI反馈信息。优选地,发送单元710可以在PUCCH或者PUSCH上传输第一类型的CSI反馈信息,在PUSCH上传输第二类型的CSI反馈信息。通过该可选实施方式,使得数据量相对较大的第二类型的CSI反馈信息在PUSCH上传输,从而较少地占用PUCCH的无线资源,节省了PUCCH的开销。
另外,在上文已经提到,在本实施例的另一个可选实施方式中,发送单元710可以将用于指示CSI反馈信息的类型的信息包含在多波束的CSI反馈信息中的第二类型的CSI反馈信息内发送。例如,用于指示CSI反馈信息的类型的信息可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI一起发送,也可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI的任意组合一起发送,在此不做限定。
根据本发明的另一示例,发送单元710还用于发送指示第二类型的CSI反馈信息中波束的数目的信息。根据本发明的一个示例,用于指示第二类型的CSI反馈信息中波束的数目的信息可以为波束数目指示(Beam Number Indicator,BNI)。例如,BNI可以被包含在第一类型的CSI反馈信息中发送,比如,可以分别与第一类型的CSI反馈信息中的RI、PMI、CQI一起发送,或者,分别与第一类型的CSI反馈信息中的RI、PMI、CQI的任意组合一起发送。又例如,也可以被包含在第二类型的CSI反馈信息中发送,比如,可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI一起发送,也可以分别与第二类型的CSI反馈信息中的RI、PMI、CQI的任意组合一起发送。优选地,BNI可以与第二类型的CSI反馈信息中的RI一起发送。
在将第二类型的CSI反馈信息划分为多个部分的情况下,用于指示第二类型的CSI反馈信息中波束的数目的信息(例如,BNI)可以被包含在第二类型的CSI反馈信息中发送,在该示例中,用于指示第二类型的CSI反馈信息中波束的数目的信息只包含在多个部分中的一个部分内发送。优选地,将其包含在多个部分中的第一部分内发送,使得基站在接收到第一部分后,根据其动态地调整剩余部分所占的无线资源,进而节省了开销。
在根据本实施例的多波束的CSI反馈信息的传输装置,通过不同类型的CSI反馈方式(例如,第一类型的CSI反馈方式和第二类型的CSI反馈方式)传输多波束的CSI反馈信息,并且针对不同类型的CSI反馈方式传输多波束 的CSI反馈信息中相应的CSI反馈信息,从而在保证了多波束的CSI反馈信息的完整传输的同时,合理地分配了无线资源,有效地节省了开销。
此外,根据本发明的另一示例,第二类型的CSI反馈信息可以包括第一类型的CSI反馈信息的部分信息。因此,即使不使用第一类型的CSI反馈方式传输第一类型的CSI反馈信息,只需传输第二类型的CSI反馈信息也可保证多波束的CSI反馈信息的完整传输。
另外,上述实施例的说明中使用的框图示出了以单元为单位的块。这些结构单元可以通过硬件和/或软件的任意组合来实现。此外,各结构单元的实现手段并不特别限定。即,各结构单元可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本发明实施例中的用户设备可以作为执行本发明的多波束的CSI反馈信息的传输方法的处理的计算机来发挥功能。图8示出了根据本发明一个实施例,所涉及的用户设备的硬件结构的示意图。上述的用户设备800可以作为在物理上包括处理器810、内存820、存储器830、通信装置840、输入装置850、输出装置860、总线870等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户设备800的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器810仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器810可以通过一个以上的芯片来安装。
用户设备800中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器810、内存820等硬件上,从而使处理器810进行运算,对由通信装置840进行的通信进行控制,并对内存820和存储器830中的数据的读出和/或写入进行控制。
处理器810例如使操作***进行工作从而对计算机整体进行控制。处理器810可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中 央处理器(CPU,Central Processing Unit)构成。例如,上述的基带信号处理单元、呼叫处理单元等可以通过处理器810实现。
此外,处理器810将程序(程序代码)、软件模块、数据等从存储器830和/或通信装置840读出到内存820,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,用户设备800的控制单元可以通过保存在内存820中并通过处理器810来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存820是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存820也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存820可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器830是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器830也可以称为辅助存储装置。
通信装置840是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置840为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送接收天线、放大单元、发送接收单元、传输路径接口等可以通过通信装置840来实现。
输入装置850是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置860是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置850和输出装置860也可以为一体的结构(例如触控 面板)。
此外,处理器810、内存820等各装置通过用于对信息进行通信的总线870连接。总线870可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,用户设备800可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器810可以通过这些硬件中的至少一个来安装。
关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号、单载波频分多址(SC-FDMA,Single Carrier Frequency Division Multiple Access)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,Transmission Time Interval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为 TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE***中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,Resource Block)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,Physical RB)、子载波组(SCG,Sub-Carrier Group)、资源单元组(REG,Resource Element Group)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,Resource Element)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(PUCCH、PDCCH等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、***信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“***”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子***(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子***的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。此时,可以将上述的无线基站所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作无线基站所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信***(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信***(4G,4th generation mobile communication system)、第5代移动通信***(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线 接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信***(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的***和/或基于它们而扩展的下一代***。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也 可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括”、“包含”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (22)

  1. 一种多波束的CSI反馈信息的传输方法,所述方法包括:
    发送用于指示CSI反馈信息的类型的信息;
    使用第一类型的CSI反馈方式发送所述多波束的CSI反馈信息中的第一类型的CSI反馈信息,其中,所述第一类型的CSI反馈信息至少包括第一传输阶数信息、第一信道质量信息和所述多波束中的第一波束的反馈信息;
    使用第二类型的CSI反馈方式发送所述多波束的CSI反馈信息中的第二类型的CSI反馈信息,其中,所述第二类型的CSI反馈信息至少包括第二传输阶数信息、第二信道质量信息、所述多波束中除了第一波束以外的其他波束的反馈信息。
  2. 如权利要求1所述的方法,其中,所述第二类型的CSI反馈信息还包括所述第一波束的反馈信息。
  3. 如权利要求1或2所述的方法,其中,所述发送用于指示CSI反馈信息的类型的信息包括:
    独立地发送所述用于指示CSI反馈信息的类型的信息;或者
    将所述用于指示CSI反馈信息的类型的信息包含在所述第一类型的CSI反馈信息内发送;或者
    将所述用于指示CSI反馈信息的类型的信息包含在所述第二类型的CSI反馈信息内发送。
  4. 如权利要求1或2所述的方法,还包括:
    发送用于指示所述第二类型的CSI反馈信息中波束的数目的信息。
  5. 如权利要求4所述的方法,其中,所述发送所述第二类型的CSI反馈信息包括:
    将所述第二传输阶数信息、所述第二信道质量信息、所述第一波束以外的其他波束的反馈信息作为整体发送。
  6. 如权利要求5所述的方法,还包括:
    根据所述第一波束的信道质量及所述第一波束以外的其他波束的信道质量获得所述第二信道质量信息。
  7. 如权利要求4所述的方法,其中,所述发送所述第二类型的CSI反 馈信息包括:
    将所述第二类型的CSI反馈信息划分为多个部分,其中,每个部分包含一个或者多个波束的反馈信息、与所述每个部分相对应的信道质量信息,所述第二传输阶数信息包含在所述多个部分中的一个部分中,以及所述第二信道质量信息是所述多个部分的信道质量信息;
    分别地发送所述多个部分。
  8. 如权利要求7所述的方法,还包括:
    根据所述每个部分中一个或者多个波束的信道质量获得与所述每个部分相对应的信道质量信息;或者
    根据所述第一波束的信道质量及所述每个部分中一个或者多个波束的信道质量获得与所述每个部分相对应的信道质量信息。
  9. 如权利要求7或8所述的方法,还包括:
    将所述用于指示所述第二类型的CSI反馈信息中波束的数目的信息包含在所述多个部分中的一个部分中发送。
  10. 如权利要求1所述的方法,其中,所述第一波束以外的其他波束的反馈信息包括所述第一波束以外的其他波束的功率信息。
  11. 如权利要求1所述的方法,还包括:
    在PUCCH或者PUSCH上传输所述第一类型的CSI反馈信息。
  12. 一种多波束的CSI反馈信息的传输装置,所述装置包括:
    发送单元,用于发送用于指示CSI反馈信息的类型的信息;
    所述发送单元,还用于使用第一类型的CSI反馈方式发送所述多波束的CSI反馈信息中的第一类型的CSI反馈信息,其中,所述第一类型的CSI反馈信息至少包括第一传输阶数信息、第一信道质量信息和所述多波束中的第一波束的反馈信息;
    所述发送单元,还用于使用第二类型的CSI反馈方式发送第二类型的CSI反馈信息,其中,所述第二类型的CSI反馈信息至少包括第二传输阶数信息、第二信道质量信息、所述多波束中除了第一波束以外的其他波束的反馈信息。
  13. 如权利要求12所述的装置,其中,所述第二类型的CSI反馈信息还包括所述第一波束的反馈信息。
  14. 如权利要求12或13所述的装置,其中,
    所述发送单元,还用于独立地发送所述用于指示CSI反馈信息的类型的信息;或者将所述用于指示CSI反馈信息的类型的信息包含在所述第一类型的CSI反馈信息内发送;或者将所述用于指示CSI反馈信息的类型的信息包含在所述第二类型的CSI反馈信息内发送。
  15. 如权利要求12或13所述的装置,其中,
    所述发送单元,还用于发送用于指示所述第二类型的CSI反馈信息中波束的数目的信息。
  16. 如权利要求15所述的装置,其中,
    所述发送单元,还用于将所述第二传输阶数信息、所述第二信道质量信息、所述第一波束以外的其他波束的反馈信息作为整体发送。
  17. 如权利要求16所述的装置,还包括:
    处理单元,用于根据所述第一波束的信道质量及所述第一波束以外的其他波束的信道质量获得所述第二信道质量信息。
  18. 如权利要求15所述的装置,其中,
    所述处理单元,还用于将所述第二类型的CSI反馈信息划分为多个部分,其中,每个部分包含一个或者多个波束的反馈信息、与所述每个部分相对应的信道质量信息,所述第二传输阶数信息包含在所述多个部分中的一个部分中,所述第二信道质量信息是所述多个部分的信道质量信息;
    所述发送单元,还用于分别地发送所述多个部分。
  19. 如权利要求18所述的装置,其中,
    所述处理单元,还用于根据所述每个部分中一个或者多个波束的信道质量获得与所述每个部分相对应的信道质量信息,或者,根据所述第一波束的信道质量及所述每个部分中一个或者多个波束的信道质量获得与所述每个部分相对应的信道质量信息。
  20. 如权利要求18或19所述的装置,其中,
    所述发送单元,还用于将所述用于指示所述第二类型的CSI反馈信息中波束的数目的信息包含在所述多个部分中的一个部分中发送。
  21. 如权利要求12所述的装置,其中,所述第一波束以外的其他波束的反馈信息包括所述第一波束以外的其他波束的功率信息。
  22. 如权利要求12所述的装置,其中,
    所述发送单元,还用于在PUCCH或者PUSCH上传输所述第一类型的CSI反馈信息。
PCT/CN2018/077843 2017-05-04 2018-03-02 一种多波束的csi反馈信息的传输方法和装置 WO2018201786A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/609,598 US10892809B2 (en) 2017-05-04 2018-03-02 Method and apparatus for transmitting CSI feedback information for multiple beams
CN201880015609.2A CN110383711A (zh) 2017-05-04 2018-03-02 一种多波束的csi反馈信息的传输方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710308369.2A CN108809380A (zh) 2017-05-04 2017-05-04 一种多波束的csi反馈信息的传输方法和装置
CN201710308369.2 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018201786A1 true WO2018201786A1 (zh) 2018-11-08

Family

ID=64016417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077843 WO2018201786A1 (zh) 2017-05-04 2018-03-02 一种多波束的csi反馈信息的传输方法和装置

Country Status (3)

Country Link
US (1) US10892809B2 (zh)
CN (2) CN108809380A (zh)
WO (1) WO2018201786A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282882B (zh) * 2017-01-06 2021-06-22 华为技术有限公司 信息传输方法、终端设备及接入网设备
WO2020118731A1 (en) * 2018-12-14 2020-06-18 Qualcomm Incorporated Channel state information feedback compression
US11190248B2 (en) * 2019-03-18 2021-11-30 Qualcomm Incorporated Channel state information reporting techniques in sidelink wireless communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120307927A1 (en) * 2011-06-03 2012-12-06 Sairamesh Nammi Methods of determining rank information and related communications devices and systems
US20130005382A1 (en) * 2011-06-30 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling channel quality reporting modes used by wireless communication network users
CN103229578A (zh) * 2010-09-15 2013-07-31 华为技术有限公司 用于无线通信***中信道状态信息反馈的***和方法
CN104885499A (zh) * 2013-01-08 2015-09-02 三星电子株式会社 高级无线通信***中的信道状态信息反馈设计
CN105429683A (zh) * 2014-09-17 2016-03-23 上海朗帛通信技术有限公司 一种3d mimo传输方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133645A1 (ko) * 2012-03-07 2013-09-12 엘지전자 주식회사 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
JP2014131201A (ja) * 2012-12-28 2014-07-10 Ntt Docomo Inc 無線基地局、ユーザ端末、無線通信方法、及び無線通信システム
US9806926B2 (en) * 2013-11-04 2017-10-31 Samsung Electronics Co., Ltd. Multistage beamforming of multiple-antenna communication system
US20160191201A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel quality indicator information of beams in communication system
US20180248601A1 (en) * 2015-03-16 2018-08-30 Ntt Docomo, Inc. User apparatus, base station, and communication method
US10158414B2 (en) * 2015-06-18 2018-12-18 Samsung Electronics Co., Ltd. Advanced beamforming and feedback methods for MIMO wireless communication systems
WO2017156114A1 (en) * 2016-03-10 2017-09-14 Interdigital Patent Holdings, Inc. Concurrent mimo beamforming training in mmw wlan systems
EP3520230A1 (en) * 2016-09-28 2019-08-07 NTT DoCoMo, Inc. Wireless communication method
US10154496B2 (en) * 2016-11-10 2018-12-11 Futurewei Technologies, Inc. System and method for beamformed reference signals in three dimensional multiple input multiple output communications systems
US20190335429A1 (en) * 2016-12-27 2019-10-31 Ntt Docomo, Inc. User terminal and radio communication method
US10938532B2 (en) * 2017-01-09 2021-03-02 Lg Electronics Inc. CSI-RS configuration method and apparatus for beam management in wireless communication system
US20200007213A1 (en) * 2017-02-03 2020-01-02 Ntt Docomo, Inc. Method of csi reporting
RU2718401C1 (ru) * 2017-02-06 2020-04-02 Телефонактиеболагет Лм Эрикссон (Пабл) Предоставление отчетов с csi при многолучевой передаче

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103229578A (zh) * 2010-09-15 2013-07-31 华为技术有限公司 用于无线通信***中信道状态信息反馈的***和方法
US20120307927A1 (en) * 2011-06-03 2012-12-06 Sairamesh Nammi Methods of determining rank information and related communications devices and systems
US20130005382A1 (en) * 2011-06-30 2013-01-03 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling channel quality reporting modes used by wireless communication network users
CN104885499A (zh) * 2013-01-08 2015-09-02 三星电子株式会社 高级无线通信***中的信道状态信息反馈设计
CN105429683A (zh) * 2014-09-17 2016-03-23 上海朗帛通信技术有限公司 一种3d mimo传输方法和装置

Also Published As

Publication number Publication date
US20200153495A1 (en) 2020-05-14
CN108809380A (zh) 2018-11-13
CN110383711A (zh) 2019-10-25
US10892809B2 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
US11357009B2 (en) Beam selection method, base station, and user equipment
WO2017193808A1 (zh) 信道质量反馈方法、用户终端、信道质量测量的控制方法及基站
US11303408B2 (en) Reference signal transmission and reception method and apparatus for beam management
US11218202B2 (en) Beam configuration method, a mobile station and a base station
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
KR20210040083A (ko) 유저단말 및 무선 통신 방법
US20210391932A1 (en) Terminal, radio communication method, base station, and system
US20210400508A1 (en) User device and base station device
US11129038B2 (en) Hybrid channel quality measurement method and user equipment
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
WO2018201786A1 (zh) 一种多波束的csi反馈信息的传输方法和装置
JPWO2020095455A1 (ja) ユーザ装置及び基地局装置
WO2018171394A1 (zh) 无授权传输方法、用户终端和基站
JP7465812B2 (ja) ユーザ端末、無線基地局、及び、無線通信方法
JP7293204B2 (ja) 端末、無線通信方法、基地局及びシステム
US11197305B2 (en) Wireless base station and scheduling method
US11425742B2 (en) Method for determining an uplink scheduling manner, user equipment and base station
WO2021053825A1 (ja) 端末
US20210289535A1 (en) User terminal and radio communication method
US20230345314A1 (en) Terminal and communication method
JP2020057831A (ja) 基地局及びユーザ装置
US20240039604A1 (en) Method for information transmission, method for determining precoding granularity, terminal and base station
JP2021077979A (ja) 無線基地局
JP2019186924A (ja) ユーザ端末をスケジューリングする方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18795176

Country of ref document: EP

Kind code of ref document: A1