WO2019043806A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019043806A1
WO2019043806A1 PCT/JP2017/031057 JP2017031057W WO2019043806A1 WO 2019043806 A1 WO2019043806 A1 WO 2019043806A1 JP 2017031057 W JP2017031057 W JP 2017031057W WO 2019043806 A1 WO2019043806 A1 WO 2019043806A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse
resin member
sectional area
upstream
conversion device
Prior art date
Application number
PCT/JP2017/031057
Other languages
English (en)
French (fr)
Inventor
雄二 白形
健太 藤井
雅博 上野
友明 島野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/634,687 priority Critical patent/US11049682B2/en
Priority to JP2019538805A priority patent/JP6824422B2/ja
Priority to CN201780094208.6A priority patent/CN111066116B/zh
Priority to DE112017007994.2T priority patent/DE112017007994T5/de
Priority to PCT/JP2017/031057 priority patent/WO2019043806A1/ja
Publication of WO2019043806A1 publication Critical patent/WO2019043806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/62Protection against overvoltage, e.g. fuses, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/10Fusible members characterised by the shape or form of the fusible member with constriction for localised fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/165Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/18Casing fillings, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/049Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being perpendicular to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0283Structural association with a semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8485Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power converter in which a power semiconductor element is sealed by a resin member in a housing.
  • inverter apparatus which drives a motor supplies the drive power of high voltage to a motor by using a battery as a power supply.
  • resin-sealed power semiconductor devices are used as inverter devices, and in the field of power electronics, power converters are becoming increasingly important as key devices.
  • the power semiconductor element used for the inverter device is resin-sealed with other components.
  • a short circuit failure occurs in an electronic component such as a power semiconductor element or a smoothing capacitor that constitutes a snubber circuit while power is supplied from a battery
  • an excessive short circuit current flows.
  • an overcurrent flows in the power semiconductor element, and a short circuit failure occurs.
  • a relay connecting the battery and the motor drive circuit If a relay connecting the battery and the motor drive circuit is connected or continued in a short circuit condition, the power converter smokes and burns due to a large current.
  • a battery connected to the motor drive inverter device may be damaged due to the flow of the overcurrent exceeding the rating.
  • a sensor for detecting an overcurrent is used to control the switching of the power semiconductor element at high speed to interrupt the current.
  • the failure mode such as smoke mentioned above.
  • a notch is provided in a lead frame for an electrode that is sealed by a resin and is protruded from a packaged semiconductor element module to form a fuse portion.
  • the fuse portion provided in the electrode lead frame is exposed to the outside air. Therefore, when the fuse portion is melted and broken due to an excessive current, smoke may flow out of the apparatus, and sparks may be scattered around, and the apparatus may be burnt down due to a combustion reaction using the open air.
  • the member of the fuse portion which has been melted may scatter around and may short-circuit with the surrounding members.
  • the cross-sectional area of the fuse portion is uniformly formed, it is considered that the entire fuse portion generates heat and melts. Further, since the heat generation of the fuse portion is easily transmitted to the electrode lead frames on the upstream and downstream sides of the fuse portion, the time until melting is lengthened, and the transmitted heat may damage the power semiconductor element.
  • a power conversion device includes a power semiconductor device, an electrode wiring member connected to a main electrode of the power semiconductor device, a housing, and a fuse formed as a fuse formed in the electrode wiring member.
  • a fuse resin member that is a resin member that covers the fuse portion, the power semiconductor element, the electrode wiring member, the fuse portion, and a seal that is a resin member that seals the fuse resin member in the housing
  • a resin stop member wherein the fuse portion is an upstream first stage portion having a cross-sectional area smaller than a portion of the electrode wiring member on the upstream side of the fuse portion in the current flow direction;
  • the second-stage portion having a smaller cross-sectional area than the first-stage portion on the upstream side, and the cross-sectional area larger than the second-stage portion, and more than the portion of the electrode wiring member on the downstream side of the fuse portion
  • the fuse portion is formed in the electrode wiring member, so that an expensive chip type fuse is not provided, and the cost of the fuse portion can be reduced. Since the fuse portion and the fuse resin member are covered by the sealing resin member, it is possible to prevent the member of the fuse portion which has been melted and scattered from scattering to the outside. In addition, since the fuse portion and the fuse resin member can be shut off from the outside air, it is possible to suppress the progress of the combustion reaction due to the arc discharge generated at the time of melting and also suppress the smoke generated at the time of melting being leaked to the outside it can.
  • the fuse portion is covered with the fuse resin member, it is possible to suppress the member of the fused fuse portion from contacting the sealing resin member, and to suppress damage to the sealing resin member. Further, since the fuse resin member dedicated to the fuse portion is provided, it is possible to select a resin member made of a material suitable for melting the fuse portion. Therefore, even if the fuse portion is melted and broken due to an overcurrent, it is possible to suppress smoke generation, burnout and short circuit.
  • the current density and the thermal resistance increase in the order of the upstream and downstream first stage portions and the second stage portions. Therefore, the temperature rise of the second stage portion can be maximized and melted.
  • the heat generation of the second stage portion is less likely to be transmitted to the upstream and downstream portions than the fuse portion due to the thermal resistance of the upstream and downstream first stage portions, so the temperature rise speed of the second stage portion is high. As a result, it is possible to shorten the time until melting and to reduce the heat transfer to the power semiconductor element.
  • FIG. 2 is a cross-sectional view of the power conversion device cut at a cross-sectional position along the line AA in FIG. 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the power conversion device cut at a cross-sectional position along the line BB in FIG. 1 according to Embodiment 1 of the present invention.
  • It is a top view of the fuse part concerning Embodiment 1 of the present invention. It is a schematic diagram for demonstrating the current density of the fuse part which concerns on Embodiment 1 of this invention.
  • FIG. 6 is a cross-sectional view of the power conversion device cut at a cross-sectional position along the line AA in FIG. 1 according to Embodiment 2 of the present invention. It is a perspective view of the electrode wiring member which concerns on Embodiment 2 of this invention.
  • FIG. 14 is a cross-sectional view of the power conversion device cut at the AA cross-sectional position in FIG. 1 according to Embodiment 3 of the present invention.
  • FIG. 14 is a cross-sectional view of the power conversion device cut at the AA cross-sectional position of FIG. 1 according to Embodiment 4 of the present invention.
  • FIG. 21 is a cross-sectional view of the power conversion device cut at a cross-sectional position along the line AA in FIG. 1 according to Embodiment 5 of the present invention.
  • FIG. 1 is a plan view of the power conversion device 1 as viewed from the opening side of a housing 30, and the sealing resin member 25 is transparent and is not shown in order to explain the arrangement of the components.
  • FIG. 2 is a cross-sectional view cut at the AA cross-sectional position of FIG. 1
  • FIG. 3 is a cross-sectional view cut at the BB cross-sectional position of FIG.
  • FIG. 4 is a plan view of the fuse portion 16 as viewed from the front.
  • Each drawing is a schematic view, and the dimensions of each member do not completely match between the drawings.
  • the power conversion device 1 includes various components such as the power semiconductor element 14, the electrode wiring member 13 connected to the main electrodes of the power semiconductor element 14, the housing 30, and the power semiconductor element 14 in the housing 30. And a sealing resin member 25 which is a resin member for sealing.
  • the housing 30 is formed in a cylindrical shape with a bottom and has a role of a frame for casting the sealing resin member 25.
  • inside inside
  • inside inside
  • outside outside
  • the “longitudinal direction” refers to the direction in which the cylindrical portion of the housing 30 extends
  • the “lateral direction” refers to the direction in which the bottom of the housing 30 extends.
  • the bottom of the housing 30 is constituted by a metal heat sink 12.
  • the heat sink 12 has a role of radiating the heat generated in the power semiconductor element 14 to the outside.
  • the heat sink 12 is made of, for example, a material having a thermal conductivity of 20 W / (m ⁇ K) or more, such as aluminum and aluminum alloy.
  • the heat sink 12 is formed in, for example, a rectangular flat plate shape.
  • the heat sink 12 may have a shape other than a rectangular shape.
  • a plurality of flat fins 19 arranged at intervals are provided on the outer surface of the heat sink 12, as shown in FIG. 2, a plurality of flat fins 19 arranged at intervals are provided.
  • the fins 19 are in contact with the outside air, and the heat sink 12 dissipates heat from the fins 19 toward the outside air.
  • it may be water-cooled.
  • the cylindrical portion of the housing 30 is constituted by the insulating case 11.
  • the insulating case 11 is formed using any resin material having high insulating property and thermoplasticity, for example, resin materials such as polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), and polyetheretherketone (PEEK). Ru.
  • the power semiconductor element 14 and the electrode lead frame 13 as the electrode wiring member 13 are sealed with the element mold resin 20 which is a resin member to form a packaged semiconductor element module 29. There is.
  • the control lead frame 21 connected to the control terminal of the power semiconductor element 14 is also sealed by the element mold resin 20.
  • the electrode lead frame 13 and the control lead frame 21 protrude outward from the element mold resin 20.
  • the element mold resin 20 preferably uses a hard resin having a Young's modulus of several GPa or more, for example, an epoxy resin, in order to protect the elements and wiring inside.
  • a power MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the power semiconductor element 14 may use another type of switching element such as a power IGBT (Insulated Gate Bipolar Transistor) in which diodes are connected in reverse parallel.
  • the power semiconductor element 14 is used, for example, in an inverter circuit and a converter circuit for driving an apparatus such as a motor for driving a vehicle, and controls a rated current of several amperes to several hundred amperes.
  • silicon (Si), silicon carbide (SiC), gallium nitride (GaN) or the like may be used.
  • the power semiconductor element 14 is formed in a rectangular flat chip shape, a drain terminal as a main electrode is provided on the surface on the heat sink 12 side, and a main electrode on the surface of the housing 30 opposite to the heat sink 12 Source terminals are provided.
  • a gate terminal as a control terminal is provided on the surface of the housing 30 opposite to the heat sink 12.
  • a sensor terminal or the like may be provided as a control terminal to detect the current flowing between the main electrodes and the temperature of the chip.
  • the drain terminal is connected to the electrode lead frame 13a on the positive electrode side, and the source terminal is connected to the electrode lead frame 13b on the negative electrode side via the electrode wiring member 15a. Since a large current flows in the electrode wiring member 15a, the electrode wiring member 15a is formed of, for example, a processed plate of gold, silver, copper, or aluminum, wire bonding, or ribbon bonding.
  • the gate terminal and the sensor terminal are connected to the control lead frame 21 via the control wiring member 15b.
  • the control wiring member 15b can be formed, for example, by wire bonding of gold, copper, aluminum or the like or ribbon bonding of aluminum.
  • the electrode lead frames 13a and 13b on the positive electrode side and the negative electrode side are formed in a plate shape (in the present example, a rectangular flat plate shape).
  • the electrode connection portions of the electrode lead frames 13 a and 13 b connected to the main electrodes of the power semiconductor element 14 are disposed closer to the heat sink 12 than the power semiconductor elements 14.
  • the surface on the opposite side to the heat sink 12 of the electrode connection portion of the electrode lead frame 13 a on the positive electrode side is joined to the drain terminal of the surface on the heat sink 12 side of the power semiconductor element 14 by a conductive bonding material 17.
  • the surface of the electrode connection portion of the electrode lead frame 13b on the negative electrode side opposite to the heat sink 12 is bonded to one end of an L-shaped electrode wiring member 15a by a conductive bonding material 17.
  • the source terminal of the surface on the opposite side to the heat sink 12 of the power semiconductor element 14 is bonded to the other end of the electrode wiring member 15 a by the conductive bonding material 17.
  • the conductive bonding material 17 is made of, for example, a material having high conductivity and high thermal conductivity, such as solder, silver paste, or a conductive adhesive.
  • the surface on the heat sink 12 side of the electrode connection portion of the electrode lead frames 13 a and 13 b is not covered by the element mold resin 20 and is exposed to the outside of the semiconductor element module 29.
  • the exposed portions of the electrode lead frames 13a and 13b are in contact with the inner surface of the element facing projection 12a of the heat sink 12 through the insulating member 18 formed in a sheet shape.
  • the heat generation of the power semiconductor element 14 is transmitted to the heat sink 12 through the electrode connection portions of the electrode lead frames 13 a and 13 b and the insulating member 18.
  • the insulating member 18 is made of a material having high thermal conductivity and high electrical insulation.
  • the insulating member 18 has, for example, a thermal conductivity of 1 W / (m ⁇ K) to several tens of W / (m ⁇ K) and an insulating material such as silicon resin, epoxy resin, urethane resin, etc. It consists of an adhesive, grease or insulating sheet made of a resin material. Furthermore, the insulating member 18 can also be configured by combining a resin material with another material having a low thermal resistance such as a ceramic substrate or a metal substrate and having an insulating property.
  • a protrusion 20 a is provided on the heat sink 12 side of the element mold resin 20.
  • the thickness of the insulating member 18 can be defined by the height of the projections 20a, and the insulation and heat conductivity of the insulating member 18 can be managed. it can.
  • a creeping distance required to secure a predetermined insulation withstand voltage is about 10 ⁇ m.
  • the thickness required for insulation can be reduced, so that the protrusions 20 a of the element mold resin 20 can be shortened, and the power converter 1 can be thinned.
  • the thickness of the insulating member 18 can be controlled, so the protrusions 20 a of the element mold resin 20 may be omitted.
  • the electrode lead frame 13a on the positive electrode side protrudes from the element mold resin 20 and then extends laterally along the inner surface of the heat sink 12 with a gap from the inner surface of the heat sink 12, and then bent, It extends in the longitudinal direction to the side away from the opening 12 (the opening side of the housing 30).
  • the portion extending in the lateral direction with a space from the inner surface of the heat sink 12 is referred to as the lead frame lateral extending portion 13a1 on the positive electrode side, and the portion extending in the longitudinal direction to the side away from the heat sink 12
  • the lead frame longitudinally extending portion 13a2 on the positive electrode side is referred to as A fuse portion 16 described later is formed in the lead frame longitudinal extension 13a2 on the positive electrode side.
  • the external connection terminal 10 a on the positive electrode side is inserted and outsert in the insulating case 11.
  • the external connection terminal 10a on the positive electrode side extends laterally from the external connection longitudinal direction extending portion 10a1 extending in the vertical direction and the end portion on the heat sink 12 side of the external connection longitudinal direction extending portion 10a1. And a laterally extending extension 10a2.
  • the open end of the positive electrode side external connection longitudinal extension 10a1 is joined to the open end of the positive lead frame longitudinal extension 13a2 by welding or soldering.
  • a gap is opened between the external connection longitudinal extending portion 10a1 on the positive electrode side and the lead frame longitudinal extending portion 13a2 on the positive electrode side, except for the joint portion at the tip, which is not conducted.
  • casing 30 outside is connected to other apparatuses, such as a positive electrode of DC power supply.
  • the electrode lead frame 13b on the negative electrode side also protrudes from the element mold resin 20 and then leaves a space from the inner surface of the heat sink 12 and extends along the inner surface of the heat sink 12; And a lead frame longitudinal extension 13 b 2 on the negative electrode side extending away from the heat sink 12.
  • the external connection terminal 10 b on the negative electrode side is inserted and outsert in the insulating case 11.
  • the external connection terminal 10b on the negative electrode side extends outward from the external connection longitudinal extension 10b1 extending in the vertical direction and the end of the external connection longitudinal extension 10b1 on the heat sink 12 side. And a laterally extending extension 10b2.
  • the open end of the external connection longitudinally extending portion 10b1 is joined to the open end of the lead frame longitudinally extending portion 13b2 on the negative electrode side by welding or soldering.
  • the portion protruding from the housing 30 to the outside is connected to another device such as the negative electrode of the DC power supply.
  • the electrode lead frames 13a and 13b and the external connection terminals 10a and 10b are made of a metal such as copper or copper alloy, aluminum or aluminum alloy, which has good conductivity and high thermal conductivity, and is from several amperes to several hundred amperes. A large amount of current flows.
  • the surfaces of the electrode lead frames 13a and 13b may be plated with a metal material such as Au, Ni, or Sn.
  • the control lead frame 21 protrudes from the sealing resin member 25 on the opening side of the housing 30 and is connected to a control device that controls the on / off of the power semiconductor element 14.
  • a fuse portion 16 functioning as a fuse is formed in the electrode wiring member 13 (in the present example, the lead frame longitudinal extension 13a2 on the positive electrode side).
  • the fuse portion 16 is configured by a portion of the electrode wiring member whose cross-sectional area is reduced in two steps from each of the upstream side portion and the downstream side portion in the flow direction of the current in the electrode wiring member 13 There is. Specifically, as shown in FIG. 4 when the fuse portion 16 is viewed from the front, the fuse portion 16 is closer to the electrode wiring member on the upstream side than the fuse portion 16 along the current flow direction.
  • the cross-sectional area is larger than the upstream first-stage portion 16a1 having a smaller cross-sectional area, the second-stage portion 16b having a smaller cross-sectional area than the upstream first-stage portion 16a1, and the second-stage portion 16b
  • the first stage portion 16a2 on the downstream side has a smaller cross-sectional area than the portion of the electrode wiring member 13 on the downstream side of the fuse portion 16.
  • the ratio of the cross-sectional area of each part is as follows.
  • Cross-sectional area of the upstream and downstream parts Cross-sectional area of the first stage part on the upstream and downstream sides:
  • Cross-sectional area of the second stage part 7.5: 1.5: 1. That is, the order of the size of the cross-sectional area of each part is “cross-sectional area of upstream and downstream side portions> cross-sectional area of first stage portion on upstream and downstream side> cross-sectional area of second stage portion”.
  • the value of the ratio of the cross-sectional area is an example, and the same effect can be obtained if the order of the cross-sectional areas is the same.
  • the current density increases as the cross-sectional area decreases, and the current density of the second stage portion 16b becomes the largest.
  • the thermal resistance also increases as the cross-sectional area decreases.
  • the heat generation density is gradually increased, the heat dissipation property is gradually deteriorated, the temperature rise of the second stage portion 16b is the largest, and the second stage portion 16b is melted and broken.
  • Thermal resistance length ⁇ (thermal conductivity ⁇ sectional area) ⁇ (1)
  • FIG. 6 shows the temperature distribution of the fuse portion 16 when a current flows.
  • FIG. 6 shows the case of the present embodiment in which the cross-sectional area is reduced in two steps.
  • FIG. 7 shows the case of the comparative example in which the cross-sectional area is reduced in one step, and the first stage portion is provided, but the second stage portion is not provided.
  • the fuse portion 16 is formed by cutting a flat plate-like electrode lead frame from both sides with a press, and the width of the second stage portion 16 b is the thickness of the lead frame which is the limit that can be mass-produced by the press. It is equal to
  • the temperature is highest at the second stage portion 16b, and the temperature is gradually lowered as the first stage portions 16a1 and 16a2 are separated from the second stage portion 16b. Further, the heat generation of the second stage portion 16b is less likely to be transmitted to the upstream and downstream portions than the fuse portion 16 by the first stage portions 16a1 and 16a2 having a large thermal resistance, and the temperature rise speed of the second stage portion 16b is increased. And the time to melt can be shortened. Therefore, when an overcurrent flows, the temperature of the second stage portion 16b having the smallest cross-sectional area rises rapidly in a short time. Then, when the temperature rises to the melting point of the metal, the second stage portion 16b is torn.
  • the heat generation of the second stage portion 16b is suppressed from being transmitted to the upstream and downstream portions of the fuse portion 16 by the first stage portions 16a1 and 16a2 having a large thermal resistance, and the power semiconductor element 14 and the seal are sealed. Damage to the resin stop member 25 and the like can be suppressed.
  • the width and length of the notch the relationship between the current and the time to rupture can be adjusted, and the desired melting characteristics can be obtained.
  • the fuse portion 16 the cross-sectional area of the electrode lead frame is reduced and the rigidity is lowered, so that the thermal stress due to the temperature change is alleviated, and the reliability of the joint portion can be expected to be improved.
  • the temperature of the entire fuse portion 16 rises uniformly. Therefore, when an overcurrent flows, the temperature of the fuse portion 16 as a whole rises, and the entire fuse portion 16 is fused or the fused portions are dispersed. In addition, since the entire temperature rises, the time until melting is extended, and the heat transferred to the upstream and downstream portions of the fuse portion 16 is increased. At the time of melting, the temperature as a whole is higher than the temperature shown in FIG. 7, and the temperature of the upstream and downstream portions of the fuse portion 16 is also higher than in the case of FIG.
  • the length of the second stage portion 16b in the flow direction of the current is the length of the current direction of the first stage portion 16a1 on the upstream side and the length of the first stage portion 16a2 on the downstream side. It is shorter than the length of the current flow direction.
  • the melting portion of the fuse portion 16 can be shortened, and the amount of the melting member can be reduced. Since the first stage portions 16a1 and 16a2 are lengthened, the thermal resistance can be increased, the temperature rising speed of the second stage portion 16b can be increased, and the amount of heat transferred to the upstream and downstream portions from the fuse portion 16 is reduced. it can.
  • the length of the current flow direction of the second stage portion 16b is not more than half the length of the current flow direction of the upstream and downstream first stage portions 16a1 and 16a2 (for example, 1/3) It should be said).
  • the fuse portion 16 is made of gold, silver, copper, or aluminum having high electrical conductivity.
  • the fuse portion 16 may be made of the same material as that of the other part of the electrode lead frame 13, or a different material may be used. Although not limited to this, the fuse portion 16 punches out a flat plate made of copper or copper alloy having a thickness of about 0.5 mm to 1.5 mm as the other parts of the electrode lead frame 13 It can be formed by
  • the upstream and downstream first stage portions 16a1 and 16a2 have the same cross-sectional area at each position in the current flow direction.
  • the upstream and downstream first stage portions 16a1 and 16a2 are formed in a rectangular shape having the same length and the same cross-sectional area.
  • the upstream and downstream first stage portions 16a1 and 16a2 may have different lengths and different cross-sectional areas.
  • the cross-sectional shape of the upstream and downstream first stage portions 16a1 and 16a2 may be an arbitrary shape such as a round shape or an elliptical shape other than a rectangular shape.
  • the second stage portion 16 b is formed in a rectangular parallelepiped shape.
  • the shape of the second stage portion 16b may be any shape as long as the cross-sectional area is smaller than the upstream and downstream first stage portions 16a1 and 16a2.
  • a notch may be provided on one side or both sides, or a through hole may be provided inside to reduce the cross-sectional area.
  • the shape of the notch or the through hole may be any shape other than a rectangle, such as a triangle, a pentagon, a trapezoid, a rhombus, a parallelogram, a circle, and an ellipse.
  • the number of notches or through holes is not limited to one, and may be plural.
  • the plurality of notches or through holes may be alternately staggered or irregularly arranged at different positions in the longitudinal direction of the wiring.
  • the plurality of through holes may be arranged in either the width direction or the length direction of the wiring.
  • a fuse resin member 26 which is a resin member covering the fuse portion 16 is provided.
  • the fuse resin member 26 is arranged to cover at least one surface of the second stage portion 16 b which is a melting point.
  • fuse resin member 26 is a surface on one side of fuse portion 16 in the thickness direction (in this example, a surface on the opposite side to external connection terminal 10 a on the positive electrode side) It is configured to cover the As shown in FIG. 4, the fuse resin member 26 is disposed in an area larger than the area of the fuse portion 16.
  • the fuse resin member 26 may be disposed so as to cover the surfaces on both sides in the width direction of the fuse portion 16.
  • the fuse resin member 26 is arranged to cover the fuse portion 16 before the sealing resin member 25 is filled into the housing 30.
  • the fuse resin member 26 is made of an adhesive, grease or insulating sheet made of a resin material such as silicon resin, epoxy resin, urethane resin or the like, which has high electrical insulation.
  • the fuse resin member 26 By covering the fuse portion 16 with the fuse resin member 26, it is possible to suppress the member of the fused portion 16 from coming into contact with the sealing resin member 25 and to suppress damage to the sealing resin member 25. Further, since the fuse resin member 26 dedicated to the fuse portion 16 is provided, it is possible to select a resin member of a material suitable for melting the fuse portion 16.
  • the fuse resin member 26 a resin member having a Young's modulus lower than that of the sealing resin member 25 is used.
  • the Young's modulus of the fuse resin member 26 is on the order of several tens of MPa (megapascals) (for example, a value between 10 MPa and 30 MPa), and for example, a rubber material, silicone rubber, or silicone gel may be used.
  • the fuse resin member 26 may preferably be made of silicon resin having an arc-extinguishing action of arc discharge generated when the fuse portion 16 is melted. According to this configuration, even after the fuse portion 16 is melted, it is possible to suppress the continuation of the energization by the arc discharge, and to cut off the current promptly after the melting. Therefore, damage to the power semiconductor element 14, the sealing resin member 25 and the like can be suppressed.
  • the sealing resin member 25 is a resin member for sealing the power semiconductor element 14, the electrode wiring member 13, the fuse portion 16, and the fuse resin member 26 in the housing 30.
  • the sealing resin member 25 is configured to seal the semiconductor element module 29 in the housing 30.
  • the sealing resin member 25 also seals other components such as the insulating member 18 and the external connection terminals 10 a and 10 b in the housing 30.
  • the sealing resin member 25 is made of, for example, a resin material having high rigidity and high thermal conductivity.
  • the sealing resin member 25 may be made of, for example, an epoxy resin containing a thermally conductive filler, a silicon resin, a urethane resin, PPS, PEEK, or ABS.
  • the Young's modulus of the sealing resin member 25 is preferably 1 MPa to 50 GPa, and the thermal conductivity is preferably 0.1 W / (m ⁇ K) to 20 W / (m ⁇ K).
  • the fuse portion 16 and the fuse resin member 26 are covered by the sealing resin member 25, it is possible to prevent the member of the fuse portion 16 which has been melted and scattered from scattering to the outside. Since the fuse portion 16 and the fuse resin member 26 can be shut off from the outside air, it is possible to suppress the progress of the combustion reaction due to the arc discharge generated at the time of melting and also suppress the smoke generated at the time of melting being leaked to the outside it can.
  • FIG. 9 is a cross-sectional view of the power conversion device 1 according to the present embodiment cut at the AA cross-sectional position of FIG.
  • FIG. 10 is a perspective view of the electrode lead frame 13a on the positive electrode side.
  • a fuse portion 16 functioning as a fuse is formed in the electrode wiring member 13 (electrode lead frame 13a on the positive electrode side).
  • the electrode wiring member 13 (electrode lead frame 13a on the positive electrode side) has a smaller cross-sectional area than the upstream / downstream portion in the portion closer to the power semiconductor element 14 than the fuse portion 16 A small cross-sectional area 31 is provided.
  • the cross-sectional area of the small cross-sectional area portion 31 is larger than the cross-sectional area of the second stage portion 16 b of the fuse portion 16.
  • the small cross-sectional area portion 31 is provided in the lead frame lateral extension 13 a 1 of the positive electrode side which protrudes in the lateral direction from the element mold resin 20.
  • the small cross-sectional area portion 31 is formed by providing two cylindrical through holes penetrating the electrode lead frame 13 a in the thickness direction, in the width direction.
  • the small cross-sectional area portion 31 may be in the element mold resin 20 instead of the part protruding from the element mold resin 20. As a result, since the element mold resin 20 enters the small cross-sectional area portion 31, peeling can be prevented by the anchor effect.
  • the fuse portion 16 By providing the fuse portion 16, the fuse portion 16 generates heat also when a normal current flows. Therefore, it is necessary to limit the output of the power conversion device 1 so that the heat transferred to the power semiconductor element 14 does not become too large, which is a design restriction. Since the thermal resistance is increased by providing the small cross-sectional area portion 31, the heat generation of the fuse portion 16 becomes difficult to be transmitted to the power semiconductor element 14, and therefore the output limitation of the power conversion device 1 during normal operation is alleviated. be able to.
  • the small cross-sectional area portion 31 may have any shape as long as the cross-sectional area is smaller than the upstream and downstream portions.
  • a notch may be provided on one side or both sides, or a through hole may be provided on the inner side to reduce the cross-sectional area.
  • the shape of the notch or the through hole may be any shape other than a rectangle, such as a triangle, a pentagon, a trapezoid, a rhombus, a parallelogram, a circle, and an ellipse.
  • the number of notches or through holes is not limited to one, and may be plural.
  • the plurality of notches or through holes may be alternately staggered or irregularly arranged at different positions in the longitudinal direction of the wiring.
  • the plurality of through holes may be arranged in either the width direction or the length direction of the wiring.
  • FIG. 11 is a cross-sectional view of the power conversion device 1 according to the present embodiment cut at the AA cross-sectional position of FIG.
  • fuse resin member 26 is configured to cover the surface on one side of fuse portion 16 in the thickness direction (in this example, the surface on the opposite side to external connection terminal 10 a on the positive electrode side). It is done. However, unlike the first embodiment, the portion of the external connection terminal 10a (external connection vertical extension 10a1) on the positive electrode side facing the fuse portion 16 is recessed toward the side away from the fuse portion 16, and the fuse portion The distance between the point 16 and the external connection terminal 10a on the positive electrode side is widened. The fuse resin member 26 is disposed also at this interval, and the fuse resin member 26 is configured to cover the other surface of the fuse portion 16 (in the present example, the surface on the external connection terminal 10 a side of the positive electrode side). It is done.
  • the fuse resin members 26 are also disposed on both sides in the width direction of the fuse portion 16 so as to cover the entire periphery of the fuse portion 16.
  • the fuse resin member 26 having a thermal conductivity lower than that of the external connection terminal 10a on the positive electrode side between the fuse unit 16 and the external connection terminal 10a on the positive electrode side By disposing the fuse resin member 26 having a thermal conductivity lower than that of the external connection terminal 10a on the positive electrode side between the fuse unit 16 and the external connection terminal 10a on the positive electrode side, the heat dissipation of the fuse unit 16 is degraded and melting occurs. Characteristics can be improved. In addition, it is possible to prevent the fusing member of the fuse portion 16 from coming into contact with the external connection terminal 10a on the positive electrode side and maintaining the current path.
  • FIG. 12 is a cross-sectional view of the power conversion device 1 according to the present embodiment cut at the AA cross-sectional position of FIG.
  • fuse resin member 26 is configured to cover the surface on one side of fuse portion 16 in the thickness direction (in this example, the surface on the opposite side to external connection terminal 10 a on the positive electrode side). It is done. However, unlike the first embodiment, the surface on the other side of fuse portion 16 (the surface on the side of external connection terminal 10a on the positive electrode side) is recessed away from external connection terminal 10a on the positive electrode side. The thickness (plate thickness) of the fuse portion 16 is thinner than the portions on the upstream side and the downstream side of the fuse portion 16 by the amount of the recess. Further, the space between the fuse portion 16 and the external connection terminal 10a on the positive electrode side is widened by the amount of the recess.
  • the fuse resin member 26 is disposed also at this interval, and the fuse resin member 26 is configured to cover the other surface of the fuse portion 16 (in the present example, the surface on the external connection terminal 10 a side of the positive electrode side). It is done.
  • the fuse resin members 26 are also disposed on both sides in the width direction of the fuse portion 16 so as to cover the entire periphery of the fuse portion 16.
  • the fuse resin member 26 having a thermal conductivity lower than that of the external connection terminal 10a on the positive electrode side between the fuse unit 16 and the external connection terminal 10a on the positive electrode side By disposing the fuse resin member 26 having a thermal conductivity lower than that of the external connection terminal 10a on the positive electrode side between the fuse unit 16 and the external connection terminal 10a on the positive electrode side, the heat dissipation of the fuse unit 16 is degraded and melting occurs. Characteristics can be improved. In addition, it is possible to prevent the fusing member of the fuse portion 16 from coming into contact with the external connection terminal 10a on the positive electrode side and maintaining the current path. By covering the entire circumference, peeling of the fuse resin member 26 can be prevented by the anchor effect, and the fusing performance can be stabilized.
  • the cross-sectional area of the fuse portion 16 can be reduced, the time until melting can be shortened, and the heat transfer to the upstream and downstream portions of the fuse portion 16 can be reduced. Thereby, it is possible to ease the output limitation of the power conversion device 1 during normal operation.
  • a method of reducing the thickness of the fuse portion 16 there are, for example, a method of using a different thin member for the fuse portion 16, a method of performing pressing, a method of cutting, etc., but it is not limited thereto.
  • FIG. 13 is a cross-sectional view of the power conversion device 1 according to the present embodiment cut at a cross-sectional position along the line AA in FIG.
  • fuse resin member 26 is configured to cover the surface on one side of fuse portion 16 in the thickness direction (in this example, the surface on the opposite side to external connection terminal 10 a on the positive electrode side). It is done.
  • fuse portion 16 has one side in the thickness direction than the portion of electrode wiring member 13 on the upstream side and downstream side of fuse portion 16 (in this example, the external connection on the positive electrode side) It protrudes in the direction away from the terminal 10a.
  • the fuse portion 16 is formed at a portion of the electrode wiring member 13 which is bent in a square C-shape and protrudes in a direction away from the external connection terminal 10 a on the positive electrode side.
  • the thickness (plate thickness) of the protruding fuse portion 16 is thinner than the upstream and downstream portions of the fuse portion 16.
  • the distance between the fuse portion 16 and the external connection terminal 10a on the positive electrode side is widened by the amount of protrusion.
  • the fuse resin member 26 is disposed also at this interval, and the fuse resin member 26 is configured to cover the other surface of the fuse portion 16 (in the present example, the surface on the external connection terminal 10 a side of the positive electrode side). It is done.
  • the fuse resin members 26 are also disposed on both sides in the width direction of the fuse portion 16 so as to cover the entire periphery of the fuse portion 16.
  • the fuse resin member 26 having a thermal conductivity lower than that of the external connection terminal 10a on the positive electrode side between the fuse unit 16 and the external connection terminal 10a on the positive electrode side By disposing the fuse resin member 26 having a thermal conductivity lower than that of the external connection terminal 10a on the positive electrode side between the fuse unit 16 and the external connection terminal 10a on the positive electrode side, the heat dissipation of the fuse unit 16 is degraded and melting occurs. Characteristics can be improved. In addition, it is possible to prevent the fusing member of the fuse portion 16 from coming into contact with the external connection terminal 10a on the positive electrode side and maintaining the current path. By adjusting the amount of protrusion of the fuse portion 16, the thickness of the fuse resin member 26 can be adjusted, and the effect thereof can be made appropriate. By covering the entire circumference of the bent portion, peeling of the fuse resin member 26 can be prevented by the anchor effect, and the fusing performance can be stabilized. Further, by providing the bent portion, the thermal stress due to the temperature change is alleviated, and the reliability
  • the cross-sectional area of the fuse portion 16 can be reduced, the time until melting can be shortened, and the heat transfer to the upstream and downstream portions of the fuse portion 16 can be reduced. Thereby, it is possible to ease the output limitation of the power conversion device 1 during normal operation.
  • a method of making the fuse portion 16 project in a square C shape and reducing the thickness there are, for example, a method of using a different thin member for the fuse portion 16, a method of performing pressing, a method of cutting, etc. Not limited to these.
  • the semiconductor element module 29 in which the power semiconductor element 14 and the electrode lead frame 13 as the electrode wiring member 13 are sealed by the element mold resin 20 which is a resin member The case where it has been described has been described as an example. However, the embodiment of the present invention is not limited to this. That is, the power semiconductor element 14 and the electrode wiring member 13 may not be sealed by the element mold resin 20 and may not be packaged. That is, the power semiconductor element 14, the electrode wiring member 13 and the like in a state not sealed in the element mold resin 20 may be sealed in the housing 30 by the sealing resin member 25.
  • the electrode wiring member 13 may be a bus bar or the like, and the fuse portion 16 may be formed in a portion of the electrode wiring member on the positive electrode side or the negative electrode side sealed in the sealing resin member 25.
  • the fuse portion 16 has been described as an example formed on the electrode lead frame 13a (lead frame longitudinal extension 13a2) on the positive electrode side.
  • the embodiment of the present invention is not limited to this. That is, the fuse portion 16 may be formed at any part of the electrode wiring member 13 which is connected to the main electrode of the power semiconductor element 14 and sealed in the sealing resin member 25.
  • the fuse portion 16 may be formed on the electrode lead frame 13b on the negative electrode side, the lead frame lateral extension 13a1 on the positive electrode side, or the external connection terminals 10a and 10b on the positive electrode side or the negative electrode side.
  • the power converter device 1 provided the one semiconductor element 14 (switching element) for electric power was demonstrated as an example.
  • the embodiment of the present invention is not limited to this. That is, the power conversion device 1 may be provided with a plurality of power semiconductor elements.
  • two switching elements may be connected in series between the electrode wiring member on the positive electrode side and the electrode wiring member on the negative electrode side, and the fuse portion 16 may be formed in the electrode wiring member on the positive electrode side or the negative electrode side.
  • a series circuit of two switching elements is a bridge circuit in which a plurality of sets are connected in parallel between the electrode wiring member on the positive electrode side and the electrode wiring member on the negative electrode side.
  • the fuse unit 16 may be provided.
  • part or all of the power semiconductor element 14 may be a diode.
  • each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)
  • Fuses (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

過電流によりヒューズ部が溶断しても、発煙、焼損、短絡を抑制できると共に、ヒューズ部の発熱が電力用半導体素子に伝達され難くできる電力変換装置を提供する。電力変換装置(1)は、電極配線部材(13)に形成されたヒューズ部(16)と、ヒューズ部(16)を覆うヒューズ樹脂部材(26)と、電力用半導体素子(14)及びヒューズ部(16)を筐体(30)内に封止する封止樹脂部材(25)と、を備え、ヒューズ部(16)は、電流方向に沿って、上流側部分よりも断面積が小さい上流側の第1段目部分(16a1)、上流側の第1段目部分(16a1)よりも断面積が小さい第2段目部分(16b)、及び第2段目部分(16b)よりも断面積が大きく、下流側部分よりも断面積が小さい下流側の第1段目部分(16a2)により構成されている。

Description

電力変換装置
 この発明は、電力用半導体素子が筐体内に樹脂部材により封止された電力変換装置に関するものである。
 近年、自動車業界において、ハイブリッド自動車や電気自動車等、モータを駆動力源にする車両が盛んに開発されている。モータを駆動するインバータ装置は、バッテリを電源として、モータに高電圧の駆動電力を供給する。また、インバータ装置には、樹脂封止型の電力用半導体装置が用いられており、パワーエレクトロニクスの分野において、電力変換装置は、キーデバイスとしての重要性がますます高まっている。
 ここで、インバータ装置に用いられる電力用半導体素子は、他の構成部品とともに樹脂封止されている。こうした電力変換装置において、バッテリから電力が供給された状態で、電力用半導体素子やスナバ回路を構成する平滑コンデンサ等の電子部品が短絡故障すると、過大な短絡電流が流れる。例えば、インバータ制御回路におけるゲート駆動回路の誤動作により、インバータの上下アームが短絡すると、電力用半導体素子に過電流が流れ、短絡故障が発生する。
 短絡状態でバッテリとモータ駆動回路とを繋ぐリレーを接続するか、または接続を継続すると、大電流により電力変換装置が発煙及び焼損する。また、定格を超える過電流が流れることにより、モータ駆動用インバータ装置に接続されているバッテリが損害を受けることも考えられる。こうした事態を回避するために、通常は過電流を検知するセンサを用いて、過電流が流れた場合に、電力用半導体素子のスイッチングを高速に制御して電流を遮断している。しかしながら、電力用半導体素子が短絡故障した場合でも、上述した発煙等の故障モードをより確実に防ぐことが望まれる。
 具体的には、例えば、電力用半導体装置とバッテリとの間に過電流遮断用ヒューズを挿入すれば、モータ駆動用インバータ装置とバッテリとの間に流れる過電流を阻止することができる。
 しかし、チップ型の過電流遮断用ヒューズは高価である。そのため、安価でありながら、電力用半導体素子が短絡故障した場合に、バッテリに流れ得る過電流を確実に遮断することができる過電流遮断手段が必要とされている。
 例えば、下記の特許文献1では、樹脂により封止され、パッケージ化された半導体素子モジュールから突出した電極用リードフレームに切り欠きを設け、ヒューズ部を形成している。
特開2003-68967号公報
 しかしながら、特許文献1の技術では、電極用リードフレームに設けられたヒューズ部は、外気に露出している。そのため、ヒューズ部が過電流により溶断する際に、装置外に煙が流出するおそれがあり、また、周囲に火花が飛び散り、外気を用いた燃焼反応により装置が焼損するおそれがある。また、溶断したヒューズ部の部材が周囲に飛散し、周囲の部材と短絡するおそれがある。また、ヒューズ部の断面積は、一様に形成されているため、ヒューズ部全体が発熱し、溶断すると考えられる。また、ヒューズ部の上下流の電極用リードフレームにヒューズ部の発熱が伝達され易いため、溶断するまでの時間が長くなり、また、伝達された熱により電力用半導体素子が損傷するおそれがある。
 そこで、過電流によりヒューズ部が溶断しても、発煙、焼損、短絡を抑制できると共に、ヒューズ部の発熱が電力用半導体素子に伝達され難くできる電力変換装置が望まれる。
 この発明に係る電力変換装置は、電力用半導体素子と、前記電力用半導体素子の主電極に接続された電極配線部材と、筐体と、前記電極配線部材に形成された、ヒューズとして機能するヒューズ部と、前記ヒューズ部を覆う樹脂部材であるヒューズ樹脂部材と、前記電力用半導体素子、前記電極配線部材、前記ヒューズ部、及び前記ヒューズ樹脂部材を前記筐体内に封止する樹脂部材である封止樹脂部材と、を備え、前記ヒューズ部は、電流の流れ方向に沿って、前記ヒューズ部よりも上流側の前記電極配線部材の部分よりも断面積が小さい上流側の第1段目部分、前記上流側の第1段目部分よりも断面積が小さい第2段目部分、及び前記第2段目部分よりも断面積が大きく、前記ヒューズ部よりも下流側の前記電極配線部材の部分よりも断面積が小さい下流側の第1段目部分により構成されているものである。
 本発明に係る電力変換装置によれば、電極配線部材にヒューズ部が形成されるので、高価なチップ型のヒューズが設けられず、ヒューズ部のコストを低減することができる。封止樹脂部材により、ヒューズ部及びヒューズ樹脂部材が覆われるので、溶断したヒューズ部の部材が、外部に飛散することを防止できる。また、ヒューズ部及びヒューズ樹脂部材を外気から遮断することができるので、溶断時に生じたアーク放電による燃焼反応が進行することを抑制でき、また、溶断時に生じた煙が外部に漏れ出ることを抑制できる。ヒューズ樹脂部材によりヒューズ部が覆われているので、溶断したヒューズ部の部材が、封止樹脂部材に接触することを抑制し、封止樹脂部材が損傷することを抑制できる。また、ヒューズ部専用のヒューズ樹脂部材が設けられているので、ヒューズ部の溶断に適した材質の樹脂部材を選定することができる。したがって、過電流によりヒューズ部が溶断しても、発煙、焼損、及び短絡を抑制することができる。
 また、ヒューズ部の断面積を2段階に減少させることで、電流密度及び熱抵抗が、上流側及び下流側の第1段目部分、第2段目部分の順に大きくなる。よって、第2段目部分の温度上昇を最も大きくし、溶断させることができる。第2段目部分の発熱が、上流側及び下流側の第1段目部分の熱抵抗により、ヒューズ部よりも上下流の部分に伝わり難くなるため、第2段目部分の温度上昇速度を高くし、溶断までの時間を短縮できると共に、電力用半導体素子への熱伝達を低減できる。
本発明の実施の形態1に係る電力変換装置の平面図である。 本発明の実施の形態1に係る図1のA-A断面位置で切断した電力変換装置の断面図である。 本発明の実施の形態1に係る図1のB-B断面位置で切断した電力変換装置の断面図である。 本発明の実施の形態1に係るヒューズ部の平面図である。 本発明の実施の形態1に係るヒューズ部の電流密度を説明するための模式図である。 本発明の実施の形態1に係るヒューズ部の温度分布を説明する図である。 本発明の比較例に係るヒューズ部の温度分布を説明する図である。 本発明の実施の形態1に係るヒューズ部の形状のバリエーションを説明する模式図である。 本発明の実施の形態2に係る図1のA-A断面位置で切断した電力変換装置の断面図である。 本発明の実施の形態2に係る電極配線部材の斜視図である。 本発明の実施の形態3に係る図1のA-A断面位置で切断した電力変換装置の断面図である。 本発明の実施の形態4に係る図1のA-A断面位置で切断した電力変換装置の断面図である。 本発明の実施の形態5に係る図1のA-A断面位置で切断した電力変換装置の断面図である。
実施の形態1.
 実施の形態1に係る電力変換装置1について図面を参照して説明する。図1は、電力変換装置1を、筐体30の開口側から見た平面図であり、各部品の配置を説明するために封止樹脂部材25が透明化され、図示されていない。図2は、図1のA-A断面位置において切断した断面図であり、図3は、図1のB-B断面位置において切断した断面図である。図4は、ヒューズ部16から正面から見た平面図である。なお、各図は、模式図であり、図面間で各部材の寸法は完全に一致していない。
 電力変換装置1は、電力用半導体素子14と、電力用半導体素子14の主電極に接続された電極配線部材13と、筐体30と、電力用半導体素子14等の各部品を筐体30内に封止する樹脂部材である封止樹脂部材25と、を備えている。
<筐体30>
 筐体30は、有底筒状に形成されており、封止樹脂部材25を注型する枠の役割を有する。なお、以下で、単に「内」「内側」又は「外」「外側」というときは、筐体30の内側又は外側を意味するものとする。「縦方向」は、筐体30の筒部が延出している方向を意味するものとし、「横方向」は、筐体30の底部が延在している方向を意味するものとする。
 筐体30の底部は、金属製のヒートシンク12により構成されている。ヒートシンク12は、電力用半導体素子14に発生する熱を外部に放熱する役割を有する。ヒートシンク12は、例えば、アルミニウム、アルミニウム合金などの20W/(m・K)以上の熱伝導率を有する材料が用いられる。ヒートシンク12は、例えば矩形の平板状に形成されている。なお、ヒートシンク12は矩形以外の形状でもよい。電力用半導体素子14側の部材と対向するヒートシンク12の内面部分には、内側に突出する平板状の素子対向突出部12aが設けられており、素子対向突出部12aの内面が、電力用半導体素子14側の部材に当接する。ヒートシンク12の外面には、図2に示すように、互いに間隔を空けて配列された平板状の複数のフィン19が設けられている。フィン19は外気に接触しており、ヒートシンク12はこれらのフィン19から外気に向かって熱を放熱する。なお、水冷式とされてもよい。
 筐体30の筒部は、絶縁ケース11により構成されている。絶縁ケース11は、絶縁性が高く、熱可塑性を有する任意の樹脂材料、例えば、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の樹脂材料を用いて形成される。
<電力用半導体素子14、電極配線部材13>
 本実施の形態では、電力用半導体素子14、及び電極配線部材13としての電極用リードフレーム13は、樹脂部材である素子モールド樹脂20により封止され、パッケージ化された半導体素子モジュール29とされている。また、電力用半導体素子14の制御用端子に接続された制御用リードフレーム21も素子モールド樹脂20により封止されている。電極用リードフレーム13及び制御用リードフレーム21は、素子モールド樹脂20から外側に突出している。素子モールド樹脂20は、内部の素子及び配線を守るために、数GPa以上のヤング率を有する硬い樹脂が用いられるとよく、例えば、エポキシ樹脂が用いられる。
 電力用半導体素子14には、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)が用いられている。なお、電力用半導体素子14には、ダイオードが逆並列接続されたパワーIGBT(Insulated Gate Bipolar Transistor)等の他の種類のスイッチング素子が用いられてもよい。電力用半導体素子14は、例えば、車両駆動用のモータなどの機器を駆動するインバータ回路、コンバータ回路に用いられるものであり、数アンペアから数百アンペアの定格電流を制御するものである。電力用半導体素子14の材料として、シリコン(Si)、シリコンカーバイド(SiC)、ガリウムナイトライド(GaN)などが用いられてもよい。
 電力用半導体素子14は、矩形平板のチップ状に形成されており、ヒートシンク12側の面に主電極としてのドレーン端子が設けられ、筐体30のヒートシンク12とは反対側の面に主電極としてのソース端子が設けられている。また、筐体30のヒートシンク12とは反対側の面に、制御用端子としてのゲート端子が設けられている。なお、制御用端子として、主電極間を流れる電流やチップの温度を検出するためのセンサ端子等が設けられてもよい。
 ドレーン端子は、正極側の電極用リードフレーム13aに接続され、ソース端子は、電極用配線部材15aを介して、負極側の電極用リードフレーム13bに接続されている。電極用配線部材15aには大電流が流れるため、例えば金・銀・銅・アルミニウムの板材を加工したものや、ワイヤボンド、リボンボンドで形成される。ゲート端子及びセンサ端子は、制御用配線部材15bを介して、制御用リードフレーム21に接続されている。制御用配線部材15bは、例えば、金・銅・アルミニウムなどのワイヤボンド、または、アルミニウムのリボンボンドで形成することができる。
 正極側及び負極側の電極用リードフレーム13a、13bは、板状(本例では、矩形の平板状)に形成されている。電力用半導体素子14の主電極に接続される電極用リードフレーム13a、13bの電極接続部分は、電力用半導体素子14よりもヒートシンク12側に配置されている。正極側の電極用リードフレーム13aの電極接続部分のヒートシンク12とは反対側の面は、導電性接合材17により、電力用半導体素子14のヒートシンク12側の面のドレーン端子に接合されている。負極側の電極用リードフレーム13bの電極接続部分のヒートシンク12とは反対側の面は、導電性接合材17により、L字状に形成された電極用配線部材15aの一端に接合されている。電力用半導体素子14のヒートシンク12とは反対側の面のソース端子は、導電性接合材17により、電極用配線部材15aの他端に接合されている。導電性接合材17は、例えば、半田、銀ペースト、あるいは、導電性接着剤などの、導電性が良好で熱伝導率の高い材料から構成される。
 電極用リードフレーム13a、13bの電極接続部分のヒートシンク12側の面は、素子モールド樹脂20により覆われておらず、半導体素子モジュール29の外側に露出している。この電極用リードフレーム13a、13bの露出部分は、シート状に形成された絶縁部材18を介して、ヒートシンク12の素子対向突出部12aの内面に接している。電力用半導体素子14の発熱が、電極用リードフレーム13a、13bの電極接続部分、及び絶縁部材18を介して、ヒートシンク12に伝達される。絶縁部材18は、熱伝導性が高く、且つ、電気的絶縁性が高い材料から構成される。従って、絶縁部材18は、例えば、熱伝導率が1W/(m・K)~数十W/(m・K)であり、且つ、絶縁性のある、シリコン樹脂、エポキシ樹脂、ウレタン樹脂などの樹脂材料から成る接着剤、グリス、又は絶縁シートで構成される。さらに、絶縁部材18は、セラミック基板または金属基板などの熱抵抗が低く、且つ、絶縁性を有する他の材料と、樹脂材料とを、組み合わせて構成することも可能である。
 また、絶縁部材18の厚さを規定するために、素子モールド樹脂20のヒートシンク12側には、突起20aが設けられている。素子モールド樹脂20の突起20aをヒートシンク12に押し当てることで、突起20aの高さにより、絶縁部材18の厚さを規定することができ、絶縁部材18の絶縁性及び伝熱性を管理することができる。例えば、12Vバッテリを使用する低耐圧系の自動車では、予め定められた絶縁耐圧を確保するのに必要な沿面距離は、10μm程度である。従って、低耐圧系の自動車の場合には、絶縁に必要な厚さを薄くできるため、素子モールド樹脂20の突起20aを短くすることができ、電力変換装置1の薄型化が可能である。絶縁部材18が剛性を持ち、押圧による厚さの変化が小さい材料の場合、絶縁部材18の厚さを管理できるため、素子モールド樹脂20の突起20aはなくてもよい。
 正極側の電極用リードフレーム13aは、素子モールド樹脂20から突出した後、ヒートシンク12の内面と間隔を空けた状態で、ヒートシンク12の内面に沿って横方向に延出し、その後、屈曲し、ヒートシンク12から離れる側(筐体30の開口側)に縦方向に延出している。ヒートシンク12の内面と間隔を空けた状態で横方向に延出している部分を、正極側のリードフレーム横方向延出部13a1と称し、ヒートシンク12から離れる側に縦方向に延出している部分を、正極側のリードフレーム縦方向延出部13a2と称す。正極側のリードフレーム縦方向延出部13a2に後述するヒューズ部16が形成されている。
 正極側の外部接続端子10aは、絶縁ケース11にインサート及びアウトサートされている。正極側の外部接続端子10aは、縦方向に延出している外部接続縦方向延出部10a1と、外部接続縦方向延出部10a1のヒートシンク12側の端部から横方向に延出している外部接続横方向延出部10a2とを有している。正極側の外部接続縦方向延出部10a1の開口側の先端部は、正極側のリードフレーム縦方向延出部13a2の開口側の先端部に、溶接又は半田付け等により接合されている。正極側の外部接続縦方向延出部10a1と正極側のリードフレーム縦方向延出部13a2との間には、先端の接合部以外は隙間が空けられており、導通していない。筐体30から外部に突出した部分が、直流電源の正極等の他の装置に接続される。
 負極側の電極用リードフレーム13bも、素子モールド樹脂20から突出した後、ヒートシンク12の内面と間隔を空け、ヒートシンク12の内面に沿って延出している負極側のリードフレーム横方向延出部13b1と、ヒートシンク12から離れる側に延出している負極側のリードフレーム縦方向延出部13b2とを備えている。
 負極側の外部接続端子10bは、絶縁ケース11にインサート及びアウトサートされている。負極側の外部接続端子10bは、縦方向に延出している外部接続縦方向延出部10b1と、外部接続縦方向延出部10b1のヒートシンク12側の端部から横方向に延出している外部接続横方向延出部10b2とを有している。外部接続縦方向延出部10b1の開口側の先端部は、負極側のリードフレーム縦方向延出部13b2の開口側の先端部に、溶接又は半田付け等により接合される。負極側の外部接続縦方向延出部10b1と負極側のリードフレーム縦方向延出部13b2との間には、先端の接合部以外は隙間が空けられており、導通していない。筐体30から外部に突出した部分が、直流電源の負極等の他の装置に接続される。
 電極用リードフレーム13a、13b、外部接続端子10a、10bには、導電性が良好で熱伝導率の高い銅または銅合金、アルミ、又はアルミ合金などの金属が用いられ、数アンペアから数百アンペア程度の大電流が流れる。電極用リードフレーム13a、13bの表面はAu、Ni、Snなどの金属材料でめっきされていてもよい。
 制御用リードフレーム21は、筐体30の開口側に、封止樹脂部材25から突出しており、電力用半導体素子14のオンオフを制御する制御装置に接続される。
<ヒューズ部16>
 電極配線部材13(本例では、正極側のリードフレーム縦方向延出部13a2)には、ヒューズとして機能するヒューズ部16が形成されている。図4に示すように、ヒューズ部16は、電極配線部材13における電流の流れ方向の上流側部分及び下流側部分のそれぞれから2段階に断面積が小さくなった電極配線部材の部分により構成されている。具体的には、図4に、ヒューズ部16を正面から見た図を示すように、ヒューズ部16は、電流の流れ方向に沿って、ヒューズ部16よりも上流側の電極配線部材の部分よりも断面積が小さい上流側の第1段目部分16a1、上流側の第1段目部分16a1よりも断面積が小さい第2段目部分16b、及び第2段目部分16bよりも断面積が大きく、ヒューズ部16よりも下流側の電極配線部材13の部分よりも断面積が小さい下流側の第1段目部分16a2により構成されている。
 例えば、各部の断面積の比率は、次のようにされている。上下流側部分の断面積:上下流側の第1段目部分の断面積:第2段目部分の断面積=7.5:1.5:1。すなわち、各部の断面積の大きさの順番は、「上下流側部分の断面積>上下流側の第1段目部分の断面積>第2段目部分の断面積」となっている。ここで、断面積の比率の値は一例であり、断面積の順番が同じであれば、同様の効果が得られる。
 このように2段階に断面積を減少させることで、図5に示すように、電流密度が、断面積の減少に応じて増加し、第2段目部分16bの電流密度が最も大きくなる。式(1)に示すように、断面積が減ることで熱抵抗も増加する。これらにより、発熱密度が段階的に増加し、放熱性が段階的に悪化し、第2段目部分16bの温度上昇が最も大きくなり、第2段目部分16bが溶断する。
  熱抵抗 = 長さ÷(熱伝導率×断面積)    ・・・(1)
 図6に電流を流した時のヒューズ部16の温度分布を示す。図6は、2段階に断面積が小さくされた本実施の形態の場合である。図7は、1段階に断面積が小さくされた比較例の場合であり、第1段目部分が設けられているが、第2段目部分が設けられていない。なお、ヒューズ部16は、平板状の電極用リードフレームを両側からプレスで切欠いて構成するものとし、第2段目部分16bの幅は、プレスで量産可能な限界である、リードフレームの板厚と同等にされている。
 本実施の形態に係る図6では、第2段目部分16bで最も温度が高くなり、第1段目部分16a1、16a2において第2段目部分16bから離れるに従って、次第に温度が低くなっている。また、第2段目部分16bの発熱が、熱抵抗が大きい第1段目部分16a1、16a2によりヒューズ部16よりも上下流部分に伝わり難くなり、第2段目部分16bの温度上昇速度を高くし、溶断までの時間を短縮することができる。よって、過電流が流れた時に、断面積が一番小さい第2段目部分16bが短時間のうちに急激に温度上昇する。そして、金属の溶点まで温度があがると第2段目部分16bが断裂する。また、熱抵抗が大きい第1段目部分16a1、16a2により、第2段目部分16bの発熱が、ヒューズ部16よりも上下流部分に伝達されるのを抑制し、電力用半導体素子14、封止樹脂部材25等の損傷を抑制できる。また、切欠きの幅と長さを変えることで、断裂するまでの電流と時間の関係を調整し、所望の溶断特性が得られる。また、ヒューズ部16を設けることで電極用リードフレームの断面積が減り、剛性が低くなるため、温度変化による熱応力が緩和され接合部の信頼性の向上が見込める。
 比較例に係る図7では、ヒューズ部16全体の温度が均一的に上昇している。そのため、過電流が流れた時に、ヒューズ部16の温度が全体的に上昇し、ヒューズ部16全体が溶断する、若しくは溶断箇所がばらつく。また、全体の温度が上昇するため、溶断までの時間が長くなり、ヒューズ部16よりも上下流部分に伝達される熱が多くなる。なお、溶断時は、図7に示している温度よりも全体的に高くなり、ヒューズ部16よりも上下流部分の温度も図6の場合よりも高くなる。
 本実施の形態では、第2段目部分16bの電流の流れ方向の長さは、上流側の第1段目部分16a1の電流の流れ方向の長さ及び下流側の第1段目部分16a2の電流の流れ方向の長さよりも短くされている。この構成によれば、ヒューズ部16の溶断箇所を短くすることができ、溶断部材の量を少なくできる。第1段目部分16a1、16a2が長くされるので、熱抵抗を大きくし、第2段目部分16bの温度上昇速度を増加できると共に、ヒューズ部16よりも上下流部分に伝達される熱量を低下できる。例えば、第2段目部分16bの電流の流れ方向の長さは、上流側及び下流側の第1段目部分16a1、16a2の電流の流れ方向の長さの半分以下(例えば、3分の1)とされるとよい。
 ヒューズ部16は電気伝導性が高い金、銀、銅、アルミニウムによって構成される。ヒューズ部16は電極用リードフレーム13の他の部分と同じ材料でもよく、異なる材料が用いられてもよい。なお、これに限定されないが、ヒューズ部16は、電極用リードフレーム13の他の部分と同様に、0.5mm~1.5mm程度の厚みを有する銅または銅合金からなる平板を、打ち抜き加工することによって形成することができる。
 上流側及び下流側の第1段目部分16a1、16a2は、それぞれ、電流の流れ方向の各位置で、同じ断面積とされている。本実施の形態では、上流側及び下流側の第1段目部分16a1、16a2は、同じ長さ、同じ断面積の直方体状に形成されている。上流側及び下流側の第1段目部分16a1、16a2は、互いに異なる長さ、互いに異なる断面積とされてもよい。また、上流側及び下流側の第1段目部分16a1、16a2の断面形状は、矩形以外にも、丸形、楕円形等、任意の形状とされてもよい。
 第2段目部分16bは、直方体状に形成されている。第2段目部分16bの形状は、上流側及び下流側の第1段目部分16a1、16a2よりも断面積が小さくなっていれば、どのような形状であってもよい。例えば、図8に示すように、片側又は両側に切欠き、又は内側に貫通孔を設けて断面積を減らしてもよい。切欠き又は貫通孔の形状は、矩形以外にも三角形、五角形、台形、ひし形、平行四辺形、円形、楕円形等の任意の形状とされてもよい。切欠き又は貫通孔は、1個に限らず、複数個設けられてもよい。また、複数の切欠き又は貫通孔が、配線の長さ方向の異なる位置に、千鳥状に互い違い、又は不規則に配置されてもよい。複数の貫通孔が、配線の幅方向でも、長さ方向でもどちらに並べられてもよい。
<ヒューズ樹脂部材26>
 ヒューズ部16を覆う樹脂部材であるヒューズ樹脂部材26が設けられている。ヒューズ樹脂部材26は、少なくとも、溶断箇所である第2段目部分16bの片面を覆うように配置される。本実施の形態では、図2に示すように、ヒューズ樹脂部材26は、ヒューズ部16の厚さ方向の一方側の面(本例では、正極側の外部接続端子10aとは反対側の面)を覆うように構成されている。図4に示すように、ヒューズ樹脂部材26は、ヒューズ部16の面積より広い面積に配置されている。なお、ヒューズ樹脂部材26は、ヒューズ部16の幅方向の両側の面を覆うように配置されてもよい。
 封止樹脂部材25が筐体30内に充填される前に、ヒューズ樹脂部材26がヒューズ部16を覆うように配置される。ヒューズ樹脂部材26は、電気的絶縁性が高い、シリコン樹脂、エポキシ樹脂、ウレタン樹脂などの樹脂材料から成る接着剤、グリス、又は絶縁シートで構成される。
 ヒューズ部16をヒューズ樹脂部材26により覆うことにより、溶断したヒューズ部16の部材が、封止樹脂部材25に接触することを抑制し、封止樹脂部材25が損傷することを抑制できる。また、ヒューズ部16専用のヒューズ樹脂部材26が設けられているので、ヒューズ部16の溶断に適した材質の樹脂部材を選定することができることができる。
 本実施の形態では、ヒューズ樹脂部材26は、封止樹脂部材25よりもヤング率が低い樹脂部材が用いられている。例えば、ヒューズ樹脂部材26のヤング率は数十MPa(メガパスカル)のオーダーとされ(例えば、10MPaから30MPaの間の値)、例えば、ゴム材、シリコンゴム、シリコンゲルが用いられるとよい。この構成によれば、ヒューズ部16が溶断する際に、複数の球状の塊になって飛び散る溶融部材を、封止樹脂部材25よりもヤング率が低く、柔らかいヒューズ樹脂部材26内にめり込ませ、ヒューズ樹脂部材26内に分散して保持することができる。よって、溶断後、溶融した部材により、通電経路が維持されることを防止し、速やかに通電経路を切断することができる。また、溶融した部材により、ヤング率が高い封止樹脂部材25が割れることを抑制できる。
 ヒューズ樹脂部材26には、ヒューズ部16が溶断した時に生じるアーク放電の消弧作用があるシリコン樹脂が用いられるとよい。この構成によれば、ヒューズ部16が溶断した後も、アーク放電により通電が継続されることを抑制し、溶断後、速やかに電流を遮断することができる。よって、電力用半導体素子14、封止樹脂部材25等の損傷を抑制することができる。
<封止樹脂部材25>
 封止樹脂部材25は、電力用半導体素子14、電極配線部材13、ヒューズ部16、及びヒューズ樹脂部材26を筐体30内に封止する樹脂部材である。本実施の形態では、封止樹脂部材25は、半導体素子モジュール29を筐体30内に封止するように構成されている。また、封止樹脂部材25は、絶縁部材18、外部接続端子10a、10b等の他の構成部品も筐体30内に封止している。封止樹脂部材25は、例えば剛性が高く、熱伝導率が高い樹脂材料が用いられる。封止樹脂部材25には、例えば熱伝導性フィラーを含有したエポキシ樹脂、シリコン樹脂、ウレタン樹脂、PPS、PEEK、ABSにて構成されていてもよい。封止樹脂部材25のヤング率は1MPa~50GPa、熱伝導率は0.1W/(m・K)~20W/(m・K)であるとよい。各構成部品を封止樹脂部材25により封止することによって、耐振動性や耐環境性を向上させることができる。
 封止樹脂部材25により、ヒューズ部16及びヒューズ樹脂部材26が覆われるので、溶断したヒューズ部16の部材が、外部に飛散することを防止できる。ヒューズ部16及びヒューズ樹脂部材26を外気から遮断することができるので、溶断時に生じたアーク放電による燃焼反応が進行することを抑制でき、また、溶断時に生じた煙が外部に漏れ出ることを抑制できる。
実施の形態2.
 次に、実施の形態2に係る電力変換装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る電力変換装置1の基本的な構成は実施の形態1と同様であるが、電極配線部材13の構成が一部異なる。図9は、図1のA-A断面位置において切断した本実施の形態に係る電力変換装置1の断面図である。図10は、正極側の電極用リードフレーム13aの斜視図である。
 実施の形態1と同様に、電極配線部材13(正極側の電極用リードフレーム13a)には、ヒューズとして機能するヒューズ部16が形成されている。実施の形態1とは異なり、電極配線部材13(正極側の電極用リードフレーム13a)は、ヒューズ部16よりも電力用半導体素子14側の部分に、上下流部分よりも断面積が小さくなった小断面積部31を有している。なお、小断面積部31の断面積は、ヒューズ部16の第2段目部分16bの断面積よりも大きくされている。
 小断面積部31は、素子モールド樹脂20から横方向に突出している正極側のリードフレーム横方向延出部13a1に設けられている。小断面積部31は、電極用リードフレーム13aを厚さ方向に貫通する円柱状の貫通孔が、幅方向に2つ設けられることにより形成されている。なお、小断面積部31が素子モールド樹脂20から突出した部分でなく、素子モールド樹脂20内にあってもよい。これにより、小断面積部31に素子モールド樹脂20が入り込むためアンカー効果により剥離を防止することができる。
 ヒューズ部16を設けることにより、通常の電流が流れる場合も、ヒューズ部16が発熱する。そのため、電力用半導体素子14に伝達される熱が大きくなり過ぎないように、電力変換装置1の出力を制限する必要があり、設計制約となる。小断面積部31を設けることにより、熱抵抗が増加するため、ヒューズ部16の発熱が電力用半導体素子14に伝達され難くなるため、通常の動作時の電力変換装置1の出力制限を緩和することができる。
 小断面積部31は、上下流の部分よりも断面積が小さくなっていれば、どのような形状であってもよい。例えば、第2段目部分16bと同様に、片側又は両側に切欠き、又は内側に貫通孔を設けて断面積を減らしてもよい。切欠き又は貫通孔の形状は、矩形以外にも三角形、五角形、台形、ひし形、平行四辺形、円形、楕円形等の任意の形状とされてもよい。切欠き又は貫通孔は、1個に限らず、複数個設けられてもよい。また、複数の切欠き又は貫通孔が、配線の長さ方向の異なる位置に、千鳥状に互い違い、又は不規則に配置されてもよい。複数の貫通孔が、配線の幅方向でも、長さ方向でもどちらに並べられてもよい。
実施の形態3.
 次に、実施の形態3に係る電力変換装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る電力変換装置1の基本的な構成は実施の形態1と同様であるが、ヒューズ樹脂部材26、正極側の外部接続端子10aの構成が一部異なる。図11は、図1のA-A断面位置において切断した本実施の形態に係る電力変換装置1の断面図である。
 実施の形態1と同様に、ヒューズ樹脂部材26は、ヒューズ部16の厚さ方向の一方側の面(本例では、正極側の外部接続端子10aとは反対側の面)を覆うように構成されている。しかし、実施の形態1とは異なり、ヒューズ部16と対向する正極側の外部接続端子10a(外部接続縦方向延出部10a1)の部分は、ヒューズ部16から離れる側に窪んでおり、ヒューズ部16と正極側の外部接続端子10aとの間隔が広げられている。この間隔にも、ヒューズ樹脂部材26が配置されており、ヒューズ樹脂部材26は、ヒューズ部16の他方側の面(本例では、正極側の外部接続端子10a側の面)を覆うように構成されている。また、ヒューズ樹脂部材26は、ヒューズ部16の幅方向の両側にも配置されており、ヒューズ部16の周囲を全周に亘って覆うように配置されている。ヒューズ部16と正極側の外部接続端子10aの間に、正極側の外部接続端子10aよりも熱伝導率の低いヒューズ樹脂部材26を配置することで、ヒューズ部16の放熱性が悪化し、溶断特性を向上することができる。また、ヒューズ部16の溶断部材が、正極側の外部接続端子10aに接触し、通電経路が維持されることを防止することができる。
実施の形態4.
 次に、実施の形態4に係る電力変換装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る電力変換装置1の基本的な構成は実施の形態1と同様であるが、ヒューズ部16、ヒューズ樹脂部材26の構成が一部異なる。図12は、図1のA-A断面位置において切断した本実施の形態に係る電力変換装置1の断面図である。
 実施の形態1と同様に、ヒューズ樹脂部材26は、ヒューズ部16の厚さ方向の一方側の面(本例では、正極側の外部接続端子10aとは反対側の面)を覆うように構成されている。しかし、実施の形態1とは異なり、ヒューズ部16の他方側の面(正極側の外部接続端子10a側の面)が、正極側の外部接続端子10aから離れる側に窪んでいる。この窪みの分だけ、ヒューズ部16の厚み(板厚)が、ヒューズ部16よりも上流側及び下流側の部分よりも薄くなっている。また、この窪みの分だけ、ヒューズ部16と正極側の外部接続端子10aとの間隔が広げられている。この間隔にも、ヒューズ樹脂部材26が配置されており、ヒューズ樹脂部材26は、ヒューズ部16の他方側の面(本例では、正極側の外部接続端子10a側の面)を覆うように構成されている。また、ヒューズ樹脂部材26は、ヒューズ部16の幅方向の両側にも配置されており、ヒューズ部16の周囲を全周に亘って覆うように配置されている。
 ヒューズ部16と正極側の外部接続端子10aの間に、正極側の外部接続端子10aよりも熱伝導率の低いヒューズ樹脂部材26を配置することで、ヒューズ部16の放熱性が悪化し、溶断特性を向上することができる。また、ヒューズ部16の溶断部材が、正極側の外部接続端子10aに接触し、通電経路が維持されることを防止することができる。全周を覆うことでアンカー効果により、ヒューズ樹脂部材26の剥離を防止でき、溶断性能を安定化できる。
 また、ヒューズ部16の厚みが薄くされることにより、ヒューズ部16の断面積を小さくでき、溶断までの時間を短縮できると共に、ヒューズ部16よりも上下流部分への伝熱を低減できる。これにより、通常の動作時の電力変換装置1の出力制限を緩和することができる。
 ヒューズ部16の厚みを薄くする方法として、例えばヒューズ部16に厚みの薄い異部材を用いる方法や、プレス加工を行う方法や、切削する方法などがあるが、これらに限定されるものではない。
実施の形態5.
 次に、実施の形態5に係る電力変換装置1について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る電力変換装置1の基本的な構成は実施の形態1と同様であるが、ヒューズ部16、ヒューズ樹脂部材26の構成が一部異なる。図13は、図1のA-A断面位置において切断した本実施の形態に係る電力変換装置1の断面図である。
 実施の形態1と同様に、ヒューズ樹脂部材26は、ヒューズ部16の厚さ方向の一方側の面(本例では、正極側の外部接続端子10aとは反対側の面)を覆うように構成されている。しかし、実施の形態1とは異なり、ヒューズ部16は、ヒューズ部16よりも上流側及び下流側の電極配線部材13の部分よりも厚さ方向の一方側(本例では、正極側の外部接続端子10aから離れる方向)に突出している。ヒューズ部16は、正極側の外部接続端子10aから離れる方向に、角張ったCの字状に折り曲げられて突出した電極配線部材13の部分に形成されている。突出したヒューズ部16の厚み(板厚)は、ヒューズ部16よりも上流側及び下流側の部分よりも薄くなっている。突出した分だけ、ヒューズ部16と正極側の外部接続端子10aとの間隔が広げられている。この間隔にも、ヒューズ樹脂部材26が配置されており、ヒューズ樹脂部材26は、ヒューズ部16の他方側の面(本例では、正極側の外部接続端子10a側の面)を覆うように構成されている。また、ヒューズ樹脂部材26は、ヒューズ部16の幅方向の両側にも配置されており、ヒューズ部16の周囲を全周に亘って覆うように配置されている。
 ヒューズ部16と正極側の外部接続端子10aの間に、正極側の外部接続端子10aよりも熱伝導率の低いヒューズ樹脂部材26を配置することで、ヒューズ部16の放熱性が悪化し、溶断特性を向上することができる。また、ヒューズ部16の溶断部材が、正極側の外部接続端子10aに接触し、通電経路が維持されることを防止することができる。ヒューズ部16の突出量を調節することにより、ヒューズ樹脂部材26の厚みを調節することができ、その効果を適切化できる。屈曲部の全周を覆うことでアンカー効果により、ヒューズ樹脂部材26の剥離を防止でき、溶断性能を安定化できる。また、屈曲部を設けることで温度変化による熱応力が緩和され接合部の信頼性の向上が見込める。
 また、ヒューズ部16の厚みが薄くされることにより、ヒューズ部16の断面積を小さくでき、溶断までの時間を短縮できると共に、ヒューズ部16よりも上下流部分への伝熱を低減できる。これにより、通常の動作時の電力変換装置1の出力制限を緩和することができる。
 ヒューズ部16を角張ったCの字状に突出させ、厚みを薄くする方法として、例えばヒューズ部16に厚みの薄い異部材を用いる方法や、プレス加工を行う方法や、切削する方法などがあるが、これらに限定されるものではない。
〔その他の実施形態〕
 最後に、本発明のその他の実施の形態について説明する。なお、以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)上記の各実施の形態においては、電力用半導体素子14、及び電極配線部材13としての電極用リードフレーム13が、樹脂部材である素子モールド樹脂20により封止された半導体素子モジュール29とされている場合を例として説明した。しかし、本発明の実施の形態はこれに限定されない。すなわち、電力用半導体素子14、及び電極配線部材13が、素子モールド樹脂20により封止されておらず、パッケージ化されていなくてもよい。すなわち、素子モールド樹脂20に封止されていない状態の、電力用半導体素子14及び電極配線部材13等が、封止樹脂部材25により筐体30内に封止されてもよい。この場合は、電極配線部材13は、バスバー等とされ、ヒューズ部16は、封止樹脂部材25に封止されている正極側又は負極側の電極配線部材の部分に形成されてもよい。
(2)上記の各実施の形態においては、ヒューズ部16は、正極側の電極用リードフレーム13a(リードフレーム縦方向延出部13a2)に形成されている場合を例として説明した。しかし、本発明の実施の形態はこれに限定されない。すなわち、ヒューズ部16は、電力用半導体素子14の主電極に接続され、封止樹脂部材25に封止された電極配線部材13の部分であれば、いずれの箇所に形成されてもよい。例えば、ヒューズ部16は、負極側の電極用リードフレーム13b、正極側のリードフレーム横方向延出部13a1、或いは、正極側又は負極側の外部接続端子10a、10bに形成されてもよい。
(3)上記の各実施の形態においては、電力変換装置1が、1つの電力用半導体素子14(スイッチング素子)を設けている場合を例として説明した。しかし、本発明の実施の形態はこれに限定されない。すなわち、電力変換装置1が、複数の電力用半導体素子を設けていてもよい。例えば、2つのスイッチング素子が、正極側の電極配線部材と負極側の電極配線部材との間に直列接続され、正極側又は負極側の電極配線部材にヒューズ部16が形成されてもよい。また、正極側の電極配線部材と負極側の電極配線部材との間に、2つのスイッチング素子の直列回路が、複数組並列接続されたブリッジ回路とされ、各組の直列回路の電極配線部材に、ヒューズ部16が設けられてもよい。また、電力用半導体素子14の一部又は全部が、ダイオードとされてもよい。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
1 電力変換装置、13 電極配線部材、14 電力用半導体素子、16 ヒューズ部、16a1 上流側の第1段目部分、16a2 下流側の第1段目部分、16b 第2段目部分、20 素子モールド樹脂、25 封止樹脂部材、26 ヒューズ樹脂部材、29  半導体素子モジュール、30 筐体、31 小断面積部

Claims (12)

  1.  電力用半導体素子と、
     前記電力用半導体素子の主電極に接続された電極配線部材と、
     筐体と、
     前記電極配線部材に形成された、ヒューズとして機能するヒューズ部と、
     前記ヒューズ部を覆う樹脂部材であるヒューズ樹脂部材と、
     前記電力用半導体素子、前記電極配線部材、前記ヒューズ部、及び前記ヒューズ樹脂部材を前記筐体内に封止する樹脂部材である封止樹脂部材と、を備え、
     前記ヒューズ部は、電流の流れ方向に沿って、前記ヒューズ部よりも上流側の前記電極配線部材の部分よりも断面積が小さい上流側の第1段目部分、前記上流側の第1段目部分よりも断面積が小さい第2段目部分、及び前記第2段目部分よりも断面積が大きく、前記ヒューズ部よりも下流側の前記電極配線部材の部分よりも断面積が小さい下流側の第1段目部分により構成されている電力変換装置。
  2.  前記電力用半導体素子、及び前記電極配線部材としての電極用リードフレームは、樹脂部材である素子モールド樹脂により封止された半導体素子モジュールとされ、
     前記ヒューズ部は、前記素子モールド樹脂から外側に突出した前記電極用リードフレームの部分に形成されている請求項1に記載の電力変換装置。
  3.  前記第2段目部分の電流の流れ方向の長さは、前記上流側の第1段目部分の電流の流れ方向の長さ及び前記下流側の第1段目部分の電流の流れ方向の長さよりも短い請求項1又は2に記載の電力変換装置。
  4.  前記第2段目部分の電流の流れ方向の長さは、前記上流側の第1段目部分の電流の流れ方向の長さ及び前記下流側の第1段目部分の電流の流れ方向の長さの半分以下である請求項3に記載の電力変換装置。
  5.  前記上流側の第1段目部分及び前記下流側の第1段目部分は、それぞれ、電流の流れ方向の各位置で、同じ断面積とされている請求項1から4のいずれか一項に記載の電力変換装置。
  6.  前記ヒューズ樹脂部材は、少なくとも前記第2段目部分の片面を覆っている請求項1から5のいずれか一項に記載の電力変換装置。
  7.  前記電極配線部材は、前記ヒューズ部よりも前記電力用半導体素子側の部分に、上下流の部分よりも断面積が小さくなった小断面積部を有する請求項1から6のいずれか一項に記載の電力変換装置。
  8.  前記電極配線部材は、板状に形成され、
     前記ヒューズ部は、前記ヒューズ部よりも上流側及び下流側の前記電極配線部材の部分よりも板厚が薄い請求項1から7のいずれか一項に記載の電力変換装置。
  9.  前記ヒューズ部は、前記ヒューズ部よりも上流側及び下流側の前記電極配線部材の部分よりも厚さ方向の一方側に突出している請求項1から8のいずれか一項に記載の電力変換装置。
  10.  前記ヒューズ樹脂部材には、前記ヒューズ部が溶断した時に生じるアーク放電の消弧作用があるシリコン樹脂が用いられている請求項1から9のいずれか一項に記載の電力変換装置。
  11.  前記ヒューズ樹脂部材は、前記封止樹脂部材よりもヤング率が低い請求項1から10のいずれか一項に記載の電力変換装置。
  12.  前記ヒューズ樹脂部材のヤング率は、数十メガパスカルのオーダーである請求項1から11のいずれか一項に記載の電力変換装置。
PCT/JP2017/031057 2017-08-30 2017-08-30 電力変換装置 WO2019043806A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/634,687 US11049682B2 (en) 2017-08-30 2017-08-30 Electric-power conversion apparatus
JP2019538805A JP6824422B2 (ja) 2017-08-30 2017-08-30 電力変換装置
CN201780094208.6A CN111066116B (zh) 2017-08-30 2017-08-30 功率转换装置
DE112017007994.2T DE112017007994T5 (de) 2017-08-30 2017-08-30 Elektrische Leistungswandlungsvorrichtung
PCT/JP2017/031057 WO2019043806A1 (ja) 2017-08-30 2017-08-30 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031057 WO2019043806A1 (ja) 2017-08-30 2017-08-30 電力変換装置

Publications (1)

Publication Number Publication Date
WO2019043806A1 true WO2019043806A1 (ja) 2019-03-07

Family

ID=65525128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031057 WO2019043806A1 (ja) 2017-08-30 2017-08-30 電力変換装置

Country Status (5)

Country Link
US (1) US11049682B2 (ja)
JP (1) JP6824422B2 (ja)
CN (1) CN111066116B (ja)
DE (1) DE112017007994T5 (ja)
WO (1) WO2019043806A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022955A (ja) * 2019-07-24 2021-02-18 株式会社Gsユアサ 蓄電素子の管理装置、及び、蓄電装置
CN114631237A (zh) * 2019-11-18 2022-06-14 株式会社自动网络技术研究所 电路结构体
JP2023074122A (ja) * 2021-11-17 2023-05-29 三菱電機株式会社 電力用半導体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052426B2 (ja) * 2018-03-02 2022-04-12 富士電機株式会社 半導体装置および半導体装置の製造方法
EP3923321A1 (de) * 2020-06-08 2021-12-15 CeramTec GmbH Modul mit anschlusslaschen für zuleitungen
CN112420676A (zh) * 2020-11-14 2021-02-26 陕西航空电气有限责任公司 一种用于航空发电机的具有短路保护功能的旋转整流二极管
DE102021211478A1 (de) 2021-10-12 2023-04-13 Vitesco Technologies Germany Gmbh Durch ein oberflächenmontiertes Bauelement realisierter Schutz für Multilayer-Keramikkondensatoren mit Umspritzung
FR3143226A1 (fr) * 2022-12-07 2024-06-14 Safran Electrical & Power Module de puissance pour l’alimentation d’une charge électrique d’un aéronef, système d’alimentation et procédé associé

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792736A (en) * 1980-12-01 1982-06-09 Mitsubishi Electric Corp Method of producing fuse element
JPS60127630A (ja) * 1983-12-14 1985-07-08 松下電工株式会社 ヒユ−ズ
JPS63221657A (ja) * 1987-03-11 1988-09-14 Toshiba Corp 半導体装置
JP2003068967A (ja) * 2001-08-29 2003-03-07 Denso Corp 半導体装置
JP2003317605A (ja) * 2002-04-26 2003-11-07 Taiheiyo Seiko Kk ブレード形ヒューズ
JP2008053163A (ja) * 2006-08-28 2008-03-06 Yazaki Corp ヒューズエレメント及びヒューズエレメントの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962782A (en) * 1974-01-14 1976-06-15 Littelfuse, Inc. Method of making a miniature plug-in fuse
US4099321A (en) * 1976-06-02 1978-07-11 Littelfuse, Inc. Method of making a miniature plug-in fuse
US4023264A (en) * 1976-06-21 1977-05-17 Littelfuse, Inc. Method of making miniature plug-in fuses of different fuse ratings
US4067103A (en) * 1977-02-07 1978-01-10 Littelfuse, Inc. Method of making a plug-in fuse
JPH08242046A (ja) * 1995-03-03 1996-09-17 Rohm Co Ltd 温度ヒューズ付き半導体装置の構造
US6046665A (en) * 1996-08-22 2000-04-04 Littelfuse, Inc. Fusible link, and link and cable assembly
JPH11111153A (ja) 1997-10-03 1999-04-23 Daito Tsushinki Kk ヒューズおよびその製造方法
JP3737673B2 (ja) * 2000-05-23 2006-01-18 株式会社ルネサステクノロジ 半導体装置
JP4959267B2 (ja) * 2006-03-07 2012-06-20 ルネサスエレクトロニクス株式会社 半導体装置および電気ヒューズの抵抗値の増加方法
DE102006036233B4 (de) * 2006-08-03 2008-03-27 Nkt Cables Gmbh Freiluftendverschluss
JP2008235502A (ja) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp 樹脂封止型半導体装置
JP5618595B2 (ja) * 2010-04-01 2014-11-05 日立オートモティブシステムズ株式会社 パワーモジュール、およびパワーモジュールを備えた電力変換装置
WO2014102899A1 (ja) 2012-12-25 2014-07-03 トヨタ自動車株式会社 半導体装置
JP6294616B2 (ja) * 2013-09-24 2018-03-14 古河電気工業株式会社 海中ケーブル、およびその遮水層用複層テープ
US9620322B2 (en) * 2014-04-14 2017-04-11 Mersen Usa Newburyport-Ma, Llc Arc suppressor for fusible elements
US9892880B2 (en) * 2014-05-22 2018-02-13 Littelfuse, Inc. Insert for fuse housing
US9865537B1 (en) * 2016-12-30 2018-01-09 Texas Instruments Incorporated Methods and apparatus for integrated circuit failsafe fuse package with arc arrest
WO2019043807A1 (ja) * 2017-08-30 2019-03-07 三菱電機株式会社 電力変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792736A (en) * 1980-12-01 1982-06-09 Mitsubishi Electric Corp Method of producing fuse element
JPS60127630A (ja) * 1983-12-14 1985-07-08 松下電工株式会社 ヒユ−ズ
JPS63221657A (ja) * 1987-03-11 1988-09-14 Toshiba Corp 半導体装置
JP2003068967A (ja) * 2001-08-29 2003-03-07 Denso Corp 半導体装置
JP2003317605A (ja) * 2002-04-26 2003-11-07 Taiheiyo Seiko Kk ブレード形ヒューズ
JP2008053163A (ja) * 2006-08-28 2008-03-06 Yazaki Corp ヒューズエレメント及びヒューズエレメントの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022955A (ja) * 2019-07-24 2021-02-18 株式会社Gsユアサ 蓄電素子の管理装置、及び、蓄電装置
CN114631237A (zh) * 2019-11-18 2022-06-14 株式会社自动网络技术研究所 电路结构体
CN114631237B (zh) * 2019-11-18 2024-05-14 株式会社自动网络技术研究所 电路结构体
JP2023074122A (ja) * 2021-11-17 2023-05-29 三菱電機株式会社 電力用半導体装置
JP7329578B2 (ja) 2021-11-17 2023-08-18 三菱電機株式会社 電力用半導体装置

Also Published As

Publication number Publication date
CN111066116A (zh) 2020-04-24
JP6824422B2 (ja) 2021-02-03
US20200234905A1 (en) 2020-07-23
US11049682B2 (en) 2021-06-29
CN111066116B (zh) 2022-05-17
JPWO2019043806A1 (ja) 2019-11-07
DE112017007994T5 (de) 2020-06-10

Similar Documents

Publication Publication Date Title
CN111066116B (zh) 功率转换装置
CN110998777B (zh) 功率转换装置
JP2007123644A (ja) 電力半導体装置
JP6486526B1 (ja) 電力変換装置
JP6461264B1 (ja) 電力変換装置
JP5781185B1 (ja) 樹脂封止型半導体装置
JPWO2014188538A1 (ja) 電力変換装置
CN100470796C (zh) 半导体器件
JP6479115B1 (ja) 電力変換装置
CN109716515B (zh) 半导体装置
JP2008108886A (ja) 樹脂封止半導体装置
JP2008118010A (ja) 半導体装置
JP6395164B1 (ja) 電力変換装置
JP6797289B2 (ja) 電力変換装置
US20210126513A1 (en) Power conversion device and power conversion device-integrated rotary electric machine
JP4615289B2 (ja) 半導体装置
JP7337214B1 (ja) 電力変換装置
JP2007317970A (ja) ヒューズ付半導体装置
WO2018079409A1 (ja) 樹脂封止型半導体装置
JP7218564B2 (ja) 半導体装置
CN114825861A (zh) 具有导角金属间隔单元的电源模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538805

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17923156

Country of ref document: EP

Kind code of ref document: A1