WO2019043790A1 - Substrate, touch panel sensor, module, and method for manufacturing substrate - Google Patents

Substrate, touch panel sensor, module, and method for manufacturing substrate Download PDF

Info

Publication number
WO2019043790A1
WO2019043790A1 PCT/JP2017/030948 JP2017030948W WO2019043790A1 WO 2019043790 A1 WO2019043790 A1 WO 2019043790A1 JP 2017030948 W JP2017030948 W JP 2017030948W WO 2019043790 A1 WO2019043790 A1 WO 2019043790A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photosensitive
conductive
photosensitive layer
conductive paste
Prior art date
Application number
PCT/JP2017/030948
Other languages
French (fr)
Japanese (ja)
Inventor
謙介 吉原
味岡 芳樹
豪 鈴木
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/030948 priority Critical patent/WO2019043790A1/en
Publication of WO2019043790A1 publication Critical patent/WO2019043790A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a substrate, a touch panel sensor, a module, and a method of manufacturing the substrate.
  • a capacitive touch panel Various types have already been put to practical use. In recent years, use of a capacitive touch panel has been advanced. Generally, in a capacitive touch panel, a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes form a two-layer structure in order to express two-dimensional coordinates by the X axis and the Y axis.
  • a touch panel sensor used for such a touch panel for example, a substrate, a transparent electrode (X electrode or Y electrode) disposed on the surface, a lead wire for connecting to an external circuit, and a lead wire
  • a conductive film substrate (laminated body) including a connection electrode for connecting to a transparent electrode is used (see, for example, Patent Document 1).
  • the sensing sensitivity of the touch panel sensor is improved as the capacitance (C) is smaller.
  • the capacitance (C) depends on the area (S) where the electrodes overlap, the dielectric constant ( ⁇ ) of the material between the electrodes, and the distance (d) between the electrodes. Specifically, the smaller the area (S) where the electrodes overlap, the smaller the capacitance, and the smaller the dielectric constant ( ⁇ ) of the material between the electrodes, the smaller the capacitance, and the distance (d) between the electrodes The larger the value, the smaller the capacitance.
  • the substrate is disposed on the substrate on which the external circuit is formed, a step corresponding to the height of the substrate is formed at the edge of the substrate. And in the said level
  • the lead wiring is usually formed by application of a conductive paste. Therefore, when the step formed at the edge of the substrate is high, when the conductive paste is applied to the substrate, the conductive paste flows down to the substrate side, and the thickness of the conductive paste at the edge of the substrate There is a problem that it becomes too thin. If the conductive paste is too thin, there is a problem that the life is shortened due to disconnection or the like.
  • one aspect of the present invention is a substrate and touch panel capable of suppressing the thickness of the conductive paste from becoming too thin at the edge of the substrate when the conductive paste is applied to the end of the substrate even if the substrate is thickened.
  • An object of the present invention is to provide a method of manufacturing a sensor, a module and a substrate.
  • a substrate according to one aspect of the present invention is a substrate disposed on a base material and coated with a conductive paste from an end to the base material, at least a part of the end face being in the thickness direction of the substrate It has a tapered surface that is inclined to the surface.
  • the end surface is a tapered surface inclined with respect to the thickness direction of the substrate, so when the conductive paste is applied to the substrate, compared to the case where the end surface is not a tapered surface, The amount of conductive paste flowing down to the substrate side can be reduced. For this reason, even when the substrate is thickened, when the conductive paste is applied to the end portion of the substrate, it can be suppressed that the conductive paste becomes too thin at the edge of the substrate. As a result, shortening of the life due to disconnection or the like can be suppressed.
  • the two surfaces may be connected, and the tapered surface may be inclined so as to extend from the first surface to the second surface.
  • the tapered surface is inclined so as to spread from the first surface provided with the conductive pattern toward the second surface disposed on the substrate side, the lead-out connecting the conductive pattern and the external circuit
  • the inclination angle of the tapered surface with respect to the thickness direction may be 60 ° or more and less than 90 °.
  • the conductive paste can be held at a sufficient thickness at the edge of the substrate.
  • a touch panel includes a base material and any of the above-described substrates disposed on the base material, and a lead-out wire of conductive paste is provided from the surface of the substrate to the base material ing.
  • a lead-out wire of conductive paste is provided from the surface of the substrate to the base material ing.
  • a touch panel includes a base material and any of the above-described substrates disposed on the base material, and a lead-out wire of conductive paste is provided from the surface of the substrate to the base material ing.
  • a lead-out wire of conductive paste is provided from the surface of the substrate to the base material ing.
  • a manufacturing method of a substrate concerning one side of the present invention is a manufacturing method of a substrate which manufactures a substrate by which an electric conduction paste is applied to an end, and it has a photo mask which has an opening in a photosensitive layer arranged on a substrate. And exposing the photosensitive layer after the exposing step, the photosensitive layer being separated from the photosensitive layer in the exposing step. The layer is irradiated with the actinic radiation.
  • the active layer in the exposure step, is irradiated with the active ray while the photomask is separated from the photosensitive layer. And the photosensitive layer is semi-cured. Therefore, by developing the photosensitive layer in the developing step, it is possible to obtain a substrate in which at least a part of the end surface is a tapered surface inclined with respect to the thickness direction of the substrate.
  • a method of manufacturing a substrate according to one aspect of the present invention is a method of manufacturing a substrate having a conductive paste applied to an end, the photosensitive resin layer disposed on a substrate, and the photosensitive resin layer.
  • a second exposure step of irradiating the photosensitive layer with an actinic ray through a photomask having an opening, and a development step of developing the photosensitive layer after the second exposure step, the second exposure step Then, the active light beam is irradiated in a state where the photomask is separated from the photosensitive layer.
  • the active layer in the second exposure step, is irradiated with the active ray while the photomask is separated from the photosensitive layer. And the photosensitive layer is semi-cured. Therefore, by developing the photosensitive layer in the developing step, it is possible to obtain a substrate in which at least a part of the end surface is a tapered surface inclined with respect to the thickness direction of the substrate.
  • the conductive paste even when the substrate is thickened, when the conductive paste is applied to the end of the substrate, it can be suppressed that the conductive paste becomes too thin at the edge of the substrate.
  • FIG. 7 (a) to 7 (c) are schematic views for explaining the method of manufacturing the substrate of the present embodiment.
  • FIGS. 8 (a) to 8 (c) are schematic views for explaining the method of manufacturing the substrate of the present embodiment.
  • FIG. 11 (a) is a schematic plan view showing an example of a capacitive touch panel sensor
  • FIG. 11 (b) is a schematic sectional view taken along the line II shown in FIG. 11 (a).
  • Fig.12 (a) is a schematic diagram for demonstrating an example of the manufacturing method of the touch panel sensor shown by FIG. 11,
  • FIG.12 (b) is a schematic cross section in the II-II line shown to Fig.12 (a) It is a figure
  • FIG.12 (c) is a schematic diagram for demonstrating an example of the manufacturing method of the touch panel sensor shown by FIG.
  • FIG.12 (d) is III-III shown in FIG.12 (c). It is a schematic cross section in a line. It is a SEM photograph of Example 1 to which silver paste was applied. It is a SEM photograph of Example 2 to which silver paste was applied. It is a SEM photograph of Example 3 to which silver paste was applied.
  • the substrate 1 is a substrate that is disposed on the base material 2 and on which the conductive paste 3 is applied from the end 1 a of the substrate 1 to the base material 2.
  • the base 2 is provided with an external circuit (not shown) and supports the substrate 1.
  • the substrate 2 include a glass substrate and a plastic substrate such as polycarbonate.
  • the thickness of the substrate 2 can be appropriately selected according to the purpose of use, and a film-like substrate may be used.
  • substrate a polyethylene terephthalate film, a polycarbonate film, a cycloolefin polymer film is mentioned, for example.
  • the substrate 2 preferably has a minimum light transmittance of 80% or more in a wavelength range of 450 to 650 nm. When the base material 2 satisfies such conditions, it is easy to achieve high luminance in a display panel or the like.
  • a conductive pattern 4 is provided on the substrate 1.
  • the conductive pattern 4 is an electrode of the substrate 1 and, for example, constitutes an X electrode and a Y electrode of the touch panel sensor.
  • the conductive pattern 4 contains, for example, conductive fibers.
  • a conductive fiber contained in the conductive pattern 4 metal fibers, such as gold, silver, copper, platinum, carbon fibers, such as a carbon nanotube, etc. are mentioned, for example. These can be used singly or in combination of two or more. From the viewpoint of excellent conductivity, it is preferable to use gold fibers or silver fibers. Furthermore, from the viewpoint of easily adjusting the conductivity of the conductive pattern 4, silver fibers (silver nanowires) are more preferable.
  • the metal fibers for example, can be prepared a metal ion method of reducing with a reducing agent such as NaBH 4, by the polyol method, or the like.
  • a metal ion method of reducing with a reducing agent such as NaBH 4, by the polyol method, or the like As carbon nanotubes, commercially available products such as Unidym's Hipco single-walled carbon nanotubes can be used.
  • the fiber diameter of the conductive fiber is preferably 1 nm to 50 nm, more preferably 2 nm to 20 nm, and particularly preferably 3 nm to 10 nm.
  • the fiber length of the conductive fiber is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m, and particularly preferably 3 ⁇ m to 10 ⁇ m.
  • the fiber diameter and the fiber length can be measured by a scanning electron microscope.
  • the conductive pattern 4 preferably has a network structure including conductive fibers.
  • a network structure is, for example, (1) a mode in which the substrate 1 is impregnated, (2) a mode in which the substrate 1 is impregnated, and a portion thereof protrudes from the main surface of the substrate 1 (3) the main surface of the substrate 1 It may be present in the form above.
  • the thickness of the conductive pattern 4 which has a mesh structure points out the value measured by the scanning electron micrograph.
  • the conductive paste 3 forms a lead-out wiring (not shown) which is drawn from the conductive pattern 4 and connected to an external circuit (not shown) of the base 2.
  • the conductive paste 3 is made of, for example, a material containing silver in the form of flakes.
  • the conductive paste 3 is applied using, for example, a screen printing method or the like.
  • the substrate 1 supports the conductive pattern 4 and is formed, for example, in a rectangular sheet shape. From the viewpoint of securing the transparency of the substrate 1, the substrate 1 preferably has a minimum light transmittance of 80% or more in the wavelength range of 450 to 650 nm, more preferably 85% or more, and 90% or more. It is further preferred that
  • the thickness of the substrate 1 is preferably 10 to 40 ⁇ m, more preferably 15 to 35 ⁇ m, from the viewpoint of reducing the capacitance of the touch panel sensor on which the substrate 1 is mounted to improve the sensing sensitivity. More preferably, it is -30 ⁇ m.
  • the material of the substrate 1 is not particularly limited and, for example, acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin
  • the epoxy acrylate resin obtained by the reaction of acrylic acid, and the acid-modified epoxy acrylate resin obtained by the reaction of an epoxy acrylate resin and an acid anhydride can be used.
  • the substrate 1 may be a resin cured product obtained by curing the photosensitive resin composition.
  • a photosensitive resin composition comprising (a) a binder polymer described in WO 2014/002770 pamphlet, (b) a photopolymerizable compound and (c) a photopolymerization initiator Can be mentioned.
  • the substrate 1 is provided with a first surface 5 on which the conductive pattern 4 is provided, a second surface 6 disposed on the side of the base material 2 and facing the first surface 5 in the thickness direction TD of the substrate 1, and the first surface 5 And an end face 7 connecting to the second face 6.
  • the first surface 5 may not necessarily be formed in a planar shape, and may be formed in a concavo-convex shape, for example, to provide the conductive pattern 4 on the first surface 5.
  • the second surface 6 does not have to be in contact with the substrate 2.
  • another conductive pattern or the like may be disposed between the second surface 6 and the substrate 2.
  • the second surface 6 may not necessarily be formed in a flat shape, and may be formed, for example, in a concavo-convex shape in order to provide another conductive pattern or the like with the base material 2.
  • the end surface 7 extends in a direction intersecting with the first surface 5 and the second surface 6 to form a peripheral end surface of the substrate 1. Then, at least a part of the end surface 7 is a tapered surface 8 inclined with respect to the thickness direction TD of the substrate 1.
  • the tapered surface 8 is a surface for preventing the conductive paste 3 applied to the end portion 1 a of the substrate 1 from flowing down to the base 2 side. Therefore, it is sufficient that at least the end surface 7 to which the conductive paste 3 is applied is a tapered surface 8, and the end surface 7 to which the conductive paste 3 is not applied is a general end surface extending in the thickness direction TD of the substrate 1 It is also good. In the present embodiment, all the end surfaces 7 are tapered surfaces 8.
  • the tapered surface 8 is inclined to spread from the first surface 5 to the second surface 6. That is, the tapered surface 8 is inclined so as to spread from the conductive pattern 4 side to the base material 2 side.
  • the inclination angle ⁇ of the tapered surface 8 with respect to the thickness direction TD of the substrate 1 is the boundary position A between the tapered surface 8 and the first surface 5 and the tapered surface in a cross section orthogonal to the tapered surface 8.
  • the inclination angle of the straight line connecting the boundary position B between the second surface 6 and the second surface 6 is referred to.
  • the inclination angle ⁇ is not particularly limited.
  • the inclination angle ⁇ is preferably 60 ° or more, more preferably 65 ° or more, and more preferably 70 ° or more from the viewpoint that the conductive paste 3 can be held at a sufficient thickness at the edge of the substrate 1 It is further preferred that On the other hand, although the inclination angle ⁇ is less than 90 °, it is preferably 85 ° or less, and more preferably 80 ° or less from the viewpoint of reducing the tapered surface 8.
  • the inclination angle ⁇ is preferably 60 ° or more and less than 90 ° from the viewpoint of being able to hold the conductive paste 3 at a sufficient thickness at the edge of the substrate 1, while making the tapered surface 8 smaller. From the viewpoint of being able to maintain the conductive paste 3 at a sufficient thickness at the edge of the substrate 1, it is more preferably 65 ° or more and 85 ° or less, and still more preferably 70 ° or more and 80 ° or less.
  • the tapered surface 8 does not necessarily have to be completely flat, and may be partially or totally curved, and may have asperities. Therefore, the boundary position A between the tapered surface 8 and the first surface 5 and the boundary position B between the tapered surface 8 and the second surface 6 may not be clearly determined. Therefore, when the tapered surface 8 is not completely flat, as shown in FIG. 4, an approximate plane of the tapered surface 8 is determined, and in a section orthogonal to the approximate plane, an extension line of the approximate plane and the first surface 5 And the boundary position between the approximate plane and the extension line of the second surface 6 is called the boundary position B.
  • an exposure step of irradiating the photosensitive layer 14 disposed on the substrate 2 with an actinic ray L through a photomask 16 having an opening (mask pattern) is performed (FIG. 5).
  • the opening of the photomask 16 has a shape corresponding to the shape of the first surface 5 of the substrate 1.
  • the photosensitive layer 14 is irradiated with the active light beam L in a state where the photomask 16 is separated from the photosensitive layer 14.
  • a development process of developing the photosensitive layer 14 is performed next.
  • the photosensitive layer 14 is irradiated with the actinic ray L in a state where the photo mask 16 is separated from the photosensitive layer 14 in the exposure step.
  • the actinic ray L also wraps around the portion where the light is transmitted, and the photosensitive layer 14 is semi-cured.
  • Semi-curing refers to a state in which the resin is not sufficiently cured. For this reason, by developing the photosensitive layer 14 in the developing step, it is possible to obtain the substrate 1 in which at least a part of the end face is tapered with respect to the thickness direction TD of the substrate 1 (FIG. 6). ).
  • the inclination angle ⁇ of the tapered surface 8 with respect to the thickness direction TD of the substrate 1 is determined by the separation distance of the photomask 16 to the photosensitive layer 14 and the exposure amount of the active light beam L in the exposure step and the development time in the development step. It can be adjusted. Specifically, as the separation distance of the photomask 16 with respect to the photosensitive layer 14 in the exposure process is increased, the wraparound due to the diffraction of the active light beam L is increased, so the inclination angle ⁇ is increased. As the amount of exposure of the actinic ray L in the exposure step increases, the light curing of the photosensitive layer 14 is promoted, so the inclination angle ⁇ decreases. As the developing time in the developing step is shorter, the semi-cured portion is not removed, so the inclination angle ⁇ becomes larger.
  • ⁇ Second method of manufacturing substrate> A second method of manufacturing the substrate 1 will be described with reference to FIGS. 7 and 8.
  • substrate 1 is not limited to the following method.
  • the second manufacturing method of the substrate 1 includes a photosensitive layer including a photosensitive resin layer disposed on a substrate and a conductive film disposed on the surface of the photosensitive resin layer opposite to the substrate.
  • a development step of developing the photosensitive layer after the second exposure step is performed in the second exposure step.
  • an actinic ray is irradiated in a state where the photomask is separated from the photosensitive layer.
  • a photosensitive conductive film 10 is used in the second method of manufacturing the substrate 1, as shown in FIG. 7A.
  • the photosensitive conductive film 10 has a support film 11 and a photosensitive layer 14 disposed on the support film 11.
  • the photosensitive layer 14 is composed of a conductive film 12 disposed on the support film 11 and a photosensitive resin layer 13 disposed on the conductive film 12.
  • a polymer film can be used, and a polymer film having heat resistance and solvent resistance is preferable.
  • a polymer film a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polycarbonate film is mentioned, for example.
  • a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance.
  • the above-mentioned polymer film may be subjected to release treatment so as to facilitate peeling from the photosensitive layer 14 later.
  • the support film 11 may further have layers, such as a gas barrier layer.
  • the thickness of the support film 11 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and still more preferably 15 ⁇ m or more from the viewpoint of mechanical strength.
  • the step of applying the resin composition or the step of peeling the support film 11 from the photosensitive layer 14 in the second exposure step it is possible to prevent the support film 11 from being broken.
  • the thickness of the support film 11 is preferably 300 ⁇ m or less, and 200 ⁇ m or less Is more preferably 100 ⁇ m or less.
  • the thickness of the support film 11 is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and particularly preferably 15 to 100 ⁇ m.
  • the haze value of the support film 11 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of achieving good sensitivity and resolution. It is particularly preferred that it is -2.0%, and it is extremely preferable that it is 0.01-1.5%.
  • the haze value can be measured in accordance with JIS K 7105, and can be measured, for example, with a commercially available turbidity meter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the conductive film 12 can contain at least one conductor selected from the group consisting of an inorganic conductor and an organic conductor. As long as the conductivity of the conductive film 12 can be obtained, inorganic conductors and organic conductors can be used without particular limitation, and these conductors can be used alone or in combination of two or more.
  • the organic conductor includes a conductive polymer.
  • the conductive polymer at least one conductor selected from the group consisting of polythiophene, polythiophene derivatives, polyaniline and polyaniline derivatives can be used.
  • polythiophene, polythiophene derivatives, polyaniline and polyaniline derivatives can be used.
  • polyaniline polyaniline derivatives
  • polyethylenedioxythiophene, polyhexylthiophene and polyaniline can be used in combination.
  • the conductive film 12 contains an organic conductor, it preferably contains an organic conductor and a photosensitive resin.
  • the conductive film 12 preferably contains a conductive fiber.
  • the conductivity and the transparency can be compatible, the developability is further improved, and a conductive pattern excellent in resolution can be formed.
  • the photosensitive resin layer 13 is further disposed, but if necessary, the conductive film 12 disposed on the support film 11 is You may laminate on the photosensitive resin layer arrange
  • the photosensitive resin layer 13 can be formed from a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator.
  • a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator.
  • (A) As a binder polymer for example, it is obtained by the reaction of (meth) acrylic acid with acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin Epoxy acrylate resin, and acid-modified epoxy acrylate resin obtained by the reaction of the epoxy acrylate resin and the acid anhydride.
  • acrylic resin styrene resin
  • epoxy resin amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin Epoxy acrylate resin, and acid-modified epoxy acrylate resin obtained by the reaction of the epoxy acrylate resin and the acid anhydride.
  • the said acrylic resin has a monomer unit derived from (meth) acrylic acid and (meth) acrylic acid alkyl ester as a structural unit.
  • the "acrylic resin” means a polymer mainly having a monomer unit derived from a polymerizable monomer having a (meth) acrylic group.
  • the acrylic resin is produced, for example, by radical polymerization of a polymerizable monomer having a (meth) acrylic group.
  • This acrylic resin can be used alone or in combination of two or more.
  • acrylamide such as diacetone acrylamide, (meth) acrylic-acid alkylester, (meth) acrylic-acid tetrahydrofurfuryl ester, (meth) acrylic-acid dimethylamino, for example Ethyl ester, (meth) acrylic acid diethylaminoethyl ester, (meth) acrylic acid glycidyl ester, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, Examples include (meth) acrylic acid, ⁇ -bromo (meth) acrylic acid, ⁇ -chloro (meth) acrylic acid, ⁇ -furyl (meth) acrylic acid, and ⁇ -styryl (meth) acrylic acid.
  • the above acrylic resin is substituted at the ⁇ -position or aromatic ring such as styrene, vinyl toluene and ⁇ -methylstyrene.
  • Polymerizable styrene derivatives esters of vinyl alcohol such as acrylonitrile and vinyl-n-butyl ether, maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate such as monoisopropyl maleate, fumaric acid
  • One or two or more polymerizable monomers such as cinnamic acid, ⁇ -cyanocinnamic acid, itaconic acid, crotonic acid and the like may be copolymerized.
  • Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid Pentyl ester, (meth) acrylic acid hexyl ester, (meth) acrylic acid heptyl ester, (meth) acrylic acid octyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid nonyl ester, (meth) acrylic acid Examples include decyl ester, (meth) acrylic acid undecyl ester, and (meth) acrylic acid dodecyl ester. These can be used alone or in combination of two or more.
  • the binder polymer (a) preferably has a carboxyl group from the viewpoint of improving the alkali developability.
  • Examples of the polymerizable monomer having a carboxyl group for obtaining such a binder polymer include (meth) acrylic acid as described above.
  • the proportion of carboxyl groups contained in the binder polymer is 10 to 50% by mass as the proportion of the polymerizable monomer having a carboxyl group with respect to all the polymerizable monomers used to obtain the binder polymer
  • the content is preferably 12 to 40% by mass, particularly preferably 15 to 30% by mass, and most preferably 15 to 25% by mass.
  • the content is preferably 10% by mass or more in terms of excellent alkali developability, and is preferably 50% by mass or less in terms of excellent alkali resistance.
  • the acid value of the binder polymer (a) is preferably 50 mgKOH / g or more and 150 mgKOH / g or less from the viewpoint of improving the developability with respect to various known developers in the development step.
  • the acid value of the binder polymer can be measured as follows. Precisely weigh 1 g of the binder polymer whose acid value is to be measured.
  • the volatile component is removed by heating at a temperature about 10 ° C. higher than the boiling point of the solvent for 1 to 4 hours in advance before precise weighing. At this time, volatile components such as low molecular weight photopolymerizable compounds may be removed.
  • the mass average molecular weight of the binder polymer (a) is preferably 5,000 to 300,000, and more preferably 20,000 to 150,000, in order to balance mechanical strength and alkali developability. And 30,000 to 100,000 are particularly preferable.
  • the mass average molecular weight is preferably 5,000 or more from the viewpoint of excellent developer resistance. Moreover, it is preferable that it is 300,000 or less from a viewpoint of development time.
  • the measurement conditions of a mass mean molecular weight are taken as the same measurement conditions as the Example of this-application specification.
  • the above-described resins can be used alone or in combination of two or more.
  • a binder polymer consisting of a mixture containing two or more types of resins consisting of different copolymerization components a mixture containing two or more types of resins having different mass average molecular weights
  • a binder polymer is a binder polymer comprising a mixture of two or more resins of different degrees of dispersion.
  • a photopolymerizable compound having an ethylenically unsaturated bond for example, a compound obtained by reacting an ⁇ , ⁇ -unsaturated carboxylic acid with a polyhydric alcohol, an ⁇ , ⁇ -unsaturated compound with a glycidyl group-containing compound Compound obtained by reacting carboxylic acid, Urethane monomer such as (meth) acrylate compound having urethane bond, ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ ′-(meth) acryloyloxyethyl-o-phthalate, ⁇ -hydroxy Phthalic acid compounds such as ethyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, and (meth) acrylic acid alkyl esters Be These are used alone or in combination of two or more.
  • Examples of the compound obtained by reacting the above polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid include: 2,2-bis (4-((meth) acryloxypolyethoxy) phenyl) propane, 2,2- Bisphenol A (meth) acrylate compounds such as bis (4-((meth) acryloxypolypropoxy) phenyl) propane and 2,2-bis (4-((meth) acryloxypolyethoxypolypropoxy) phenyl) propane Polyethylene glycol di (meth) acrylate having 2 to 14 ethylene groups, polypropylene glycol di (meth) acrylate having 2 to 14 propylene groups, 2 to 14 ethylene groups, and having propylene groups Polyethylene polypropylene glycol di (meth) acrylate having a number of 2 to 14, trimethylol Propane di (meth) acrylate, trimethylol propane tri (meth) acrylate, trimethylol propane ethoxy tri (meth) acrylate, tri
  • urethane monomers examples include (meth) acrylic monomers having a hydroxyl group at the ⁇ -position and diisocyanate compounds such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • diisocyanate compounds such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • diisocyanate compounds such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • Examples of EO-modified urethane di (meth) acrylates include “UA-11” (trade name of Shin-Nakamura Chemical Co., Ltd.). Moreover, as EO and PO modified
  • the content ratio of the (b) photopolymerizable compound having an ethylenically unsaturated bond is 30 to 100 parts by mass with respect to the total of (a) the binder polymer and (b) the photopolymerizable compound having an ethylenically unsaturated bond.
  • the amount is preferably 80 parts by mass, and more preferably 40 to 70 parts by mass.
  • the content is preferably 30 parts by mass or more in terms of excellent photocurability and coatability on the formed conductive film 12, and is 80 parts by mass or less in terms of excellent storage stability when wound up as a film. Is preferred.
  • the photopolymerization initiator is not particularly limited as long as the photosensitive resin layer 13 can be cured by irradiation with an actinic ray L, but from the viewpoint of excellent photocurability, a radical polymerization initiator It is preferable to use for example, benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N, N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 2 Aromatic ketones such as -benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1; benzoin Benzoin ether compounds such as methyl ether, benzoin ethyl ether and benzoin phenyl
  • Acridine derivative such as 9-phenylacridine, 1,7-bis (9,9'-acridinyl) heptane, etc .; N- Enirugurishin, N- phenylglycine derivatives, coumarin-based compounds, oxazole-based compounds.
  • the substituents of the aryl groups of the two 2,4,5-triarylimidazoles may give the same target compound, or they may give different asymmetric compounds. Further, as in the combination of diethylthioxanthone and dimethylaminobenzoic acid, the thioxanthone compound and the tertiary amine compound may be combined.
  • an aromatic ketone compound or an oxime ester compound 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 or 1
  • 2-octanedione-1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime) are used alone or in combination of two or more.
  • the content ratio of (c) the photopolymerization initiator is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total of (a) the binder polymer and (b) the photopolymerizable compound having an ethylenically unsaturated bond. Is preferable, 1 to 10 parts by mass is more preferable, and 1 to 5 parts by mass is particularly preferable.
  • the content is preferably 0.1 parts by mass or more in terms of excellent photosensitivity, and is preferably 20 parts by mass or less in terms of excellent photocurability inside the photosensitive resin layer 13.
  • additives can be contained in the photosensitive resin layer 13 as needed.
  • Additives include plasticizers such as p-toluenesulfonamide, fillers, antifoaming agents, flame retardants, stabilizers, adhesion imparting agents, leveling agents, release accelerators, antioxidants, fragrances, imaging agents, heat
  • Additives such as a crosslinking agent can be contained singly or in combination of two or more. The addition amount of these additives is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total of (a) binder polymer and photopolymerizable compound.
  • the photosensitive resin layer 13 is, if necessary, methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol on the conductive film 12 formed on the support film. It can be formed by applying a solution of a photosensitive resin composition having a solid content of about 10 to 60% by mass, which is dissolved in a solvent such as monomethyl ether or a mixed solvent thereof, and then drying. However, in this case, the amount of residual organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the diffusion of the organic solvent in the subsequent step.
  • Coating can be performed by a known method. For example, a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, a spray coating method may be mentioned. After coating, drying for removing the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
  • the thickness of the photosensitive resin layer 13 varies depending on the application, it is preferably 1 to 50 ⁇ m, more preferably 1 to 40 ⁇ m, and particularly preferably 1 to 30 ⁇ m in terms of the thickness after drying.
  • the thickness is 1 ⁇ m or more, the layer formation by coating tends to be facilitated, and when the thickness is 50 ⁇ m or less, the light transmittance is good and sufficient sensitivity can be obtained, and the photosensitive resin layer 13 It is preferable from the viewpoint of the photocurability of The thickness of the photosensitive resin layer 13 can be measured by a scanning electron microscope.
  • the photosensitive layer 14 (laminated body of the conductive film 12 and the photosensitive resin layer 13) preferably has a minimum light transmittance of 80% or more in a wavelength range of 450 to 650 nm. More preferably, it is at least%. When the photosensitive layer 14 satisfies such conditions, it is easy to achieve high luminance in a display panel or the like.
  • the thickness of the photosensitive layer 14 is 1 to 10 ⁇ m
  • the minimum light transmittance in a wavelength range of 450 to 650 nm is preferably 80% or more, and more preferably 85% or more.
  • the photosensitive layer 14 (laminated body of the conductive film 12 and the photosensitive resin layer 13) satisfies such conditions, it is easy to achieve high luminance in a display panel or the like.
  • the photosensitive conductive film 10 may further be provided with a protective film so as to be in contact with the surface of the photosensitive resin layer 13 opposite to the support film 11 side.
  • a polymer film having heat resistance and solvent resistance can be used.
  • polyethylene terephthalate film, polypropylene film, polyethylene film can be mentioned.
  • the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 5 to 40 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the thickness of the protective film is preferably 1 ⁇ m or more in view of excellent mechanical strength, and preferably 100 ⁇ m or less in view of relatively low cost.
  • the adhesive force between the protective film and the photosensitive resin layer 13 makes the protective film easy to peel from the photosensitive resin layer 13, the support film 11 and the photosensitive layer 14 (conductive film 12 and photosensitive resin layer 13) It is preferable that the adhesive force between
  • the protective film preferably has a number of fish eyes with a diameter of 80 ⁇ m or more contained in the protective film of 5 / m 2 or less.
  • fish eye refers to materials that are thermally melted, kneaded, extruded, biaxially stretched, cast, etc. when films are produced, such as foreign matter, undissolved matter, oxidized degraded matter, etc., of the material in the film. It is taken in.
  • the photosensitive conductive film 10 may further have a layer such as an adhesive layer or a gas barrier layer on the protective film.
  • the photosensitive conductive film 10 can be stored, for example, in the form of a flat plate as it is, or in a form of a roll around a winding core such as a cylindrical shape. At this time, it is preferable that the support film 11 be wound so as to be the outermost side.
  • the photosensitive conductive film 10 when the photosensitive conductive film 10 does not have a protective film, the photosensitive conductive film 10 can be stored in the form of a flat plate as it is.
  • the core is not particularly limited as long as it is conventionally used, and, for example, plastics such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, ABS resin (acrylonitrile-butadiene-styrene copolymer) and the like Can be mentioned. Further, it is preferable to install an end face separator from the viewpoint of end face protection on the end face of the photosensitive conductive film wound up in a roll shape, and it is preferable to install a moistureproof end face separator from the viewpoint of edge fusion resistance. Moreover, when packing a photosensitive conductive film, it is preferable to wrap and package in a black sheet
  • the second manufacturing method of the substrate 1 includes a laminating step (FIG. 7B) of laminating the photosensitive conductive film 10 described above so that the photosensitive resin layer 13 is in contact with the substrate 2;
  • a second exposure step (FIG. 8 (a)) in which an actinic ray L is irradiated to a part or the whole of a portion and an unexposed portion (FIG. 8 (a)) and a development step (FIG. 8 (b)) And.
  • the laminating step may be, for example, a method of laminating the photosensitive conductive film 10 by pressure-bonding the photosensitive resin layer 13 side to the substrate 2 while heating after removing the protective film, if any.
  • stack this process under pressure reduction from the standpoint of adhesiveness and followability. It is preferable to heat the photosensitive resin layer 13 and / or the base material 2 to 70 to 130 ° C., and the pressure bonding pressure is about 0.1 to 1.0 MPa (1 to 10 kgf / cm). Although it is preferable to set it as 2 ), there is no restriction
  • the photosensitive layer 14 is provided by laminating the photosensitive conductive film 10 separately prepared on the substrate 2, whereby the photosensitive layer 14 is more easily formed on the substrate 2. It is possible to improve the productivity.
  • Examples of the light source of the actinic ray L in the first exposure step include known light sources.
  • a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a xenon lamp which can effectively emit ultraviolet light, visible light and the like are used.
  • an Ar ion laser and a semiconductor laser are also used.
  • those which effectively emit visible light such as flood light bulbs for photographs and sun lamps are also used.
  • a method may be employed in which the actinic ray L is irradiated in the form of an image by a direct drawing method using a laser exposure method or the like.
  • Exposure of the first exposure step may vary depending on the composition of the device or the photosensitive resin composition used, preferably 5mJ / cm 2 ⁇ 1000mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 200mJ / cm 2 In the point which is excellent in photocurability, it is preferable that it is 10 mJ / cm ⁇ 2 > or more, and it is preferable that it is 200 mJ / cm ⁇ 2 > or less in the point of resolution.
  • the photosensitive layer 14 is exposed without peeling off the support film 11, thereby reducing the influence of oxygen and making it easy to cure.
  • the first exposure step can be performed in air, in vacuum, or the like, and the atmosphere of exposure is not particularly limited.
  • a mask exposure method As an exposure method in the second exposure step, a mask exposure method is performed. Specifically, as shown in FIG. 8A, an actinic ray L is imagewise irradiated through a photomask 16 having an opening (mask pattern) in the shape of the conductive pattern 4. In the second exposure step, the actinic ray L is irradiated in a state where the photomask 16 is separated from the photosensitive layer 14.
  • the portion exposed in the first exposure step is subjected to the second exposure step by performing such two exposures.
  • the exposed portion is sufficiently cured in the first exposure step, the portion may not be exposed in the second exposure step.
  • a known light source for example, a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a xenon lamp etc.
  • a known light source for example, a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a xenon lamp etc.
  • one that effectively emits ultraviolet light of an Ar ion laser, a semiconductor laser, visible light and the like is also used.
  • those which effectively emit visible light such as flood light bulbs for photographs and sun lamps are also used.
  • Exposure at the second exposure step may vary depending on the composition of the device or the photosensitive resin composition used is preferably from 5mJ / cm 2 ⁇ 1000mJ / cm 2, at 10mJ / cm 2 ⁇ 200mJ / cm 2 And more preferably 30 mJ / cm 2 to 150 mJ / cm 2 . In the point which is excellent in photocurability, it is preferable that it is 10 mJ / cm ⁇ 2 > or more, and it is preferable that it is 200 mJ / cm ⁇ 2 > or less in the point of working efficiency.
  • the support film 11 is removed in the presence of oxygen to expose the photosensitive layer 14, thereby generating an initiator on the exposed surface side of the photosensitive layer 14 (the conductive film 12 and the photosensitive resin layer 13)
  • the reactive species can be inactivated by oxygen to provide an insufficiently cured region on the conductive film 12 side of the photosensitive resin layer 13.
  • the amount of exposure in the second exposure step is preferably in the above range, since excessive exposure cures the entire photosensitive resin composition sufficiently.
  • the second exposure step is performed in the presence of oxygen, and is preferably performed, for example, in air. Moreover, the conditions which increased the oxygen concentration may be used.
  • the separation distance of the photomask 16 to the photosensitive layer 14 in the second exposure step is determined by the material of the photosensitive conductive film 10, the exposure amount in the second exposure step, the development time in the development step, and the tapered surface formed in the development step. It can be suitably adjusted by the inclination angle of 8 or the like.
  • the distance between the photosensitive layer 14 and the photomask 16 can be adjusted, for example, by the thickness of the spacer 17 disposed between the photosensitive layer 14 and the photomask 16.
  • the surface portion of the photosensitive resin layer 13 exposed in the second exposure step that is not sufficiently cured is removed.
  • the surface of the photosensitive resin layer 13 which is not sufficiently cured, that is, the surface layer including the conductive film 12 is removed by wet development.
  • the conductive film 12 having a predetermined pattern remains on the cured resin layer in the areas exposed in the first and second exposure steps, and the resin does not have the conductive film 12 in the portion removed in the development step.
  • a hardened layer is formed.
  • FIG. 8C a conductive pattern substrate 1A is obtained in which the portions not exposed in the first and second exposure steps are removed by development.
  • the conductive pattern substrate 1A is a substrate in which the substrate 1 is disposed on the substrate 2 and the conductive pattern 4 is disposed on the substrate 1, and the end face 7 of the substrate 1 is in the thickness direction TD of the substrate 1 It is a substrate having an inclined tapered surface 8.
  • Wet development is performed, for example, using an alkaline aqueous solution, an aqueous developer, or an organic solvent developer by a known method such as spraying, swing immersion, brushing, scrubbing and the like.
  • an alkaline aqueous solution is preferably used because it is safe and stable, and the operability is good.
  • the alkaline aqueous solution 0.1 to 5% by mass sodium carbonate aqueous solution 0.1 to 5% by mass potassium carbonate aqueous solution 0.1 to 5% by mass sodium hydroxide aqueous solution 0.1 to 5% by mass sodium tetraborate An aqueous solution or the like is preferred.
  • the pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 11, and the temperature is adjusted in accordance with the developability of the photosensitive resin layer.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • an aqueous developer comprising water or an aqueous alkaline solution and one or more organic solvents
  • a base contained in the alkaline aqueous solution in addition to the above-mentioned bases, for example, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1 3-propanediol, 1,3-diaminopropanol-2, morpholine.
  • organic solvent examples include methyl ethyl ketone, acetone, ethyl acetate, alkoxy ethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether. Be These are used alone or in combination of two or more.
  • the concentration of the organic solvent in the aqueous developer is preferably 2 to 90% by mass, and the temperature can be adjusted according to the developability.
  • the pH of the aqueous developer is preferably as small as possible within a range in which the resist can be sufficiently developed, preferably pH 8 to 12, and more preferably pH 9 to 10.
  • a surfactant, an antifoamer, etc. can also be added in a small amount in the aqueous developer.
  • organic solvent-based developing solution examples include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone and ⁇ -butyrolactone. Water is preferably added to these organic solvents in the range of 1 to 20% by mass in order to prevent ignition.
  • the developer described above may be used in combination of two or more as needed.
  • Examples of the development method include a dip method, a paddle method, a spray method, brushing and scrubbing. Among these, it is preferable to use a high pressure spray system from the viewpoint of improvement of resolution.
  • the conductive pattern may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 .
  • the conductive paste 3 is applied from the end portion 1a of the substrate 1 to the base material 2 as a lead wiring.
  • the end surface 207 to which the conductive paste 3 is applied is a general end surface extending in a direction parallel to the thickness direction TD of the substrate 201. Therefore, when the conductive paste 3 is applied from the end portion 201a of the substrate 201 to the base material 2, the position p1 sufficiently away from the edge p3 of the substrate 201 and the position p2 sufficiently away from the substrate 201 of the base 2 The conductive paste 3 has a sufficient thickness, but at the edge p3 of the substrate 201, the conductive paste 3 flows down to the base 2 side, and the thickness of the conductive paste 3 becomes too thin.
  • the end surface 7 to which the conductive paste 3 is applied is a tapered surface 8 which is inclined with respect to the thickness direction TD of the substrate 1. Therefore, when the conductive paste 3 is applied from the end portion 1a of the substrate 1 to the base material 2, only the position p1 sufficiently separated from the edge p3 of the substrate 1 and the position p2 sufficiently separated from the substrate 201 of the base material 2 Instead of this, the conductive paste 3 has a sufficient thickness also at the edge p3 of the substrate 201.
  • the conductive paste 3 is applied to the substrate 1
  • the amount of the conductive paste 3 flowing to the side of the base material 2 can be reduced. For this reason, it can suppress that the thickness of the electrically conductive paste 3 in the edge p3 of the board
  • the tapered surface 8 is inclined so as to spread from the first surface 5 provided with the conductive pattern 4 toward the second surface 6 disposed on the base 2 side, the conductive pattern 4 and the external circuit are formed.
  • the conductive paste 3 can be prevented from becoming too thin at the edge p 3 of the substrate 1.
  • the conductive paste 3 applied to the edge p3 of the substrate 1 can be held with a sufficient thickness.
  • the touch panel sensor according to the present embodiment includes a cured resin layer corresponding to the substrate 1 described above.
  • the touch panel sensor 100 is mounted on a module such as a touch panel (not shown).
  • the touch panel sensor 100 has a touch screen 102 for detecting a touch position on one side of a transparent substrate 101 (base material), detects a capacitance change in this area, and sets a transparent electrode 103 as X position coordinates, A transparent electrode 104 is provided as Y position coordinates.
  • Each of the transparent electrodes 103 and 104 is formed of a conductive pattern 109 provided on a substrate 108 made of a resin cured layer.
  • the end face of the substrate 108 is a tapered surface 110 that is inclined with respect to the thickness direction of the substrate 108.
  • Each of the transparent electrodes 103 and 104 has a lead wire 105 for connection to a driver element circuit for controlling an electric signal as a touch panel, and a connection electrode 106 for connecting the lead wire 105 and the transparent electrodes 103 and 104. It is arranged.
  • the lead wiring 105 is formed of a conductive paste, and is provided from the end of the substrate 108 to the transparent substrate 101. Further, at the end of the lead wire 105 opposite to the connection electrode 106, a connection terminal 107 connected to the driver element circuit is disposed.
  • the transparent electrode 103 for detecting the X position coordinate is formed on the transparent substrate 101.
  • the photosensitive conductive film 10 is laminated such that the photosensitive resin layer 13 is in contact with the transparent substrate 101.
  • An actinic ray is applied in a desired shape to the transferred photosensitive layer 14 (conductive film 12 and photosensitive resin layer 13) in a desired shape via a photomask (first exposure step).
  • the photomask is removed and the support film is further peeled off.
  • the photosensitive layer 14 is irradiated with an active ray through the photomask (second exposure step).
  • the opening of the photomask has a shape corresponding to the shape of the surface of the substrate 108 of the transparent electrode 103.
  • the conductive film 12 is removed together with the photosensitive resin layer 13 with insufficient curing, and the substrate 108 and the conductive pattern 109 are formed.
  • the transparent electrode 103 for detecting the X position coordinate is formed by the conductive pattern 109 (FIG. 12 (b)). By forming the transparent electrode 103 in this manner, the transparent electrode 103 with a small level difference can be provided.
  • a transparent electrode 104 for detecting Y position coordinates is formed.
  • a new photosensitive conductive film 10 is further laminated on the transparent substrate 101 provided with the transparent electrode 103 formed by the above steps, and the transparent electrode 104 for detecting the Y position coordinate is formed by the same operation as described above ( Figure 12 (d).
  • a lead wire 105 for connecting to an external circuit is formed from the end of the substrate 108 to the transparent substrate 101, and a connection electrode 106 for connecting the lead wire 105 and the transparent electrodes 103 and 104 is formed.
  • FIG. 12 shows that the lead-out wiring 105 and the connection electrode 106 are formed after the formation of the transparent electrodes 103 and 104, they may be formed simultaneously with the formation of each transparent electrode.
  • the lead-out wiring 105 can be formed at the same time as forming the connection electrode 106 using a conductive paste containing, for example, flake silver and using a screen printing method.
  • the touch panel sensor according to the present embodiment includes the substrate 108 corresponding to the substrate 1 described above, the thickness of the conductive paste for forming the lead-out wire 105 becomes too thin at the edge of the substrate 108 Can be suppressed. As a result, shortening of the life due to disconnection or the like of the lead wire 105 can be suppressed.
  • Example 1 By the second manufacturing method of the substrate of the above embodiment, a conductive pattern substrate was obtained in which the substrate was disposed on the base material and the conductive pattern 4 was provided on the substrate.
  • MS50X40W1-30 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as a photosensitive conductive film to be laminated on a substrate.
  • the pressing temperature was 110 ° C.
  • the pressing speed was 0.6 m / min
  • the pressing pressure was 0.4 MPa (about 4 kgf / cm 2 ).
  • the exposure dose was 60 mJ / cm 2 .
  • the photosensitive film was exposed after the support film (base film) was peeled off.
  • the distance between the photosensitive layer and the photomask was 2.0 mm, and the exposure dose was 100 mJ / cm 2 .
  • the development time is 65 seconds.
  • the spray pressure of the developer was 0.15 MPa, and the developer temperature was 30.degree.
  • the inclination angle of the tapered surface with respect to the thickness direction of the substrate was about 10 °.
  • a silver paste was applied from the end portion of the substrate to the base material as a lead wiring.
  • the SEM photograph of Example 1 to which the silver paste was applied is shown in FIG.
  • Example 2 By the second manufacturing method of the substrate of the above embodiment, a conductive pattern substrate was obtained in which the substrate was disposed on the base material and the conductive pattern 4 was provided on the substrate.
  • MS50X34W1-30 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as a photosensitive conductive film to be laminated on a substrate.
  • the pressing temperature was 110 ° C.
  • the pressing speed was 0.6 m / min
  • the pressing pressure was 0.4 MPa (about 4 kgf / cm 2 ).
  • the exposure dose was 60 mJ / cm 2 .
  • the photosensitive film was exposed after the support film (base film) was peeled off.
  • the distance between the photosensitive layer and the photomask was 2.0 mm, and the exposure dose was 100 mJ / cm 2 .
  • the development time was 58 seconds.
  • the spray pressure of the developer was 0.15 MPa, and the developer temperature was 30.degree.
  • the inclination angle of the tapered surface with respect to the thickness direction of the substrate was about 40 °.
  • a silver paste was applied from the end portion of the substrate to the base material as a lead wiring.
  • the SEM photograph of Example 2 to which the silver paste was applied is shown in FIG.
  • Example 3 By the second manufacturing method of the substrate of the above embodiment, a conductive pattern substrate was obtained in which the substrate was disposed on the base material and the conductive pattern 4 was provided on the substrate.
  • MS50H3W1-30 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as a photosensitive conductive film to be laminated on a substrate.
  • the pressing temperature was 110 ° C.
  • the pressing speed was 0.6 m / min
  • the pressing pressure was 0.4 MPa (about 4 kgf / cm 2 ).
  • the exposure dose was 60 mJ / cm 2 .
  • the photosensitive film was exposed after the support film (base film) was peeled off.
  • the distance between the photosensitive layer and the photomask was 2.0 mm, and the exposure dose was 100 mJ / cm 2 .
  • the development time is 100 seconds.
  • the spray pressure of the developer was 0.15 MPa, and the developer temperature was 30.degree.
  • the inclination angle of the tapered surface with respect to the thickness direction of the substrate was about 70 °.
  • a silver paste was applied from the end portion of the substrate to the base material as a lead wiring.
  • the SEM photograph of Example 3 to which the silver paste was applied is shown in FIG.
  • taper surface 10: photosensitive conductive film, 11: support film, 12: conductive film, 13: photosensitive resin layer, 14: photosensitive layer, 15: positive mask pattern, 16: photomask, 17: spacer, 100: touch panel sensor, 101: transparent substrate, 102: touch screen, 103, 104: transparent electrode, 105: lead wire, 106: connection electrode, 107: connection terminal, 108: substrate, 109: conductive pattern, 110: taper surface, 201: substrate, 201a ... end part, 207 ... end face, A ... boundary position, B ... boundary position, L ... active ray, TD ... thickness direction.

Abstract

The present invention suppresses that, even if the thickness of a substrate is increased, a conductive paste becomes excessively thin at an end edge of the substrate in the cases where the conductive paste is applied to an end portion of the substrate. The substrate is disposed on a base material, and the conductive paste is applied over a region from the end portion to the base material. At least a part of an end surface is a tapered surface inclined with respect to the thickness direction of the substrate.

Description

基板、タッチパネルセンサ、モジュール及び基板の製造方法Substrate, touch panel sensor, module, and method of manufacturing substrate
 本発明は、基板、タッチパネルセンサ、モジュール及び基板の製造方法に関する。 The present invention relates to a substrate, a touch panel sensor, a module, and a method of manufacturing the substrate.
 パソコン、テレビ等の大型電子機器、カーナビゲーション、携帯電話、電子辞書等の小型電子機器、OA(Office Automation、オフィスオートメーション)・FA(Factory Automation、ファクトリーオートメーション)機器等の表示機器などには、液晶表示素子又はタッチパネル(タッチパネルセンサ)が用いられている。 Large-sized electronic devices such as PCs and TVs, small-sized electronic devices such as car navigation systems, mobile phones, electronic dictionaries, etc., and display devices such as OA (Office Automation, office automation) and FA (Factory Automation). Display elements or touch panels (touch panel sensors) are used.
 タッチパネルは既に各種の方式が実用化されている。近年は、静電容量方式のタッチパネルの利用が進んでいる。一般に、静電容量方式のタッチパネルでは、X軸及びY軸による2次元座標を表現するために、複数のX電極とX電極に直交する複数のY電極とが2層構造を形成している。 Various types of touch panels have already been put to practical use. In recent years, use of a capacitive touch panel has been advanced. Generally, in a capacitive touch panel, a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes form a two-layer structure in order to express two-dimensional coordinates by the X axis and the Y axis.
 このようなタッチパネルに用いられるタッチパネルセンサの作製には、例えば、基板と、その表面に配置された、透明電極(X電極又はY電極)、外部回路と接続するための引出配線、及び引出配線と透明電極とを接続する接続電極と、を備える導電膜基板(積層体)が用いられる(例えば、特許文献1参照)。 For manufacturing a touch panel sensor used for such a touch panel, for example, a substrate, a transparent electrode (X electrode or Y electrode) disposed on the surface, a lead wire for connecting to an external circuit, and a lead wire A conductive film substrate (laminated body) including a connection electrode for connecting to a transparent electrode is used (see, for example, Patent Document 1).
特開2012-128605号公報JP 2012-128605 A
 このようなタッチパネルセンサでは、静電容量の変化でタッチを検出しているため、静電容量(C)が小さいほど、タッチパネルセンサのセンシング感度が向上する。静電容量(C)は、電極が重なる面積(S)、電極間の材料の誘電率(ε)、及び電極間の距離(d)に依存する。具体的には、電極が重なる面積(S)が小さいほど静電容量が小さくなり、電極間の材料の誘電率(ε)が小さいほど静電容量が小さくなり、電極間の距離(d)が大きいほど静電容量が小さくなる。 In such a touch panel sensor, since a touch is detected by a change in capacitance, the sensing sensitivity of the touch panel sensor is improved as the capacitance (C) is smaller. The capacitance (C) depends on the area (S) where the electrodes overlap, the dielectric constant (ε) of the material between the electrodes, and the distance (d) between the electrodes. Specifically, the smaller the area (S) where the electrodes overlap, the smaller the capacitance, and the smaller the dielectric constant (ε) of the material between the electrodes, the smaller the capacitance, and the distance (d) between the electrodes The larger the value, the smaller the capacitance.
 電極が重なる面積(S)を小さくし、又は、電極間の材料の誘電率(ε)を小さくするためには、大きな設計変更を伴う。一方、電極間の距離(d)を大きくするためには、導電膜基板を構成する基板を厚くすれば済む。このため、電極間の距離(d)を大きくすることで、静電容量(C)を小さくすることが考えられる。 In order to reduce the overlapping area (S) of the electrodes or to reduce the dielectric constant (ε) of the material between the electrodes, a major design change is involved. On the other hand, in order to increase the distance (d) between the electrodes, the substrate constituting the conductive film substrate may be thickened. For this reason, it is conceivable to reduce the capacitance (C) by increasing the distance (d) between the electrodes.
 しかしながら、基板は、外部回路が形成された基材上に配置されるため、基板の端縁には、基板の高さ分の段差が形成される。そして、当該段差には、基板の表面に設けられた透明電極を基材に設けられた外部回路に接続する引出配線が設けられる。 However, since the substrate is disposed on the substrate on which the external circuit is formed, a step corresponding to the height of the substrate is formed at the edge of the substrate. And in the said level | step difference, the lead-out wiring which connects the transparent electrode provided in the surface of the board | substrate to the external circuit provided in the base material is provided.
 引出配線は、通常、導電ペーストの塗布により形成される。このため、基板の端縁に形成される段差が高いと、基板に導電ペーストが塗布された際に、導電ペーストが基材側に流れ落ちてしまい、基板の端縁(エッジ)における導電ペーストの厚さが薄くなり過ぎるという問題がある。導電ペーストが薄くなり過ぎると、断線等により寿命が短くなるという問題がある。 The lead wiring is usually formed by application of a conductive paste. Therefore, when the step formed at the edge of the substrate is high, when the conductive paste is applied to the substrate, the conductive paste flows down to the substrate side, and the thickness of the conductive paste at the edge of the substrate There is a problem that it becomes too thin. If the conductive paste is too thin, there is a problem that the life is shortened due to disconnection or the like.
 そこで、本発明の一側面は、基板を厚くしても、基板の端部に導電ペーストを塗布した場合に、基板の端縁において導電ペーストが薄くなり過ぎることを抑制することができる基板、タッチパネルセンサ、モジュール及び基板の製造方法を提供することを目的とする。 Therefore, one aspect of the present invention is a substrate and touch panel capable of suppressing the thickness of the conductive paste from becoming too thin at the edge of the substrate when the conductive paste is applied to the end of the substrate even if the substrate is thickened. An object of the present invention is to provide a method of manufacturing a sensor, a module and a substrate.
 本発明の一側面に係る基板は、基材上に配置されて、端部から前記基材にかけて導電ペーストが塗布される基板であって、端面の少なくとも一部は、前記基板の厚さ方向に対して傾斜したテーパ面となっている。 A substrate according to one aspect of the present invention is a substrate disposed on a base material and coated with a conductive paste from an end to the base material, at least a part of the end face being in the thickness direction of the substrate It has a tapered surface that is inclined to the surface.
 この基板では、端面の少なくとも一部が基板の厚さ方向に対して傾斜したテーパ面となっているため、基板に導電ペーストが塗布された際に、当該端面がテーパ面でない場合と比べて、導電ペーストが基材側に流れ落ちる量を少なくすることができる。このため、基板を厚くしても、基板の端部に導電ペーストを塗布した場合に、基板の端縁において導電ペーストが薄くなり過ぎることを抑制することができる。これにより、断線等により寿命が短くなることを抑制することができる。 In this substrate, at least a part of the end surface is a tapered surface inclined with respect to the thickness direction of the substrate, so when the conductive paste is applied to the substrate, compared to the case where the end surface is not a tapered surface, The amount of conductive paste flowing down to the substrate side can be reduced. For this reason, even when the substrate is thickened, when the conductive paste is applied to the end portion of the substrate, it can be suppressed that the conductive paste becomes too thin at the edge of the substrate. As a result, shortening of the life due to disconnection or the like can be suppressed.
 導電パターンが設けられた第一面と、前記基材側に配置されて前記厚さ方向において前記第一面と対向する第二面とを有し、前記端面は、前記第一面と前記第二面とを接続し、前記テーパ面は、前記第一面から前記第二面に向けて広がるように傾斜していてもよい。この基板では、テーパ面が、導電パターンが設けられた第一面から基材側に配置される第二面に向けて広がるように傾斜しているため、導電パターンと外部回路とを接続する引出配線を導電ペーストで形成する場合に、当該導電ペーストが基板の端縁で薄くなり過ぎることを抑制することができる。 A first surface provided with a conductive pattern, and a second surface disposed on the substrate side and facing the first surface in the thickness direction, the end surface includes the first surface and the second surface. The two surfaces may be connected, and the tapered surface may be inclined so as to extend from the first surface to the second surface. In this substrate, since the tapered surface is inclined so as to spread from the first surface provided with the conductive pattern toward the second surface disposed on the substrate side, the lead-out connecting the conductive pattern and the external circuit In the case of forming the wiring with a conductive paste, it is possible to suppress the conductive paste from becoming too thin at the edge of the substrate.
 ところで、厚さ方向に対するテーパ面の傾斜角度が大きくなるほど、導電ペーストの基材側に流れ落ちる量が少なくなる。そこで、前記厚さ方向に対する前記テーパ面の傾斜角度は、60°以上90°未満であってもよい。この基板では、厚さ方向に対するテーパ面の傾斜角度が60°以上90°未満であるため、基板の端縁において導電ペーストを十分な厚さに保持することができる。 By the way, the larger the inclination angle of the tapered surface with respect to the thickness direction, the smaller the amount of the conductive paste flowing to the substrate side. Therefore, the inclination angle of the tapered surface with respect to the thickness direction may be 60 ° or more and less than 90 °. In this substrate, since the inclination angle of the tapered surface with respect to the thickness direction is 60 ° or more and less than 90 °, the conductive paste can be held at a sufficient thickness at the edge of the substrate.
 本発明の一側面に係るタッチパネルは、基材と、基材上に配置された、上記の何れかの基板と、を備え、前記基板の表面から前記基材にかけて導電ペーストの引出配線が設けられている。このタッチパネルセンサでは、上記の基板を備えるため、基板の端縁において、引出配線を形成する導電ペーストの厚さが薄くなり過ぎることを抑制することができる。これにより、引出配線の断線等により寿命が短くなることを抑制することができる。 A touch panel according to one aspect of the present invention includes a base material and any of the above-described substrates disposed on the base material, and a lead-out wire of conductive paste is provided from the surface of the substrate to the base material ing. In this touch panel sensor, since the above-described substrate is provided, it is possible to suppress that the thickness of the conductive paste forming the lead-out wiring becomes too thin at the edge of the substrate. As a result, shortening of the life due to disconnection or the like of the lead wiring can be suppressed.
 本発明の一側面に係るタッチパネルは、基材と、基材上に配置された、上記の何れかの基板と、を備え、前記基板の表面から前記基材にかけて導電ペーストの引出配線が設けられている。このモジュールでは、上記の基板を備えるため、基板の端縁において、引出配線を形成する導電ペーストの厚さが薄くなり過ぎることを抑制することができる。これにより、引出配線の断線等により寿命が短くなることを抑制することができる。 A touch panel according to one aspect of the present invention includes a base material and any of the above-described substrates disposed on the base material, and a lead-out wire of conductive paste is provided from the surface of the substrate to the base material ing. In this module, since the above-described substrate is provided, it is possible to suppress that the thickness of the conductive paste forming the lead-out wiring becomes too thin at the edge of the substrate. As a result, shortening of the life due to disconnection or the like of the lead wiring can be suppressed.
 本発明の一側面に係る基板の製造方法は、端部に導電ペーストが塗布される基板を製造する基板の製造方法であって、基材上に配置された感光層に、開口を有するフォトマスクを介して活性光線を照射する露光工程と、前記露光工程の後に前記感光層を現像する現像工程と、を備え、前記露光工程では、前記フォトマスクを前記感光層から離間させた状態で前記感光層に前記活性光線を照射する。 A manufacturing method of a substrate concerning one side of the present invention is a manufacturing method of a substrate which manufactures a substrate by which an electric conduction paste is applied to an end, and it has a photo mask which has an opening in a photosensitive layer arranged on a substrate. And exposing the photosensitive layer after the exposing step, the photosensitive layer being separated from the photosensitive layer in the exposing step. The layer is irradiated with the actinic radiation.
 この基板の製造方法では、露光工程において、フォトマスクを感光層から離間させた状態で感光層に活性光線を照射するため、活性光線の回折によりフォトマスクで覆われた部分にも活性光線が回り込み、感光層が半硬化される。このため、現像工程により、感光層を現像することで、端面の少なくとも一部が基板の厚さ方向に対して傾斜したテーパ面となった基板を得ることができる。 In this method of manufacturing a substrate, in the exposure step, the active layer is irradiated with the active ray while the photomask is separated from the photosensitive layer. And the photosensitive layer is semi-cured. Therefore, by developing the photosensitive layer in the developing step, it is possible to obtain a substrate in which at least a part of the end surface is a tapered surface inclined with respect to the thickness direction of the substrate.
 本発明の一側面に係る基板の製造方法は、端部に導電ペーストが塗布される基板を製造する基板の製造方法であって、基材上に配置された感光性樹脂層と、前記感光性樹脂層の前記基材とは反対側の面に配置された導電膜とを含む感光層に、パターン状に活性光線を照射する第一露光工程と、前記第一露光工程の後に、酸素存在下で、開口を有するフォトマスクを介して前記感光層に活性光線を照射する第二露光工程と、前記第二露光工程の後に前記感光層を現像する現像工程と、を備え、前記第二露光工程では、前記フォトマスクを前記感光層から離間させた状態で前記活性光線を照射する。 A method of manufacturing a substrate according to one aspect of the present invention is a method of manufacturing a substrate having a conductive paste applied to an end, the photosensitive resin layer disposed on a substrate, and the photosensitive resin layer. A photosensitive layer including a conductive film disposed on the surface opposite to the substrate of the resin layer, a first exposure step of irradiating an active ray in a pattern, and after the first exposure step, oxygen is present A second exposure step of irradiating the photosensitive layer with an actinic ray through a photomask having an opening, and a development step of developing the photosensitive layer after the second exposure step, the second exposure step Then, the active light beam is irradiated in a state where the photomask is separated from the photosensitive layer.
 この基板の製造方法では、第二露光工程において、フォトマスクを感光層から離間させた状態で感光層に活性光線を照射するため、活性光線の回折によりフォトマスクで覆われた部分にも活性光線が回り込み、感光層が半硬化される。このため、現像工程により、感光層を現像することで、端面の少なくとも一部が基板の厚さ方向に対して傾斜したテーパ面となった基板を得ることができる。 In this method of manufacturing the substrate, in the second exposure step, the active layer is irradiated with the active ray while the photomask is separated from the photosensitive layer. And the photosensitive layer is semi-cured. Therefore, by developing the photosensitive layer in the developing step, it is possible to obtain a substrate in which at least a part of the end surface is a tapered surface inclined with respect to the thickness direction of the substrate.
 本発明の一側面によれば、基板を厚くしても、基板の端部に導電ペーストを塗布した場合に、基板の端縁において導電ペーストが薄くなり過ぎることを抑制することができる。 According to one aspect of the present invention, even when the substrate is thickened, when the conductive paste is applied to the end of the substrate, it can be suppressed that the conductive paste becomes too thin at the edge of the substrate.
できる。 it can.
本実施形態の基板の模式断面図である。It is a schematic cross section of the board | substrate of this embodiment. 本実施形態の基板が搭載されたモジュールの一例を示す模式断面図である。It is a schematic cross section which shows an example of the module by which the board | substrate of this embodiment was mounted. テーパ面の角度を説明するための図である。It is a figure for demonstrating the angle of a taper surface. テーパ面の角度を説明するための図である。It is a figure for demonstrating the angle of a taper surface. 本実施形態の基導電ペースの厚さを説明するための図である。It is a figure for demonstrating the thickness of the base conductive pace of this embodiment. 比較例の基導電ペースの厚さを説明するための図である。It is a figure for demonstrating the thickness of the base conductive pace of a comparative example. 図7(a)~(c)は、本実施形態の基板の製造方法を説明するための模式図である。7 (a) to 7 (c) are schematic views for explaining the method of manufacturing the substrate of the present embodiment. 図8(a)~(c)は、本実施形態の基板の製造方法を説明するための模式図である。FIGS. 8 (a) to 8 (c) are schematic views for explaining the method of manufacturing the substrate of the present embodiment. 本実施形態の他の基板の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the other board | substrate of this embodiment. 本実施形態の他の基板の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the other board | substrate of this embodiment. 図11(a)は、静電容量式のタッチパネルセンサの一例を示す模式平面図であり、図11(b)は、図11(a)に示すI-I線における模式断面図である。FIG. 11 (a) is a schematic plan view showing an example of a capacitive touch panel sensor, and FIG. 11 (b) is a schematic sectional view taken along the line II shown in FIG. 11 (a). 図12(a)は、図11に示されるタッチパネルセンサの製造方法の一例を説明するための模式図であり、図12(b)は、図12(a)に示すII-II線における模式断面図であり、図12(c)は、図11に示されるタッチパネルセンサの製造方法の一例を説明するための模式図であり、図12(d)は、図12(c)に示すIII-III線における模式断面図である。Fig.12 (a) is a schematic diagram for demonstrating an example of the manufacturing method of the touch panel sensor shown by FIG. 11, FIG.12 (b) is a schematic cross section in the II-II line shown to Fig.12 (a) It is a figure, FIG.12 (c) is a schematic diagram for demonstrating an example of the manufacturing method of the touch panel sensor shown by FIG. 11, FIG.12 (d) is III-III shown in FIG.12 (c). It is a schematic cross section in a line. 銀ペーストが塗布された実施例1のSEM写真である。It is a SEM photograph of Example 1 to which silver paste was applied. 銀ペーストが塗布された実施例2のSEM写真である。It is a SEM photograph of Example 2 to which silver paste was applied. 銀ペーストが塗布された実施例3のSEM写真である。It is a SEM photograph of Example 3 to which silver paste was applied.
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions will be omitted. Further, in the present specification, a numerical range indicated using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
 図1及び図2に示すように、基板1は、基材2上に配置されて、基板1の端部1aから基材2にかけて導電ペースト3が塗布される基板である。 As shown in FIG. 1 and FIG. 2, the substrate 1 is a substrate that is disposed on the base material 2 and on which the conductive paste 3 is applied from the end 1 a of the substrate 1 to the base material 2.
(基材)
 基材2は、外部回路(不図示)が設けられるとともに、基板1を支持するものである。基材2としては、例えば、ガラス基板、ポリカーボネート等のプラスチック基板が挙げられる。基材2の厚みは、使用の目的に応じて適宜選択することができ、フィルム状の基板を用いてもよい。フィルム状の基板としては、例えば、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、シクロオレフィンポリマフィルムが挙げられる。基材2は、450~650nmの波長域での最小光透過率が80%以上であるものが好ましい。基材2が、このような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。
(Base material)
The base 2 is provided with an external circuit (not shown) and supports the substrate 1. Examples of the substrate 2 include a glass substrate and a plastic substrate such as polycarbonate. The thickness of the substrate 2 can be appropriately selected according to the purpose of use, and a film-like substrate may be used. As a film-form board | substrate, a polyethylene terephthalate film, a polycarbonate film, a cycloolefin polymer film is mentioned, for example. The substrate 2 preferably has a minimum light transmittance of 80% or more in a wavelength range of 450 to 650 nm. When the base material 2 satisfies such conditions, it is easy to achieve high luminance in a display panel or the like.
(導電パターン)
 基板1上には、導電パターン4が設けられる。導電パターン4は、基板1の電極であり、例えば、タッチパネルセンサのX電極及びY電極を構成する。導電パターン4は、例えば、導電性繊維を含んでいる。導電パターン4に含まれる導電性繊維としては、例えば、金、銀、銅、白金等の金属繊維、カーボンナノチューブ等の炭素繊維などが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。導電性に優れる観点からは、金繊維又は銀繊維を用いることが好ましい。更に、導電パターン4の導電性を容易に調整できる観点からは、銀繊維(銀ナノワイヤ)がより好ましい。
(Conductive pattern)
A conductive pattern 4 is provided on the substrate 1. The conductive pattern 4 is an electrode of the substrate 1 and, for example, constitutes an X electrode and a Y electrode of the touch panel sensor. The conductive pattern 4 contains, for example, conductive fibers. As a conductive fiber contained in the conductive pattern 4, metal fibers, such as gold, silver, copper, platinum, carbon fibers, such as a carbon nanotube, etc. are mentioned, for example. These can be used singly or in combination of two or more. From the viewpoint of excellent conductivity, it is preferable to use gold fibers or silver fibers. Furthermore, from the viewpoint of easily adjusting the conductivity of the conductive pattern 4, silver fibers (silver nanowires) are more preferable.
 上記の金属繊維は、例えば、金属イオンをNaBH等の還元剤で還元する方法、ポリオール法等により調製することができる。カーボンナノチューブは、Unidym社のHipco単層カーボンナノチューブなどの市販品を使用することができる。 The metal fibers, for example, can be prepared a metal ion method of reducing with a reducing agent such as NaBH 4, by the polyol method, or the like. As carbon nanotubes, commercially available products such as Unidym's Hipco single-walled carbon nanotubes can be used.
 導電性繊維の繊維径は、1nm~50nmであることが好ましく、2nm~20nmであることがより好ましく、3nm~10nmであることが特に好ましい。また、導電性繊維の繊維長は、1μm~100μmであることが好ましく、2μm~50μmであることがより好ましく、3μm~10μmであることが特に好ましい。繊維径及び繊維長は、走査型電子顕微鏡により測定することができる。 The fiber diameter of the conductive fiber is preferably 1 nm to 50 nm, more preferably 2 nm to 20 nm, and particularly preferably 3 nm to 10 nm. The fiber length of the conductive fiber is preferably 1 μm to 100 μm, more preferably 2 μm to 50 μm, and particularly preferably 3 μm to 10 μm. The fiber diameter and the fiber length can be measured by a scanning electron microscope.
 導電パターン4は、導電性繊維を含んでなる網目構造を有することが好ましい。このような網目構造は、例えば(1)基板1に含浸している形態、(2)基板1に含浸し、一部分が基板1の主面から突出している形態、(3)基板1の主面上にある形態で存在していてもよい。なお、網目構造を有する導電パターン4の厚みは、走査型電子顕微鏡写真によって測定される値を指す。 The conductive pattern 4 preferably has a network structure including conductive fibers. Such a network structure is, for example, (1) a mode in which the substrate 1 is impregnated, (2) a mode in which the substrate 1 is impregnated, and a portion thereof protrudes from the main surface of the substrate 1 (3) the main surface of the substrate 1 It may be present in the form above. In addition, the thickness of the conductive pattern 4 which has a mesh structure points out the value measured by the scanning electron micrograph.
(導電ペースト)
 導電ペースト3は、導電パターン4から引き出されて基材2の外部回路(不図示)に接続される引出配線(不図示)を形成するものである。導電ペースト3は、例えば、フレーク状の銀を含有する材料等により構成される。導電ペースト3は、例えば、スクリーン印刷法等を用いて塗布される。
(Conductive paste)
The conductive paste 3 forms a lead-out wiring (not shown) which is drawn from the conductive pattern 4 and connected to an external circuit (not shown) of the base 2. The conductive paste 3 is made of, for example, a material containing silver in the form of flakes. The conductive paste 3 is applied using, for example, a screen printing method or the like.
(基板)
 基板1は、導電パターン4を支持するものであり、例えば、矩形のシート状に形成されている。基板1の透明性を確保する観点から、基板1は、450~650nmの波長域での最小光透過率が80%以上であるものが好ましく、85%以上であるものがより好ましく、90%以上であるものがさらに好ましい。
(substrate)
The substrate 1 supports the conductive pattern 4 and is formed, for example, in a rectangular sheet shape. From the viewpoint of securing the transparency of the substrate 1, the substrate 1 preferably has a minimum light transmittance of 80% or more in the wavelength range of 450 to 650 nm, more preferably 85% or more, and 90% or more. It is further preferred that
 基板1の厚みは、基板1が搭載されるタッチパネルセンサの静電容量を小さくしてセンシング感度を向上する観点から、10~40μmであることが好ましく、15~35μmであることがより好ましく、20~30μmであることがさらに好ましい。なお、基板1の厚みを上記の範囲とすることで、後述する基板1の製造方法により後述するテーパ面8を形成する際に、タクトタイムが長くなるのを抑制することができるとともに、テーパ面8の制御を容易にすることができる。 The thickness of the substrate 1 is preferably 10 to 40 μm, more preferably 15 to 35 μm, from the viewpoint of reducing the capacitance of the touch panel sensor on which the substrate 1 is mounted to improve the sensing sensitivity. More preferably, it is -30 μm. By setting the thickness of the substrate 1 in the above range, it is possible to suppress an increase in tact time when forming a tapered surface 8 to be described later by a method of manufacturing the substrate 1 to be described later, and a tapered surface Control of 8 can be facilitated.
 基板1の材料としては、特に制限されるものではなく、例えば、アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸の反応で得られるエポキシアクリレート樹脂、エポキシアクリレート樹脂と酸無水物の反応で得られる酸変性エポキシアクリレート樹脂を用いることができる。 The material of the substrate 1 is not particularly limited and, for example, acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin The epoxy acrylate resin obtained by the reaction of acrylic acid, and the acid-modified epoxy acrylate resin obtained by the reaction of an epoxy acrylate resin and an acid anhydride can be used.
 基板1は、感光性樹脂組成物を硬化した樹脂硬化物であってもよい。感光性樹脂組成物としては、例えば、国際公開第2014/002770号パンフレットに記載の(a)バインダーポリマー、(b)光重合性化合物及び(c)光重合開始剤を含有する感光性樹脂組成物が挙げられる。 The substrate 1 may be a resin cured product obtained by curing the photosensitive resin composition. As the photosensitive resin composition, for example, a photosensitive resin composition comprising (a) a binder polymer described in WO 2014/002770 pamphlet, (b) a photopolymerizable compound and (c) a photopolymerization initiator Can be mentioned.
 基板1は、導電パターン4が設けられる第一面5と、基材2側に配置されて基板1の厚さ方向TDにおいて第一面5と対向する第二面6と、第一面5と第二面6とを接続する端面7と、を有する。第一面5は、必ずしも平面状に形成されていなくてもよく、例えば、第一面5上に導電パターン4を設けるために凹凸状に形成されていてもよい。第二面6は、必ずしも基材2に当接する必要は無く、例えば、基材2との間に別の導電パターン等が配置されていてもよい。また、第二面6は、必ずしも平面状に形成されていなくてもよく、例えば、基材2との間に別の導電パターン等を設けるために凹凸に形成されていてもよい。 The substrate 1 is provided with a first surface 5 on which the conductive pattern 4 is provided, a second surface 6 disposed on the side of the base material 2 and facing the first surface 5 in the thickness direction TD of the substrate 1, and the first surface 5 And an end face 7 connecting to the second face 6. The first surface 5 may not necessarily be formed in a planar shape, and may be formed in a concavo-convex shape, for example, to provide the conductive pattern 4 on the first surface 5. The second surface 6 does not have to be in contact with the substrate 2. For example, another conductive pattern or the like may be disposed between the second surface 6 and the substrate 2. In addition, the second surface 6 may not necessarily be formed in a flat shape, and may be formed, for example, in a concavo-convex shape in order to provide another conductive pattern or the like with the base material 2.
 端面7は、第一面5及び第二面6と交差する方向に延びて、基板1の周端面を形成する。そして、端面7の少なくとも一部は、基板1の厚さ方向TDに対して傾斜したテーパ面8となっている。 The end surface 7 extends in a direction intersecting with the first surface 5 and the second surface 6 to form a peripheral end surface of the substrate 1. Then, at least a part of the end surface 7 is a tapered surface 8 inclined with respect to the thickness direction TD of the substrate 1.
 テーパ面8は、基板1の端部1aに塗布された導電ペースト3が基材2側に流れ落ちることを抑制するための面である。このため、少なくとも導電ペースト3が塗布される端面7がテーパ面8となっていればよく、導電ペースト3が塗布されない端面7は、基板1の厚さ方向TDに延びる一般的な端面であってもよい。本実施形態では、全ての端面7がテーパ面8となっている。 The tapered surface 8 is a surface for preventing the conductive paste 3 applied to the end portion 1 a of the substrate 1 from flowing down to the base 2 side. Therefore, it is sufficient that at least the end surface 7 to which the conductive paste 3 is applied is a tapered surface 8, and the end surface 7 to which the conductive paste 3 is not applied is a general end surface extending in the thickness direction TD of the substrate 1 It is also good. In the present embodiment, all the end surfaces 7 are tapered surfaces 8.
 テーパ面8は、第一面5から第二面6に向けて広がるように傾斜している。つまり、テーパ面8は、導電パターン4側から基材2側に向けて広がるように傾斜している。 The tapered surface 8 is inclined to spread from the first surface 5 to the second surface 6. That is, the tapered surface 8 is inclined so as to spread from the conductive pattern 4 side to the base material 2 side.
 図3に示すように、基板1の厚さ方向TDに対するテーパ面8の傾斜角度θは、テーパ面8と直交する断面において、テーパ面8と第一面5との境界位置Aと、テーパ面8と第二面6との境界位置Bとを結んだ直線の傾斜角度をいう。傾斜角度θは、例えば、次のように求めることができる。まず、基板1の基板1の厚さCと、基板1の厚さ方向TDと直交する方向における境界位置Aから境界位置Bまでの長さDとを求める。そして、tanθ=C/Dを計算することにより、傾斜角度θを求める。 As shown in FIG. 3, the inclination angle θ of the tapered surface 8 with respect to the thickness direction TD of the substrate 1 is the boundary position A between the tapered surface 8 and the first surface 5 and the tapered surface in a cross section orthogonal to the tapered surface 8. The inclination angle of the straight line connecting the boundary position B between the second surface 6 and the second surface 6 is referred to. The inclination angle θ can be determined, for example, as follows. First, the thickness C of the substrate 1 of the substrate 1 and the length D from the boundary position A to the boundary position B in the direction orthogonal to the thickness direction TD of the substrate 1 are determined. Then, the inclination angle θ is obtained by calculating tan θ = C / D.
 傾斜角度θは、特に限定されるものではない。傾斜角度θは、基板1の端縁において導電ペースト3を十分な厚さに保持することができる観点から、60°以上とすることが好ましく、65°以上とすることがより好ましく、70°以上とすることがさらに好ましい。一方、傾斜角度θは、90°未満となるが、テーパ面8を小さくできる観点から、85°以下とすることが好ましく、80°以下とすることがより好ましい。そして、傾斜角度θは、基板1の端縁において導電ペースト3を十分な厚さに保持することができる観点から、60°以上90°未満とすることが好ましく、テーパ面8を小さくしつつ、基板1の端縁において導電ペースト3を十分な厚さに保持することができる観点から、65°以上85°以下とすることがより好ましく、70°以上80°以下とすることがさらに好ましい。 The inclination angle θ is not particularly limited. The inclination angle θ is preferably 60 ° or more, more preferably 65 ° or more, and more preferably 70 ° or more from the viewpoint that the conductive paste 3 can be held at a sufficient thickness at the edge of the substrate 1 It is further preferred that On the other hand, although the inclination angle θ is less than 90 °, it is preferably 85 ° or less, and more preferably 80 ° or less from the viewpoint of reducing the tapered surface 8. The inclination angle θ is preferably 60 ° or more and less than 90 ° from the viewpoint of being able to hold the conductive paste 3 at a sufficient thickness at the edge of the substrate 1, while making the tapered surface 8 smaller. From the viewpoint of being able to maintain the conductive paste 3 at a sufficient thickness at the edge of the substrate 1, it is more preferably 65 ° or more and 85 ° or less, and still more preferably 70 ° or more and 80 ° or less.
 テーパ面8は、必ずしも完全な平面状である必要は無く、部分的又は全体的に湾曲していてもよく、凹凸を有していてもよい。このため、テーパ面8と第一面5との境界位置A及びテーパ面8と第二面6との境界位置Bが明確に定まらない場合がある。そこで、テーパ面8が完全な平面状でない場合は、図4に示すように、テーパ面8の近似平面を求め、この近似平面と直交する断面において、この近似平面と第一面5の延長線との境界位置を境界位置Aとし、この近似平面と第二面6の延長線との境界位置を境界位置Bとする。 The tapered surface 8 does not necessarily have to be completely flat, and may be partially or totally curved, and may have asperities. Therefore, the boundary position A between the tapered surface 8 and the first surface 5 and the boundary position B between the tapered surface 8 and the second surface 6 may not be clearly determined. Therefore, when the tapered surface 8 is not completely flat, as shown in FIG. 4, an approximate plane of the tapered surface 8 is determined, and in a section orthogonal to the approximate plane, an extension line of the approximate plane and the first surface 5 And the boundary position between the approximate plane and the extension line of the second surface 6 is called the boundary position B.
(基板の製造方法)
 次に、基板1の製造方法について説明する。なお、基板1の製造方法は、以下の方法に限定されるものではない。
(Method of manufacturing substrate)
Next, a method of manufacturing the substrate 1 will be described. In addition, the manufacturing method of the board | substrate 1 is not limited to the following method.
<基板の第一の製造方法>
 図5及び図6を参照して、基板1の第一の製造方法について説明する。
<First method of manufacturing substrate>
A first method of manufacturing the substrate 1 will be described with reference to FIGS. 5 and 6.
 基板1の第一の製造方法では、まず、基材2上に配置された感光層14に、開口(マスクパターン)を有するフォトマスク16を介して活性光線Lを照射する露光工程を行う(図5)。フォトマスク16の開口は、基板1の第一面5の形状に対応する形状となっている。露光工程では、フォトマスク16を感光層14から離間させた状態で感光層14に活性光線Lを照射する。露光工程が終わると、次に、感光層14を現像する現像工程を行う。 In the first method of manufacturing the substrate 1, first, an exposure step of irradiating the photosensitive layer 14 disposed on the substrate 2 with an actinic ray L through a photomask 16 having an opening (mask pattern) is performed (FIG. 5). The opening of the photomask 16 has a shape corresponding to the shape of the first surface 5 of the substrate 1. In the exposure step, the photosensitive layer 14 is irradiated with the active light beam L in a state where the photomask 16 is separated from the photosensitive layer 14. After the exposure process, a development process of developing the photosensitive layer 14 is performed next.
 基板1の第一の製造方法では、露光工程において、フォトマスク16を感光層14から離間させた状態で感光層14に活性光線Lを照射するため、活性光線Lの回折によりフォトマスク16で覆われた部分にも活性光線Lが回り込み、感光層14が半硬化される。半硬化するとは、十分に硬化されていない状態をいう。このため、現像工程により、感光層14を現像することで、端面の少なくとも一部が基板1の厚さ方向TDに対して傾斜したテーパ面8となった基板1を得ることができる(図6)。 In the first manufacturing method of the substrate 1, the photosensitive layer 14 is irradiated with the actinic ray L in a state where the photo mask 16 is separated from the photosensitive layer 14 in the exposure step. The actinic ray L also wraps around the portion where the light is transmitted, and the photosensitive layer 14 is semi-cured. Semi-curing refers to a state in which the resin is not sufficiently cured. For this reason, by developing the photosensitive layer 14 in the developing step, it is possible to obtain the substrate 1 in which at least a part of the end face is tapered with respect to the thickness direction TD of the substrate 1 (FIG. 6). ).
 この場合、露光工程における、感光層14に対するフォトマスク16の離間距離及び活性光線Lの露光量、並びに、現像工程における現像時間により、基板1の厚さ方向TDに対するテーパ面8の傾斜角度θを調整することができる。具体的には、露光工程における感光層14に対するフォトマスク16の離間距離を大きくするほど、活性光線Lの回折による回り込みが大きくなるため、傾斜角度θが大きくなる。露光工程における活性光線Lの露光量が多くなるほど、感光層14の光硬化が促進されるため、傾斜角度θが小さくなる。現像工程における現像時間が短くなるほど、半硬化された部分が除去されなくなるため、傾斜角度θが大きくなる。 In this case, the inclination angle θ of the tapered surface 8 with respect to the thickness direction TD of the substrate 1 is determined by the separation distance of the photomask 16 to the photosensitive layer 14 and the exposure amount of the active light beam L in the exposure step and the development time in the development step. It can be adjusted. Specifically, as the separation distance of the photomask 16 with respect to the photosensitive layer 14 in the exposure process is increased, the wraparound due to the diffraction of the active light beam L is increased, so the inclination angle θ is increased. As the amount of exposure of the actinic ray L in the exposure step increases, the light curing of the photosensitive layer 14 is promoted, so the inclination angle θ decreases. As the developing time in the developing step is shorter, the semi-cured portion is not removed, so the inclination angle θ becomes larger.
<基板の第二の製造方法>
 図7及び図8を参照して、基板1の第二の製造方法について説明する。なお、基板1の製造方法は、以下の方法に限定されるものではない。
<Second method of manufacturing substrate>
A second method of manufacturing the substrate 1 will be described with reference to FIGS. 7 and 8. In addition, the manufacturing method of the board | substrate 1 is not limited to the following method.
 基板1の第二の製造方法は、基材上に配置された感光性樹脂層と、感光性樹脂層の基材とは反対側の面に配置された導電膜とを含む感光層に、パターン状に活性光線を照射する第一露光工程と、第一露光工程の後に、酸素存在下で、開口(マスクパターン)を有するフォトマスクを介して感光層に活性光線を照射する第二露光工程と、第二露光工程の後に感光層を現像する現像工程と、を備える。そして、第二露光工程では、フォトマスクを感光層から離間させた状態で活性光線を照射する。 The second manufacturing method of the substrate 1 includes a photosensitive layer including a photosensitive resin layer disposed on a substrate and a conductive film disposed on the surface of the photosensitive resin layer opposite to the substrate. A first exposure step of irradiating the photosensitive layer in the form of active light, and a second exposure step of irradiating the photosensitive layer through the photomask having an opening (mask pattern) in the presence of oxygen after the first exposure step; And a development step of developing the photosensitive layer after the second exposure step. Then, in the second exposure step, an actinic ray is irradiated in a state where the photomask is separated from the photosensitive layer.
[感光性導電フィルム]
 基板1の第二の製造方法では、図7(a)に示すように、感光性導電フィルム10を用いる。感光性導電フィルム10は、支持フィルム11と、支持フィルム11上に配置された感光層14とを有する。感光層14は、支持フィルム11上に配置された導電膜12と、導電膜12上に配置された感光性樹脂層13とから構成されている。
[Photosensitive conductive film]
In the second method of manufacturing the substrate 1, as shown in FIG. 7A, a photosensitive conductive film 10 is used. The photosensitive conductive film 10 has a support film 11 and a photosensitive layer 14 disposed on the support film 11. The photosensitive layer 14 is composed of a conductive film 12 disposed on the support film 11 and a photosensitive resin layer 13 disposed on the conductive film 12.
 支持フィルム11としては、重合体フィルムを用いることができ、耐熱性及び耐溶剤性を有する重合体フィルムが好ましい。このような重合体フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルムが挙げられる。これらのうち、透明性及び耐熱性の観点から、ポリエチレンテレフタレートフィルムが好ましい。 As the support film 11, a polymer film can be used, and a polymer film having heat resistance and solvent resistance is preferable. As such a polymer film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polycarbonate film is mentioned, for example. Among these, a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance.
 上記の重合体フィルムは、後に感光層14からの剥離が容易となるよう、離型処理されたものであってもよい。 The above-mentioned polymer film may be subjected to release treatment so as to facilitate peeling from the photosensitive layer 14 later.
 第二露光工程で支持フィルムを剥離する場合、支持フィルム11はガスバリア層等の層を更に有していてもよい。 When peeling a support film in a 2nd exposure process, the support film 11 may further have layers, such as a gas barrier layer.
 支持フィルム11の厚みは、機械的強度の観点から、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましい。支持フィルム11の厚みを上記数値以上とすることによって、例えば、導電膜12を形成するために導電体分散液又は導電体溶液を塗工する工程、感光性樹脂層13を形成するために感光性樹脂組成物を塗工する工程、又は第二露光工程に際し感光層14から支持フィルム11を剥離する工程において、支持フィルム11が破れることを防止することができる。また、支持フィルム11を介して感光性樹脂層13に活性光線Lを照射する場合に導電パターンの解像度を充分確保する観点から、支持フィルム11の厚みは、300μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましい。 The thickness of the support film 11 is preferably 5 μm or more, more preferably 10 μm or more, and still more preferably 15 μm or more from the viewpoint of mechanical strength. By setting the thickness of the support film 11 to the above-mentioned value or more, for example, a step of applying a conductor dispersion or a conductor solution to form a conductive film 12, and a photosensitive resin layer 13 to form a photosensitive resin layer 13. In the step of applying the resin composition or the step of peeling the support film 11 from the photosensitive layer 14 in the second exposure step, it is possible to prevent the support film 11 from being broken. In addition, in the case of sufficiently securing the resolution of the conductive pattern when irradiating the photosensitive resin layer 13 with the actinic ray L through the support film 11, the thickness of the support film 11 is preferably 300 μm or less, and 200 μm or less Is more preferably 100 μm or less.
 上記の観点から、支持フィルム11の厚みは、5~300μmであることが好ましく、10~200μmであることがより好ましく、15~100μmであることが特に好ましい。 From the above viewpoint, the thickness of the support film 11 is preferably 5 to 300 μm, more preferably 10 to 200 μm, and particularly preferably 15 to 100 μm.
 支持フィルム11のヘーズ値は、感度及び解像度を良好にできる観点から、0.01~5.0%であることが好ましく、0.01~3.0%であることがより好ましく、0.01~2.0%であることが特に好ましく、0.01~1.5%であることが極めて好ましい。なお、ヘーズ値はJIS K 7105に準拠して測定することができ、例えば、NDH-1001DP(日本電色工業株式会社製、商品名)等の市販の濁度計などで測定が可能である。 The haze value of the support film 11 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of achieving good sensitivity and resolution. It is particularly preferred that it is -2.0%, and it is extremely preferable that it is 0.01-1.5%. The haze value can be measured in accordance with JIS K 7105, and can be measured, for example, with a commercially available turbidity meter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).
 導電膜12は、無機導電体及び有機導電体からなる群より選択される少なくとも一種の導電体を含有することができる。導電膜12の導電性が得られるものであれば、無機導電体及び有機導電体を特に制限なく用いることができ、これらの導電体は単独で又は2種以上を組み合わせて用いることができる。 The conductive film 12 can contain at least one conductor selected from the group consisting of an inorganic conductor and an organic conductor. As long as the conductivity of the conductive film 12 can be obtained, inorganic conductors and organic conductors can be used without particular limitation, and these conductors can be used alone or in combination of two or more.
 無機導電体としては、前述した金属繊維が挙げられる。有機導電体としては、導電性ポリマーが挙げられる。導電性ポリマーとしては、ポリチオフェン、ポリチオフェン誘導体、ポリアニリン、及び、ポリアニリン誘導体からなる群より選択される少なくとも一種の導電体を用いることができる。例えば、ポリエチレンジオキシチオフェン、ポリヘキシルチオフェン及びポリアニリンのうちの1種又は2種以上を組み合わせて用いることができる。導電膜12が有機導電体を含んで構成される場合、有機導電体と感光性樹脂を含むことが好ましい。 As an inorganic conductor, the metal fiber mentioned above is mentioned. The organic conductor includes a conductive polymer. As the conductive polymer, at least one conductor selected from the group consisting of polythiophene, polythiophene derivatives, polyaniline and polyaniline derivatives can be used. For example, one or more of polyethylenedioxythiophene, polyhexylthiophene and polyaniline can be used in combination. When the conductive film 12 contains an organic conductor, it preferably contains an organic conductor and a photosensitive resin.
 導電膜12は、導電性繊維を含有することが好ましい。導電膜が導電性繊維を含有することで、導電性と透明性を両立することができ、現像性が更に向上して、解像度に優れた導電パターンを形成することができる。 The conductive film 12 preferably contains a conductive fiber. When the conductive film contains a conductive fiber, the conductivity and the transparency can be compatible, the developability is further improved, and a conductive pattern excellent in resolution can be formed.
 本実施形態においては、支持フィルム11上に導電膜12を配置した後、更に感光性樹脂層13を配置しているが、必要に応じて、支持フィルム11上に配置された導電膜12を、基材上に配置された感光性樹脂層の上にラミネートしてもよい。 In the present embodiment, after the conductive film 12 is disposed on the support film 11, the photosensitive resin layer 13 is further disposed, but if necessary, the conductive film 12 disposed on the support film 11 is You may laminate on the photosensitive resin layer arrange | positioned on a base material.
 感光性樹脂層13は、(a)バインダーポリマー、(b)エチレン性不飽和結合を有する光重合性化合物及び(c)光重合開始剤を含有する感光性樹脂組成物から形成することができる。感光性樹脂層13が上記の成分を含有することにより、基板と導電パターンとの接着性及びパターンニング性を更に向上させることができる。 The photosensitive resin layer 13 can be formed from a photosensitive resin composition containing (a) a binder polymer, (b) a photopolymerizable compound having an ethylenically unsaturated bond, and (c) a photopolymerization initiator. By the photosensitive resin layer 13 containing the above-described components, the adhesion between the substrate and the conductive pattern and the patterning property can be further improved.
 (a)バインダーポリマーとしては、例えば、アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸の反応で得られるエポキシアクリレート樹脂、エポキシアクリレート樹脂と酸無水物の反応で得られる酸変性エポキシアクリレート樹脂が挙げられる。これらの樹脂は、単独で又は2種以上を組み合わせて用いることができる。 (A) As a binder polymer, for example, it is obtained by the reaction of (meth) acrylic acid with acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin Epoxy acrylate resin, and acid-modified epoxy acrylate resin obtained by the reaction of the epoxy acrylate resin and the acid anhydride. These resins can be used alone or in combination of two or more.
 上記の中でも、アルカリ現像性及びフィルム形成性に優れる観点から、アクリル樹脂を用いることが好ましい。また。上記アクリル樹脂が(メタ)アクリル酸及び(メタ)アクリル酸アルキルエステルに由来するモノマー単位を構成単位として有するとより好ましい。ここで、「アクリル樹脂」とは、(メタ)アクリル基を有する重合性単量体に由来するモノマー単位を主に有する重合体のことを意味する。 Among the above, from the viewpoint of excellent alkali developability and film formability, it is preferable to use an acrylic resin. Also. It is more preferable that the said acrylic resin has a monomer unit derived from (meth) acrylic acid and (meth) acrylic acid alkyl ester as a structural unit. Here, the "acrylic resin" means a polymer mainly having a monomer unit derived from a polymerizable monomer having a (meth) acrylic group.
 上記アクリル樹脂は、例えば、(メタ)アクリル基を有する重合性単量体をラジカル重合して製造される。このアクリル樹脂は、単独で又は2種以上を組み合わせて用いることができる。 The acrylic resin is produced, for example, by radical polymerization of a polymerizable monomer having a (meth) acrylic group. This acrylic resin can be used alone or in combination of two or more.
 上記(メタ)アクリル基を有する重合性単量体としては、例えば、ジアセトンアクリルアミド等のアクリルアミド、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、(メタ)アクリル酸、α-ブロモ(メタ)アクリル酸、α-クロル(メタ)アクリル酸、β-フリル(メタ)アクリル酸、β-スチリル(メタ)アクリル酸が挙げられる。 As a polymerizable monomer which has said (meth) acryl group, acrylamide, such as diacetone acrylamide, (meth) acrylic-acid alkylester, (meth) acrylic-acid tetrahydrofurfuryl ester, (meth) acrylic-acid dimethylamino, for example Ethyl ester, (meth) acrylic acid diethylaminoethyl ester, (meth) acrylic acid glycidyl ester, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, Examples include (meth) acrylic acid, α-bromo (meth) acrylic acid, α-chloro (meth) acrylic acid, β-furyl (meth) acrylic acid, and β-styryl (meth) acrylic acid.
 また、上記アクリル樹脂は、上記のような(メタ)アクリル基を有する重合性単量体の他に、スチレン、ビニルトルエン、α-メチルスチレン等のα-位又は芳香族環において置換されている重合可能なスチレン誘導体、アクリロニトリル、ビニル-n-ブチルエーテル等のビニルアルコールのエステル類、マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソプロピル等のマレイン酸モノエステル、フマール酸、ケイ皮酸、α-シアノケイ皮酸、イタコン酸、クロトン酸等の1種又は2種以上の重合性単量体が共重合されていてもよい。 In addition to the above-mentioned polymerizable monomer having a (meth) acrylic group, the above acrylic resin is substituted at the α-position or aromatic ring such as styrene, vinyl toluene and α-methylstyrene. Polymerizable styrene derivatives, esters of vinyl alcohol such as acrylonitrile and vinyl-n-butyl ether, maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate such as monoisopropyl maleate, fumaric acid One or two or more polymerizable monomers such as cinnamic acid, α-cyanocinnamic acid, itaconic acid, crotonic acid and the like may be copolymerized.
 上記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸プロピルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸ペンチルエステル、(メタ)アクリル酸ヘキシルエステル、(メタ)アクリル酸ヘプチルエステル、(メタ)アクリル酸オクチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸ノニルエステル、(メタ)アクリル酸デシルエステル、(メタ)アクリル酸ウンデシルエステル、(メタ)アクリル酸ドデシルエステルが挙げられる。これらは、単独で又は2種以上を組み合わせて用いることができる。 Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid Pentyl ester, (meth) acrylic acid hexyl ester, (meth) acrylic acid heptyl ester, (meth) acrylic acid octyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid nonyl ester, (meth) acrylic acid Examples include decyl ester, (meth) acrylic acid undecyl ester, and (meth) acrylic acid dodecyl ester. These can be used alone or in combination of two or more.
 (a)バインダーポリマーは、アルカリ現像性をより良好にする観点から、カルボキシル基を有することが好ましい。このようなバインダーポリマーを得るためのカルボキシル基を有する重合性単量体としては、上述したような(メタ)アクリル酸が挙げられる。 The binder polymer (a) preferably has a carboxyl group from the viewpoint of improving the alkali developability. Examples of the polymerizable monomer having a carboxyl group for obtaining such a binder polymer include (meth) acrylic acid as described above.
 (a)バインダーポリマーが有するカルボキシル基の比率は、バインダーポリマーを得るために使用する全重合性単量体に対するカルボキシル基を有する重合性単量体の割合として、10~50質量%であることが好ましく、12~40質量%であることがより好ましく、15~30質量%であることが特に好ましく、15~25質量%であることが極めて好ましい。アルカリ現像性に優れる点では10質量%以上であることが好ましく、アルカリ耐性に優れる点では、50質量%以下であることが好ましい。 (A) The proportion of carboxyl groups contained in the binder polymer is 10 to 50% by mass as the proportion of the polymerizable monomer having a carboxyl group with respect to all the polymerizable monomers used to obtain the binder polymer The content is preferably 12 to 40% by mass, particularly preferably 15 to 30% by mass, and most preferably 15 to 25% by mass. The content is preferably 10% by mass or more in terms of excellent alkali developability, and is preferably 50% by mass or less in terms of excellent alkali resistance.
 (a)バインダーポリマーの酸価は、現像工程において、公知の各種現像液に対する現像性を向上させる観点から、50mgKOH/g以上150mgKOH/g以下であることが好ましい。 The acid value of the binder polymer (a) is preferably 50 mgKOH / g or more and 150 mgKOH / g or less from the viewpoint of improving the developability with respect to various known developers in the development step.
 (a)バインダーポリマーの酸価は、次のようにして測定することができる。酸価を測定すべきバインダーポリマー1gを精秤する。 (A) The acid value of the binder polymer can be measured as follows. Precisely weigh 1 g of the binder polymer whose acid value is to be measured.
 上記バインダーポリマーにアセトン30gを加え、これを均一に溶解する。次いで、指示薬であるフェノールフタレインを上記溶液に適量添加して、0.1NのKOH水溶液を用いて滴定することにより測定できる。なお、酸価は次式により算出できる。 30 g of acetone is added to the above-mentioned binder polymer, and this is uniformly dissolved. Then, an appropriate amount of phenolphthalein, which is an indicator, is added to the above solution, and the measurement can be performed by titration using an aqueous solution of 0.1 N KOH. The acid value can be calculated by the following equation.
酸価=10×Vf×56.1/(Wp×I)
式中、Vfは0.1NのKOH水溶液の滴定量(mL)を示し、Wpは測定した樹脂溶液の質量(g)を示し、Iは測定した樹脂溶液中の不揮発分の割合(質量%)を示す。
Acid value = 10 × Vf × 56.1 / (Wp × I)
In the formula, Vf represents the titration volume (mL) of a 0.1 N aqueous solution of KOH, Wp represents the mass (g) of the measured resin solution, and I represents the proportion of nonvolatile matter in the measured resin solution (% by mass) Indicates
 なお、バインダーポリマーに合成溶媒又は希釈溶媒が含まれる場合は、精秤前に予め、上記溶媒の沸点よりも10℃程度高い温度で1~4時間加熱し、揮発分を除去しておく。この際、低分子量の光重合性化合物等の揮発性成分が除去されることもある。 When the binder polymer contains a synthesis solvent or a dilution solvent, the volatile component is removed by heating at a temperature about 10 ° C. higher than the boiling point of the solvent for 1 to 4 hours in advance before precise weighing. At this time, volatile components such as low molecular weight photopolymerizable compounds may be removed.
 (a)バインダーポリマーの質量平均分子量は、機械強度及びアルカリ現像性のバランスを図る観点から、5,000~300,000であることが好ましく、20,000~150,000であることがさらに好ましく、30,000~100,000であることが特に好ましい。耐現像液性に優れる点では、質量平均分子量が、5,000以上であることが好ましい。また、現像時間の観点からは、300,000以下であることが好ましい。なお、質量平均分子量の測定条件は本願明細書の実施例と同一の測定条件とする。 The mass average molecular weight of the binder polymer (a) is preferably 5,000 to 300,000, and more preferably 20,000 to 150,000, in order to balance mechanical strength and alkali developability. And 30,000 to 100,000 are particularly preferable. The mass average molecular weight is preferably 5,000 or more from the viewpoint of excellent developer resistance. Moreover, it is preferable that it is 300,000 or less from a viewpoint of development time. In addition, the measurement conditions of a mass mean molecular weight are taken as the same measurement conditions as the Example of this-application specification.
 (a)バインダーポリマーは、上述した樹脂を単独で又は2種類以上組み合わせて用いることができる。2種類以上の樹脂を組み合わせて使用する場合、例えば、異なる共重合成分からなる2種類以上の樹脂が含まれる混合物からなるバインダーポリマー、異なる質量平均分子量の2種類以上の樹脂が含まれる混合物からなるバインダーポリマー、異なる分散度の2種類以上の樹脂が含まれる混合物からなるバインダーポリマーが挙げられる。 As the binder polymer (a), the above-described resins can be used alone or in combination of two or more. When two or more types of resins are used in combination, for example, a binder polymer consisting of a mixture containing two or more types of resins consisting of different copolymerization components, a mixture containing two or more types of resins having different mass average molecular weights A binder polymer is a binder polymer comprising a mixture of two or more resins of different degrees of dispersion.
 (b)エチレン性不飽和結合を有する光重合性化合物としては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、ウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシエチル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート等のフタル酸系化合物、(メタ)アクリル酸アルキルエステルが挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。 (B) As a photopolymerizable compound having an ethylenically unsaturated bond, for example, a compound obtained by reacting an α, β-unsaturated carboxylic acid with a polyhydric alcohol, an α, β-unsaturated compound with a glycidyl group-containing compound Compound obtained by reacting carboxylic acid, Urethane monomer such as (meth) acrylate compound having urethane bond, γ-chloro-β-hydroxypropyl-β ′-(meth) acryloyloxyethyl-o-phthalate, β-hydroxy Phthalic acid compounds such as ethyl-β '-(meth) acryloyloxyethyl-o-phthalate, β-hydroxypropyl-β'-(meth) acryloyloxyethyl-o-phthalate, and (meth) acrylic acid alkyl esters Be These are used alone or in combination of two or more.
 上記多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物としては、例えば、2,2-ビス(4-((メタ)アクリロキシポリエトキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリプロポキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリエトキシポリプロポキシ)フェニル)プロパン等のビスフェノールA系(メタ)アクリレート化合物、エチレン基の数が2~14であるポリエチレングリコールジ(メタ)アクリレート、プロピレン基の数が2~14であるポリプロピレングリコールジ(メタ)アクリレート、エチレン基の数が2~14であり、プロピレン基の数が2~14であるポリエチレンポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、プロピレン基の数が2~14であるポリプロピレングリコールジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。 Examples of the compound obtained by reacting the above polyhydric alcohol with an α, β-unsaturated carboxylic acid include: 2,2-bis (4-((meth) acryloxypolyethoxy) phenyl) propane, 2,2- Bisphenol A (meth) acrylate compounds such as bis (4-((meth) acryloxypolypropoxy) phenyl) propane and 2,2-bis (4-((meth) acryloxypolyethoxypolypropoxy) phenyl) propane Polyethylene glycol di (meth) acrylate having 2 to 14 ethylene groups, polypropylene glycol di (meth) acrylate having 2 to 14 propylene groups, 2 to 14 ethylene groups, and having propylene groups Polyethylene polypropylene glycol di (meth) acrylate having a number of 2 to 14, trimethylol Propane di (meth) acrylate, trimethylol propane tri (meth) acrylate, trimethylol propane ethoxy tri (meth) acrylate, trimethylol propane diethoxy tri (meth) acrylate, trimethylol propane triethoxy tri (meth) acrylate, trimethylol propane Tetraethoxytri (meth) acrylate, trimethylolpropane pentaethoxytri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, polypropylene glycol having 2 to 14 propylene groups (Meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate .
 上記ウレタンモノマーとしては、例えば、β位にヒドロキシル基を有する(メタ)アクリルモノマーとイソホロンジイソシアネート、2,6-トルエンジイソシアネート、2,4-トルエンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等のジイソシアネート化合物との付加反応物、トリス[(メタ)アクリロキシテトラエチレングリコールイソシアネート]ヘキサメチレンイソシアヌレート、EO変性ウレタンジ(メタ)アクリレート、EO,PO変性ウレタンジ(メタ)アクリレートが挙げられる。 Examples of the urethane monomers include (meth) acrylic monomers having a hydroxyl group at the β-position and diisocyanate compounds such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate. And the addition reaction product of tris [(meth) acryloxy tetraethylene glycol isocyanate] hexamethylene isocyanurate, EO modified urethane di (meth) acrylate, EO, PO modified urethane di (meth) acrylate.
 EO変性ウレタンジ(メタ)アクリレートとしては、例えば、「UA-11」(新中村化学工業株式会社製、商品名)が挙げられる。また、EO,PO変性ウレタンジ(メタ)アクリレートとしては、例えば、「UA-13」(新中村化学工業株式会社製、商品名)が挙げられる。 Examples of EO-modified urethane di (meth) acrylates include “UA-11” (trade name of Shin-Nakamura Chemical Co., Ltd.). Moreover, as EO and PO modified | denatured urethane di (meth) acrylate, "UA-13" (The Shin-Nakamura Chemical Co., Ltd. make, brand name) is mentioned, for example.
 (b)エチレン性不飽和結合を有する光重合性化合物の含有割合は、(a)バインダーポリマー及び(b)エチレン性不飽和結合を有する光重合性化合物の総量100質量部に対して、30~80質量部であることが好ましく、40~70質量部であることがより好ましい。光硬化性及び形成された導電膜12上への塗工性に優れる点では、30質量部以上であることが好ましく、フィルムとして巻き取った場合の保管安定性に優れる点では、80質量部以下であることが好ましい。 The content ratio of the (b) photopolymerizable compound having an ethylenically unsaturated bond is 30 to 100 parts by mass with respect to the total of (a) the binder polymer and (b) the photopolymerizable compound having an ethylenically unsaturated bond. The amount is preferably 80 parts by mass, and more preferably 40 to 70 parts by mass. The content is preferably 30 parts by mass or more in terms of excellent photocurability and coatability on the formed conductive film 12, and is 80 parts by mass or less in terms of excellent storage stability when wound up as a film. Is preferred.
 (c)光重合開始剤としては、活性光線Lの照射によって感光性樹脂層13を硬化させることができるものであれば、特に制限されないが、光硬化性に優れる観点からは、ラジカル重合開始剤を用いることが好ましい。例えば、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1等の芳香族ケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)等のオキシムエステル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物、オキサゾール系化合物が挙げられる。また、2つの2,4,5-トリアリールイミダゾールのアリール基の置換基は同一で対象な化合物を与えてもよいし、相違して非対称な化合物を与えてもよい。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。 (C) The photopolymerization initiator is not particularly limited as long as the photosensitive resin layer 13 can be cured by irradiation with an actinic ray L, but from the viewpoint of excellent photocurability, a radical polymerization initiator It is preferable to use For example, benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N, N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 2 Aromatic ketones such as -benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1; benzoin Benzoin ether compounds such as methyl ether, benzoin ethyl ether and benzoin phenyl ether; benzoin compounds such as benzoin, methylbenzoin and ethylbenzoin; 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (O -Benzoyloxime), 1- [9- Oxime ester compounds such as 1- (O-acetyloxime); benzyl derivatives such as benzyldimethyl ketal; 2- (o-chlorophenyl)- 4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer And 2,4,5-triarylimidazole such as 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer and 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer. Acridine derivative such as 9-phenylacridine, 1,7-bis (9,9'-acridinyl) heptane, etc .; N- Enirugurishin, N- phenylglycine derivatives, coumarin-based compounds, oxazole-based compounds. Also, the substituents of the aryl groups of the two 2,4,5-triarylimidazoles may give the same target compound, or they may give different asymmetric compounds. Further, as in the combination of diethylthioxanthone and dimethylaminobenzoic acid, the thioxanthone compound and the tertiary amine compound may be combined.
 これらの中でも、透明性の見地からは、芳香族ケトン化合物又はオキシムエステル化合物を含有することが好ましく、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1又は1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)を含有することが好ましい。これらは、単独で又は2種類以上を組み合わせて使用される。 Among these, from the viewpoint of transparency, it is preferable to contain an aromatic ketone compound or an oxime ester compound, and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 or 1, It is preferred to contain 2-octanedione-1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime). These are used alone or in combination of two or more.
 (c)光重合開始剤の含有割合は、(a)バインダーポリマー及び(b)エチレン性不飽和結合を有する光重合性化合物の総量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、1~5質量部であることが特に好ましい。光感度に優れる点では、0.1質量部以上であることが好ましく、感光性樹脂層13の内部の光硬化性に優れる点では、20質量部以下であることが好ましい。 The content ratio of (c) the photopolymerization initiator is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total of (a) the binder polymer and (b) the photopolymerizable compound having an ethylenically unsaturated bond. Is preferable, 1 to 10 parts by mass is more preferable, and 1 to 5 parts by mass is particularly preferable. The content is preferably 0.1 parts by mass or more in terms of excellent photosensitivity, and is preferably 20 parts by mass or less in terms of excellent photocurability inside the photosensitive resin layer 13.
 感光性樹脂層13には、必要に応じて、各種添加剤を含有させることができる。添加剤としては、p-トルエンスルホンアミド等の可塑剤、充填剤、消泡剤、難燃剤、安定剤、密着性付与剤、レベリング剤、剥離促進剤、酸化防止剤、香料、イメージング剤、熱架橋剤等の添加剤を、単独で又は2種類以上を組み合わせて含有させることができる。これらの添加剤の添加量は、(a)バインダーポリマー及び光重合性化合物の総量100質量部に対して各々0.01~20質量部であることが好ましい。 Various additives can be contained in the photosensitive resin layer 13 as needed. Additives include plasticizers such as p-toluenesulfonamide, fillers, antifoaming agents, flame retardants, stabilizers, adhesion imparting agents, leveling agents, release accelerators, antioxidants, fragrances, imaging agents, heat Additives such as a crosslinking agent can be contained singly or in combination of two or more. The addition amount of these additives is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total of (a) binder polymer and photopolymerizable compound.
 感光性樹脂層13は、支持フィルム上に形成された導電膜12上に、必要に応じて、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等の溶剤又はこれらの混合溶剤に溶解した、固形分10~60質量%程度の感光性樹脂組成物の溶液を塗工した後、乾燥することにより形成できる。但し、この場合、乾燥後の感光性樹脂層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止するため、2質量%以下であることが好ましい。 The photosensitive resin layer 13 is, if necessary, methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol on the conductive film 12 formed on the support film. It can be formed by applying a solution of a photosensitive resin composition having a solid content of about 10 to 60% by mass, which is dissolved in a solvent such as monomethyl ether or a mixed solvent thereof, and then drying. However, in this case, the amount of residual organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the diffusion of the organic solvent in the subsequent step.
 塗工は、公知の方法で行うことができる。例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法が挙げられる。塗工後、有機溶剤等を除去するための乾燥は、70~150℃で5~30分間程度、熱風対流式乾燥機等で行うことができる。 Coating can be performed by a known method. For example, a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, a spray coating method may be mentioned. After coating, drying for removing the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
 感光性樹脂層13の厚みは、用途により異なるが、乾燥後の厚みで1~50μmであることが好ましく、1~40μmであることがより好ましく、1~30μmであることが特に好ましい。この厚みが1μm以上であると、塗工による層形成が容易となる傾向にあり、50μm以下であると、光透過性が良好であり、充分な感度を得ることができ、感光性樹脂層13の光硬化性の観点から好ましい。感光性樹脂層13の厚みは、走査型電子顕微鏡により測定することができる。 Although the thickness of the photosensitive resin layer 13 varies depending on the application, it is preferably 1 to 50 μm, more preferably 1 to 40 μm, and particularly preferably 1 to 30 μm in terms of the thickness after drying. When the thickness is 1 μm or more, the layer formation by coating tends to be facilitated, and when the thickness is 50 μm or less, the light transmittance is good and sufficient sensitivity can be obtained, and the photosensitive resin layer 13 It is preferable from the viewpoint of the photocurability of The thickness of the photosensitive resin layer 13 can be measured by a scanning electron microscope.
 感光性導電フィルム10において、感光層14(上記導電膜12及び上記感光性樹脂層13の積層体)は、450~650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。感光層14がこのような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。また、感光層14の膜厚を1~10μmとしたときに450~650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。感光層14(導電膜12及び感光性樹脂層13の積層体)がこのような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。 In the photosensitive conductive film 10, the photosensitive layer 14 (laminated body of the conductive film 12 and the photosensitive resin layer 13) preferably has a minimum light transmittance of 80% or more in a wavelength range of 450 to 650 nm. More preferably, it is at least%. When the photosensitive layer 14 satisfies such conditions, it is easy to achieve high luminance in a display panel or the like. When the thickness of the photosensitive layer 14 is 1 to 10 μm, the minimum light transmittance in a wavelength range of 450 to 650 nm is preferably 80% or more, and more preferably 85% or more. When the photosensitive layer 14 (laminated body of the conductive film 12 and the photosensitive resin layer 13) satisfies such conditions, it is easy to achieve high luminance in a display panel or the like.
 感光性導電フィルム10は、感光性樹脂層13の支持フィルム11側とは反対側の面に接するように、保護フィルムが更に設けられていてもよい。 The photosensitive conductive film 10 may further be provided with a protective film so as to be in contact with the surface of the photosensitive resin layer 13 opposite to the support film 11 side.
 保護フィルムとしては、耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルムが挙げられる。また、保護フィルムとして上述の支持体フィルムと同様の重合体フィルムを用いてもよい。 As the protective film, a polymer film having heat resistance and solvent resistance can be used. For example, polyethylene terephthalate film, polypropylene film, polyethylene film can be mentioned. Moreover, you may use the polymer film similar to the above-mentioned support film as a protective film.
 保護フィルムの厚みは、1~100μmであることが好ましく、5~50μmであることがより好ましく、5~40μmであることが更に好ましく、15~30μmであることが特に好ましい。保護フィルムの厚みは、機械的強度に優れる点で1μm以上であることが好ましく、比較的安価となる点で100μm以下であることが好ましい。 The thickness of the protective film is preferably 1 to 100 μm, more preferably 5 to 50 μm, still more preferably 5 to 40 μm, and particularly preferably 15 to 30 μm. The thickness of the protective film is preferably 1 μm or more in view of excellent mechanical strength, and preferably 100 μm or less in view of relatively low cost.
 保護フィルムと感光性樹脂層13との間の接着力は、保護フィルムを感光性樹脂層13から剥離しやすくするために、支持フィルム11と感光層14(導電膜12及び感光性樹脂層13)との間の接着力よりも小さいことが好ましい。 The adhesive force between the protective film and the photosensitive resin layer 13 makes the protective film easy to peel from the photosensitive resin layer 13, the support film 11 and the photosensitive layer 14 (conductive film 12 and photosensitive resin layer 13) It is preferable that the adhesive force between
 また、保護フィルムは、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数が5個/m以下であることが好ましい。なお、「フィッシュアイ」とは、材料を熱溶融し、混練、押し出し、2軸延伸、キャスティング法等によりフィルムを製造する際に、材料の異物、未溶解物、酸化劣化物等がフィルム中に取り込まれたものである。 The protective film preferably has a number of fish eyes with a diameter of 80 μm or more contained in the protective film of 5 / m 2 or less. The term “fish eye” refers to materials that are thermally melted, kneaded, extruded, biaxially stretched, cast, etc. when films are produced, such as foreign matter, undissolved matter, oxidized degraded matter, etc., of the material in the film. It is taken in.
 感光性導電フィルム10は、保護フィルム上に、接着層、ガスバリア層等の層を更に有していてもよい。 The photosensitive conductive film 10 may further have a layer such as an adhesive layer or a gas barrier layer on the protective film.
 感光性導電フィルム10は、例えば、そのままの平板状の形態で、又は、円筒状などの巻芯に巻きとりロール状の形態で貯蔵することができる。なお、この際、支持フィルム11が最も外側になるように巻き取られることが好ましい。 The photosensitive conductive film 10 can be stored, for example, in the form of a flat plate as it is, or in a form of a roll around a winding core such as a cylindrical shape. At this time, it is preferable that the support film 11 be wound so as to be the outermost side.
 また、感光性導電フィルム10が保護フィルムを有してない場合、かかる感光性導電フィルム10は、そのままの平板状の形態で貯蔵することができる。 Moreover, when the photosensitive conductive film 10 does not have a protective film, the photosensitive conductive film 10 can be stored in the form of a flat plate as it is.
 巻芯としては、従来用いられているものであれば特に限定されず、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)等のプラスチックが挙げられる。またロール状に巻き取られた感光性導電フィルムの端面には、端面保護の観点から端面セパレータを設置することが好ましく、加えて耐エッジフュージョンの観点から防湿端面セパレータを設置することが好ましい。また、感光性導電フィルムを梱包する際には、透湿性の小さいブラックシートに包んで包装することが好ましい。 The core is not particularly limited as long as it is conventionally used, and, for example, plastics such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, ABS resin (acrylonitrile-butadiene-styrene copolymer) and the like Can be mentioned. Further, it is preferable to install an end face separator from the viewpoint of end face protection on the end face of the photosensitive conductive film wound up in a roll shape, and it is preferable to install a moistureproof end face separator from the viewpoint of edge fusion resistance. Moreover, when packing a photosensitive conductive film, it is preferable to wrap and package in a black sheet | seat with small moisture permeability.
[基板1の第二の製造方法の詳細]
 基板1の第二の製造方法は、上述した感光性導電フィルム10を、基材2上に感光性樹脂層13が接するようにラミネートするラミネート工程(図7(b))と、支持フィルム11を有する感光層14の所定部分に活性光線Lを照射する第一露光工程(図7(c))と、その後、支持フィルム11を剥離してから、酸素存在下で、第一露光工程での露光部及び未露光部の一部または全部に活性光線Lを照射する第二露光工程(図8(a))と、第二露光工程の後に感光層14を現像する現像工程(図8(b))とを備える。
[Details of Second Production Method of Substrate 1]
The second manufacturing method of the substrate 1 includes a laminating step (FIG. 7B) of laminating the photosensitive conductive film 10 described above so that the photosensitive resin layer 13 is in contact with the substrate 2; The first exposure step (FIG. 7 (c)) of irradiating a predetermined portion of the photosensitive layer 14 with the active light beam L (FIG. 7C) and the peeling of the support film 11 thereafter, the exposure in the first exposure step in the presence of oxygen A second exposure step (FIG. 8 (a)) in which an actinic ray L is irradiated to a part or the whole of a portion and an unexposed portion (FIG. 8 (a)) and a development step (FIG. 8 (b)) And.
[ラミネート工程]
 ラミネート工程は、例えば、感光性導電フィルム10を、保護フィルムがある場合はそれを除去した後、加熱しながら感光性樹脂層13側を基材2に圧着することにより積層する方法が挙げられる。なお、この工程は、密着性及び追従性の見地から減圧下で積層することが好ましい。感光性導電フィルム10の積層は、感光性樹脂層13及び/又は基材2を70~130℃に加熱することが好ましく、圧着圧力は、0.1~1.0MPa程度(1~10kgf/cm程度)とすることが好ましいが、これらの条件には特に制限はない。また、感光性樹脂層13を上記のように70~130℃に加熱すれば、予め基材2を予熱処理することは必要ではないが、積層性をさらに向上させるために基材2の予熱処理を行うこともできる。
[Lamination process]
The laminating step may be, for example, a method of laminating the photosensitive conductive film 10 by pressure-bonding the photosensitive resin layer 13 side to the substrate 2 while heating after removing the protective film, if any. In addition, it is preferable to laminate | stack this process under pressure reduction from the standpoint of adhesiveness and followability. It is preferable to heat the photosensitive resin layer 13 and / or the base material 2 to 70 to 130 ° C., and the pressure bonding pressure is about 0.1 to 1.0 MPa (1 to 10 kgf / cm). Although it is preferable to set it as 2 ), there is no restriction | limiting in particular in these conditions. Also, if the photosensitive resin layer 13 is heated to 70 to 130 ° C. as described above, it is not necessary to preheat the substrate 2 in advance, but in order to further improve the lamination, the substrate 2 is preheated You can also do
 基板1の第二の製造方法によれば、別途作製した感光性導電フィルム10を基材2にラミネートすることにより感光層14を設けることで、より簡便に感光層14を基材2上に形成することが可能となり、生産性の向上を図ることができる。 According to the second manufacturing method of the substrate 1, the photosensitive layer 14 is provided by laminating the photosensitive conductive film 10 separately prepared on the substrate 2, whereby the photosensitive layer 14 is more easily formed on the substrate 2. It is possible to improve the productivity.
[第一露光工程]
 第一露光工程での露光方法としては、図7(c)に示すように、アートワークと呼ばれるネガ又はポジマスクパターン15を通して活性光線Lを画像状に照射する方法(マスク露光法)が挙げられる。
[First exposure process]
As the exposure method in the first exposure step, as shown in FIG. 7C, there is a method (mask exposure method) of irradiating the actinic ray L in the form of an image through a negative or positive mask pattern 15 called artwork. .
 第一露光工程での活性光線Lの光源としては、公知の光源が挙げられる。例えば、紫外線、可視光などを有効に放射することができるカーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプが用いられる。また、Arイオンレーザ、半導体レーザも用いられる。更に、写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いられる。また、レーザ露光法などを用いた直接描画法により活性光線Lを画像状に照射する方法を採用してもよい。 Examples of the light source of the actinic ray L in the first exposure step include known light sources. For example, a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a xenon lamp which can effectively emit ultraviolet light, visible light and the like are used. Further, an Ar ion laser and a semiconductor laser are also used. Furthermore, those which effectively emit visible light, such as flood light bulbs for photographs and sun lamps are also used. Alternatively, a method may be employed in which the actinic ray L is irradiated in the form of an image by a direct drawing method using a laser exposure method or the like.
 第一露光工程での露光量は、使用する装置又は感光性樹脂組成物の組成によって異なるが、好ましくは5mJ/cm~1000mJ/cmであり、より好ましくは10mJ/cm~200mJ/cmである。光硬化性に優れる点では、10mJ/cm以上であることが好ましく、解像性の点では200mJ/cm以下であることが好ましい。 Exposure of the first exposure step may vary depending on the composition of the device or the photosensitive resin composition used, preferably 5mJ / cm 2 ~ 1000mJ / cm 2, more preferably 10mJ / cm 2 ~ 200mJ / cm 2 In the point which is excellent in photocurability, it is preferable that it is 10 mJ / cm < 2 > or more, and it is preferable that it is 200 mJ / cm < 2 > or less in the point of resolution.
 第一露光工程では、支持フィルム11を剥離せずに感光層14が露光されることにより、酸素の影響が小さくなり硬化させやすくなる。 In the first exposure step, the photosensitive layer 14 is exposed without peeling off the support film 11, thereby reducing the influence of oxygen and making it easy to cure.
 第一露光工程は、空気中、真空中等で行うことができ、露光の雰囲気は特に制限されない。 The first exposure step can be performed in air, in vacuum, or the like, and the atmosphere of exposure is not particularly limited.
[第二露光工程]
 第二露光工程での露光方法としては、マスク露光法を行う。具体的には、図8(a)に示すように、導電パターン4の形状の開口(マスクパターン)を有するフォトマスク16を介して活性光線Lを画像状に照射する。また、第二露光工程では、フォトマスク16を感光層14から離間させた状態で、活性光線Lを照射する。
[Second exposure step]
As an exposure method in the second exposure step, a mask exposure method is performed. Specifically, as shown in FIG. 8A, an actinic ray L is imagewise irradiated through a photomask 16 having an opening (mask pattern) in the shape of the conductive pattern 4. In the second exposure step, the actinic ray L is irradiated in a state where the photomask 16 is separated from the photosensitive layer 14.
 本方法においては、第一露光工程での露光部を第二露光工程でも露光しているが、このような2回の露光を行うことにより、第一露光工程で露光した部分を第二露光工程で露光しない場合に比べ、第一露光工程で露光した部分と第二露光工程で露光した部分との間に境界部分が発生することを防ぐことができ、段差が大きくなることを防止できる。なお、第一露光工程で露光部が充分硬化される場合は、当該部分は第二露光工程で露光しなくてもよい。 In this method, although the exposure part in the first exposure step is also exposed in the second exposure step, the portion exposed in the first exposure step is subjected to the second exposure step by performing such two exposures. As compared with the case where the exposure is not performed, it is possible to prevent the generation of the boundary between the portion exposed in the first exposure step and the portion exposed in the second exposure step, and it is possible to prevent the step from becoming large. When the exposed portion is sufficiently cured in the first exposure step, the portion may not be exposed in the second exposure step.
 第二露光工程での活性光線Lの光源としては、公知の光源、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線、可視光などを有効に放射するものが用いられる。また、Arイオンレーザ、半導体レーザの紫外線、可視光などを有効に放射するものも用いられる。更に、写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いられる。 As a light source of the actinic ray L in the second exposure step, a known light source, for example, a carbon arc lamp, a mercury vapor arc lamp, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a xenon lamp etc. Are used. In addition, one that effectively emits ultraviolet light of an Ar ion laser, a semiconductor laser, visible light and the like is also used. Furthermore, those which effectively emit visible light, such as flood light bulbs for photographs and sun lamps are also used.
 第二露光工程での露光量は、使用する装置又は感光性樹脂組成物の組成によって異なるが、5mJ/cm~1000mJ/cmであることが好ましく、10mJ/cm~200mJ/cmであることがより好ましく、30mJ/cm~150mJ/cmであることが更に好ましい。光硬化性に優れる点では、10mJ/cm以上であることが好ましく、作業効率の点では200mJ/cm以下であることが好ましい。 Exposure at the second exposure step may vary depending on the composition of the device or the photosensitive resin composition used is preferably from 5mJ / cm 2 ~ 1000mJ / cm 2, at 10mJ / cm 2 ~ 200mJ / cm 2 And more preferably 30 mJ / cm 2 to 150 mJ / cm 2 . In the point which is excellent in photocurability, it is preferable that it is 10 mJ / cm < 2 > or more, and it is preferable that it is 200 mJ / cm < 2 > or less in the point of working efficiency.
 第二露光工程では、酸素存在下、支持フィルム11を除去して感光層14を露光することで、感光層14(導電膜12及び感光性樹脂層13)の露出面側において開始剤から発生する反応種を酸素により失活させ、感光性樹脂層13の導電膜12側に硬化不充分な領域を設けることができる。過度の露光は感光性樹脂組成物全体を充分硬化させるため、第二露光工程の露光量は、上記範囲にすることが好ましい。 In the second exposure step, the support film 11 is removed in the presence of oxygen to expose the photosensitive layer 14, thereby generating an initiator on the exposed surface side of the photosensitive layer 14 (the conductive film 12 and the photosensitive resin layer 13) The reactive species can be inactivated by oxygen to provide an insufficiently cured region on the conductive film 12 side of the photosensitive resin layer 13. The amount of exposure in the second exposure step is preferably in the above range, since excessive exposure cures the entire photosensitive resin composition sufficiently.
 第二露光工程は、酸素存在下で行われ、例えば、空気中で行うことが好ましい。また、酸素濃度を増やした条件でもかまわない。 The second exposure step is performed in the presence of oxygen, and is preferably performed, for example, in air. Moreover, the conditions which increased the oxygen concentration may be used.
 第二露光工程での、感光層14に対するフォトマスク16の離間距離は、感光性導電フィルム10の材料、第二露光工程での露光量、現像工程での現像時間、現像工程で形成するテーパ面8の傾斜角度等によって適宜調整することができる。 The separation distance of the photomask 16 to the photosensitive layer 14 in the second exposure step is determined by the material of the photosensitive conductive film 10, the exposure amount in the second exposure step, the development time in the development step, and the tapered surface formed in the development step. It can be suitably adjusted by the inclination angle of 8 or the like.
 感光層14に対するフォトマスク16の離間距離は、例えば、感光層14とフォトマスク16との間に配置されたスペーサ17の厚みにより調整することができる。 The distance between the photosensitive layer 14 and the photomask 16 can be adjusted, for example, by the thickness of the spacer 17 disposed between the photosensitive layer 14 and the photomask 16.
[現像工程]
 現像工程では、第二露光工程で露光した感光性樹脂層13の充分硬化していない表面部分が除去される。具体的には、ウェット現像により感光性樹脂層13の充分硬化していない表面部分、つまり導電膜12を含む表面層を除去する。これにより、所定のパターンを有する導電膜12が第一及び第二露光工程で露光された領域の樹脂硬化層上に残り、現像工程で除去された部分には導電膜12を有していない樹脂硬化層が形成される。こうして、図8(c)に示すように、第一及び第二露光工程で露光されていない部分が現像により除去された導電パターン基板1Aが得られる。
[Development process]
In the development step, the surface portion of the photosensitive resin layer 13 exposed in the second exposure step that is not sufficiently cured is removed. Specifically, the surface of the photosensitive resin layer 13 which is not sufficiently cured, that is, the surface layer including the conductive film 12 is removed by wet development. As a result, the conductive film 12 having a predetermined pattern remains on the cured resin layer in the areas exposed in the first and second exposure steps, and the resin does not have the conductive film 12 in the portion removed in the development step. A hardened layer is formed. Thus, as shown in FIG. 8C, a conductive pattern substrate 1A is obtained in which the portions not exposed in the first and second exposure steps are removed by development.
 導電パターン基板1Aは、基材2上に基板1が配置されるとともに基板1上に導電パターン4が配置された基板であって、基板1の端面7が基板1の厚さ方向TDに対して傾斜したテーパ面8となった基板である。 The conductive pattern substrate 1A is a substrate in which the substrate 1 is disposed on the substrate 2 and the conductive pattern 4 is disposed on the substrate 1, and the end face 7 of the substrate 1 is in the thickness direction TD of the substrate 1 It is a substrate having an inclined tapered surface 8.
 ウェット現像は、例えば、アルカリ性水溶液、水系現像液、有機溶剤系現像液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッビング等の公知の方法により行われる。 Wet development is performed, for example, using an alkaline aqueous solution, an aqueous developer, or an organic solvent developer by a known method such as spraying, swing immersion, brushing, scrubbing and the like.
 現像液としては、安全かつ安定であり、操作性が良好なため、アルカリ性水溶液が好ましく用いられる。アルカリ性水溶液としては、0.1~5質量%炭酸ナトリウム水溶液、0.1~5質量%炭酸カリウム水溶液、0.1~5質量%水酸化ナトリウム水溶液、0.1~5質量%四ホウ酸ナトリウム水溶液等が好ましい。また、現像に用いるアルカリ性水溶液のpHは9~11の範囲とすることが好ましく、その温度は、感光性樹脂層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。 As the developer, an alkaline aqueous solution is preferably used because it is safe and stable, and the operability is good. As the alkaline aqueous solution, 0.1 to 5% by mass sodium carbonate aqueous solution 0.1 to 5% by mass potassium carbonate aqueous solution 0.1 to 5% by mass sodium hydroxide aqueous solution 0.1 to 5% by mass sodium tetraborate An aqueous solution or the like is preferred. The pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 11, and the temperature is adjusted in accordance with the developability of the photosensitive resin layer. Further, in the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
 また、水又はアルカリ水溶液と一種以上の有機溶剤とからなる水系現像液を用いることができる。ここで、アルカリ水溶液に含まれる塩基としては、上述の塩基以外に、例えば、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1、3-プロパンジオール、1、3-ジアミノプロパノール-2、モルホリンが挙げられる。 In addition, an aqueous developer comprising water or an aqueous alkaline solution and one or more organic solvents can be used. Here, as the base contained in the alkaline aqueous solution, in addition to the above-mentioned bases, for example, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1 3-propanediol, 1,3-diaminopropanol-2, morpholine.
 有機溶剤としては、例えば、メチルエチルケトン、アセトン、酢酸エチル、炭素数1~4のアルコキシ基を有するアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテルが挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。 Examples of the organic solvent include methyl ethyl ketone, acetone, ethyl acetate, alkoxy ethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether. Be These are used alone or in combination of two or more.
 水系現像液は、有機溶剤の濃度を2~90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。さらに、水系現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8~12とすることが好ましく、pH9~10とすることがより好ましい。また、水系現像液中には、界面活性剤、消泡剤等を少量添加することもできる。 The concentration of the organic solvent in the aqueous developer is preferably 2 to 90% by mass, and the temperature can be adjusted according to the developability. Further, the pH of the aqueous developer is preferably as small as possible within a range in which the resist can be sufficiently developed, preferably pH 8 to 12, and more preferably pH 9 to 10. Moreover, a surfactant, an antifoamer, etc. can also be added in a small amount in the aqueous developer.
 有機溶剤系現像液としては、例えば、1,1,1-トリクロロエタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、シクロヘキサノン、メチルイソブチルケトン、γ-ブチロラクトンが挙げられる。これらの有機溶剤は、引火防止のため、1~20質量%の範囲で水を添加することが好ましい。 Examples of the organic solvent-based developing solution include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone and γ-butyrolactone. Water is preferably added to these organic solvents in the range of 1 to 20% by mass in order to prevent ignition.
 上述した現像液は、必要に応じて、2種以上を併用してもよい。 The developer described above may be used in combination of two or more as needed.
 現像の方式としては、例えば、ディップ方式、パドル方式、スプレー方式、ブラッシング、スクラッビングが挙げられる。これらのうち、高圧スプレー方式を用いることが、解像度向上の観点から好ましい。 Examples of the development method include a dip method, a paddle method, a spray method, brushing and scrubbing. Among these, it is preferable to use a high pressure spray system from the viewpoint of improvement of resolution.
 現像後に必要に応じて、60~250℃程度の加熱又は0.2~10J/cm程度の露光を行うことにより導電パターンを更に硬化してもよい。 After development, if necessary, the conductive pattern may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 .
 このようにして導電パターン基板1Aが得られると、図8(c)に示すように、引出配線として、基板1の端部1aから基材2にかけて導電ペースト3を塗布する。 When the conductive pattern substrate 1A is obtained in this manner, as shown in FIG. 8C, the conductive paste 3 is applied from the end portion 1a of the substrate 1 to the base material 2 as a lead wiring.
(導電ペーストの厚さ)
 次に、比較例との比較において、基材2の端縁における導電ペースト3の厚さについて説明する。
(Thickness of conductive paste)
Next, the thickness of the conductive paste 3 at the edge of the substrate 2 will be described in comparison with the comparative example.
 図10に示すように、比較例の基板201では、導電ペースト3が塗布される端面207が、基板201の厚さ方向TDと平行な方向に延びる一般的な端面となっている。このため、基板201の端部201aから基材2にかけて導電ペースト3を塗布した場合、基板201の端縁p3から十分に離れた位置p1及び基材2の基板201から十分に離れた位置p2では、導電ペースト3が十分な厚さとなるが、基板201の端縁p3では、導電ペースト3が基材2側に流れ落ちてしまい、導電ペースト3の厚さが薄くなり過ぎる。 As shown in FIG. 10, in the substrate 201 of the comparative example, the end surface 207 to which the conductive paste 3 is applied is a general end surface extending in a direction parallel to the thickness direction TD of the substrate 201. Therefore, when the conductive paste 3 is applied from the end portion 201a of the substrate 201 to the base material 2, the position p1 sufficiently away from the edge p3 of the substrate 201 and the position p2 sufficiently away from the substrate 201 of the base 2 The conductive paste 3 has a sufficient thickness, but at the edge p3 of the substrate 201, the conductive paste 3 flows down to the base 2 side, and the thickness of the conductive paste 3 becomes too thin.
 これに対し、図9に示すように、本実施形態の基板1では、導電ペースト3が塗布される端面7が、基板1の厚さ方向TDに対して傾斜するテーパ面8となっている。このため、基板1の端部1aから基材2にかけて導電ペースト3を塗布した場合、基板1の端縁p3から十分に離れた位置p1及び基材2の基板201から十分に離れた位置p2だけでなく、基板201の端縁p3でも、導電ペースト3が十分な厚さとなる。 On the other hand, as shown in FIG. 9, in the substrate 1 of the present embodiment, the end surface 7 to which the conductive paste 3 is applied is a tapered surface 8 which is inclined with respect to the thickness direction TD of the substrate 1. Therefore, when the conductive paste 3 is applied from the end portion 1a of the substrate 1 to the base material 2, only the position p1 sufficiently separated from the edge p3 of the substrate 1 and the position p2 sufficiently separated from the substrate 201 of the base material 2 Instead of this, the conductive paste 3 has a sufficient thickness also at the edge p3 of the substrate 201.
 以上説明したように、本実施形態の基板1では、端面7の少なくとも一部が基板1の厚さ方向TDに対して傾斜したテーパ面8となっているため、基板1に導電ペースト3が塗布された際に、当該端面7がテーパ面8でない場合と比べて、導電ペースト3が基材2側に流れ落ちる量を少なくすることができる。このため、基板1の端縁p3における導電ペースト3の厚さが薄くなり過ぎることを抑制することができる。これにより、断線等により寿命が短くなることを抑制することができる。 As described above, in the substrate 1 of the present embodiment, at least a part of the end surface 7 is the tapered surface 8 which is inclined with respect to the thickness direction TD of the substrate 1, the conductive paste 3 is applied to the substrate 1 At this time, compared to the case where the end surface 7 is not the tapered surface 8, the amount of the conductive paste 3 flowing to the side of the base material 2 can be reduced. For this reason, it can suppress that the thickness of the electrically conductive paste 3 in the edge p3 of the board | substrate 1 becomes thin too much. As a result, shortening of the life due to disconnection or the like can be suppressed.
 また、テーパ面8が、導電パターン4が設けられた第一面5から基材2側に配置される第二面6に向けて広がるように傾斜しているため、導電パターン4と外部回路とを接続する引出配線を導電ペースト3で形成する場合に、当該導電ペースト3が基板1の端縁p3で薄くなり過ぎることを抑制することができる。 Further, since the tapered surface 8 is inclined so as to spread from the first surface 5 provided with the conductive pattern 4 toward the second surface 6 disposed on the base 2 side, the conductive pattern 4 and the external circuit are formed. When forming the lead-out wiring connecting the conductive paste 3 with the conductive paste 3, the conductive paste 3 can be prevented from becoming too thin at the edge p 3 of the substrate 1.
 また、厚さ方向TDに対するテーパ面8の傾斜角度θが60°以上90°未満であるため、基板1の端縁p3に塗布された導電ペースト3を十分な厚さに保持することができる。 Further, since the inclination angle θ of the tapered surface 8 with respect to the thickness direction TD is 60 ° or more and less than 90 °, the conductive paste 3 applied to the edge p3 of the substrate 1 can be held with a sufficient thickness.
(タッチパネルセンサ)
 次に、本実施形態に係るタッチパネルセンサについて説明する。本実施形態に係るタッチパネルセンサは、上記の基板1に対応する樹脂硬化層を備える。
(Touch panel sensor)
Next, the touch panel sensor according to the present embodiment will be described. The touch panel sensor according to the present embodiment includes a cured resin layer corresponding to the substrate 1 described above.
 図11に示すように、本実施形態に係るタッチパネルセンサ100は、タッチパネル等のモジュールに(不図示)に搭載される。タッチパネルセンサ100は、透明基板101(基材)の片面にタッチ位置を検出するためのタッチ画面102があり、この領域に静電容量変化を検出して、X位置座標とする透明電極103と、Y位置座標とする透明電極104を備えている。透明電極103,104のそれぞれは、樹脂硬化層からなる基板108上に設けられた導電パターン109により形成される。基板108の端面は、基板108の厚さ方向に対して傾斜するテーパ面110となっている。透明電極103,104のそれぞれには、タッチパネルとしての電気信号を制御するドライバー素子回路と接続するための引出配線105と、その引出配線105と透明電極103,104とを接続する接続電極106とが配置されている。引出配線105は、導電ペーストにより形成されており、基板108の端部から透明基板101にかけて設けられている。さらに、引出配線105の接続電極106と反対側の端部には、ドライバー素子回路と接続する接続端子107が配置されている。 As shown in FIG. 11, the touch panel sensor 100 according to the present embodiment is mounted on a module such as a touch panel (not shown). The touch panel sensor 100 has a touch screen 102 for detecting a touch position on one side of a transparent substrate 101 (base material), detects a capacitance change in this area, and sets a transparent electrode 103 as X position coordinates, A transparent electrode 104 is provided as Y position coordinates. Each of the transparent electrodes 103 and 104 is formed of a conductive pattern 109 provided on a substrate 108 made of a resin cured layer. The end face of the substrate 108 is a tapered surface 110 that is inclined with respect to the thickness direction of the substrate 108. Each of the transparent electrodes 103 and 104 has a lead wire 105 for connection to a driver element circuit for controlling an electric signal as a touch panel, and a connection electrode 106 for connecting the lead wire 105 and the transparent electrodes 103 and 104. It is arranged. The lead wiring 105 is formed of a conductive paste, and is provided from the end of the substrate 108 to the transparent substrate 101. Further, at the end of the lead wire 105 opposite to the connection electrode 106, a connection terminal 107 connected to the driver element circuit is disposed.
 次に、図12も参照して、タッチパネルセンサ100の製造方法について説明する。 Next, a method of manufacturing the touch panel sensor 100 will be described also with reference to FIG.
 まず、図12(a)に示すように、透明基板101上にX位置座標を検知する透明電極103を形成する。具体的には、感光性導電フィルム10を感光性樹脂層13が透明基板101に接するようラミネートする。転写した感光層14(導電膜12及び感光性樹脂層13)に対し、所望の形状にフォトマスクを介してパターン状に活性光線を照射する(第一露光工程)。その後、フォトマスクを除き、更に支持フィルムを剥離する。そして、開口を有するフォトマスクを感光層14から離間させた状態で、当該フォトマスクを介して感光層14に活性光線を照射する(第二露光工程)。フォトマスクの開口は、透明電極103の基板108の表面の形状に対応する形状となっている。露光工程の後、現像を行うことで、硬化が不充分な感光性樹脂層13と共に、導電膜12が除去され、基板108及び導電パターン109が形成される。この導電パターン109によりX位置座標を検知する透明電極103が形成される(図12(b))。このようにして透明電極103を形成することで、段差の小さな透明電極103を設けることができる。 First, as shown in FIG. 12A, the transparent electrode 103 for detecting the X position coordinate is formed on the transparent substrate 101. Specifically, the photosensitive conductive film 10 is laminated such that the photosensitive resin layer 13 is in contact with the transparent substrate 101. An actinic ray is applied in a desired shape to the transferred photosensitive layer 14 (conductive film 12 and photosensitive resin layer 13) in a desired shape via a photomask (first exposure step). Thereafter, the photomask is removed and the support film is further peeled off. Then, in a state where the photomask having the opening is separated from the photosensitive layer 14, the photosensitive layer 14 is irradiated with an active ray through the photomask (second exposure step). The opening of the photomask has a shape corresponding to the shape of the surface of the substrate 108 of the transparent electrode 103. By performing development after the exposure step, the conductive film 12 is removed together with the photosensitive resin layer 13 with insufficient curing, and the substrate 108 and the conductive pattern 109 are formed. The transparent electrode 103 for detecting the X position coordinate is formed by the conductive pattern 109 (FIG. 12 (b)). By forming the transparent electrode 103 in this manner, the transparent electrode 103 with a small level difference can be provided.
 続いて、図12(c)に示すように、Y位置座標を検知する透明電極104を形成する。上記の工程により形成された透明電極103を備える透明基板101に、更に、新たな感光性導電フィルム10をラミネートし、上記同様の操作により、Y位置座標を検知する透明電極104が形成される(図12(d))。このようにして透明電極104を形成することで、透明電極103上に透明電極104を形成する場合であっても、段差及び気泡の捲き込みによる美観の低減が充分に抑制された、平滑性の高いタッチパネルセンサを作製することができる。 Subsequently, as shown in FIG. 12C, a transparent electrode 104 for detecting Y position coordinates is formed. A new photosensitive conductive film 10 is further laminated on the transparent substrate 101 provided with the transparent electrode 103 formed by the above steps, and the transparent electrode 104 for detecting the Y position coordinate is formed by the same operation as described above ( Figure 12 (d). By forming the transparent electrode 104 in this way, even in the case where the transparent electrode 104 is formed on the transparent electrode 103, the reduction in aesthetic appearance due to the step and the bubble penetration is sufficiently suppressed, and the smoothness is achieved. A high touch panel sensor can be produced.
 次に、基板108の端部から透明基板101にかけて外部回路と接続するための引出配線105を形成するとともに、この引出配線105と透明電極103、104を接続する接続電極106を形成する。図12では、引出配線105及び接続電極106は、透明電極103及び104の形成後に形成するように示しているが、各透明電極形成時に同時に形成してもよい。引出配線105は、例えば、フレーク状の銀を含有する導電ペーストを使って、スクリーン印刷法を用いて、接続電極106を形成するのと同時に形成することができる。 Next, a lead wire 105 for connecting to an external circuit is formed from the end of the substrate 108 to the transparent substrate 101, and a connection electrode 106 for connecting the lead wire 105 and the transparent electrodes 103 and 104 is formed. Although FIG. 12 shows that the lead-out wiring 105 and the connection electrode 106 are formed after the formation of the transparent electrodes 103 and 104, they may be formed simultaneously with the formation of each transparent electrode. The lead-out wiring 105 can be formed at the same time as forming the connection electrode 106 using a conductive paste containing, for example, flake silver and using a screen printing method.
 以上説明したように、本実施形態に係るタッチパネルセンサは、上述した基板1に相当する基板108を備えるため、基板108の端縁において、引出配線105を形成する導電ペーストの厚さが薄くなり過ぎることを抑制することができる。これにより、引出配線105の断線等により寿命が短くなることを抑制することができる。 As described above, since the touch panel sensor according to the present embodiment includes the substrate 108 corresponding to the substrate 1 described above, the thickness of the conductive paste for forming the lead-out wire 105 becomes too thin at the edge of the substrate 108 Can be suppressed. As a result, shortening of the life due to disconnection or the like of the lead wire 105 can be suppressed.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
(実施例1)
 上記実施形態の基板の第二の製造方法により、基材上に基板が配置されるとともに基板上に導電パターン4が設けられた導電パターン基板を得た。ラミネート工程では、基材にラミネートする感光性導電フィルムとして、MS50X40W1-30(商品名、日立化成株式会社製)を用いた。圧着温度は110℃、圧着速度は0.6m/分、圧着圧力は0.4MPa(4kgf/cm程度)とした。第一露光工程では、露光量を60mJ/cmとした。第二露光工程では、支持フィルム(ベースフィルム)を剥離した後に感光層を露光した。感光層に対するフォトマスクの離間距離を2.0mmとし、露光量を100mJ/cmとした。現像工程では、現像時間を65秒とした。現像液のスプレー圧力は0.15MPa、現像液温度は30℃とした。得られた導電パターン基板をSEM写真で観察したところ、基板の厚さ方向に対するテーパ面の傾斜角度は約10°であった。その後、得られた導電パターン基板において、引出配線として、基板の端部から基材にかけて銀ペーストを塗布した。銀ペーストが塗布された実施例1のSEM写真を図13に示す。
Example 1
By the second manufacturing method of the substrate of the above embodiment, a conductive pattern substrate was obtained in which the substrate was disposed on the base material and the conductive pattern 4 was provided on the substrate. In the laminating step, MS50X40W1-30 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as a photosensitive conductive film to be laminated on a substrate. The pressing temperature was 110 ° C., the pressing speed was 0.6 m / min, and the pressing pressure was 0.4 MPa (about 4 kgf / cm 2 ). In the first exposure step, the exposure dose was 60 mJ / cm 2 . In the second exposure step, the photosensitive film was exposed after the support film (base film) was peeled off. The distance between the photosensitive layer and the photomask was 2.0 mm, and the exposure dose was 100 mJ / cm 2 . In the development step, the development time is 65 seconds. The spray pressure of the developer was 0.15 MPa, and the developer temperature was 30.degree. When the obtained conductive pattern substrate was observed by a SEM photograph, the inclination angle of the tapered surface with respect to the thickness direction of the substrate was about 10 °. Thereafter, in the obtained conductive pattern substrate, a silver paste was applied from the end portion of the substrate to the base material as a lead wiring. The SEM photograph of Example 1 to which the silver paste was applied is shown in FIG.
(実施例2)
 上記実施形態の基板の第二の製造方法により、基材上に基板が配置されるとともに基板上に導電パターン4が設けられた導電パターン基板を得た。ラミネート工程では、基材にラミネートする感光性導電フィルムとして、MS50X34W1-30(商品名、日立化成株式会社製)を用いた。圧着温度は110℃、圧着速度は0.6m/分、圧着圧力は0.4MPa(4kgf/cm程度)とした。第一露光工程では、露光量を60mJ/cmとした。第二露光工程では、支持フィルム(ベースフィルム)を剥離した後に感光層を露光した。感光層に対するフォトマスクの離間距離を2.0mmとし、露光量を100mJ/cmとした。現像工程では、現像時間を58秒とした。現像液のスプレー圧力は0.15MPa、現像液温度は30℃とした。得られた導電パターン基板をSEM写真で観察したところ、基板の厚さ方向に対するテーパ面の傾斜角度は約40°であった。その後、得られた導電パターン基板において、引出配線として、基板の端部から基材にかけて銀ペーストを塗布した。銀ペーストが塗布された実施例2のSEM写真を図14に示す。
(Example 2)
By the second manufacturing method of the substrate of the above embodiment, a conductive pattern substrate was obtained in which the substrate was disposed on the base material and the conductive pattern 4 was provided on the substrate. In the laminating step, MS50X34W1-30 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as a photosensitive conductive film to be laminated on a substrate. The pressing temperature was 110 ° C., the pressing speed was 0.6 m / min, and the pressing pressure was 0.4 MPa (about 4 kgf / cm 2 ). In the first exposure step, the exposure dose was 60 mJ / cm 2 . In the second exposure step, the photosensitive film was exposed after the support film (base film) was peeled off. The distance between the photosensitive layer and the photomask was 2.0 mm, and the exposure dose was 100 mJ / cm 2 . In the development step, the development time was 58 seconds. The spray pressure of the developer was 0.15 MPa, and the developer temperature was 30.degree. When the obtained conductive pattern substrate was observed by a SEM photograph, the inclination angle of the tapered surface with respect to the thickness direction of the substrate was about 40 °. Thereafter, in the obtained conductive pattern substrate, a silver paste was applied from the end portion of the substrate to the base material as a lead wiring. The SEM photograph of Example 2 to which the silver paste was applied is shown in FIG.
(実施例3)
 上記実施形態の基板の第二の製造方法により、基材上に基板が配置されるとともに基板上に導電パターン4が設けられた導電パターン基板を得た。ラミネート工程では、基材にラミネートする感光性導電フィルムとして、MS50H3W1-30(商品名、日立化成株式会社製)を用いた。圧着温度は110℃、圧着速度は0.6m/分、圧着圧力は0.4MPa(4kgf/cm程度)とした。第一露光工程では、露光量を60mJ/cmとした。第二露光工程では、支持フィルム(ベースフィルム)を剥離した後に感光層を露光した。感光層に対するフォトマスクの離間距離を2.0mmとし、露光量を100mJ/cmとした。現像工程では、現像時間を100秒とした。現像液のスプレー圧力は0.15MPa、現像液温度は30℃とした。得られた導電パターン基板をSEM写真で観察したところ、基板の厚さ方向に対するテーパ面の傾斜角度は約70°であった。その後、得られた導電パターン基板において、引出配線として、基板の端部から基材にかけて銀ペーストを塗布した。銀ペーストが塗布された実施例3のSEM写真を図15に示す。
(Example 3)
By the second manufacturing method of the substrate of the above embodiment, a conductive pattern substrate was obtained in which the substrate was disposed on the base material and the conductive pattern 4 was provided on the substrate. In the laminating step, MS50H3W1-30 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was used as a photosensitive conductive film to be laminated on a substrate. The pressing temperature was 110 ° C., the pressing speed was 0.6 m / min, and the pressing pressure was 0.4 MPa (about 4 kgf / cm 2 ). In the first exposure step, the exposure dose was 60 mJ / cm 2 . In the second exposure step, the photosensitive film was exposed after the support film (base film) was peeled off. The distance between the photosensitive layer and the photomask was 2.0 mm, and the exposure dose was 100 mJ / cm 2 . In the development step, the development time is 100 seconds. The spray pressure of the developer was 0.15 MPa, and the developer temperature was 30.degree. When the obtained conductive pattern substrate was observed by a SEM photograph, the inclination angle of the tapered surface with respect to the thickness direction of the substrate was about 70 °. Thereafter, in the obtained conductive pattern substrate, a silver paste was applied from the end portion of the substrate to the base material as a lead wiring. The SEM photograph of Example 3 to which the silver paste was applied is shown in FIG.
(評価)
 銀ペーストが塗布された実施例1~3のSEM写真を観察したところ、何れも、基板の端縁において導電ペーストが十分保持されていた。
(Evaluation)
As a result of observation of the SEM photographs of Examples 1 to 3 to which the silver paste was applied, it was found that the conductive paste was sufficiently retained at the edge of the substrate.
 1…基板、1a…端部、1A…導電パターン基板、2…基材、3…導電ペースト、4…導電パターン、5…第一面、6…第二面、7…端面、8…テーパ面、10…感光性導電フィルム、11…支持フィルム、12…導電膜、13…感光性樹脂層、14…感光層、15…ポジマスクパターン、16…フォトマスク、17…スペーサ、100…タッチパネルセンサ、101…透明基板、102…タッチ画面、103,104…透明電極、105…引出配線、106…接続電極、107…接続端子、108…基板、109…導電パターン、110…テーパ面、201…基板、201a…端部、207…端面、A…境界位置、B…境界位置、L…活性光線、TD…厚さ方向。
 
DESCRIPTION OF SYMBOLS 1 ... board | substrate, 1a ... edge part, 1A ... electroconductive pattern board | substrate, 2 ... base material, 3 ... electroconductive paste, 4 ... electroconductive pattern, 5 ... 1st surface, 6 ... 2nd surface, 7 ... end surface, 8 ... taper surface , 10: photosensitive conductive film, 11: support film, 12: conductive film, 13: photosensitive resin layer, 14: photosensitive layer, 15: positive mask pattern, 16: photomask, 17: spacer, 100: touch panel sensor, 101: transparent substrate, 102: touch screen, 103, 104: transparent electrode, 105: lead wire, 106: connection electrode, 107: connection terminal, 108: substrate, 109: conductive pattern, 110: taper surface, 201: substrate, 201a ... end part, 207 ... end face, A ... boundary position, B ... boundary position, L ... active ray, TD ... thickness direction.

Claims (7)

  1.  基材上に配置されて、端部から前記基材にかけて導電ペーストが塗布される基板であって、
     端面の少なくとも一部は、前記基板の厚さ方向に対して傾斜したテーパ面となっている、
    基板。
    A substrate disposed on a substrate and to which a conductive paste is applied from the end to the substrate,
    At least a part of the end face is a tapered surface inclined with respect to the thickness direction of the substrate,
    substrate.
  2.  導電パターンが設けられた第一面と、前記基材側に配置されて前記厚さ方向において前記第一面と対向する第二面とを有し、
     前記端面は、前記第一面と前記第二面とを接続し、
     前記テーパ面は、前記第一面から前記第二面に向けて広がるように傾斜している、
    請求項1に記載の基板。
    A first surface provided with a conductive pattern, and a second surface disposed on the substrate side and facing the first surface in the thickness direction,
    The end face connects the first surface and the second surface,
    The tapered surface is inclined so as to extend from the first surface to the second surface.
    The substrate according to claim 1.
  3.  前記厚さ方向に対する前記テーパ面の傾斜角度は、60°以上90°未満である、
    請求項1又は2に記載の基板。
    The inclination angle of the tapered surface with respect to the thickness direction is 60 ° or more and less than 90 °.
    The substrate according to claim 1 or 2.
  4.  基材と、
     前記基材上に配置された、請求項1~3の何れか一項に記載された基板と、を備え、
     前記基板の表面から前記基材にかけて導電ペーストの引出配線が設けられている、
    タッチパネルセンサ。
    A substrate,
    A substrate according to any one of the preceding claims, disposed on the substrate.
    A lead wire of a conductive paste is provided from the surface of the substrate to the base material,
    Touch panel sensor.
  5.  基材と、
     前記基材上に配置された、請求項1~3の何れか一項に記載された基板と、を備え、
     前記基板の表面から前記基材にかけて導電ペーストの引出配線が設けられている、
    モジュール。
    A substrate,
    A substrate according to any one of the preceding claims, disposed on the substrate.
    A lead wire of a conductive paste is provided from the surface of the substrate to the base material,
    module.
  6.  端部に導電ペーストが塗布される基板を製造する基板の製造方法であって、
     基材上に配置された感光層に、開口を有するフォトマスクを介して活性光線を照射する露光工程と、
     前記露光工程の後に前記感光層を現像する現像工程と、を備え、
     前記露光工程では、前記フォトマスクを前記感光層から離間させた状態で前記感光層に前記活性光線を照射する、
    基板の製造方法。
    A method of manufacturing a substrate, wherein a substrate to which a conductive paste is applied at an end portion is manufactured.
    Exposing the photosensitive layer disposed on the substrate to an actinic ray through a photomask having an opening;
    And a development step of developing the photosensitive layer after the exposure step,
    In the exposure step, the photosensitive layer is irradiated with the actinic ray in a state in which the photomask is separated from the photosensitive layer.
    Method of manufacturing a substrate
  7.  端部に導電ペーストが塗布される基板を製造する基板の製造方法であって、
     基材上に配置された感光性樹脂層と、前記感光性樹脂層の前記基材とは反対側の面に配置された導電膜とを含む感光層に、パターン状に活性光線を照射する第一露光工程と、
     前記第一露光工程の後に、酸素存在下で、開口を有するフォトマスクを介して前記感光層に活性光線を照射する第二露光工程と、
     前記第二露光工程の後に前記感光層を現像する現像工程と、を備え、
     前記第二露光工程では、前記フォトマスクを前記感光層から離間させた状態で前記活性光線を照射する、
    基板の製造方法。
     
    A method of manufacturing a substrate, wherein a substrate to which a conductive paste is applied at an end portion is manufactured.
    The photosensitive layer comprising a photosensitive resin layer disposed on a substrate and a conductive film disposed on the surface of the photosensitive resin layer opposite to the substrate is irradiated with an actinic ray in a pattern. An exposure step,
    A second exposure step of irradiating the photosensitive layer with an actinic ray through a photomask having an opening in the presence of oxygen after the first exposure step;
    And d) developing the photosensitive layer after the second exposure step;
    In the second exposure step, the actinic ray is irradiated in a state where the photomask is separated from the photosensitive layer.
    Method of manufacturing a substrate
PCT/JP2017/030948 2017-08-29 2017-08-29 Substrate, touch panel sensor, module, and method for manufacturing substrate WO2019043790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030948 WO2019043790A1 (en) 2017-08-29 2017-08-29 Substrate, touch panel sensor, module, and method for manufacturing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030948 WO2019043790A1 (en) 2017-08-29 2017-08-29 Substrate, touch panel sensor, module, and method for manufacturing substrate

Publications (1)

Publication Number Publication Date
WO2019043790A1 true WO2019043790A1 (en) 2019-03-07

Family

ID=65525160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030948 WO2019043790A1 (en) 2017-08-29 2017-08-29 Substrate, touch panel sensor, module, and method for manufacturing substrate

Country Status (1)

Country Link
WO (1) WO2019043790A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265392A (en) * 2003-02-12 2004-09-24 Nissha Printing Co Ltd Touch panel
JP2011113031A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Image display element and method for manufacturing the same
JP2014120003A (en) * 2012-12-17 2014-06-30 Japan Display Inc Display device with touch detection function, electronic apparatus and manufacturing method for display device with touch detection function
US20140210738A1 (en) * 2013-01-28 2014-07-31 Samsung Display Co., Ltd. Display device integrated with touch screen panel
JP2017068734A (en) * 2015-10-01 2017-04-06 日立化成株式会社 Photosensitive conductive film, forming method for conductive pattern using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265392A (en) * 2003-02-12 2004-09-24 Nissha Printing Co Ltd Touch panel
JP2011113031A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Image display element and method for manufacturing the same
JP2014120003A (en) * 2012-12-17 2014-06-30 Japan Display Inc Display device with touch detection function, electronic apparatus and manufacturing method for display device with touch detection function
US20140210738A1 (en) * 2013-01-28 2014-07-31 Samsung Display Co., Ltd. Display device integrated with touch screen panel
JP2017068734A (en) * 2015-10-01 2017-04-06 日立化成株式会社 Photosensitive conductive film, forming method for conductive pattern using the same

Similar Documents

Publication Publication Date Title
JP5257558B1 (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP6402791B2 (en) Conductive film substrate and method of using the same
JP6176295B2 (en) Method for forming conductive pattern
JP5569144B2 (en) Photosensitive conductive film, method for forming conductive film, and method for forming conductive pattern
WO2014196154A1 (en) Photosensitive electroconductive film, method for forming electroconductive pattern using same, and electroconductive pattern substrate
WO2019043790A1 (en) Substrate, touch panel sensor, module, and method for manufacturing substrate
WO2020079844A1 (en) Method for producing conductive substrate, and conductive substrate
JP2017156510A (en) Photosensitive conductive film, method for forming conductive pattern, conductive pattern substrate, and touch panel
JP2017201350A (en) Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate
WO2018138879A1 (en) Photosensitive conductive film, conductive pattern formation method, conductive pattern substrate production method, conductive pattern substrate, and touch panel sensor
WO2018008599A1 (en) Photosensitive conductive film, method for manufacturing conductive pattern, conductive pattern substrate, and touch panel sensor
JP2018022030A (en) Photosensitive conducive film, and method for forming conductive pattern using the same, conductive pattern substrate and touch panel sensor
JP2019144657A (en) Conductive pattern formation method, conductive pattern base material, and touch sensor panel
JP2018116841A (en) Conductive layer with base material, method for producing the same, and sensor
JP2017201349A (en) Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP