WO2014196154A1 - Photosensitive electroconductive film, method for forming electroconductive pattern using same, and electroconductive pattern substrate - Google Patents

Photosensitive electroconductive film, method for forming electroconductive pattern using same, and electroconductive pattern substrate Download PDF

Info

Publication number
WO2014196154A1
WO2014196154A1 PCT/JP2014/002770 JP2014002770W WO2014196154A1 WO 2014196154 A1 WO2014196154 A1 WO 2014196154A1 JP 2014002770 W JP2014002770 W JP 2014002770W WO 2014196154 A1 WO2014196154 A1 WO 2014196154A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
conductive film
photosensitive resin
photosensitive
conductive
Prior art date
Application number
PCT/JP2014/002770
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 海老原
山崎 宏
泰治 村上
田仲 裕之
向 郁夫
笹原 直樹
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2014196154A1 publication Critical patent/WO2014196154A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a photosensitive conductive film, a method for forming a conductive pattern using the same, and a conductive pattern substrate.
  • the present invention relates to a photosensitive conductive film capable of forming a conductive pattern used as an electrode wiring of a device such as a flat panel display such as a liquid crystal display element, a touch screen, a solar cell, and illumination.
  • Liquid crystal display elements and touch screens are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones and electronic dictionaries, and display devices such as OA / FA devices. These liquid crystal display elements and touch screens require a transparent conductive electrode material.
  • a transparent conductive electrode material ITO (Indium-Tin-Oxide), indium oxide, and tin oxide are conventionally used because they exhibit high transmittance.
  • capacitive touch panel when a fingertip (conductor) contacts the touch input surface, the fingertip and the conductive film are capacitively coupled to form a capacitor. For this reason, the capacitive touch panel detects the coordinates by capturing the change in charge at the contact position of the fingertip.
  • the projected capacitive touch panel can detect multiple points on the fingertip, so it has a good operability to give complex instructions. Due to its good operability, mobile phones and portable music players As an input device on a display surface in a device having a small display device such as the above, the use is progressing.
  • a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes.
  • a transparent conductive film containing a transparent conductive electrode material is used for these electrodes.
  • a method for patterning the transparent conductive film As a method for patterning the transparent conductive film, a method is generally used in which after forming the transparent conductive film, a resist pattern is formed by photolithography, and a predetermined portion of the conductive film is removed by wet etching to form a conductive pattern.
  • the transparent conductive electrode material is ITO and indium oxide
  • a mixed liquid composed of two liquids of hydrochloric acid and ferric chloride is used as the etching liquid.
  • ITO films and tin oxide films are generally formed by sputtering, but the properties of the transparent conductive film are likely to change depending on the sputtering method, sputtering power, gas pressure, substrate temperature, type of atmospheric gas, and the like. Differences in the film quality of the transparent conductive film due to fluctuations in sputtering conditions cause variations in the etching rate when the transparent conductive film is wet-etched, and are liable to reduce product yield due to patterning defects. In addition, since the conductive pattern forming method has undergone a sputtering process, a resist forming process, and an etching process, the process is long and has a large cost.
  • Patent Document 1 proposes a method for forming a conductive pattern using a photosensitive conductive film having a conductive film containing conductive fibers. If this technique is used, a conductive pattern can be easily formed directly on various substrates by a photolithography process.
  • a wiring circuit for transmitting an electrical change generated in the transparent electrode portion to the control IC is formed in the frame area of the touch panel.
  • an extremely thin wiring circuit pattern is printed by screen printing using a vapor-deposited metal wiring circuit formed by using a vapor-deposited metal thin film or a thermosetting or evaporation-drying silver paste.
  • a silver paste printed wiring circuit formed by heat treatment can be mentioned, but the latter silver paste printed wiring circuit is more widely used in terms of cost.
  • the projected capacitive touch panel generally has a structure in which a transparent electrode and a control IC are physically and electrically connected by a silver paste printed wiring circuit, but the silver paste printed wiring is disconnected / If the connection between the silver paste and the transparent electrode or the silver paste and the control IC is broken, there arises a problem that the touch panel does not operate normally.
  • sensor electrodes (conductive patterns) of touch panels can be easily formed on various substrates by a photolithography process.
  • the sensor electrode and the control IC are connected by a silver paste printed wiring, there is a problem in that the resistance value between the conductive pattern and the silver paste increases under high temperature and high humidity conditions, resulting in disconnection. Since this increase in resistance value is influenced by the composition of the silver paste, it is possible to prevent the increase in resistance value by selecting an appropriate silver paste.
  • the silver paste is also required to have printability for forming fine wiring, and there are few silver pastes that satisfy both the printability and the suppression of the increase in resistance value.
  • the present inventors have found that a disconnection failure occurs between the conductive pattern and the silver paste even under high temperature and high humidity conditions without depending on the composition of the silver paste. It came to invent the difficult photosensitive conductive film.
  • a photosensitive conductive film comprising a support film, a conductive film provided on the support film, and a photosensitive resin layer provided on the conductive film, wherein the photosensitive resin layer is , (A) a binder polymer, (B) a photopolymerizable compound, (C) contains a photopolymerizable initiator,
  • the photosensitive resin layer has a hydroxyl value of 40 mgKOH / g or less.
  • the present invention also provides a photosensitive conductive film in which the hydroxyl value of the component (A) is 60 mgKOH / g or less.
  • the present invention provides a photosensitive conductive film in which the hydroxyl value of the component (B) is 90 mgKOH / g or less.
  • the present invention also provides a photosensitive conductive film in which, in addition to the photosensitive resin layer, the conductive film contains at least one conductive fiber.
  • the present invention also provides a photosensitive conductive film in which the conductive fiber is a silver fiber.
  • the present invention is a step of laminating the photosensitive conductive film so that the photosensitive resin layer is in close contact with the substrate, An exposure step of irradiating a predetermined portion of the photosensitive resin layer on the substrate with an actinic ray; A development step of forming a conductive pattern by developing the exposed photosensitive resin layer and an unexposed portion of the conductive film after peeling the support film; A method for forming a conductive pattern is provided.
  • the present invention is a step of laminating the photosensitive conductive film so that the photosensitive resin layer is in close contact with the substrate, A first exposure step of irradiating a predetermined portion of the photosensitive resin layer on the substrate with an actinic ray; After peeling the support film, in the presence of oxygen, a second exposure step of irradiating a part or all of the unexposed portion in the first exposure step with actinic rays, A developing step of forming a conductive pattern by developing the photosensitive resin layer and the conductive film after the second exposure step; A method for forming a conductive pattern is provided.
  • the present invention provides an actinic ray to a predetermined portion of a conductive film including conductive fibers provided on a surface of the photosensitive resin layer opposite to the substrate, the photosensitive resin layer provided on the substrate.
  • An exposure step of irradiating A developing step of forming a conductive pattern by removing the photosensitive resin layer and an unexposed portion of the conductive film,
  • the photosensitive resin layer contains (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerizable initiator, and the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less.
  • a method for manufacturing a pattern is provided.
  • the present invention provides an actinic ray to a predetermined portion of a conductive film including conductive fibers provided on a surface of the photosensitive resin layer opposite to the substrate, the photosensitive resin layer provided on the substrate.
  • An exposure step of irradiating A second exposure step of irradiating a part or all of the unexposed portion in the first exposure step with actinic rays in the presence of oxygen;
  • the photosensitive resin layer contains (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerizable initiator, and the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less.
  • a method for manufacturing a pattern is provided.
  • the present invention can provide a conductive pattern substrate comprising a conductive pattern obtained by the conductive pattern forming method.
  • the present invention can provide a touch panel sensor including the conductive pattern substrate.
  • the photosensitive conductive film of the present invention it is possible to form a conductive pattern that hardly causes disconnection failure with the silver paste even under high temperature and high humidity conditions without depending on the composition of the silver paste.
  • FIG. 6 is a partial cross-sectional view taken along the line a-a ′ shown in FIG. 5.
  • FIG. 6 is a partial cross-sectional view taken along the line b-b ′ shown in FIG. 5.
  • (meth) acrylate means “acrylate” or “methacrylate” corresponding thereto
  • (meth) acrylic acid alkyl ester means “acrylic acid alkyl ester” or corresponding thereto.
  • alkyl methacrylate means “alkyl methacrylate”.
  • (meth) acryl means “acryl” or “methacryl”
  • (meth) acryloyl” means “acryloyl” or “methacryloyl” corresponding thereto.
  • the photosensitive conductive film according to the present invention includes a support film, a conductive film provided on the support film, and a photosensitive resin layer provided on the conductive film.
  • the boundary between the conductive film and the photosensitive resin layer is not necessarily clear.
  • Any conductive film may be used as long as conductivity is obtained in the surface direction of the photosensitive layer, and the conductive resin may be mixed with the photosensitive resin layer.
  • the composition constituting the photosensitive resin layer may be impregnated in the conductive film, or the composition constituting the photosensitive resin layer may be present on the surface of the conductive film.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of a photosensitive conductive film used in the present invention.
  • a photosensitive conductive film 10 shown in FIG. 1 includes a support film 1 and a photosensitive layer 4 provided on the support film 1, and the photosensitive layer 4 is provided with a conductive film 2 and a photosensitive property provided on the conductive film 2. It consists of a resin layer 3.
  • the support film 1 examples include polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film. Among these, a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance. In addition, since these polymer films must be removable from the photosensitive layer 4 later, they must not be subjected to a surface treatment or a material that makes removal impossible. .
  • the thickness of the support film 1 is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, still more preferably 15 to 100 ⁇ m, and particularly preferably 15 ⁇ m to 50 ⁇ m.
  • the haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is particularly preferably from 2.0 to 2.0%, and extremely preferably from 0.01 to 1.0%.
  • the haze value can be measured in accordance with JIS K 7105. For example, it can be measured with a commercially available turbidimeter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.). .
  • the conductive film 2 can use a transparent conductive electrode material without any particular limitation, but preferably contains at least one type of conductive fiber.
  • FIG. 2 is a partially cutaway perspective view showing an embodiment of a photosensitive conductive film.
  • the conductive film 2 preferably has a network structure in which conductive fibers are in contact with each other.
  • the conductive film 2 having such a network structure may be formed on the surface of the photosensitive resin layer 3 on the support film 1 side, but on the surface of the photosensitive layer 4 exposed when the support film 1 is peeled off.
  • the conductive film 2 may be formed so that a part of the photosensitive resin layer 3 enters the conductive film 2, and the conductive film is formed on the surface layer of the photosensitive resin layer 3 on the support film 1 side. 2 may be included.
  • the conductive fiber examples include metal fibers such as gold, silver, copper, and platinum, and carbon fibers such as carbon nanotubes. These can be used alone or in combination of two or more. From the viewpoint of conductivity, it is preferable to use gold fiber or silver fiber. Furthermore, silver fiber is more preferable from the viewpoint of easily adjusting the conductivity of the conductive film to be formed.
  • the metal fiber can be prepared by a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method.
  • a reducing agent such as NaBH 4 or a polyol method.
  • carbon nanotubes commercially available products such as Hipym single-walled carbon nanotubes from Unidim can be used.
  • the fiber diameter of the conductive fiber is preferably 1 nm to 50 nm, more preferably 2 nm to 20 nm, and further preferably 3 nm to 10 nm.
  • the fiber length of the conductive fiber is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 50 ⁇ m, and even more preferably 3 ⁇ m to 10 ⁇ m.
  • the fiber diameter and fiber length can be measured with a scanning electron microscope.
  • an organic conductor can be used for the conductive film 2 together with conductive fibers.
  • the organic conductor can be used without any particular limitation, but it is preferable to use an organic conductor such as a polymer of a thiophene derivative or an aniline derivative. Specifically, polyethylenedioxythiophene, polyhexylthiophene, polyaniline, or the like can be used.
  • the thickness of the conductive film 2 varies depending on the use of the conductive pattern formed using the photosensitive conductive film of the present invention and the required conductivity, but is preferably 1 ⁇ m or less, and preferably 1 nm to 0.5 ⁇ m. More preferably, the thickness is 5 nm to 0.1 ⁇ m.
  • the thickness of the electrically conductive film 2 points out the value measured by a scanning electron micrograph.
  • the conductive film 2 is, for example, a conductive dispersion obtained by adding the above-described conductive fiber or organic conductor to the support film 1 with water and / or an organic solvent and, if necessary, a dispersion stabilizer such as a surfactant. After coating, it can be formed by drying. After drying, the conductive film 2 formed on the support film 1 may be laminated as necessary.
  • the coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. The drying can be performed at 30 to 150 ° C. for about 1 to 30 minutes with a hot air convection dryer or the like.
  • the conductive fiber or the organic conductor may coexist with a surfactant or a dispersion stabilizer.
  • the conductive film 2 may be a combination of conductive fibers and organic conductors. In that case, a mixture of them may be applied and formed, or each may be formed by sequentially applying each of them. For example, it can be formed by applying conductive fibers and then applying and drying a solution of an organic conductor.
  • Examples of the photosensitive resin layer 3 include those formed from a photosensitive resin composition containing (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator.
  • (A) As binder polymer epoxy resin obtained by reaction of acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid
  • acrylic resin obtained by reaction of acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid
  • acrylic resin obtained by reaction of acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid
  • acrylic acid-modified epoxy acrylate resins obtained by reaction of acrylate resins and epoxy acrylate resins with acid anhydrides. These resins can be used alone or in combination of two or more.
  • acrylic resin is derived from (meth) acrylic acid and a (meth) acrylic acid alkyl ester as a constituent unit. More preferably.
  • acrylic resin means a polymer mainly having monomer units derived from a polymerizable monomer having a (meth) acrylic group.
  • acrylic resin those produced by radical polymerization of a polymerizable monomer having a (meth) acryl group can be used. These acrylic resins can be used alone or in combination of two or more.
  • Examples of the polymerizable monomer having a (meth) acryl group include acrylamide such as diacetone acrylamide, (meth) acrylic acid alkyl ester, (meth) acrylic acid benzyl ester, 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 2-hydroxy-3-chloropropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, acryloyloxyethyl-2-hydroxypropyl Phthalates (Osaka Organic Chemistry, Piscoat # 2311HP), (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminoethyl ester, (meth ) Glycidyl acrylate, 2,2,2-trifluoroethyl (meth) acryl
  • the acrylic resin is substituted at the ⁇ -position or aromatic ring such as styrene, vinyltoluene, ⁇ -methylstyrene and the like.
  • Polymerizable styrene derivatives esters of vinyl alcohol such as acrylonitrile and vinyl-n-butyl ether, maleic acid monoester such as maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate, fumaric acid
  • maleic acid monoester such as maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate, fumaric acid
  • One or two or more polymerizable monomers such as cinnamic acid, ⁇ -cyanocinnamic acid, itaconic acid, and crotonic acid may be copolymerized.
  • Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid pentyl ester.
  • the polymerizable monomers it is preferable to include (meth) acrylic acid alkyl ester, (meth) acrylic acid benzyl ester, or (meth) acrylic acid glycidyl ester.
  • (A) binder polymer has a carboxyl group from a viewpoint of making alkali developability more favorable.
  • examples of the polymerizable monomer having a carboxyl group include (meth) acrylic acid as described above.
  • the ratio of the carboxyl group (A) in the binder polymer is preferably 10 to 50% by mass, preferably 12 to 40% by mass, as the ratio of the polymerizable monomer having a carboxyl group to the total polymerizable monomer to be used. % Is more preferable, 15 to 30% by mass is further preferable, and 15 to 25% by mass is particularly preferable. In terms of excellent alkali developability, the content is preferably 10% by mass or more, and in terms of excellent alkali resistance, it is preferably 50% by mass or less.
  • the weight average molecular weight of the binder polymer is preferably 5000 to 300000, more preferably 20000 to 150,000, and more preferably 30000 to 100,000 from the viewpoint of balancing the mechanical strength and alkali developability. Further preferred. In terms of excellent developer resistance, the weight average molecular weight is preferably 5000 or more. Further, from the viewpoint of development time, it is preferably 300000 or less.
  • the weight average molecular weight in the present invention is a value measured by a gel permeation chromatography method (GPC) and converted by a calibration curve prepared using standard polystyrene.
  • binder polymers can be used alone or in combination of two or more.
  • a binder polymer in the case of using two or more types in combination for example, two or more types of binder polymers comprising different copolymerization components, two or more types of binder polymers having different weight average molecular weights, two or more types of binder polymers having different degrees of dispersion are used.
  • a binder polymer is mentioned.
  • the binder polymer preferably has a hydroxyl value of 60 mgKOH / g or less. Moreover, when using in combination of 2 or more types, it is preferable to select so that the sum total of the value which multiplied the mass fraction to the hydroxyl value of each binder polymer may be 60 mgKOH / g or less. 50 mgKOH / g or less is more preferable, 30 mgKOH / g or less is more preferable, and 10 mgKOH / g or less is particularly preferable.
  • the amount of the polymerizable monomer having a hydroxyl group is reduced among the polymerizable monomers used for the production of the acrylic resin.
  • the proportion of hydroxyl groups in the acrylic resin can be reduced, and the hydroxyl value of the binder polymer can be reduced.
  • the amount of (meth) acrylate, acryloyloxyethyl-2-hydroxypropyl phthalate (Osaka Organic Chemical, Piscoat # 2311HP), etc. is adjusted.
  • This photopolymerizable compound preferably has an ethylenically unsaturated bond.
  • the photopolymerizable compound having an ethylenically unsaturated bond include a compound obtained by reacting an ⁇ , ⁇ -unsaturated carboxylic acid with a polyhydric alcohol, and an ⁇ , ⁇ -unsaturated carboxylic acid with a glycidyl group-containing compound.
  • urethane monomer such as (meth) acrylate compound having urethane bond, ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, ⁇ -hydroxyethyl- ⁇
  • phthalic acid compounds such as '-(meth) acryloyloxyethyl-o-phthalate and ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, and (meth) acrylic acid alkyl esters. These may be used alone or in combination of two or more.
  • Examples of the compound obtained by reacting the polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid include 2,2-bis (4-((meth) acryloxypolyethoxy) phenyl) propane, 2,2- Bisphenol A-based (meth) acrylate compounds such as bis (4-((meth) acryloxypolypropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxypolyethoxypolypropoxy) phenyl) propane, Polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meta) A) Chlorate, trimethylolpropane diethoxytri (meth) acrylate, trimethylolpropane trieth
  • the urethane monomer examples include a (meth) acryl monomer having a hydroxyl group at the ⁇ -position and a diisocyanate compound such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • a diisocyanate compound such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • EO represents ethylene oxide
  • PO represents propylene oxide
  • the PO-modified compound has a block structure of a propylene oxide group.
  • examples of the EO-modified urethane di (meth) acrylate include “UA-11” (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • Examples of the EO, PO-modified urethane di (meth) acrylate include “UA-13” (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • the photopolymerizable compound is preferably selected from those having a hydroxyl value of 90 mgKOH / g or less. Moreover, when using in combination of 2 or more types, it is preferable to select so that the sum total of the value which multiplied the mass fraction to the hydroxyl value of each photopolymerizable compound may be 90 mgKOH / g or less. 80 mgKOH / g or less is more preferable, 50 mgKOH / g or less is more preferable, and 10 mgKOH / g or less is particularly preferable.
  • the hydroxyl value can be reduced by selecting a photopolymerizable compound that does not contain an OH group (hydroxyl group) in the structural formula or by reducing the amount of the photopolymerizable compound that contains an OH group.
  • the photopolymerizable compound that does not contain an OH group include trimethylolpropane triacrylate and ethylene oxide (EO) -containing trimethylolpropane among compounds obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid.
  • Examples include triacrylate, propylene oxide (PO) -containing trimethylolpropane triacrylate, and dipentaerythritol hexaacrylate.
  • a photopolymerizable compound containing an OH group a compound obtained by reacting a glycidyl group-containing compound with an ⁇ , ⁇ -unsaturated carboxylic acid, ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyl Phthalic acid compounds such as oxyethyl-o-phthalate, ⁇ -hydroxyethyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-chloropropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 4-hydroxybutyl ( (Meth) acrylate, acryloyloxyethyl-2-
  • the content ratio of the photopolymerizable compound is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass with respect to 100% by mass of the total amount of the binder polymer and the photopolymerizable compound. .
  • it is preferably 30 parts by mass or more, and in terms of excellent storage stability when wound as a film. 80% by mass or less is preferable.
  • the photopolymerization initiator is not particularly limited as long as it matches the light wavelength of the exposure machine to be used and the wavelength required for function expression.
  • benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether, and benzoin phenyl ether; benzoin compounds such as benzoin, methyl benzoin, and ethyl benzoin; 1,2-octanedione-1- [4- (phenylthio) phenyl] Oxime ester compounds such as -2- (O-benzoyloxime), 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone 1- (O-acetyloxime); Zimechi Benzyl derivatives such as ketals; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o -Fluorophenyl) -4,5-diphenylimid
  • oxime ester compounds are preferable from the viewpoint of transparency and pattern forming ability at 10 ⁇ m or less.
  • the oxime ester compound include compounds represented by the following general formula (C-1) and general formula (C-2). From the viewpoint of fast curability and transparency, a compound represented by the following general formula (C-1) is more preferable.
  • each R 1 independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a phenyl group, or a tolyl group.
  • Preferred is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, phenyl It is more preferably a group or a tolyl group, and further preferably a methyl group, a hexyl group, a cyclopentyl group, a phenyl group or a tolyl group.
  • R is —H, —OH, —COOH, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH. It is preferably —H, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH, and —H, —O (CH 2 ) 2 OH or —COO (CH 2 ) 2 OH is more preferable.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • R 3 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms.
  • a phenyl group or a tolyl group R 4 represents an alkyl group having 1 to 12 carbon atoms
  • R 5 represents an alkyl group or aryl group having 1 to 20 carbon atoms.
  • p1 represents an integer of 0 to 3. In the case p1 is 2 or more, or different R 4 existing in plural each identical.
  • R 2 or R 4 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, and 1 to 4 carbon atoms. More preferably, it is an alkyl group.
  • R 3 is preferably an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 4 to 15 carbon atoms, and an alkyl group having 1 to 4 carbon atoms or a carbon number A 4 to 10 cycloalkyl group is more preferable, and an ethyl group is particularly preferable.
  • R 5 is preferably an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 16 carbon atoms, and an alkyl group having 1 to 8 carbon atoms or 6 to 14 carbon atoms. Are more preferable, and an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms is more preferable.
  • Examples of the compound represented by the general formula (C-1) include 1,2-octanedione, 1- [4- (phenylthio) -phenyl, 2- (O-benzoyloxime)] and the like.
  • Examples of the compound represented by the general formula (C-2) include ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyl). Oxime) and the like. These are commercially available as IRGACURE OXE 01 and IRGACURE OXE 02 (both manufactured by BASF Corp., trade names), respectively. These are used alone or in combination of two or more.
  • 1,2-octanedione, 1- [4- (phenylthio) -phenyl, 2- (O-benzoyloxime)] is extremely preferable.
  • the content ratio of the photopolymerizable initiator is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer and the photopolymerizable compound. More preferably, it is 1 to 5 parts by mass. In terms of excellent photosensitivity, it is preferably 0.1 parts by mass or more, and in terms of excellent photocurability, it is preferably 20 parts by mass or less.
  • the photosensitive resin layer 3 may have an adhesion-imparting agent such as a silane coupling agent, a plasticizer such as p-toluenesulfonamide, a filler, an antifoaming agent, a flame retardant, a stabilizer, a leveling agent, Additives such as a peeling accelerator, an antioxidant, a fragrance, an imaging agent, and a thermal crosslinking agent can be contained alone or in combination of two or more. The addition amount of these additives is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer and the photopolymerizable compound.
  • an adhesion-imparting agent such as a silane coupling agent, a plasticizer such as p-toluenesulfonamide, a filler, an antifoaming agent, a flame retardant, a stabilizer, a leveling agent
  • Additives such as a peeling accelerator, an antioxidant, a fragrance, an
  • the photosensitive resin layer 3 is formed on the support film 1 on which the conductive film 2 is formed, as required, methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl. It can be formed by applying and drying a solution of a photosensitive resin composition having a solid content of about 10 to 60% by mass dissolved in a solvent such as ether or a mixed solvent thereof. However, in this case, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.
  • the photosensitive resin layer 3 can be applied by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
  • the thickness of the photosensitive resin layer 3 varies depending on the application, but the thickness after drying is preferably 1 to 50 ⁇ m, more preferably 1 to 15 ⁇ m, and particularly preferably 1 to 10 ⁇ m. If the thickness is less than 1 ⁇ m, coating tends to be difficult, and if it exceeds 50 ⁇ m, the sensitivity due to the decrease in light transmission is insufficient, and the photocuring property of the photosensitive resin layer to be transferred tends to decrease.
  • the laminate of the conductive film 2 and the photosensitive resin layer 3 has a minimum light transmission in a wavelength region of 450 to 650 nm when the total film thickness of both layers is 1 to 10 ⁇ m.
  • the rate is preferably 80% or more, and more preferably 85% or more.
  • the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less, preferably 30 mgKOH / g, more preferably 20 mgKOH / g or less, further preferably 10 mgKOH / g or less, particularly preferably 5 mgKOH / g or less.
  • the hydroxyl value of the photosensitive resin layer can be adjusted by adjusting the hydroxyl values of the components (A) and (B).
  • Binder polymer (A) Binder polymer, (B) The photopolymerizable compound or the photosensitive resin layer is reduced in hydroxyl value, and in a conductive pattern obtained using a photosensitive conductive film, poor disconnection occurs under high temperature and high humidity conditions. It becomes difficult to do.
  • a protective film can be laminated so as to be in contact with the surface of the photosensitive resin layer 3 opposite to the support film 1 side.
  • the protective film for example, a polymer film having heat resistance and solvent resistance such as a polyethylene terephthalate film, a polypropylene film, and a polyethylene film can be used. Moreover, you may use the polymer film similar to the above-mentioned support body film as a protective film.
  • the adhesive force between the protective film and the photosensitive resin layer is preferably smaller than the adhesive force between the photosensitive layer 4 and the support film 1 so that the protective film can be easily peeled from the photosensitive resin layer.
  • the number of fish eyes with a diameter of 80 micrometers or more contained in a protective film is 5 pieces / m ⁇ 2 > or less.
  • “Fish eye” means that when a material is melted by heat, kneaded, extruded, biaxially stretched, casting method, etc., foreign materials, undissolved materials, oxidized degradation products, etc. It is taken in.
  • the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 5 to 30 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the thickness of the protective film is less than 1 ⁇ m, the protective film tends to be broken during lamination, and when it exceeds 100 ⁇ m, the price tends to increase.
  • the photosensitive conductive film may further have layers such as an adhesive layer and a gas barrier layer on the support film.
  • the photosensitive conductive film can be stored, for example, in the form of a flat plate as it is or in the form of a roll wound around a cylindrical core. In addition, it is preferable to wind up in this case so that a support film may become the outermost side.
  • the photosensitive conductive film when the photosensitive conductive film does not have a protective film, the photosensitive conductive film can be stored as it is in the form of a flat plate.
  • the core is not particularly limited as long as it is conventionally used, and examples thereof include plastics such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, and ABS resin (acrylonitrile-butadiene-styrene copolymer). It is done. Moreover, it is preferable to install an end face separator on the end face of the photosensitive conductive film wound up in a roll shape from the viewpoint of end face protection, and in addition, it is preferable to install a moisture-proof end face separator from the viewpoint of edge fusion resistance. Moreover, when packing a photosensitive conductive film, it is preferable to wrap and wrap in a black sheet with small moisture permeability.
  • FIG. 3 the photosensitive resin layer 3 of the photosensitive conductive film 10 having the support film 1, the conductive film 2, and the photosensitive resin layer 3 is laminated on the substrate 20 ((a) of FIG. 3), Next, the photosensitive resin layer 3 is irradiated with an actinic ray L in a pattern form through a mask 5 (FIG. 3B), and an uncured portion (unexposed portion) is removed by development to remove a conductive pattern ( A conductive film 2a) is formed (FIG. 3C).
  • the conductive pattern thus obtained has the thickness of the cured resin layer 3b in addition to the thickness of the conductive film 2a. These thicknesses are steps Hb from the substrate. If the level difference is large, the conductive pattern is easily visually recognized, so that the method shown in FIG.
  • the conductive pattern is preferably formed using a photosensitive conductive film, but the conductive resin layer of the present invention and a conductive film containing conductive fibers are separately formed on the substrate, and then exposed and developed. May be formed.
  • the support film 1 is peeled off, and then the oxygen is released.
  • a second exposure step (FIG. 4C) in which a part or all of the exposed portion and the unexposed portion in the first exposure step are irradiated with actinic rays.
  • the second exposure step is performed in the presence of oxygen, for example, preferably in the air. Further, the condition of increasing the oxygen concentration may be used.
  • the development step the surface portion of the photosensitive resin layer 3 exposed in the second exposure step that has not been sufficiently cured is removed.
  • the surface portion of the photosensitive resin layer 3 that is not sufficiently cured by the wet phenomenon, that is, the surface layer including the conductive film 2 is removed.
  • the resin cured layer which does not have a conductive film with a conductive pattern is provided on a board
  • the conductive pattern forming method of the present invention comprises a laminating step of laminating the photosensitive conductive film of the present invention so that the photosensitive resin layer is in close contact with the substrate, and the photosensitive resin on the substrate with the support film attached.
  • a conductive pattern substrate having a conductive pattern patterned on the substrate is obtained.
  • the substrate examples include a glass substrate and a plastic substrate such as polycarbonate.
  • the substrate preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm.
  • the laminating step is performed, for example, by a method of laminating the photosensitive conductive film by removing the protective film, if any, and then pressing the photosensitive resin layer side against the substrate while heating. In addition, it is preferable to laminate
  • the lamination of the photosensitive conductive film it is preferable to heat the photosensitive resin layer or substrate to 70 to 130 ° C., and the pressure bonding pressure is about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ). However, these conditions are not particularly limited.
  • the photosensitive resin layer is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the substrate in advance, but it is also possible to perform a pre-heat treatment of the substrate in order to further improve the lamination property. .
  • the active light is irradiated in an image form through a negative or positive mask pattern called an artwork.
  • a method mask exposure method.
  • the active light source a known light source, for example, a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, or the like that effectively emits ultraviolet light, visible light, or the like is used.
  • an Ar ion laser, a semiconductor laser, or the like that effectively emits ultraviolet light, visible light, or the like is used.
  • Exposure at the exposure step may vary depending on the composition of the device or a photosensitive resin composition to be used is preferably from 5mJ / cm 2 ⁇ 1000mJ / cm 2, 10mJ / cm 2 ⁇ 200mJ / cm 2 is more preferable. In terms of excellent photocurability, it is preferably 10 mJ / cm 2 or more, and in terms of resolution, it is preferably 200 mJ / cm 2 or less.
  • the wet development is performed by a known method such as spraying, rocking immersion, brushing, or scraping, using a developer corresponding to a photosensitive resin such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer. .
  • a safe and stable aqueous solution such as an alkaline aqueous solution
  • alkali hydroxides such as lithium, sodium, or potassium hydroxide
  • alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate
  • potassium phosphate and phosphoric acid.
  • Alkali metal phosphates such as sodium, alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate, alkali borates such as aqueous sodium tetraborate and the like are used.
  • Examples of the alkaline aqueous solution used for development include 0.1 to 5% by mass sodium carbonate aqueous solution, 0.1 to 5% by mass potassium carbonate aqueous solution, 0.1 to 5% by mass sodium hydroxide aqueous solution, and 0.1 to 5% by mass. % Sodium tetraborate aqueous solution and the like are preferable.
  • the pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 11, and the temperature is adjusted according to the developability of the photosensitive resin layer.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • an aqueous developer composed of water or an aqueous alkali solution and one or more organic solvents
  • a base contained in the alkaline aqueous solution in addition to the above-mentioned bases, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1, 3 -Propanediol, 1,3-diaminopropanol-2, morpholine and the like.
  • organic solvent examples include acetone alcohol, acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and the like. It is done. These are used alone or in combination of two or more.
  • the aqueous developer preferably has an organic solvent concentration of 2 to 90% by mass, and the temperature can be adjusted according to the developability. Furthermore, the pH of the aqueous developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8-12, and more preferably pH 9-10. In addition, a small amount of a surfactant, an antifoaming agent, or the like can be added to the aqueous developer.
  • organic solvent developer examples include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, and ⁇ -butyrolactone. These organic solvents are preferably added with water in the range of 1 to 20% by mass in order to prevent ignition.
  • Developers described above may be used in combination of two or more as required.
  • Examples of the development method include a dip method, a battle method, a spray method, brushing, and slapping. Among these, it is preferable to use a high-pressure spray system from the viewpoint of improving the resolution.
  • the conductive pattern may be further cured by performing heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development. .
  • a transparent conductive pattern can be easily formed on a substrate such as glass or plastic without forming an etching resist like an inorganic film such as ITO. Is possible.
  • the conductive pattern substrate of the present invention can be obtained by the conductive film formation method or the conductive pattern formation method described above, but the surface resistivity of the conductive film or conductive pattern is 2000 ⁇ / ⁇ or less from the viewpoint that it can be effectively used as a transparent electrode. Preferably, it is 1000 ⁇ / ⁇ or less, more preferably 500 ⁇ / ⁇ or less.
  • the surface resistivity can be adjusted by, for example, the concentration of the conductive fiber or organic conductor dispersion or the coating amount.
  • the minimum light transmittance in the wavelength region of 450 to 650 nm is preferably 80% or more, and more preferably 85% or more.
  • a touch panel sensor according to the present invention includes the conductive pattern substrate.
  • FIG. 5 is a schematic top view showing an example of a capacitive touch panel sensor.
  • the touch panel sensor shown in FIG. 5 has a touch screen 102 for detecting a touch position on one surface of a transparent substrate 101, and a transparent electrode 103 that detects a change in capacitance in this region and uses it as an X position coordinate;
  • a transparent electrode 104 having Y position coordinates is provided.
  • Each of the transparent electrodes 103 and 104 having the X and Y position coordinates includes a lead wire 105 for connecting to a driver element circuit for controlling an electric signal as a touch panel, and the lead wire 105 and the transparent electrodes 103 and 104.
  • a connection electrode 106 for connecting the two is disposed. Further, a connection terminal 107 connected to the driver element circuit is disposed at the end of the lead-out wiring 105 opposite to the connection electrode 106.
  • FIG. 6 is a schematic diagram showing an example of a manufacturing method of the touch panel sensor shown in FIG.
  • the transparent electrodes 103 and 104 are formed by the conductive pattern forming method according to the present invention.
  • a transparent electrode (X position coordinate) 103 is formed on a transparent substrate 101.
  • the photosensitive conductive film 10 is laminated so that the photosensitive resin layer 3 is connected to the transparent substrate 101.
  • the transferred photosensitive layer 4 (the conductive film 2 and the photosensitive resin layer 3) is irradiated with an actinic ray in a desired shape through a light-shielding mask (first exposure step). Thereafter, the light shielding mask is removed, the support film is further peeled off, and the photosensitive layer 4 is irradiated with actinic rays (second exposure step).
  • FIG. 6B is a schematic cross-sectional view taken along the line II in FIG.
  • FIG. 6D is a schematic cross-sectional view taken along the line II-II in FIG.
  • a lead wire 105 for connecting to an external circuit and a connection light bulb 106 for connecting the lead wire and the transparent electrodes 103 and 104 are formed on the surface of the transparent substrate 101 (not shown).
  • the lead line 105 and the connection electrode 106 are shown to be formed after the formation of the transparent electrodes 103 and 104, but they may be formed simultaneously with the formation of the transparent electrodes.
  • the lead line 105 can be formed at the same time as the connection electrode 106 is formed by screen printing using a conductive paste material containing flaky silver, for example.
  • FIGS. 7 and 8 are partial cross-sectional views taken along lines a-a 'and b-b' shown in FIG. 5, respectively. These indicate the intersections of the transparent electrodes at the XY position coordinates.
  • the transparent electrode is formed by the conductive pattern forming method according to the present invention, so that a touch panel sensor with small steps and high smoothness can be obtained.
  • the (B) component used by the Example and the comparative example is as follows.
  • DPHA Nippon Kayaku Co., Ltd., dipentaerythritol hexaacrylate, hydroxyl value 40
  • TMPTA Nippon Kayaku Co., Ltd., trimethylolpropane triacrylate, hydroxyl value 0
  • PET-30 Nippon Kayaku Co., Ltd., pentaerythritol triacrylate, hydroxyl value 110
  • A-9550 manufactured by Shin-Nakamura Chemical Co., Ltd., dipentaerythritol polyacrylate, hydroxyl value 40
  • A-9570 manufactured by Shin-Nakamura Chemical Co., Ltd., dipentaerythritol polyacrylate, hydroxyl value 70
  • A-TMM-3 made by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate, hydroxyl value 110
  • A-TMM-3LMN manufactured by Shin-Nakamura
  • the reaction solution was allowed to stand at 30 ° C. or less, diluted 10-fold with acetone, centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted.
  • Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice using distilled water similarly, and obtained the silver fiber.
  • the fiber diameter (diameter) was about 5 nm
  • the fiber length was about 5 ⁇ m.
  • Weight average molecular weight The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and was derived by conversion using a standard polystyrene calibration curve.
  • GPC condition Pump Hitachi L-6000 type (product name, manufactured by Hitachi, Ltd.) Column: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (above, manufactured by Hitachi Chemical Co., Ltd., product name)
  • Eluent Tetrahydrofuran Measurement temperature: 40 ° C
  • Flow rate 2.05 mL / min
  • Detector Hitachi L-3300 type RI (manufactured by Hitachi, Ltd., product name)
  • the hydroxyl value was measured as follows. First, the binder polymer solution prepared above was heated at 130 ° C. for 1 hour to remove volatile components, thereby obtaining a solid content. Then, after precisely weighing 1 g of the polymer whose hydroxyl value is to be measured, the precisely weighed polymer is put into an Erlenmeyer flask, and 10 mL of 10% by mass acetic anhydride pyridine solution is added and uniformly dissolved, and then at 100 ° C. for 1 hour. Heated. After heating, 10 mL of water and 10 mL of pyridine were added and heated at 100 ° C. for 10 minutes.
  • Hydroxyl value (AB) ⁇ f ⁇ 28.05 / sample (g) + acid value (where A represents the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used in the blank test). , B represents the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for titration, and f represents a factor.
  • Acid value was measured as follows. First, the binder polymer solution prepared above was heated at 130 ° C. for 1 hour to remove volatile components, thereby obtaining a solid content. Then, after precisely weighing 1 g of the polymer whose acid value is to be measured, the precisely weighed polymer was put into an Erlenmeyer flask, 30 g of acetone was added to this polymer, and this was uniformly dissolved. Next, an appropriate amount of an indicator, phenolphthalein, was added to the solution, and titration was performed using a 0.1N aqueous KOH solution. And the acid value was computed by following Formula.
  • the coefficient of thermal expansion of the cured film was measured when the temperature was increased at a rate of temperature increase of 5 ° C./min, and the inflection point obtained from the curve was determined as the glass transition temperature Tg. As sought.
  • Example 1 ⁇ Preparation of photosensitive conductive film> [Preparation of conductive film (conductive film of photosensitive conductive film)]
  • the silver fiber dispersion obtained above was uniformly applied at 25 g / m 2 onto a 50 ⁇ m-thick polyethylene terephthalate film (PET film, product name “G2-50” manufactured by Teijin Limited) as a support film.
  • PET film polyethylene terephthalate film
  • the film was dried for 3 minutes with a hot air convection dryer at 100 ° C. to form a conductive film.
  • the film thickness after drying of the electrically conductive film was about 0.1 micrometer.
  • the hydroxyl value of the photosensitive resin composition was measured in the same manner as in the binder polymer solution. The results are shown in Table 6.
  • the photosensitive resin composition solution is uniformly applied onto a 50 ⁇ m-thick polyethylene terephthalate (pet) film on which a conductive film is formed with a conductive film, and dried for 10 minutes in a hot air convection dryer at 100 ° C. for photosensitive resin. A layer was formed. Thereafter, the photosensitive resin layer was covered with a protective film made of polyethylene (manufactured by Tamapoly Co., Ltd., trade name “NF-13”) to obtain a photosensitive conductive film. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
  • the visible light transmittance of the obtained sample was measured in a measurement wavelength range of 400 to 700 nm using an ultraviolet-visible spectrophotometer (U-3310) manufactured by Hitachi Instrument Service Co., Ltd.
  • the transmittance of the obtained sample was 92% at a wavelength of 700 nm, 91% at a wavelength of 550 nm, and 87% at a wavelength of 400 nm, and good transmittance was secured.
  • Silver paste connection reliability test for photosensitive conductive film those in which disconnection failure is unlikely to occur between the photosensitive conductive film and the silver paste under high temperature and high humidity conditions are referred to as “good silver paste connection reliability”, and those in which disconnection failure is likely to occur are referred to as “silver paste”
  • the connection reliability is bad.
  • a method for checking whether the silver paste connection reliability is good or bad will be referred to as a silver paste connection reliability test.
  • a laminator (Toyobo Co., Ltd., trade name A4300, length 12 cm ⁇ width 12 cm, thickness 125 ⁇ m) is laminated so that the photosensitive resin layer is in contact.
  • Hitachi Chemical Co., Ltd. (trade name: HLM-3000 type)
  • a substrate on which a photosensitive conductive film including a support film was laminated was prepared.
  • an exposure amount of 5 ⁇ 10 2 is applied to the photosensitive conductive film on the substrate from the support film side (above the photosensitive conductive film conductive film) using a parallel beam exposure machine (EXM1201 manufactured by Oak Manufacturing Co., Ltd.). After irradiating ultraviolet rays at J / m 2 (measured value at i-line (wavelength 365 nm)), the support film is removed, and the exposure amount is 1 ⁇ 10 4 J / m 2 from above the conductive film of the photosensitive conductive film.
  • a parallel beam exposure machine EXM1201 manufactured by Oak Manufacturing Co., Ltd.
  • the sheet resistance value of the obtained photosensitive layer solid film was measured with a non-contact resistance measuring device (Napson Co., Ltd., NC-10) and found to be 270 ⁇ 20 ⁇ / ⁇ .
  • silver paste electrodes were formed on the obtained photosensitive layer solid film at intervals of 3 cm.
  • the silver paste electrode was applied so as to have a diameter of 2 mm and a thickness of 1 mm.
  • As silver paste TB3351C (manufactured by Three Bond Co., Ltd.), AF4500 (manufactured by Taiyo Ink Manufacturing Co., Ltd.), AF6100 (manufactured by Taiyo Ink Manufacturing Co., Ltd.), DW-117H-41 (manufactured by Toyobo Co., Ltd.), DW- 250H-5 (Toyobo Co., Ltd.), DW-250H-23 (Toyobo Co., Ltd.), DW-420L-2 (Toyobo Co., Ltd.), FA-301CA (Fujikura Kasei Co., Ltd.), FA -401CA (manufactured by Fujikura Kasei Co., Ltd.) was used, and all silver pastes were coated
  • the silver paste connection reliability was evaluated using the obtained silver paste connection reliability evaluation sample.
  • the resistance value between the silver paste electrodes formed at intervals of 3 cm was measured using a pocket tester (manufactured by Custom Co., Ltd., CDM-03D).
  • the resistance value is 350 to 400 ⁇ , and this resistance value is set as the initial value (R0) before the silver paste connection reliability evaluation.
  • the silver paste connection reliability of the photosensitive conductive film was evaluated according to the following ratings based on the resistance values R0 and R1 before and after the reliability evaluation.
  • the ratio of R0 to R1 (R1 / R0) was Rr.
  • the results are shown in Table 6. ⁇ ; Rr ⁇ 1.1 ⁇ ; 1.1 ⁇ Rr ⁇ 1.25 ⁇ ; 1.25 ⁇ Rr ⁇ 2 ⁇ : Rr> 2 XX; Rr> 2, R1> 1 ⁇ 10 6 ⁇
  • Comparative Examples 1-6 Except having used the photosensitive resin composition solution shown in Table 6, the photosensitive conductive film was produced similarly to Example 1, the silver paste connection reliability test was implemented, and the silver paste connection reliability was evaluated. The results are shown in Table 6.
  • the photosensitive conductive film of the present invention it is possible to form a conductive pattern that hardly causes disconnection failure with the silver paste even under high temperature and high humidity conditions without depending on the composition of the silver paste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)

Abstract

A photosensitive electroconductive film provided with a support film, an electroconductive film provided on the support film, and a photosensitive resin layer provided on the electroconductive film, the photosensitive resin layer containing (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator, and the hydroxyl value of the dry solids content of the photosensitive resin layer being equal to or less than 40 mgKOH/g.

Description

感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板Photosensitive conductive film, conductive pattern forming method using the same, and conductive pattern substrate
 本発明は、感光性導電フィルム、並びにこれを用いた導電パターンの形成方法及び導電パターン基板に関する。特に液晶表示素子等のフラットパネルディスプレイ、タッチスクリーン、太陽電池、照明等の装置の電極配線として用いられる導電パターンを形成可能な感光性導電フィルムに関する。 The present invention relates to a photosensitive conductive film, a method for forming a conductive pattern using the same, and a conductive pattern substrate. In particular, the present invention relates to a photosensitive conductive film capable of forming a conductive pattern used as an electrode wiring of a device such as a flat panel display such as a liquid crystal display element, a touch screen, a solar cell, and illumination.
 パソコンやテレビ等の大型電子機器からカーナビゲーション、携帯電話、電子辞書等の小型電子機器、OA・FA機器等の表示機器などには液晶表示素子やタッチスクリーンが用いられている。これら液晶表示素子やタッチスクリーンには透明導電電極材が必要である。透明導電電極材としては、高い透過率を示すことから、従来、ITO(Indium-Tin-Oxide)、酸化インジュウムや酸化スズが用いられている。 Liquid crystal display elements and touch screens are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones and electronic dictionaries, and display devices such as OA / FA devices. These liquid crystal display elements and touch screens require a transparent conductive electrode material. As the transparent conductive electrode material, ITO (Indium-Tin-Oxide), indium oxide, and tin oxide are conventionally used because they exhibit high transmittance.
 タッチパネルには、すでに各種の方式が実用化されているが、近年、静電容量方式のタッチパネルの利用が進んでいる。静電容量方式タッチパネルでは、指先(導電体)がタッチ入力面に接触すると、指先と導電膜との間が静電容量結合し、コンデンサを形成する。このため、静電容量方式タッチパネルは、指先の接触位置における電荷の変化を捉えることによって、その座標を検出している。 Various types of touch panels have already been put into practical use, but in recent years, the use of capacitive touch panels has progressed. In a capacitive touch panel, when a fingertip (conductor) contacts the touch input surface, the fingertip and the conductive film are capacitively coupled to form a capacitor. For this reason, the capacitive touch panel detects the coordinates by capturing the change in charge at the contact position of the fingertip.
 投影型静電容量方式のタッチパネルは、指先の多点検出が可能なため、複雑な指示を行うことができるという良好な操作性を備え、その操作性の良さから、携帯電話や携帯型音楽プレーヤ等の小型の表示装置を有する機器における表示面上の入力装置として利用が進んでいる。 The projected capacitive touch panel can detect multiple points on the fingertip, so it has a good operability to give complex instructions. Due to its good operability, mobile phones and portable music players As an input device on a display surface in a device having a small display device such as the above, the use is progressing.
 一般に、投影型静電容量方式のタッチパネルでは、X軸とY軸による2次元座標を表現するために、複数のX電極と、当該X電極に直交する複数のY電極とが、2層構造を形成している。これらの電極には透明導電電極材を含む透明導電膜が用いられる。 In general, in a projected capacitive touch panel, a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes. Forming. A transparent conductive film containing a transparent conductive electrode material is used for these electrodes.
 前記透明導電膜のパターニング方法としては、透明導電膜を形成後、フォトリソグラフィー法によりレジストパターンを形成し、ウエットエッチングにより導電膜の所定部分を除去して導電パターンを形成する方法が一般的である。透明導電電極材がITO及び酸化インジュウムの場合、エッチング液は塩酸と塩化第二鉄の2液からなる混合液が用いられている。 As a method for patterning the transparent conductive film, a method is generally used in which after forming the transparent conductive film, a resist pattern is formed by photolithography, and a predetermined portion of the conductive film is removed by wet etching to form a conductive pattern. . When the transparent conductive electrode material is ITO and indium oxide, a mixed liquid composed of two liquids of hydrochloric acid and ferric chloride is used as the etching liquid.
 ITO膜や酸化スズ膜は一般にスパッタ法により形成されるが、スパッタ方式の違い、スパッタパワーやガス圧、基板温度、雰囲気ガスの種類等によって透明導電膜の性質が変わりやすい。スパッタ条件の変動による透明導電膜の膜質の違いは、透明導電膜をウエットエッチングする際のエッチング速度のばらつきの原因となり、パターンニング不良による製品の歩留り低下を招きやすい。また、前記の導電パターンの形成方法は、スパッタ工程、レジスト形成工程及びエッチング工程を経ていることから、工程が長く、コスト面でも大きな負担となっている。 ITO films and tin oxide films are generally formed by sputtering, but the properties of the transparent conductive film are likely to change depending on the sputtering method, sputtering power, gas pressure, substrate temperature, type of atmospheric gas, and the like. Differences in the film quality of the transparent conductive film due to fluctuations in sputtering conditions cause variations in the etching rate when the transparent conductive film is wet-etched, and are liable to reduce product yield due to patterning defects. In addition, since the conductive pattern forming method has undergone a sputtering process, a resist forming process, and an etching process, the process is long and has a large cost.
 最近、前記の問題を解消するために、ITO、酸化インジュウム及び酸化スズ等に替わる材料を用いて透明な導電パターンを形成する試みがなされている。例えば、下記特許文献1には、導電性繊維を含有する導電膜を有する感光性導電フィルムによる導電パターンの形成方法が提案されている。この技術を用いれば、種々の基板上にフォトリソグラフィー工程で直接導電パターンを簡便に形成できる。 Recently, in order to solve the above-described problems, attempts have been made to form a transparent conductive pattern using a material in place of ITO, indium oxide, tin oxide, or the like. For example, Patent Document 1 below proposes a method for forming a conductive pattern using a photosensitive conductive film having a conductive film containing conductive fibers. If this technique is used, a conductive pattern can be easily formed directly on various substrates by a photolithography process.
 ところで、タッチパネルの額縁領域には、透明電極部分で発生した電気的変化を制御ICまで伝達するための配線回路が形成されている。そのような配線回路としては、蒸着した金属薄膜を利用して形成された蒸着金属配線回路や、熱硬化型又は蒸発乾燥型の銀ペーストを用いてスクリーン印刷により非常に薄い配線回路パターンを印刷し、熱処理して形成した銀ペースト印刷配線回路が挙げられるが、コスト面から後者の銀ペースト印刷配線回路がより広く使用されている。 By the way, a wiring circuit for transmitting an electrical change generated in the transparent electrode portion to the control IC is formed in the frame area of the touch panel. As such a wiring circuit, an extremely thin wiring circuit pattern is printed by screen printing using a vapor-deposited metal wiring circuit formed by using a vapor-deposited metal thin film or a thermosetting or evaporation-drying silver paste. A silver paste printed wiring circuit formed by heat treatment can be mentioned, but the latter silver paste printed wiring circuit is more widely used in terms of cost.
 即ち、投影型静電容量方式のタッチパネルは、透明電極と制御ICが、銀ペースト印刷配線回路によって、物理的、電気的に接続されて構造が一般的であるが、銀ペースト印刷配線が断線・短絡したり、銀ペーストと透明電極、又は銀ペーストと制御ICとの接続が断線すると、タッチパネルが正常に動作しなくなるという問題が発生する。 That is, the projected capacitive touch panel generally has a structure in which a transparent electrode and a control IC are physically and electrically connected by a silver paste printed wiring circuit, but the silver paste printed wiring is disconnected / If the connection between the silver paste and the transparent electrode or the silver paste and the control IC is broken, there arises a problem that the touch panel does not operate normally.
国際特許公開第2010/021224号公報International Patent Publication No. 2010/021224
 特許文献1に開示されている感光性導電フィルムを用いることで、種々の基板上にタッチパネルのセンサー電極(導電パターン)を、フォトリソグラフィー工程で簡便に形成することができる。しかしながら、銀ペースト印刷配線によってセンサー電極と制御ICとを接続した場合に、高温高湿条件下で導電パターンと銀ペーストとの間の抵抗値が上昇し、断線するという問題があった。この抵抗値の上昇は銀ペーストの組成に影響されるため、適切な銀ペーストを選択することで抵抗値の上昇を防ぐことが可能である。しかし、銀ペーストには微細配線を形成するための印刷性も要求されており、この印刷性と抵抗値の上昇を抑えることを両立する銀ペーストは数少ないのが現状である。 By using the photosensitive conductive film disclosed in Patent Document 1, sensor electrodes (conductive patterns) of touch panels can be easily formed on various substrates by a photolithography process. However, when the sensor electrode and the control IC are connected by a silver paste printed wiring, there is a problem in that the resistance value between the conductive pattern and the silver paste increases under high temperature and high humidity conditions, resulting in disconnection. Since this increase in resistance value is influenced by the composition of the silver paste, it is possible to prevent the increase in resistance value by selecting an appropriate silver paste. However, the silver paste is also required to have printability for forming fine wiring, and there are few silver pastes that satisfy both the printability and the suppression of the increase in resistance value.
 そこで、本発明者らは、前記問題を解決するために鋭意検討した結果、銀ペーストの組成に依存すること無く、高温高湿条件下でも導電パターンと銀ペーストとの間で断線不良が発生し難い感光性導電フィルムを発明するに至った。 Therefore, as a result of intensive studies to solve the above problems, the present inventors have found that a disconnection failure occurs between the conductive pattern and the silver paste even under high temperature and high humidity conditions without depending on the composition of the silver paste. It came to invent the difficult photosensitive conductive film.
 本発明では、支持フィルムと、該支持フィルム上に設けられた導電膜と、該導電膜上に設けられた感光性樹脂層と、を備える感光性導電フィルムであって、前記感光性樹脂層は、
 (A)バインダーポリマー、
 (B)光重合性化合物、
 (C)光重合性開始剤を含有し、
 前記感光性樹脂層の水酸基価が40mgKOH/g以下である感光性導電フィルムを提供する。
In the present invention, a photosensitive conductive film comprising a support film, a conductive film provided on the support film, and a photosensitive resin layer provided on the conductive film, wherein the photosensitive resin layer is ,
(A) a binder polymer,
(B) a photopolymerizable compound,
(C) contains a photopolymerizable initiator,
Provided is a photosensitive conductive film in which the photosensitive resin layer has a hydroxyl value of 40 mgKOH / g or less.
 また、本発明は、前記(A)成分の水酸基価が60mgKOH/g以下である、感光性導電フィルムを提供する。 The present invention also provides a photosensitive conductive film in which the hydroxyl value of the component (A) is 60 mgKOH / g or less.
 また、本発明は、前記(B)成分の水酸基価が90mgKOH/g以下である、感光性導電フィルムを提供する。 Further, the present invention provides a photosensitive conductive film in which the hydroxyl value of the component (B) is 90 mgKOH / g or less.
 また、本発明は、前記感光性樹脂層に加えて、前記導電膜が、導電性繊維を少なくとも一種含有する、感光性導電フィルムを提供する。 The present invention also provides a photosensitive conductive film in which, in addition to the photosensitive resin layer, the conductive film contains at least one conductive fiber.
 また、本発明は、前記導電性繊維が、銀繊維である、感光性導電フィルムを提供する。 The present invention also provides a photosensitive conductive film in which the conductive fiber is a silver fiber.
 また、本発明は、前記感光性導電フィルムを、基板上に前記感光性樹脂層が密着するようにラミネートする工程と、
 前記基板上の前記感光性樹脂層の所定部分に活性光線を照射する露光工程と、
 前記支持フィルムを剥離後、露光した前記感光性樹脂層と導電膜の未露光部を現像することにより導電パターンを形成する現像工程と、
を備える、導電パターンの形成方法を提供する。
Further, the present invention is a step of laminating the photosensitive conductive film so that the photosensitive resin layer is in close contact with the substrate,
An exposure step of irradiating a predetermined portion of the photosensitive resin layer on the substrate with an actinic ray;
A development step of forming a conductive pattern by developing the exposed photosensitive resin layer and an unexposed portion of the conductive film after peeling the support film;
A method for forming a conductive pattern is provided.
 また、本発明は、前記感光性導電フィルムを、基板上に前記感光性樹脂層が密着するようにラミネートする工程と、
 前記基板上の前記感光性樹脂層の所定部分に活性光線を照射する第一の露光工程と、
 前記支持フィルムを剥離後、酸素存在下で、前記第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、
 前記第二の露光工程の後に、前記感光性樹脂層と導電膜を現像することにより導電パターンを形成する現像工程と、
を備える、導電パターンの形成方法を提供する。
Further, the present invention is a step of laminating the photosensitive conductive film so that the photosensitive resin layer is in close contact with the substrate,
A first exposure step of irradiating a predetermined portion of the photosensitive resin layer on the substrate with an actinic ray;
After peeling the support film, in the presence of oxygen, a second exposure step of irradiating a part or all of the unexposed portion in the first exposure step with actinic rays,
A developing step of forming a conductive pattern by developing the photosensitive resin layer and the conductive film after the second exposure step;
A method for forming a conductive pattern is provided.
 また、本発明は、基板上に設けられた感光性樹脂層と、前記感光性樹脂層の前記基板とは反対側の面に設けられた、導電性繊維を含む導電膜の所定部分に活性光線を照射する露光工程と、
 前記感光性樹脂層と導電膜の未露光部を除去することにより導電パターンを形成する現像工程と、を含み、
 前記感光性樹脂層は、(A)バインダーポリマー、(B)光重合性化合物、(C)光重合性開始剤を含有し、前記感光性樹脂層の水酸基価が40mgKOH/g以下である、導電パターンの製造方法を提供する。
In addition, the present invention provides an actinic ray to a predetermined portion of a conductive film including conductive fibers provided on a surface of the photosensitive resin layer opposite to the substrate, the photosensitive resin layer provided on the substrate. An exposure step of irradiating
A developing step of forming a conductive pattern by removing the photosensitive resin layer and an unexposed portion of the conductive film,
The photosensitive resin layer contains (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerizable initiator, and the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less. A method for manufacturing a pattern is provided.
 また、本発明は、基板上に設けられた感光性樹脂層と、前記感光性樹脂層の前記基板とは反対側の面に設けられた、導電性繊維を含む導電膜の所定部分に活性光線を照射する露光工程と、
 酸素存在下で、前記第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、
 前記第二の露光工程の後に、前記感光性樹脂層と導電膜を現像することにより導電パターンを形成する現像工程とを含み、
 前記感光性樹脂層は、(A)バインダーポリマー、(B)光重合性化合物、(C)光重合性開始剤を含有し、前記感光性樹脂層の水酸基価が40mgKOH/g以下である、 導電パターンの製造方法を提供する。
In addition, the present invention provides an actinic ray to a predetermined portion of a conductive film including conductive fibers provided on a surface of the photosensitive resin layer opposite to the substrate, the photosensitive resin layer provided on the substrate. An exposure step of irradiating
A second exposure step of irradiating a part or all of the unexposed portion in the first exposure step with actinic rays in the presence of oxygen;
A development step of forming a conductive pattern by developing the photosensitive resin layer and the conductive film after the second exposure step;
The photosensitive resin layer contains (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerizable initiator, and the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less. A method for manufacturing a pattern is provided.
 加えて、本発明は、前記導電パターンの形成方法により得られた導電パターンを備える、導電パターン基板を提供することができる。 In addition, the present invention can provide a conductive pattern substrate comprising a conductive pattern obtained by the conductive pattern forming method.
 さらに、本発明は、前記導電パターン基板を備える、タッチパネルセンサを提供することができる。 Furthermore, the present invention can provide a touch panel sensor including the conductive pattern substrate.
 本発明の感光性導電フィルムによれば、銀ペーストの組成に依存すること無く、高温高湿条件下でも銀ペーストとの間で断線不良が発生し難い導電パターンを形成することができる。 According to the photosensitive conductive film of the present invention, it is possible to form a conductive pattern that hardly causes disconnection failure with the silver paste even under high temperature and high humidity conditions without depending on the composition of the silver paste.
感光性導電フィルムの一実施形態を示す模式断面図である。It is a schematic cross section showing one embodiment of a photosensitive conductive film. 感光性導電フィルムの一実施形態を示す一部切欠き斜視図である。It is a partially cutaway perspective view showing one embodiment of a photosensitive conductive film. 感光性導電フィルムを用いた導電パターン形成方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for demonstrating one Embodiment of the conductive pattern formation method using the photosensitive conductive film. 感光性導電フィルムを用いた導電パターンの形成方法の別の実施形態を説明するための模式断面図である。It is a schematic cross section for demonstrating another embodiment of the formation method of the conductive pattern using the photosensitive conductive film. 静電容量式のタッチパネルセンサの一例を示す模式上面図である。It is a model top view which shows an example of an electrostatic capacitance type touch panel sensor. 図5に示されるタッチパネルセンサの製造方法の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the manufacturing method of the touchscreen sensor shown by FIG. 図5に示されるa-a’線に沿った部分断面図である。FIG. 6 is a partial cross-sectional view taken along the line a-a ′ shown in FIG. 5. 図5に示されるb-b’線に沿った部分断面図である。FIG. 6 is a partial cross-sectional view taken along the line b-b ′ shown in FIG. 5.
 以下、本発明の好適な実施形態について詳細に説明する。尚、本明細書における「(メタ)アクリレート」とは、「アクリレート」又はそれに対応する「メタクリレート」を意味し、「(メタ)アクリル酸アルキルエステル」とは、「アクリル酸アルキルエステル」又はそれに対応する「メタクリル酸アルキルエステル」を意味する。同様に「(メタ)アクリル」とは、「アクリル」又は「メタクリル」を意味し、「(メタ)アクリロイル」とは「アクリロイル」又はそれに対応する「メタクリロイル」を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail. In the present specification, “(meth) acrylate” means “acrylate” or “methacrylate” corresponding thereto, and “(meth) acrylic acid alkyl ester” means “acrylic acid alkyl ester” or corresponding thereto. Means "alkyl methacrylate". Similarly, “(meth) acryl” means “acryl” or “methacryl”, and “(meth) acryloyl” means “acryloyl” or “methacryloyl” corresponding thereto.
<感光性導電フィルム>
 本発明に係る感光性導電フィルムは、支持フィルムと、該支持フィルム上に設けられた導電膜と、該導電膜上に設けられた感光性樹脂層と、を備え、感光性樹脂層は、(A)バインダーポリマー、(B)光重合性化合物、(C)光重合性開始剤を含有し、前記感光性樹脂層の水酸基価が40mgKOH/g以下である。
<Photosensitive conductive film>
The photosensitive conductive film according to the present invention includes a support film, a conductive film provided on the support film, and a photosensitive resin layer provided on the conductive film. A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerizable initiator, and the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less.
 本明細書において、導電膜と感光性樹脂層との境界は必ずしも明確になっている必要はない。導電膜は感光層の面方向に導電性が得られるものであればよく、導電膜に感光性樹脂層が混じり合った態様であってもよい。例えば、導電膜中に感光性樹脂層を構成する組成物が含浸されていたり、感光性樹脂層を構成する組成物が導電膜の表面に存在していたりしてもよい。 In this specification, the boundary between the conductive film and the photosensitive resin layer is not necessarily clear. Any conductive film may be used as long as conductivity is obtained in the surface direction of the photosensitive layer, and the conductive resin may be mixed with the photosensitive resin layer. For example, the composition constituting the photosensitive resin layer may be impregnated in the conductive film, or the composition constituting the photosensitive resin layer may be present on the surface of the conductive film.
 図1は、本発明に用いる感光性導電フィルムの好適な一実施形態を示す模式断面図である。図1に示す感光性導電フィルム10は、支持フィルム1と、支持フィルム1上に設けられた感光層4を備え、感光層4は、導電膜2と、導電膜2上に設けられた感光性樹脂層3からなる。 FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of a photosensitive conductive film used in the present invention. A photosensitive conductive film 10 shown in FIG. 1 includes a support film 1 and a photosensitive layer 4 provided on the support film 1, and the photosensitive layer 4 is provided with a conductive film 2 and a photosensitive property provided on the conductive film 2. It consists of a resin layer 3.
 以下、感光性導電フィルム10を構成する支持フィルム1、導電膜2及び感光性樹脂層3のそれぞれについて詳細に説明する。 Hereinafter, each of the support film 1, the conductive film 2, and the photosensitive resin layer 3 constituting the photosensitive conductive film 10 will be described in detail.
 支持フィルム1としては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムが挙げられる。これらのうち、透明性や耐熱性の観点からは、ポリエチレンテレフタレートフィルムが好ましい。尚、これらの重合体フィルムは、後に感光層4から除去可能でなくてはならないため、除去が不可能となるような表面処理が施されたものであったり、材質であったりしてはならない。 Examples of the support film 1 include polymer films having heat resistance and solvent resistance such as polyethylene terephthalate film, polyethylene film, polypropylene film, and polycarbonate film. Among these, a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance. In addition, since these polymer films must be removable from the photosensitive layer 4 later, they must not be subjected to a surface treatment or a material that makes removal impossible. .
 また、支持フィルム1の厚みは、5~300μmであることが好ましく、10~200μmであることがより好ましく、15~100μmであることがさらに好ましく、15μm~50μmであることが特に好ましい。
 導電膜2を形成するために導電性分散液を塗工する工程や、感光性樹脂層3を形成するために感光性樹脂組成物を塗工する工程、又は露光した感光性樹脂層3を現像する前に支持フィルムを剥離する工程において、支持フィルムが破れることを防止する観点から、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましい。
 また、支持フィルムを介して活性光線を照射後のパターンの解像度に優れる点では、300μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましく、50μm以下であることが特に好ましい。
The thickness of the support film 1 is preferably 5 to 300 μm, more preferably 10 to 200 μm, still more preferably 15 to 100 μm, and particularly preferably 15 μm to 50 μm.
The step of applying a conductive dispersion to form the conductive film 2, the step of applying a photosensitive resin composition to form the photosensitive resin layer 3, or developing the exposed photosensitive resin layer 3. From the viewpoint of preventing the support film from being broken in the step of peeling the support film before performing, it is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 15 μm or more.
Moreover, in the point which is excellent in the resolution of the pattern after irradiating actinic light through a support film, it is preferable that it is 300 micrometers or less, It is more preferable that it is 200 micrometers or less, It is further more preferable that it is 100 micrometers or less, 50 micrometers or less It is particularly preferred.
 支持フィルム1のヘーズ値は、感度及び解像度を良好にする観点から、0.01~5.0%であることが好ましく、0.01~3.0%であることがより好ましく、0.01~2.0%であることが特に好ましく、0.01~1.0%であることが極めて好ましい。尚、ヘーズ値はJIS K 7105に準拠して測定することができ、例えば、NDH-1001DP(日本電色工業(株)製、商品名)等の市販の濁度計等で測定が可能である。 The haze value of the support film 1 is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, from the viewpoint of improving sensitivity and resolution. It is particularly preferably from 2.0 to 2.0%, and extremely preferably from 0.01 to 1.0%. The haze value can be measured in accordance with JIS K 7105. For example, it can be measured with a commercially available turbidimeter such as NDH-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.). .
 導電膜2は、透明導電電極材を特に制限なく用いることができるが、導電性繊維を少なくとも一種を含有することが好ましい。 The conductive film 2 can use a transparent conductive electrode material without any particular limitation, but preferably contains at least one type of conductive fiber.
 図2は、感光性導電フィルムの一実施形態を示す一部切欠き斜視図である。導電膜2は、図2に示すように、導電性繊維同士が接触してなる網目構造を有することが好ましい。このような網目構造を有する導電膜2は、感光性樹脂層3の支持フィルム1側の表面に形成されていてもよいが、支持フィルム1を剥離したときに露出する感光層4の表面においてその面方向に導電性が得られるのであれば、導電膜2に感光性樹脂層3の一部が入り込む形態で形成されていてもよく、感光性樹脂層3の支持フィルム1側の表層に導電膜2が含まれる形態で形成されていてもよい。 FIG. 2 is a partially cutaway perspective view showing an embodiment of a photosensitive conductive film. As shown in FIG. 2, the conductive film 2 preferably has a network structure in which conductive fibers are in contact with each other. The conductive film 2 having such a network structure may be formed on the surface of the photosensitive resin layer 3 on the support film 1 side, but on the surface of the photosensitive layer 4 exposed when the support film 1 is peeled off. As long as conductivity is obtained in the surface direction, the conductive film 2 may be formed so that a part of the photosensitive resin layer 3 enters the conductive film 2, and the conductive film is formed on the surface layer of the photosensitive resin layer 3 on the support film 1 side. 2 may be included.
 前記導電性繊維としては、金、銀、銅、白金等の金属繊維、カーボンナノチューブ等の炭素繊維などが挙げられる。これらは、単独で又は2種以上を組み合わせて用いることができる。導電性の観点からは、金繊維又は銀繊維を用いることが好ましい。さらに、形成される導電膜の導電性を容易に調整できる観点からは、銀繊維がより好ましい。 Examples of the conductive fiber include metal fibers such as gold, silver, copper, and platinum, and carbon fibers such as carbon nanotubes. These can be used alone or in combination of two or more. From the viewpoint of conductivity, it is preferable to use gold fiber or silver fiber. Furthermore, silver fiber is more preferable from the viewpoint of easily adjusting the conductivity of the conductive film to be formed.
 前記の金属繊維は、金属イオンをNaBH等の還元剤で還元する方法、ポリオール法等により調製することができる。また、前記カーボンナノチューブは、Unidym社のHipco単層カーボンナノチューブ等の市販品を使用することができる。 The metal fiber can be prepared by a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method. In addition, as the carbon nanotubes, commercially available products such as Hipym single-walled carbon nanotubes from Unidim can be used.
 導電性繊維の繊維径は、1nm~50nmであることが好ましく、2nm~20nmであることがより好ましく、3nm~10nmであることがさらに好ましい。また、導電性繊維の繊維長は、1μm~100μmであることが好ましく、2μm~50μmであることがより好ましく、3μm~10μmであることがさらに好ましい。繊維径及び繊維長は、走査型電子顕微鏡により測定することができる。 The fiber diameter of the conductive fiber is preferably 1 nm to 50 nm, more preferably 2 nm to 20 nm, and further preferably 3 nm to 10 nm. The fiber length of the conductive fiber is preferably 1 μm to 100 μm, more preferably 2 μm to 50 μm, and even more preferably 3 μm to 10 μm. The fiber diameter and fiber length can be measured with a scanning electron microscope.
 また、前記導電膜2には、導電性繊維と合わせて有機導電体を用いることができる。有機導電体としては、特に制限無く用いることができるが、チオフェン誘導体やアニリン誘導体のポリマー等の有機導電体を用いることが好ましい。具体的には、ポリエチレンジオキシチオフェン、ポリヘキシルチオフェンやポリアニリン等を用いることができる。 In addition, an organic conductor can be used for the conductive film 2 together with conductive fibers. The organic conductor can be used without any particular limitation, but it is preferable to use an organic conductor such as a polymer of a thiophene derivative or an aniline derivative. Specifically, polyethylenedioxythiophene, polyhexylthiophene, polyaniline, or the like can be used.
 導電膜2の厚みは、本発明の感光性導電フィルムを用いて形成される導電パターンの用途や求められる導電性によっても異なるが、1μm以下であることが好ましく、1nm~0.5μmであることがより好ましく、5nm~0.1μmであることがさらに好ましい。導電膜2の厚みが1μm以下であると、450~650nmの波長域での光透過率が高く、パターン形成性にも優れ、特に透明電極の作製に好適なものとなる。尚、導電膜2の厚みは、走査型電子顕微鏡写真によって測定される値を指す。 The thickness of the conductive film 2 varies depending on the use of the conductive pattern formed using the photosensitive conductive film of the present invention and the required conductivity, but is preferably 1 μm or less, and preferably 1 nm to 0.5 μm. More preferably, the thickness is 5 nm to 0.1 μm. When the thickness of the conductive film 2 is 1 μm or less, the light transmittance in the wavelength range of 450 to 650 nm is high, the pattern formation is excellent, and it is particularly suitable for the production of a transparent electrode. In addition, the thickness of the electrically conductive film 2 points out the value measured by a scanning electron micrograph.
 導電膜2は、例えば、支持フィルム1上に、上述した導電性繊維や有機導電体を水及び/又は有機溶剤、必要に応じて界面活性剤等の分散安定剤等を加えた導電性分散液を塗工した後、乾燥することにより形成することができる。乾燥後、支持フィルム1上に形成した導電膜2は、必要に応じてラミネートされてもよい。塗工は、例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。また、乾燥は、30~150℃で1~30分間程度、熱風対流式乾燥機等で行うことができる。導電膜2において、導電性繊維や有機導電体は界面活性剤や分散安定剤と共存していてもかまわない。 The conductive film 2 is, for example, a conductive dispersion obtained by adding the above-described conductive fiber or organic conductor to the support film 1 with water and / or an organic solvent and, if necessary, a dispersion stabilizer such as a surfactant. After coating, it can be formed by drying. After drying, the conductive film 2 formed on the support film 1 may be laminated as necessary. The coating can be performed by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. The drying can be performed at 30 to 150 ° C. for about 1 to 30 minutes with a hot air convection dryer or the like. In the conductive film 2, the conductive fiber or the organic conductor may coexist with a surfactant or a dispersion stabilizer.
 導電膜2は、導電性繊維や有機導電体の組合せでもよく、その場合は、それらを混合したものを塗布形成してもよく、又は、それぞれを順次塗布して形成しても良い。例えば、導電性繊維を塗布形成した後、有機導電体の溶液を塗布、乾燥して形成できる。 The conductive film 2 may be a combination of conductive fibers and organic conductors. In that case, a mixture of them may be applied and formed, or each may be formed by sequentially applying each of them. For example, it can be formed by applying conductive fibers and then applying and drying a solution of an organic conductor.
 感光性樹脂層3としては、(A)バインダーポリマー、(B)光重合性化合物及び(C)光重合開始剤を含有する感光性樹脂組成物から形成されるものが挙げられる。 Examples of the photosensitive resin layer 3 include those formed from a photosensitive resin composition containing (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator.
 (A)バインダーポリマーとしては、アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸の反応で得られるエポキシアクリレート樹脂、エポキシアクリレート樹脂と酸無水物の反応で得られる酸変性エポキシアクリレート樹脂等が挙げられる。これらの樹脂は、単独で又は2種以上を組み合わせて用いることができる。 (A) As binder polymer, epoxy resin obtained by reaction of acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid Examples thereof include acid-modified epoxy acrylate resins obtained by reaction of acrylate resins and epoxy acrylate resins with acid anhydrides. These resins can be used alone or in combination of two or more.
 前記の中でも、アルカリ現像性及びフィルム形成性に優れる観点から、アクリル樹脂を用いることが好ましく、そのアクリル樹脂が(メタ)アクリル酸及び(メタ)アクリル酸アルキルエステルに由来するモノマー単位を構成単位として有するとより好ましい。ここで、「アクリル樹脂」とは、(メタ)アクリル基を有する重合性単量体に由来するモノマー単位を主に有する重合体のことを意味する。 Among these, from the viewpoint of excellent alkali developability and film formability, it is preferable to use an acrylic resin, and the acrylic resin is derived from (meth) acrylic acid and a (meth) acrylic acid alkyl ester as a constituent unit. More preferably. Here, “acrylic resin” means a polymer mainly having monomer units derived from a polymerizable monomer having a (meth) acrylic group.
 前記アクリル樹脂は、(メタ)アクリル基を有する重合性単量体をラジカル重合して製造されるものが使用できる。このアクリル樹脂は、単独で又は2種以上を組み合わせて用いることができる。 As the acrylic resin, those produced by radical polymerization of a polymerizable monomer having a (meth) acryl group can be used. These acrylic resins can be used alone or in combination of two or more.
 前記(メタ)アクリル基を有する重合性単量体としては、ジアセトンアクリルアミド等のアクリルアミド、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ベンジルエステル、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート(大阪有機化学、ピスコート#2311HP)、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、(メタ)アクリル酸、α-ブロモ(メタ)アクリル酸、α-クロル(メタ)アクリル酸、β-フリル(メタ)アクリル酸、β-スチリル(メタ)アクリル酸等が挙げられる。 Examples of the polymerizable monomer having a (meth) acryl group include acrylamide such as diacetone acrylamide, (meth) acrylic acid alkyl ester, (meth) acrylic acid benzyl ester, 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 2-hydroxy-3-chloropropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, acryloyloxyethyl-2-hydroxypropyl Phthalates (Osaka Organic Chemistry, Piscoat # 2311HP), (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminoethyl ester, (meth ) Glycidyl acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, (meth) acrylic acid, α-bromo (meth) acrylic acid , Α-chloro (meth) acrylic acid, β-furyl (meth) acrylic acid, β-styryl (meth) acrylic acid and the like.
 また、前記アクリル樹脂は、前記のような(メタ)アクリル基を有する重合性単量体の他に、スチレン、ビニルトルエン、α-メチルスチレン等のα-位又は芳香族環において置換されている重合可能なスチレン誘導体、アクリロニトリル、ビニル-n-ブチルエーテル等のビニルアルコールのエステル類、マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノイソプロピル等のマレイン酸モノエステル、フマール酸、ケイ皮酸、α-シアノケイ皮酸、イタコン酸、クロトン酸等の1種又は2種以上の重合性単量体が共重合されていてもよい。 In addition to the polymerizable monomer having a (meth) acryl group as described above, the acrylic resin is substituted at the α-position or aromatic ring such as styrene, vinyltoluene, α-methylstyrene and the like. Polymerizable styrene derivatives, esters of vinyl alcohol such as acrylonitrile and vinyl-n-butyl ether, maleic acid monoester such as maleic acid, maleic anhydride, monomethyl maleate, monoethyl maleate, monoisopropyl maleate, fumaric acid One or two or more polymerizable monomers such as cinnamic acid, α-cyanocinnamic acid, itaconic acid, and crotonic acid may be copolymerized.
 前記(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸プロピルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸ペンチルエステル、(メタ)アクリル酸ヘキシルエステル、(メタ)アクリル酸ヘプチルエステル、(メタ)アクリル酸オクチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、(メタ)アクリル酸ノニルエステル、(メタ)アクリル酸デシルエステル、(メタ)アクリル酸ウンデシルエステル、(メタ)アクリル酸ドデシルエステル等が挙げられる。これらは、単独で又は2種以上を組み合わせて用いることができる。 Examples of the (meth) acrylic acid alkyl ester include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, (meth) acrylic acid butyl ester, (meth) acrylic acid pentyl ester. , (Meth) acrylic acid hexyl ester, (meth) acrylic acid heptyl ester, (meth) acrylic acid octyl ester, (meth) acrylic acid 2-ethylhexyl ester, (meth) acrylic acid nonyl ester, (meth) acrylic acid decyl ester , (Meth) acrylic acid undecyl ester, (meth) acrylic acid dodecyl ester, and the like. These can be used alone or in combination of two or more.
 前記重合性単量体の中でも、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ベンジルエステル、又は(メタ)アクリル酸グリシジルエステルを含むことが好ましい。
 また、(A)バインダーポリマーは、アルカリ現像性をより良好にする観点から、カルボキシル基を有することが好ましい。カルボキシル基を有する重合性単量体としては、上述したような(メタ)アクリル酸が挙げられる。
Among the polymerizable monomers, it is preferable to include (meth) acrylic acid alkyl ester, (meth) acrylic acid benzyl ester, or (meth) acrylic acid glycidyl ester.
Moreover, it is preferable that (A) binder polymer has a carboxyl group from a viewpoint of making alkali developability more favorable. Examples of the polymerizable monomer having a carboxyl group include (meth) acrylic acid as described above.
 (A)バインダーポリマーが有するカルボキシル基の比率は、使用する全重合性単量体に対するカルボキシル基を有する重合性単量体の割合として、10~50質量%であることが好ましく、12~40質量%であることがより好ましく、15~30質量%であることがさらに好ましく、15~25質量%であることが特に好ましい。アルカリ現像性に優れる点では10質量%以上であることが好ましく、アルカリ耐性に優れる点では、50質量%以下であることが好ましい。 The ratio of the carboxyl group (A) in the binder polymer is preferably 10 to 50% by mass, preferably 12 to 40% by mass, as the ratio of the polymerizable monomer having a carboxyl group to the total polymerizable monomer to be used. % Is more preferable, 15 to 30% by mass is further preferable, and 15 to 25% by mass is particularly preferable. In terms of excellent alkali developability, the content is preferably 10% by mass or more, and in terms of excellent alkali resistance, it is preferably 50% by mass or less.
 (A)バインダーポリマーの重量平均分子量は、機械強度及びアルカリ現像性のバランスを図る観点から、5000~300000であることが好ましく、20000~150000であることがより好ましく、30000~100000であることがさらに好ましい。耐現像液性に優れる点では、重量平均分子量が、5000以上であることが好ましい。また、現像時間の観点からは、300000以下であることが好ましい。尚、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により測定され、標準ポリスチレンを用いて作成した検量線により換算された値である。 (A) The weight average molecular weight of the binder polymer is preferably 5000 to 300000, more preferably 20000 to 150,000, and more preferably 30000 to 100,000 from the viewpoint of balancing the mechanical strength and alkali developability. Further preferred. In terms of excellent developer resistance, the weight average molecular weight is preferably 5000 or more. Further, from the viewpoint of development time, it is preferably 300000 or less. The weight average molecular weight in the present invention is a value measured by a gel permeation chromatography method (GPC) and converted by a calibration curve prepared using standard polystyrene.
 これらの(A)バインダーポリマーは、単独で又は2種類以上を組み合わせて用いることができる。2種類以上を組み合わせて使用する場合のバインダーポリマーとしては、例えば、異なる共重合成分からなる2種類以上のバインダーポリマー、異なる重量平均分子量の2種類以上のバインダーポリマー、異なる分散度の2種類以上のバインダーポリマーが挙げられる。 These (A) binder polymers can be used alone or in combination of two or more. As a binder polymer in the case of using two or more types in combination, for example, two or more types of binder polymers comprising different copolymerization components, two or more types of binder polymers having different weight average molecular weights, two or more types of binder polymers having different degrees of dispersion are used. A binder polymer is mentioned.
 (A)バインダーポリマーは、水酸基価が60mgKOH/g以下であることが好ましい。また、2種類以上を組み合わせて使用する場合には、各々のバインダーポリマーの水酸基価に、質量分率を掛けた値の総和が60mgKOH/g以下となるように選択することが好ましい。50mgKOH/g以下がより好ましく、30mgKOH/g以下がさらに好ましく、10mgKOH/g以下が特に好ましい。 (A) The binder polymer preferably has a hydroxyl value of 60 mgKOH / g or less. Moreover, when using in combination of 2 or more types, it is preferable to select so that the sum total of the value which multiplied the mass fraction to the hydroxyl value of each binder polymer may be 60 mgKOH / g or less. 50 mgKOH / g or less is more preferable, 30 mgKOH / g or less is more preferable, and 10 mgKOH / g or less is particularly preferable.
 水酸基価を少なくするには、例えばバインダーポリマーにアクリル樹脂を使用する場合には、アクリル樹脂の製造に使用される重合性単量体のうち、水酸基を有する重合性単量体の量を減らすことで、アクリル樹脂中の水酸基の割合を減らすことができ、バインダーポリマーの水酸基価を小さくすることができる。
 例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート(大阪有機化学、ピスコート#2311HP)等の量を調整する。
In order to reduce the hydroxyl value, for example, when an acrylic resin is used for the binder polymer, the amount of the polymerizable monomer having a hydroxyl group is reduced among the polymerizable monomers used for the production of the acrylic resin. Thus, the proportion of hydroxyl groups in the acrylic resin can be reduced, and the hydroxyl value of the binder polymer can be reduced.
For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-chloropropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 4-hydroxybutyl The amount of (meth) acrylate, acryloyloxyethyl-2-hydroxypropyl phthalate (Osaka Organic Chemical, Piscoat # 2311HP), etc. is adjusted.
 次に、(B)光重合性化合物について説明する。この光重合性化合物はエチレン性不飽和結合を有することが好ましい。
 エチレン性不飽和結合を有する光重合性化合物としては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させで得られる化合物、ウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシエチル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート等のフタル酸系化合物、(メタ)アクリル酸アルキルエステルが挙げられる。これらは単独で又は2種類以上を組み合わせて使用される。
Next, (B) the photopolymerizable compound will be described. This photopolymerizable compound preferably has an ethylenically unsaturated bond.
Examples of the photopolymerizable compound having an ethylenically unsaturated bond include a compound obtained by reacting an α, β-unsaturated carboxylic acid with a polyhydric alcohol, and an α, β-unsaturated carboxylic acid with a glycidyl group-containing compound. Compound obtained by reaction, urethane monomer such as (meth) acrylate compound having urethane bond, γ-chloro-β-hydroxypropyl-β '-(meth) acryloyloxyethyl-o-phthalate, β-hydroxyethyl-β Examples thereof include phthalic acid compounds such as '-(meth) acryloyloxyethyl-o-phthalate and β-hydroxypropyl-β'-(meth) acryloyloxyethyl-o-phthalate, and (meth) acrylic acid alkyl esters. These may be used alone or in combination of two or more.
 前記多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物としては、例えば、2,2-ビス(4-((メタ)アクリロキシポリエトキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリプロポキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリエトキシポリプロポキシ)フェニル)プロパン等のビスフェノールA系(メタ)アクリレート化合物、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレンポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。これらは、製造過程のエステル化率によってそれぞれ水酸基価が異なる。 Examples of the compound obtained by reacting the polyhydric alcohol with an α, β-unsaturated carboxylic acid include 2,2-bis (4-((meth) acryloxypolyethoxy) phenyl) propane, 2,2- Bisphenol A-based (meth) acrylate compounds such as bis (4-((meth) acryloxypolypropoxy) phenyl) propane, 2,2-bis (4-((meth) acryloxypolyethoxypolypropoxy) phenyl) propane, Polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meta) A) Chlorate, trimethylolpropane diethoxytri (meth) acrylate, trimethylolpropane triethoxytri (meth) acrylate, trimethylolpropanetetraethoxytri (meth) acrylate, trimethylolpropane pentaethoxytri (meth) acrylate, tetramethylolmethanetri (Meth) acrylate, tetramethylolmethane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and the like. These have different hydroxyl values depending on the esterification rate in the production process.
 前記ウレタンモノマーとしては、例えば、β位にヒドロキシル基を有する(メタ)アクリルモノマーと、イソホロンジイソシアネート、2,6-トルエンジイソシアネート、2,4-トルエンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等のジイソシアネート化合物との付加反応物;
 トリス[(メタ)アクリロキシテトラエチレングリコールイソシアネート]ヘキサメチレンイソシアヌレート、EO変性ウレタンジ(メタ)アクリレート、EO,PO変性ウレタンジ(メタ)アクリレート等が挙げられる。
 尚、「EO」はエチレンオキサイドを示し、EO変性された化合物はエチレンオキサイド基のブロック構造を有する。また、「PO」はプロピレンオキサイドを示し、PO変性された化合物はプロピレンオキサイド基のブロック構造を有する。EO変性ウレタンジ(メタ)アクリレートとしては、例えば、「UA-11」(新中村化学工業(株)製、商品名)が挙げられる。また、EO,PO変性ウレタンジ(メタ)アクリレートとしては、例えば、「UA-13」(新中村化学工業(株)製、商品名)が挙げられる。
Examples of the urethane monomer include a (meth) acryl monomer having a hydroxyl group at the β-position and a diisocyanate compound such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate. Addition reaction product with
Tris [(meth) acryloxytetraethylene glycol isocyanate] hexamethylene isocyanurate, EO-modified urethane di (meth) acrylate, EO, PO-modified urethane di (meth) acrylate, and the like.
“EO” represents ethylene oxide, and an EO-modified compound has a block structure of an ethylene oxide group. “PO” represents propylene oxide, and the PO-modified compound has a block structure of a propylene oxide group. Examples of the EO-modified urethane di (meth) acrylate include “UA-11” (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.). Examples of the EO, PO-modified urethane di (meth) acrylate include “UA-13” (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.).
 (B)光重合性化合物は、水酸基価が90mgKOH/g以下となるものから選択することが好ましい。また、2種類以上を組み合わせて使用する場合には、各々の光重合性化合物の水酸基価に、質量分率を掛けた値の総和が90mgKOH/g以下となるように選択することが好ましい。80mgKOH/g以下がより好ましく、50mgKOH/g以下がさらに好ましく、10mgKOH/g以下が特に好ましい。 (B) The photopolymerizable compound is preferably selected from those having a hydroxyl value of 90 mgKOH / g or less. Moreover, when using in combination of 2 or more types, it is preferable to select so that the sum total of the value which multiplied the mass fraction to the hydroxyl value of each photopolymerizable compound may be 90 mgKOH / g or less. 80 mgKOH / g or less is more preferable, 50 mgKOH / g or less is more preferable, and 10 mgKOH / g or less is particularly preferable.
 水酸基価を少なくするには、構造式の中にOH基(水酸基)を含まない光重合性化合物を選択するか、OH基を含む光重合性化合物の量を減らすことで、水酸基価を小さくできる。
 OH基を含まない光重合性化合物としては、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物のなかでは、トリメチロールプロパントリアクリレート、エチレンオキサイド(EO)含有トリメチロールプロパントリアクリレート、プロピレンオキサイド(PO)含有トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート等が挙げられる。
To reduce the hydroxyl value, the hydroxyl value can be reduced by selecting a photopolymerizable compound that does not contain an OH group (hydroxyl group) in the structural formula or by reducing the amount of the photopolymerizable compound that contains an OH group. .
Examples of the photopolymerizable compound that does not contain an OH group include trimethylolpropane triacrylate and ethylene oxide (EO) -containing trimethylolpropane among compounds obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid. Examples include triacrylate, propylene oxide (PO) -containing trimethylolpropane triacrylate, and dipentaerythritol hexaacrylate.
 一方、OH基を含む光重合性化合物としては、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させで得られる化合物、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシエチル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート等のフタル酸系化合物、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート(大阪有機化学、ピスコート#2311HP)等が挙げられる。 On the other hand, as a photopolymerizable compound containing an OH group, a compound obtained by reacting a glycidyl group-containing compound with an α, β-unsaturated carboxylic acid, γ-chloro-β-hydroxypropyl-β '-(meth) acryloyl Phthalic acid compounds such as oxyethyl-o-phthalate, β-hydroxyethyl-β '-(meth) acryloyloxyethyl-o-phthalate, β-hydroxypropyl-β'-(meth) acryloyloxyethyl-o-phthalate 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-chloropropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 4-hydroxybutyl ( (Meth) acrylate, acryloyloxyethyl-2-hydroxy Propyl phthalate (Osaka Organic Chemistry, Pisukoto # 2311HP), and the like.
 また、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物のなかでは、グリコールメタクリレートアクリレート、ペンタエリスリトールトリアクリレート(日本化薬(株)製PET-30等)、ペンタエリスリトールジアクリレート、ペンタエリスリトールモノアクリレート、ペンタエリスリトールジアクリレートモノカルボン酸エステル、エチレンオキサイド(EO)含有ペンタエリスリトールトリアクリレート、エチレンオキサイド(EO)含)ペンタエリスリトールジアクリレート、エチレンオキサイド(EO)含有ペンタエリスリトールモノアクリレート、プロピレンオキサイド(PO)含有ペンタエリスリトールトリアクリレート、プロピレンオキサイド(PO)含有ペンタエリスリトールジアクリレート、プロピレンオキサイド(PO)ペンタエリスリトールモノアクリレート、アクリロイルオキシエチルイソシアヌレート(東亜合成製M-215等)、トリメチロールプロパンジアクリレート、トリメチロールプロパンモノアクリレート、エチレンオキサイド(EO)含有トリメチロールプロパンジアクリレート、エチレンオキサイド(EO)含有トリメチロールプロパンモノアクリレート、プロピレンオキサイド(PO)含有トリメチロールプロパンジアクリレート、プロピレンオキサイド(PO)含有トリメチロールプロパンモノアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールトリアクリレート,ジペンタエリスリトールジアクリレート、ジペンタエリスリトールモノアクリレート、グリセロールジメタクリレート等が挙げられる。
 前記光重合性化合物の中でも、ジペンタエリスリトールヘキサアクリレート、
又はトリメチロールプロパントリアクリレートが好ましい。
Among the compounds obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid, glycol methacrylate acrylate, pentaerythritol triacrylate (Nippon Kayaku Co., Ltd., PET-30, etc.), pentaerythritol diacrylate. Acrylate, pentaerythritol monoacrylate, pentaerythritol diacrylate monocarboxylic acid ester, ethylene oxide (EO) -containing pentaerythritol triacrylate, ethylene oxide (EO) -containing pentaerythritol diacrylate, ethylene oxide (EO) -containing pentaerythritol monoacrylate, Propylene oxide (PO) -containing pentaerythritol triacrylate, propylene oxide (PO) -containing pentaerythritol diacrylate, Lopylene oxide (PO) pentaerythritol monoacrylate, acryloyloxyethyl isocyanurate (M-215 manufactured by Toa Gosei), trimethylolpropane diacrylate, trimethylolpropane monoacrylate, ethylene oxide (EO) -containing trimethylolpropane diacrylate, ethylene Oxide (EO) -containing trimethylolpropane monoacrylate, propylene oxide (PO) -containing trimethylolpropane diacrylate, propylene oxide (PO) -containing trimethylolpropane monoacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetraacrylate, dipentaerythritol Triacrylate, dipentaerythritol diacrylate, dipentaeryth Tall monoacrylate, glycerol dimethacrylate, and the like.
Among the photopolymerizable compounds, dipentaerythritol hexaacrylate,
Or trimethylol propane triacrylate is preferable.
 (B)光重合性化合物の含有割合は、バインダーポリマー及び光重合性化合物の総量100質量%に対して、30~80質量%であることが好ましく、40~70質量%であることがより好ましい。光硬化性及び転写した導電膜(導電膜及び感光性樹脂層)の塗膜性に優れる点では、30質量部以上であることが好ましく、フィルムとして巻き取った場合の保管安定性に優れる点では、80質量%以下であることが好ましい。 (B) The content ratio of the photopolymerizable compound is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass with respect to 100% by mass of the total amount of the binder polymer and the photopolymerizable compound. . In terms of excellent photocurability and coating properties of the transferred conductive film (conductive film and photosensitive resin layer), it is preferably 30 parts by mass or more, and in terms of excellent storage stability when wound as a film. 80% by mass or less is preferable.
 次に(C)光重合性開始剤について説明する。光重合性開始剤としては、使用する露光機の光波長と、機能発現に必要な波長とが合うものを選択すれば、特に制限はないが、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1等の芳香族ケトン;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナンタラキノン、2-メチル1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)等のオキシムエステル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物、オキサゾール系化合物などが挙げられる。 Next, (C) the photopolymerizable initiator will be described. The photopolymerization initiator is not particularly limited as long as it matches the light wavelength of the exposure machine to be used and the wavelength required for function expression. However, benzophenone, N, N′-tetramethyl-4, 4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholino Aromatic ketones such as phenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, Octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2 Phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenantharaquinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone, etc. Quinones; benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether, and benzoin phenyl ether; benzoin compounds such as benzoin, methyl benzoin, and ethyl benzoin; 1,2-octanedione-1- [4- (phenylthio) phenyl] Oxime ester compounds such as -2- (O-benzoyloxime), 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] ethanone 1- (O-acetyloxime); Zimechi Benzyl derivatives such as ketals; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o -Fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5- diphenylimidazole dimer 2,4,5-triarylimidazole dimers such as mer; acridine derivatives such as 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane; N-phenylglycine, N-phenylglycine Derivatives, coumarin compounds, oxazole compounds and the like can be mentioned.
 これらの中でも、透明性、及び10μm以下でのパターン形成能から、オキシムエステル化合物が好ましい。オキシムエステル化合物としては、下記一般式(C-1)及び一般式(C-2)で表される化合物が挙げられる。速硬化性、透明性の観点から、下記一般式(C-1)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000001
Among these, oxime ester compounds are preferable from the viewpoint of transparency and pattern forming ability at 10 μm or less. Examples of the oxime ester compound include compounds represented by the following general formula (C-1) and general formula (C-2). From the viewpoint of fast curability and transparency, a compound represented by the following general formula (C-1) is more preferable.
Figure JPOXMLDOC01-appb-C000001
 式(C-1)中、Rは、各々独立に、炭素数1~12のアルキル基、炭素数4~10のシクロアルキル基、フェニル基又はトリル基である。炭素数1~8のアルキル基、炭素数4~6のシクロアルキル基、フェニル基又はトリル基であることが好ましく、炭素数1~6のアルキル基、炭素数4~6のシクロアルキル基、フェニル基又はトリル基であることがより好ましく、メチル基、ヘキシル基、シクロペンチル基、フェニル基又はトリル基であることがさらに好ましい。 In formula (C-1), each R 1 independently represents an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a phenyl group, or a tolyl group. Preferred is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, phenyl It is more preferably a group or a tolyl group, and further preferably a methyl group, a hexyl group, a cyclopentyl group, a phenyl group or a tolyl group.
 Rは、-H、-OH、-COOH、-O(CH)OH、-O(CHOH、-COO(CH)OH又は-COO(CHOHである。-H、-O(CH)OH、-O(CHOH、-COO(CH)OH又は-COO(CHOHであることが好ましく、-H、-O(CHOH又は-COO(CHOHであることがより好ましい。 R is —H, —OH, —COOH, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH. It is preferably —H, —O (CH 2 ) OH, —O (CH 2 ) 2 OH, —COO (CH 2 ) OH or —COO (CH 2 ) 2 OH, and —H, —O (CH 2 ) 2 OH or —COO (CH 2 ) 2 OH is more preferable.
Figure JPOXMLDOC01-appb-C000002
 前記一般式(C-2)中、Rは、水素原子又は炭素数1~12のアルキル基を示し、Rは、炭素数1~12のアルキル基、炭素数3~20のシクロアルキル基、フェニル基又はトリル基を示し、Rは、炭素数1~12のアルキル基を示し、Rは、炭素1~20のアルキル基又はアリール基を示す。p1は0~3の整数を示す。尚、p1が2以上である場合、複数存在するRはそれぞれ同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
In the general formula (C-2), R 2 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and R 3 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms. , A phenyl group or a tolyl group, R 4 represents an alkyl group having 1 to 12 carbon atoms, and R 5 represents an alkyl group or aryl group having 1 to 20 carbon atoms. p1 represents an integer of 0 to 3. In the case p1 is 2 or more, or different R 4 existing in plural each identical.
 前記一般式(C-2)中、R又はRは炭素数1~12のアルキル基であることが好ましく、炭素数1~8のアルキル基であることがより好ましく、炭素数1~4のアルキル基であることがさらに好ましい。 In the general formula (C-2), R 2 or R 4 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, and 1 to 4 carbon atoms. More preferably, it is an alkyl group.
 前記一般式(C-2)中、Rは炭素数1~8のアルキル基、又は炭素数4~15のシクロアルキル基であることが好ましく、炭素数1~4のアルキル基、又は炭素数4~10のシクロアルキル基であることがより好ましく、エチル基であることが特に好ましい。 In the general formula (C-2), R 3 is preferably an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 4 to 15 carbon atoms, and an alkyl group having 1 to 4 carbon atoms or a carbon number A 4 to 10 cycloalkyl group is more preferable, and an ethyl group is particularly preferable.
 前記一般式(C-2)中、Rは炭素数1~12のアルキル基又は炭素数6~16のアリール基であることが好ましく、炭素数1~8のアルキル基又は炭素数6~14のアリール基であることがより好ましく、炭素数1~4のアルキル基又は炭素数6~12のアリール基であることがさらに好ましい。 In general formula (C-2), R 5 is preferably an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 16 carbon atoms, and an alkyl group having 1 to 8 carbon atoms or 6 to 14 carbon atoms. Are more preferable, and an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms is more preferable.
 前記一般式(C-1)で表される化合物としては、1,2-オクタンジオン,1-[4-(フェニルチオ)-フェニル,2-(O-ベンゾイルオキシム)]等が挙げられる。
 前記一般式(C-2)で表される化合物としては、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等が挙げられる。これらは、それぞれIRGACURE OXE 01、IRGACURE OXE 02(いずれもBASF(株)製、商品名)として商業的に入手可能である。これらは単独で、又は2種類以上を組み合わせて使用される。
Examples of the compound represented by the general formula (C-1) include 1,2-octanedione, 1- [4- (phenylthio) -phenyl, 2- (O-benzoyloxime)] and the like.
Examples of the compound represented by the general formula (C-2) include ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyl). Oxime) and the like. These are commercially available as IRGACURE OXE 01 and IRGACURE OXE 02 (both manufactured by BASF Corp., trade names), respectively. These are used alone or in combination of two or more.
 前記オキシムエステル化合物の中でも、1,2-オクタンジオン,1-[4-(フェニルチオ)-フェニル,2-(O-ベンゾイルオキシム)]が極めて好ましい。 Among the oxime ester compounds, 1,2-octanedione, 1- [4- (phenylthio) -phenyl, 2- (O-benzoyloxime)] is extremely preferable.
 光重合性開始剤の含有割合は、バインダーポリマー及び光重合性化合物の総量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。光感度に優れる点では、0.1質量部以上であることが好ましく、光硬化性に優れる点では、20質量部以下であることが好ましい。 The content ratio of the photopolymerizable initiator is preferably 0.1 to 20 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer and the photopolymerizable compound. More preferably, it is 1 to 5 parts by mass. In terms of excellent photosensitivity, it is preferably 0.1 parts by mass or more, and in terms of excellent photocurability, it is preferably 20 parts by mass or less.
 感光性樹脂層3には、必要に応じて、シランカップリング剤等の密着性付与剤、p-トルエンスルホンアミド等の可塑剤、充填剤、消泡剤、難燃剤、安定剤、レベリング剤、剥離促進剤、酸化防止剤、香料、イメージング剤、熱架橋剤等の添加剤を、単独で又は2種類以上を組み合わせて含有させることができる。これらの添加剤の添加量は、バインダーポリマー及び光重合性化合物の総量100質量部に対して各々0.01~20質量部であることが好ましい。 If necessary, the photosensitive resin layer 3 may have an adhesion-imparting agent such as a silane coupling agent, a plasticizer such as p-toluenesulfonamide, a filler, an antifoaming agent, a flame retardant, a stabilizer, a leveling agent, Additives such as a peeling accelerator, an antioxidant, a fragrance, an imaging agent, and a thermal crosslinking agent can be contained alone or in combination of two or more. The addition amount of these additives is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer and the photopolymerizable compound.
 感光性樹脂層3は、導電膜2を形成した支持フィルム1上に、必要に応じて、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等の溶剤又はこれらの混合溶剤に溶解した、固形分10~60質量%程度の感光性樹脂組成物の溶液を塗布、乾燥することにより形成できる。但し、この場合、乾燥後の感光性樹脂層中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止するため、2質量%以下であることが好ましい。 The photosensitive resin layer 3 is formed on the support film 1 on which the conductive film 2 is formed, as required, methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl. It can be formed by applying and drying a solution of a photosensitive resin composition having a solid content of about 10 to 60% by mass dissolved in a solvent such as ether or a mixed solvent thereof. However, in this case, the amount of the remaining organic solvent in the photosensitive resin layer after drying is preferably 2% by mass or less in order to prevent the organic solvent from diffusing in the subsequent step.
 感光性樹脂層3の塗工は、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、スプレーコート法等の公知の方法で行うことができる。塗工後、有機溶剤等を除去するための乾燥は、70~150℃で5~30分間程度、熱風対流式乾燥機等で行うことができる。 The photosensitive resin layer 3 can be applied by a known method such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, or a spray coating method. After coating, drying to remove the organic solvent and the like can be performed at 70 to 150 ° C. for about 5 to 30 minutes with a hot air convection dryer or the like.
 感光性樹脂層3の厚みは、用途により異なるが、乾燥後の厚みで1~50μmであることが好ましく、1~15μmであることがより好ましく、1~10μmであることが特に好ましい。この厚みが1μm未満では塗工が困難となる傾向があり、50μmを超えると光透過の低下による感度が不充分となり転写する感光性樹脂層の光硬化性が低下する傾向がある。 The thickness of the photosensitive resin layer 3 varies depending on the application, but the thickness after drying is preferably 1 to 50 μm, more preferably 1 to 15 μm, and particularly preferably 1 to 10 μm. If the thickness is less than 1 μm, coating tends to be difficult, and if it exceeds 50 μm, the sensitivity due to the decrease in light transmission is insufficient, and the photocuring property of the photosensitive resin layer to be transferred tends to decrease.
 本発明で用いる感光性導電フィルムにおいて、前記導電膜2及び前記感光性樹脂層3の積層体は、両層の合計膜厚を1~10μmとしたときに450~650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。導電膜及び感光性樹脂層がこのような条件を満たす場合、ディスプレイパネル等での視認性が向上する。 In the photosensitive conductive film used in the present invention, the laminate of the conductive film 2 and the photosensitive resin layer 3 has a minimum light transmission in a wavelength region of 450 to 650 nm when the total film thickness of both layers is 1 to 10 μm. The rate is preferably 80% or more, and more preferably 85% or more. When the conductive film and the photosensitive resin layer satisfy such conditions, visibility on a display panel or the like is improved.
 感光性樹脂層の水酸基価は40mgKOH/g以下であるが、30mgKOH/g以下が好ましく、20mgKOH/g以下がより好ましく、10mgKOH/g以下がさらに好ましく、5mgKOH/g以下が特に好ましい。感光性樹脂層の水酸基価は、(A)及び(B)成分の水酸基価を調整することにより調整できる。 The hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less, preferably 30 mgKOH / g, more preferably 20 mgKOH / g or less, further preferably 10 mgKOH / g or less, particularly preferably 5 mgKOH / g or less. The hydroxyl value of the photosensitive resin layer can be adjusted by adjusting the hydroxyl values of the components (A) and (B).
 (A)バインダーポリマー、(B)光重合性化合物又は感光性樹脂層の水酸基価を小さくすることで、感光性導電フィルムを用いて得られる導電パターンにおいて、高温高湿条件下で断線不良が発生しにくくなる。 (A) Binder polymer, (B) The photopolymerizable compound or the photosensitive resin layer is reduced in hydroxyl value, and in a conductive pattern obtained using a photosensitive conductive film, poor disconnection occurs under high temperature and high humidity conditions. It becomes difficult to do.
 本発明で用いる感光性導電フィルムにおいて、感光性樹脂層3の支持フィルム1側と反対側の面に接するように保護フィルムを積層することができる。 In the photosensitive conductive film used in the present invention, a protective film can be laminated so as to be in contact with the surface of the photosensitive resin layer 3 opposite to the support film 1 side.
 保護フィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム等の耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。また、保護フィルムとして上述の支持体フィルムと同様の重合体フィルムを用いてもよい。 As the protective film, for example, a polymer film having heat resistance and solvent resistance such as a polyethylene terephthalate film, a polypropylene film, and a polyethylene film can be used. Moreover, you may use the polymer film similar to the above-mentioned support body film as a protective film.
 保護フィルムと感光性樹脂層との間の接着力は、保護フィルムを感光性樹脂層から剥離しやすくするために、感光層4と支持フィルム1との間の接着力よりも小さいことが好ましい。 The adhesive force between the protective film and the photosensitive resin layer is preferably smaller than the adhesive force between the photosensitive layer 4 and the support film 1 so that the protective film can be easily peeled from the photosensitive resin layer.
 また、保護フィルムは、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数が5個/m以下であることが好ましい。尚、「フィッシュアイ」とは、材料を熱溶融し、混練、押し出し、2軸延伸、キャスティング法等によりフィルムを製造する際に、材料の異物、未溶解物、酸化劣化物等がフィルム中に取り込まれたものである。 Moreover, it is preferable that the number of fish eyes with a diameter of 80 micrometers or more contained in a protective film is 5 pieces / m < 2 > or less. “Fish eye” means that when a material is melted by heat, kneaded, extruded, biaxially stretched, casting method, etc., foreign materials, undissolved materials, oxidized degradation products, etc. It is taken in.
 保護フィルムの厚みは、1~100μmであることが好ましく、5~50μmであることがより好ましく、5~30μmであることがさらに好ましく、15~30μmであることが特に好ましい。保護フィルムの厚みが1μm未満ではラミネートの際、保護フィルムが破れやすくなる傾向があり、100μmを超えると価格が高くなる傾向がある。 The thickness of the protective film is preferably 1 to 100 μm, more preferably 5 to 50 μm, still more preferably 5 to 30 μm, and particularly preferably 15 to 30 μm. When the thickness of the protective film is less than 1 μm, the protective film tends to be broken during lamination, and when it exceeds 100 μm, the price tends to increase.
 感光性導電フィルムは、支持フィルム上に、接着層、ガスバリア層等の層をさらに有していてもよい。 The photosensitive conductive film may further have layers such as an adhesive layer and a gas barrier layer on the support film.
 感光性導電フィルムは、例えば、そのままの平板状の形態で、又は、円筒状等の巻芯に巻きとりロール状の形態で貯蔵することができる。尚、この際、支持フィルムが最も外側になるように巻き取られることが好ましい。 The photosensitive conductive film can be stored, for example, in the form of a flat plate as it is or in the form of a roll wound around a cylindrical core. In addition, it is preferable to wind up in this case so that a support film may become the outermost side.
 また、感光性導電フィルムが保護フィルムを有してない場合、かかる感光性導電フィルムは、そのままの平板状の形態で貯蔵することができる。 In addition, when the photosensitive conductive film does not have a protective film, the photosensitive conductive film can be stored as it is in the form of a flat plate.
 巻芯としては、従来用いられているものであれば特に限定されず、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂(アクリロニトリルーブタジエンースチレン共重合体)等のプラスチックが挙げられる。またロール状に巻き取られた感光性導電フィルムの端面には、端面保護の観点から端面セパレータを設置することが好ましく、加えて耐エッジフュージョンの観点から防湿端面セパレータを設置することが好ましい。また、感光性導電フィルムを梱包する際には、透湿性の小さいブラックシートに包んで包装することが好ましい。 The core is not particularly limited as long as it is conventionally used, and examples thereof include plastics such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, and ABS resin (acrylonitrile-butadiene-styrene copolymer). It is done. Moreover, it is preferable to install an end face separator on the end face of the photosensitive conductive film wound up in a roll shape from the viewpoint of end face protection, and in addition, it is preferable to install a moisture-proof end face separator from the viewpoint of edge fusion resistance. Moreover, when packing a photosensitive conductive film, it is preferable to wrap and wrap in a black sheet with small moisture permeability.
<導電パターンの形成方法>
 以下、本発明の導電パターンの形成方法を図面を用いて説明する。
 図3に示すように、支持フィルム1、導電膜2及び感光性樹脂層3を有する感光性導電フィルム10の感光性樹脂層3を、基板20上にラミネートし(図3の(a))、次に、感光性樹脂層3にマスク5を介して活性光線Lをパターン状に照射し(図3の(b))、現像により未硬化部分(未露光部分)を除去することにより導電パターン(導電膜2a)を形成する(図3の(c))。こうして得られる導電パターンは、導電膜2aの厚みに加えて樹脂硬化層3bの厚みを有している。これらの厚みは基板との段差Hbとなる。段差が大きいと導電パターンが視認されやすくなるので用途によって図4に示す方法と使い分ければよい。なお、導電パターンの形成方法は感光性導電フィルムを用いて形成することが好ましいが、基板上に本発明の感光性樹脂層と導電性繊維を含む導電膜を別々に形成後、露光、現像することにより形成してもよい。
<Method for forming conductive pattern>
Hereinafter, a method for forming a conductive pattern of the present invention will be described with reference to the drawings.
As shown in FIG. 3, the photosensitive resin layer 3 of the photosensitive conductive film 10 having the support film 1, the conductive film 2, and the photosensitive resin layer 3 is laminated on the substrate 20 ((a) of FIG. 3), Next, the photosensitive resin layer 3 is irradiated with an actinic ray L in a pattern form through a mask 5 (FIG. 3B), and an uncured portion (unexposed portion) is removed by development to remove a conductive pattern ( A conductive film 2a) is formed (FIG. 3C). The conductive pattern thus obtained has the thickness of the cured resin layer 3b in addition to the thickness of the conductive film 2a. These thicknesses are steps Hb from the substrate. If the level difference is large, the conductive pattern is easily visually recognized, so that the method shown in FIG. The conductive pattern is preferably formed using a photosensitive conductive film, but the conductive resin layer of the present invention and a conductive film containing conductive fibers are separately formed on the substrate, and then exposed and developed. May be formed.
 図4に記載のように、支持フィルム1を有する感光層4の所定部分に活性光線を照射する第一の露光工程(図4(b))後、に支持フィルム1を剥離してから、酸素存在下で、第一の露光工程での露光部及び未露光部の一部又は全部に活性光線を照射する第二の露光工程(図4(c))と、を備えることが好ましい。第二の露光工程は、酸素存在下で行われ、例えば、空気中で行うことが好ましい。また、酸素濃度を増やした条件でもかまわない。
 前記現像工程では、第二の露光工程で露光した感光性樹脂層3の充分硬化していない表面部分が除去される。具体的には、ウェット現象により感光性樹脂層3の充分硬化していない表面部分、つまり導電膜2を含む表面層を除去する。これにより、基板上に導電パターンとともに導電膜を有していない樹脂硬化層が設けられ、基板上に導電パターンのみを設けた場合に比べて導電パターンの段差を小さくすることができる。
As shown in FIG. 4, after the first exposure step (FIG. 4B) in which a predetermined portion of the photosensitive layer 4 having the support film 1 is irradiated with actinic rays, the support film 1 is peeled off, and then the oxygen is released. In the presence, it is preferable to include a second exposure step (FIG. 4C) in which a part or all of the exposed portion and the unexposed portion in the first exposure step are irradiated with actinic rays. The second exposure step is performed in the presence of oxygen, for example, preferably in the air. Further, the condition of increasing the oxygen concentration may be used.
In the development step, the surface portion of the photosensitive resin layer 3 exposed in the second exposure step that has not been sufficiently cured is removed. Specifically, the surface portion of the photosensitive resin layer 3 that is not sufficiently cured by the wet phenomenon, that is, the surface layer including the conductive film 2 is removed. Thereby, the resin cured layer which does not have a conductive film with a conductive pattern is provided on a board | substrate, and the level | step difference of a conductive pattern can be made small compared with the case where only a conductive pattern is provided on a board | substrate.
 本発明の導電パターンの形成方法は、本発明の感光性導電フィルムを、基板上に感光性樹脂層が密着するようにラミネートするラミネート工程と、該支持フィルムを付けたまま基板上の感光性樹脂層の所定部分に活性光線を照射する露光工程と、その後該支持フィルムをはく離する工程と、感光性樹脂層と導電膜の未露光部を現像することにより導電パターンを形成する現像工程とを備える。これらの工程を経ることにより、基板上にパターニングされた導電パターンを備える導電パターン基板が得られる。 The conductive pattern forming method of the present invention comprises a laminating step of laminating the photosensitive conductive film of the present invention so that the photosensitive resin layer is in close contact with the substrate, and the photosensitive resin on the substrate with the support film attached. An exposure step of irradiating a predetermined portion of the layer with actinic rays, a step of peeling off the support film, and a development step of forming a conductive pattern by developing the photosensitive resin layer and the unexposed portion of the conductive film. . Through these steps, a conductive pattern substrate having a conductive pattern patterned on the substrate is obtained.
 基板としては、例えば、ガラス基板、ポリカーボネート等のプラスチック基板等が挙げられる。基板は、450~650nmの波長域での最小光透過率が80%以上であるものが好ましい。 Examples of the substrate include a glass substrate and a plastic substrate such as polycarbonate. The substrate preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm.
 ラミネート工程は、例えば、感光性導電フィルムを、保護フィルムがある場合はそれを除去した後、加熱しながら感光性樹脂層側を基板に圧着することにより積層する方法により行なわれる。尚、この作業は、密着性及び追従性の見地から減圧下で積層することが好ましい。感光性導電フィルムの積層は、感光性樹脂層又は基板を70~130℃に加熱することが好ましく、圧着圧力は、0.1~1.0MPa程度(1~10kgf/cm程度)とすることが好ましいが、これらの条件には特に制限はない。また、感光性樹脂層を前記のように70~130℃に加熱すれば、予め基板を予熱処理することは必要ではないが、積層性をさらに向上させるために基板の予熱処理を行うこともできる。 The laminating step is performed, for example, by a method of laminating the photosensitive conductive film by removing the protective film, if any, and then pressing the photosensitive resin layer side against the substrate while heating. In addition, it is preferable to laminate | stack this operation under pressure reduction from the viewpoint of adhesiveness and followability. In the lamination of the photosensitive conductive film, it is preferable to heat the photosensitive resin layer or substrate to 70 to 130 ° C., and the pressure bonding pressure is about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ). However, these conditions are not particularly limited. In addition, if the photosensitive resin layer is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the substrate in advance, but it is also possible to perform a pre-heat treatment of the substrate in order to further improve the lamination property. .
 該支持フィルムを付けたまま基板上の感光性樹脂層の所定部分に活性光線を照射する露光工程での露光方法としては、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線を画像状に照射する方法(マスク露光法)が挙げられる。活性光線の光源としては、公知の光源、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線、可視光等を有効に放射するものが用いられる。また、Arイオンレーザ、半導体レーザ等の紫外線、可視光等を有効に放射するものも用いられる。さらに、写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いられる。また、レーザ露光法等を用いた直接描画法により活性光線を画像状に照射する方法を採用してもよい。 As an exposure method in the exposure process of irradiating a predetermined portion of the photosensitive resin layer on the substrate with the support film attached thereto, the active light is irradiated in an image form through a negative or positive mask pattern called an artwork. A method (mask exposure method). As the active light source, a known light source, for example, a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, or the like that effectively emits ultraviolet light, visible light, or the like is used. Also, an Ar ion laser, a semiconductor laser, or the like that effectively emits ultraviolet light, visible light, or the like is used. Furthermore, what effectively radiates | emits visible light, such as a photographic flood light bulb and a solar lamp, is also used. Alternatively, a method of irradiating actinic rays in an image shape by a direct drawing method using a laser exposure method or the like may be employed.
 前記露光工程での露光量は、使用する装置や感光性樹脂組成物の組成によって異なるが、5mJ/cm~1000mJ/cmが好ましく、10mJ/cm~200mJ/cmがより好ましい。光硬化性に優れる点では、10mJ/cm以上であることが好ましく、解像性の点では200mJ/cm以下であることが好ましい。 Exposure at the exposure step may vary depending on the composition of the device or a photosensitive resin composition to be used is preferably from 5mJ / cm 2 ~ 1000mJ / cm 2, 10mJ / cm 2 ~ 200mJ / cm 2 is more preferable. In terms of excellent photocurability, it is preferably 10 mJ / cm 2 or more, and in terms of resolution, it is preferably 200 mJ / cm 2 or less.
 ウェット現像は、例えば、アルカリ性水溶液、水系現像液、有機溶剤系現像液等の感光性樹脂に対応した現像液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により行われる。 The wet development is performed by a known method such as spraying, rocking immersion, brushing, or scraping, using a developer corresponding to a photosensitive resin such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer. .
 現像液としては、アルカリ性水溶液等の安全かつ安定であり、操作性が良好なものが用いられる。前記アルカリ性水溶液の塩基としては、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ、リチウム、ナトリウム、カリウム又はアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ、リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩、四ホウ酸ナトリウム水溶液等のアルカリホウ酸塩等が用いられる。 As the developing solution, a safe and stable aqueous solution such as an alkaline aqueous solution is used. Examples of the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium, or potassium hydroxide, alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate, potassium phosphate, and phosphoric acid. Alkali metal phosphates such as sodium, alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate, alkali borates such as aqueous sodium tetraborate and the like are used.
 また、現像に用いるアルカリ性水溶液としては、0.1~5質量%炭酸ナトリウム水溶液、0.1~5質量%炭酸カリウム水溶液、0.1~5質量%水酸化ナトリウム水溶液、0.1~5質量%四ホウ酸ナトリウム水溶液等が好ましい。また、現像に用いるアルカリ性水溶液のpHは9~11の範囲とすることが好ましく、その温度は、感光性樹脂層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。 Examples of the alkaline aqueous solution used for development include 0.1 to 5% by mass sodium carbonate aqueous solution, 0.1 to 5% by mass potassium carbonate aqueous solution, 0.1 to 5% by mass sodium hydroxide aqueous solution, and 0.1 to 5% by mass. % Sodium tetraborate aqueous solution and the like are preferable. The pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 11, and the temperature is adjusted according to the developability of the photosensitive resin layer. In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
 また、水又はアルカリ水溶液と、一種以上の有機溶剤とからなる水系現像液を用いることができる。ここで、アルカリ水溶液に含まれる塩基としては、上述の塩基以外に、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1、3-プロパンジオール、1、3-ジアミノプロパノール-2、モルホリン等が挙げられる。
 有機溶剤としては、アセトンアルコール、アセトン、酢酸エチル、炭素数1~4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。
Also, an aqueous developer composed of water or an aqueous alkali solution and one or more organic solvents can be used. Here, as the base contained in the alkaline aqueous solution, in addition to the above-mentioned bases, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1, 3 -Propanediol, 1,3-diaminopropanol-2, morpholine and the like.
Examples of the organic solvent include acetone alcohol, acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and the like. It is done. These are used alone or in combination of two or more.
 水系現像液は、有機溶剤の濃度を2~90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。さらに、水系現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8~12とすることが好ましく、pH9~10とすることがより好ましい。また、水系現像液中には、界面活性剤、消泡剤等を少量添加することもできる。 The aqueous developer preferably has an organic solvent concentration of 2 to 90% by mass, and the temperature can be adjusted according to the developability. Furthermore, the pH of the aqueous developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8-12, and more preferably pH 9-10. In addition, a small amount of a surfactant, an antifoaming agent, or the like can be added to the aqueous developer.
 有機溶剤系現像液としては、1,1,1-トリクロロエタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、シクロヘキサノン、メチルイソブチルケトン、γ-ブチロラクトン等が挙げられる。これらの有機溶剤は、引火防止のため、1~20質量%の範囲で水を添加することが好ましい。 Examples of the organic solvent developer include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, and γ-butyrolactone. These organic solvents are preferably added with water in the range of 1 to 20% by mass in order to prevent ignition.
 上述した現像液は、必要に応じて、2種以上を併用してもよい。また、現像の方式としては、ディップ方式、バトル方式、スプレー方式、ブラッシング、スラッピング等が挙げられる。これらのうち、高圧スプレー方式を用いることが、解像度向上の観点から好ましい。 Developers described above may be used in combination of two or more as required. Examples of the development method include a dip method, a battle method, a spray method, brushing, and slapping. Among these, it is preferable to use a high-pressure spray system from the viewpoint of improving the resolution.
 本発明の導電パターンの形成方法においては、現像後に必要に応じて、60~250℃程度の加熱又は0.2~10J/cm程度の露光を行うことにより導電パターンをさらに硬化してもよい。 In the method for forming a conductive pattern of the present invention, the conductive pattern may be further cured by performing heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development. .
 このように、本発明の導電パターンの形成方法によれば、ITO等の無機膜のようにエッチングレジストを形成することなく、ガラスやプラスチック等基板上に容易に透明な導電パターンを形成することが可能である。 Thus, according to the method for forming a conductive pattern of the present invention, a transparent conductive pattern can be easily formed on a substrate such as glass or plastic without forming an etching resist like an inorganic film such as ITO. Is possible.
 本発明の導電パターン基板は、上述した導電膜の形成方法や導電パターンの形成方法により得られるが、透明電極として有効に活用できる観点から、導電膜又は導電パターンの表面抵抗率が2000Ω/□以下であることが好ましく、1000Ω/□以下であることがより好ましく、500Ω/□以下であることが特に好ましい。表面抵抗率は、例えば、導電性繊維や有機導電体の分散液の濃度又は塗工量によって調整することができる。 The conductive pattern substrate of the present invention can be obtained by the conductive film formation method or the conductive pattern formation method described above, but the surface resistivity of the conductive film or conductive pattern is 2000Ω / □ or less from the viewpoint that it can be effectively used as a transparent electrode. Preferably, it is 1000Ω / □ or less, more preferably 500Ω / □ or less. The surface resistivity can be adjusted by, for example, the concentration of the conductive fiber or organic conductor dispersion or the coating amount.
 また、本発明の導電パターン基板は、450~650nmの波長域における最小光透過率が80%以上であることが好ましく、85%以上であることがより好ましい。 In the conductive pattern substrate of the present invention, the minimum light transmittance in the wavelength region of 450 to 650 nm is preferably 80% or more, and more preferably 85% or more.
<タッチパネルセンサ>
 本発明に係るタッチパネルセンサは、前記の導電パターン基板を備える。
<Touch panel sensor>
A touch panel sensor according to the present invention includes the conductive pattern substrate.
 図5は、静電容量式のタッチパネルセンサの一例を示す模式上面図である。図5に示されるタッチパネルセンサは、透明基板101の片面にタッチ位置を検出するためのタッチ画面102があり、この領域に静電容量変化を検出して、X位置座標とする透明電極103と、Y位置座標とする透明電極104を備えている。これらのX、Y位置座標とするそれぞれの透明電極103、104には、タッチパネルとしての電気信号を制御するドライバー素子回路と接続するための引き出し配線105と、その引き出し配線105と透明電極103、104を接続する接続電極106が配置されている。さらに、引き出し配線105の接続電極106と反対側の端部には、ドライバー素子回路と接続する接続端子107が配置されている。 FIG. 5 is a schematic top view showing an example of a capacitive touch panel sensor. The touch panel sensor shown in FIG. 5 has a touch screen 102 for detecting a touch position on one surface of a transparent substrate 101, and a transparent electrode 103 that detects a change in capacitance in this region and uses it as an X position coordinate; A transparent electrode 104 having Y position coordinates is provided. Each of the transparent electrodes 103 and 104 having the X and Y position coordinates includes a lead wire 105 for connecting to a driver element circuit for controlling an electric signal as a touch panel, and the lead wire 105 and the transparent electrodes 103 and 104. A connection electrode 106 for connecting the two is disposed. Further, a connection terminal 107 connected to the driver element circuit is disposed at the end of the lead-out wiring 105 opposite to the connection electrode 106.
 図6は、図5に示されるタッチパネルセンサの製造方法の一例を示す模式図である。この製造方法においては、本発明に係る導電パターンの形成方法によって透明電極103、104が形成される。 FIG. 6 is a schematic diagram showing an example of a manufacturing method of the touch panel sensor shown in FIG. In this manufacturing method, the transparent electrodes 103 and 104 are formed by the conductive pattern forming method according to the present invention.
 まず、図6(a)に示すように、透明基板101上に透明電極(X位置座標)103を形成する。具体的には、感光性導電フィルム10を感光性樹脂層3が透明基板101に接続するようラミネートする。転写した感光層4(導電膜2及び感光性樹脂層3)に対し、所望の形状に遮光マスクを介してパターン状に活性光線を照射する(第一の露光工程)。その後、遮光マスクを除き、更に支持フィルムを剥離したうえで感光層4に活性光線を照射する(第二の露光工程)。露光工程の後、現像を行うことで、硬化が不充分な感光性樹脂層3と共に、導電膜2が除去され、導電パターン2aが形成される。この導電パターン2aによりX位置座標を検知する透明電極103が形成される(図6(b))。図6(b)は、図6(a)のI-I切断面の模式断面図である。本発明に係る導電パターンの形成方法により透明電極103を形成することで、段差の小さな透明電極103を設けることができる。 First, as shown in FIG. 6A, a transparent electrode (X position coordinate) 103 is formed on a transparent substrate 101. Specifically, the photosensitive conductive film 10 is laminated so that the photosensitive resin layer 3 is connected to the transparent substrate 101. The transferred photosensitive layer 4 (the conductive film 2 and the photosensitive resin layer 3) is irradiated with an actinic ray in a desired shape through a light-shielding mask (first exposure step). Thereafter, the light shielding mask is removed, the support film is further peeled off, and the photosensitive layer 4 is irradiated with actinic rays (second exposure step). By performing development after the exposure step, the conductive film 2 is removed together with the photosensitive resin layer 3 that is not sufficiently cured, and a conductive pattern 2a is formed. The transparent electrode 103 for detecting the X position coordinate is formed by the conductive pattern 2a (FIG. 6B). FIG. 6B is a schematic cross-sectional view taken along the line II in FIG. By forming the transparent electrode 103 by the method for forming a conductive pattern according to the present invention, the transparent electrode 103 with a small step can be provided.
 続いて、図6(c)に示すように透明電極(Y位置座標)104を形成する。前記の工程により形成された透明電極103を備える基板101に、更に、新たな感光性導電フィルム10をラミネートし、前記同様の操作により、Y位置座標を検知する透明電極104が形成される(図6(d))。図6(d)は、図6(c)のII-II切断面の模式断面図である。本発明に係る導電パターンの形成方法により透明電極104を形成することで、透明電極103上に透明電極104を形成する場合であっても、段差や気泡の捲き込みによる美観の低減が充分に抑制された、平滑性の高いタッチパネルセンサを作成することができる。 Subsequently, a transparent electrode (Y position coordinate) 104 is formed as shown in FIG. A new photosensitive conductive film 10 is further laminated on the substrate 101 including the transparent electrode 103 formed by the above-described process, and the transparent electrode 104 for detecting the Y position coordinate is formed by the same operation as described above (FIG. 6 (d)). FIG. 6D is a schematic cross-sectional view taken along the line II-II in FIG. By forming the transparent electrode 104 by the conductive pattern forming method according to the present invention, even when the transparent electrode 104 is formed on the transparent electrode 103, reduction in aesthetics due to stepping or entrainment of bubbles is sufficiently suppressed. A touch panel sensor with high smoothness can be created.
 次に、透明基板101の表面に、外部回路と接続するための引き出し線105と、この引き出し線と透明電極103、104を接続する接続電球106を形成する(図示せず)。図6では、引き出し線105及び接続電極106は、透明電極103及び104の形成後に形成するように示しているが、各透明電極形成時に同時に形成してもよい。引き出し線105は、例えば、フレーク状の銀を含有する導電ペースト材料を使って、スクリーン印刷法を用いて、接続電極106を形成するのと同時に形成することができる。 Next, a lead wire 105 for connecting to an external circuit and a connection light bulb 106 for connecting the lead wire and the transparent electrodes 103 and 104 are formed on the surface of the transparent substrate 101 (not shown). In FIG. 6, the lead line 105 and the connection electrode 106 are shown to be formed after the formation of the transparent electrodes 103 and 104, but they may be formed simultaneously with the formation of the transparent electrodes. The lead line 105 can be formed at the same time as the connection electrode 106 is formed by screen printing using a conductive paste material containing flaky silver, for example.
 図7及び図8はそれぞれ、図5に示されるa-a’及びb-b’に沿った部分断面図である。これらは、XY位置座標の透明電極の交差部を示す。図7及び図8に示されるように、透明電極が本発明に係る導電パターンの形成方法により形成されていることにより、段差が小さく平滑性の高いタッチパネルセンサを得ることができる。 7 and 8 are partial cross-sectional views taken along lines a-a 'and b-b' shown in FIG. 5, respectively. These indicate the intersections of the transparent electrodes at the XY position coordinates. As shown in FIGS. 7 and 8, the transparent electrode is formed by the conductive pattern forming method according to the present invention, so that a touch panel sensor with small steps and high smoothness can be obtained.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
 実施例、比較例で用いた(B)成分は以下の通りである。
・DPHA(日本化薬(株)製、ジペンタエリスリトールヘキサアクリレート、水酸基価40)
・TMPTA(日本化薬(株)製、トリメチロールプロパントリアクリレート、水酸基価0)
・PET-30(日本化薬(株)製、ペンタエリスリトールトリアクリレート、水酸基価110)
・A-9550(新中村化学工業(株)製、ジペンタエリスリトールポリアクリレート、水酸基価40)
・A-9570(新中村化学工業(株)製、ジペンタエリスリトールポリアクリレート、水酸基価70)
・A-TMM-3(新中村化学工業(株)製、ペンタエリスリトールトリアクリレート、水酸基価110)
・A-TMM-3LMN(新中村化学工業(株)製、ペンタエリスリトールトリアクリレート、水酸基価114)
The (B) component used by the Example and the comparative example is as follows.
DPHA (Nippon Kayaku Co., Ltd., dipentaerythritol hexaacrylate, hydroxyl value 40)
TMPTA (Nippon Kayaku Co., Ltd., trimethylolpropane triacrylate, hydroxyl value 0)
PET-30 (Nippon Kayaku Co., Ltd., pentaerythritol triacrylate, hydroxyl value 110)
A-9550 (manufactured by Shin-Nakamura Chemical Co., Ltd., dipentaerythritol polyacrylate, hydroxyl value 40)
A-9570 (manufactured by Shin-Nakamura Chemical Co., Ltd., dipentaerythritol polyacrylate, hydroxyl value 70)
A-TMM-3 (made by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate, hydroxyl value 110)
A-TMM-3LMN (manufactured by Shin-Nakamura Chemical Co., Ltd., pentaerythritol triacrylate, hydroxyl value 114)
製造例1
<導電性分散液(導電膜形成用塗液)(銀繊維分散液)の調製>
[ポリオール法による銀繊維の調製]
 2000mlの3口フラスコに、エチレングリコール500mlを入れ、窒素雰囲気下、マグネチックスターラーで攪拌しながらオイルバスにより160℃まで加熱した。ここに、別途用意したPtCl2mgを50mlのエチレングリコールに溶解した溶液を滴下した。4~5分後、AgNO5gをエチレングリコール300mlに溶解した溶液と、重量平均分子量が4万のポリビニルピロリドン(和光純薬(株)製)5gをエチレングリコール150mlに溶解した溶液とを、それぞれの滴下ロートから1分間で滴下し、その後160℃で60分間攪拌した。
Production Example 1
<Preparation of conductive dispersion (coating liquid for forming conductive film) (silver fiber dispersion)>
[Preparation of silver fiber by polyol method]
In a 2000 ml three-necked flask, 500 ml of ethylene glycol was placed and heated to 160 ° C. with an oil bath while stirring with a magnetic stirrer under a nitrogen atmosphere. A solution prepared by dissolving 2 mg of PtCl 2 separately prepared in 50 ml of ethylene glycol was added dropwise thereto. After 4 to 5 minutes, a solution in which 5 g of AgNO 3 was dissolved in 300 ml of ethylene glycol and a solution in which 5 g of polyvinylpyrrolidone having a weight average molecular weight of 40,000 (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 150 ml of ethylene glycol were respectively obtained. From the dropping funnel in 1 minute, and then stirred at 160 ° C. for 60 minutes.
 前記反応溶液が30℃以下になるまで放置してから、アセトンで10倍に希釈し、遠心分離機により2000回転で20分間遠心分離し、上澄み液をデカンテーションした。沈殿物にアセトンを加え攪拌後に前記と同様の条件で遠心分離し、アセトンをデカンテーションした。その後、蒸留水を用いて同様に2回遠心分離して、銀繊維を得た。得られた銀繊維を光学顕微鏡で観察したところ、繊維径(直径)は約5nmで、繊維長は約5μmであった。 The reaction solution was allowed to stand at 30 ° C. or less, diluted 10-fold with acetone, centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted. Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice using distilled water similarly, and obtained the silver fiber. When the obtained silver fiber was observed with an optical microscope, the fiber diameter (diameter) was about 5 nm, and the fiber length was about 5 μm.
[銀繊維分散液の調製]
 純水に、前記で得られた銀繊維を0.2質量%、及び、ドデシルーペンタエチレングリコールを0.1質量%の濃度となるように分散し、銀繊維分散液を得た。
[Preparation of silver fiber dispersion]
The silver fiber obtained above was dispersed in pure water so that the concentration was 0.2% by mass and dodecyl-pentaethylene glycol was 0.1% by mass to obtain a silver fiber dispersion.
製造例2
<(A)成分溶液の調製>
[バインダーポリマー溶液(A1)の作製]
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、表1に示す(1)を仕込み,窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃±2℃に保ちながら、表1に示す(2)を4時間かけて均一に滴下した。(2)の滴下後,80℃±2℃で6時間撹拌を続け、重量平均分子量が約45,000のバインダーポリマー溶液(固形分50質量%)(A1)を得た。
Production Example 2
<Preparation of component solution (A)>
[Preparation of binder polymer solution (A1)]
A flask equipped with a stirrer, reflux condenser, inert gas inlet and thermometer was charged with (1) shown in Table 1, heated to 80 ° C. in a nitrogen gas atmosphere, and the reaction temperature was 80 ° C. ± 2 While maintaining the temperature, (2) shown in Table 1 was added dropwise uniformly over 4 hours. After dropwise addition of (2), stirring was continued at 80 ° C. ± 2 ° C. for 6 hours to obtain a binder polymer solution (solid content 50 mass%) (A1) having a weight average molecular weight of about 45,000.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[バインダーポリマー溶液(A2)の作製]
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、表2に示す(1)を仕込み、窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃±2℃に保ちながら、表2に示す(2)を4時間かけて均一に滴下した。(2)の滴下後、80℃±2℃で6時間撹拌を続け、重量平均分子量が約50,000のバインダーポリマー溶液(固形分50質量%)(A2)を得た。
[Preparation of binder polymer solution (A2)]
A flask equipped with a stirrer, reflux condenser, inert gas inlet and thermometer was charged with (1) shown in Table 2, heated to 80 ° C. in a nitrogen gas atmosphere, and the reaction temperature was 80 ° C. ± 2 While maintaining the temperature, (2) shown in Table 2 was uniformly added dropwise over 4 hours. After dropwise addition of (2), stirring was continued at 80 ° C. ± 2 ° C. for 6 hours to obtain a binder polymer solution (solid content 50 mass%) (A2) having a weight average molecular weight of about 50,000.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[バインダーポリマー溶液(A3)の作製]
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、表3に示す(1)を仕込み、窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃±2℃に保ちながら、表3に示す(2)を4時間かけて均一に滴下した。(2)の滴下後、80℃±2℃で6時間撹拌を続け、重量平均分子量が約50,000のバインダーポリマー溶液(固形分50質量%)(A3)を得た。
[Preparation of binder polymer solution (A3)]
A flask equipped with a stirrer, reflux condenser, inert gas inlet and thermometer was charged with (1) shown in Table 3, heated to 80 ° C. in a nitrogen gas atmosphere, and the reaction temperature was 80 ° C. ± 2 While maintaining the temperature, (2) shown in Table 3 was uniformly added dropwise over 4 hours. After dropping (2), stirring was continued at 80 ° C. ± 2 ° C. for 6 hours to obtain a binder polymer solution (solid content 50 mass%) (A3) having a weight average molecular weight of about 50,000.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[バインダーポリマー溶液(A4)の作製]
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、表4に示す(1)を仕込み、窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃±2℃に保ちながら、表4に示す(2)を4時間かけて均一に滴下した。(2)の滴下後、80℃±2℃で6時間撹拌を続け、重量平均分子量が約50,000のバインダーポリマー溶液(固形分50質量%)(A4)を得た。
[Preparation of binder polymer solution (A4)]
A flask equipped with a stirrer, reflux condenser, inert gas inlet and thermometer was charged with (1) shown in Table 4, heated to 80 ° C. in a nitrogen gas atmosphere, and the reaction temperature was 80 ° C. ± 2 While maintaining the temperature, (2) shown in Table 4 was uniformly added dropwise over 4 hours. After dripping (2), stirring was continued at 80 ° C. ± 2 ° C. for 6 hours to obtain a binder polymer solution (solid content 50 mass%) (A4) having a weight average molecular weight of about 50,000.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[バインダーポリマー溶液の評価]
 作製したバインダーポリマー溶液A1~A4について、以下の特性を以下の方法で測定した。結果を表5に示す。
[Evaluation of binder polymer solution]
For the produced binder polymer solutions A1 to A4, the following characteristics were measured by the following method. The results are shown in Table 5.
(1)重量平均分子量
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC)によって測定し、標準ポリスチレンの検量線を用いて換算することにより導出した。GPCの条件を以下に示す。
GPC条件
 ポンプ:日立 L-6000型((株)日立製作所製、製品名)
 カラム:Gelpack GL-R420、Gelpack GL-R430、Gelpack GL-R440(以上、日立化成(株)製、製品名)
 溶離液:テトラヒドロフラン
 測定温度:40℃
 流量:2.05mL/分
 検出器:日立 L-3300型RI((株)日立製作所製、製品名)
(1) Weight average molecular weight The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and was derived by conversion using a standard polystyrene calibration curve. The GPC conditions are shown below.
GPC condition Pump: Hitachi L-6000 type (product name, manufactured by Hitachi, Ltd.)
Column: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (above, manufactured by Hitachi Chemical Co., Ltd., product name)
Eluent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 2.05 mL / min Detector: Hitachi L-3300 type RI (manufactured by Hitachi, Ltd., product name)
(2)水酸基価
 水酸基価は、次のようにして測定した。まず、前記で作成したバインダーポリマー溶液を、130℃で1時間加熱し、揮発分を除去して、固形分を得た。そして、水酸基価を測定すべきポリマー1gを精秤した後、精秤したポリマーを三角フラスコに入れ、10質量%の無水酢酸ピリジン溶液を10mL加えてこれを均一に溶解し、100℃で1時間加熱した。加熱後、水10mLとピリジン10mLを加えて100℃で10分間加熱後、自動滴定機(平沼産業(株)製「COM-1700」)を用いて、0.5mol/Lの水酸化カリウムのエタノール溶液により中和滴定を行った。そして、次式により水酸基価を算出した。
水酸基価=(A-B)×f×28.05/試料(g)+酸価
(式中、Aは空試験に用いた0.5mol/L水酸化カリウムエタノール溶液の量(mL)を示し、Bは滴定に用いた0.5mol/L水酸化カリウムエタノール溶液の量(mL)を示し、fはファクターを示す。)
(2) Hydroxyl value The hydroxyl value was measured as follows. First, the binder polymer solution prepared above was heated at 130 ° C. for 1 hour to remove volatile components, thereby obtaining a solid content. Then, after precisely weighing 1 g of the polymer whose hydroxyl value is to be measured, the precisely weighed polymer is put into an Erlenmeyer flask, and 10 mL of 10% by mass acetic anhydride pyridine solution is added and uniformly dissolved, and then at 100 ° C. for 1 hour. Heated. After heating, 10 mL of water and 10 mL of pyridine were added and heated at 100 ° C. for 10 minutes. Then, 0.5 mol / L of potassium hydroxide ethanol was used using an automatic titrator (“COM-1700” manufactured by Hiranuma Sangyo Co., Ltd.). Neutralization titration was performed with the solution. And the hydroxyl value was computed by following Formula.
Hydroxyl value = (AB) × f × 28.05 / sample (g) + acid value (where A represents the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used in the blank test). , B represents the amount (mL) of 0.5 mol / L potassium hydroxide ethanol solution used for titration, and f represents a factor.)
(3)酸価
 酸価は、次のようにして測定した。まず、前記で作成したバインダーポリマー溶液を、130℃で1時間加熱し、揮発分を除去して、固形分を得た。そして、酸価を測定すべきポリマー1gを精秤した後、精秤したポリマーを三角フラスコに入れ、このポリマーにアセトンを30g添加し、これを均一に溶解した。次いで、指示薬であるフェノールフタレインをその溶液に適量添加して、0.1NのKOH水溶液を用いて滴定を行った。そして、次式により酸価を算出した。
酸価=0.1×Vf×56.1/(Wp×I/100)
(式中、VfはKOH水溶液の滴定量(mL)を示し、Wpは測定した樹脂溶液の質量(g)を示し、Iは測定した樹脂溶液中の不揮発分の割合(質量%)を示す。)
(3) Acid value The acid value was measured as follows. First, the binder polymer solution prepared above was heated at 130 ° C. for 1 hour to remove volatile components, thereby obtaining a solid content. Then, after precisely weighing 1 g of the polymer whose acid value is to be measured, the precisely weighed polymer was put into an Erlenmeyer flask, 30 g of acetone was added to this polymer, and this was uniformly dissolved. Next, an appropriate amount of an indicator, phenolphthalein, was added to the solution, and titration was performed using a 0.1N aqueous KOH solution. And the acid value was computed by following Formula.
Acid value = 0.1 × Vf × 56.1 / (Wp × I / 100)
(In the formula, Vf represents the titration amount (mL) of the KOH aqueous solution, Wp represents the mass (g) of the measured resin solution, and I represents the proportion (mass%) of the nonvolatile content in the measured resin solution. )
(4)ガラス転移温度(Tg)
 前記で作成したバインダーポリマー溶液をポリエチレンテレフタレートフィルム(帝人デュポンフィルム(株)製、製品名「ピューレックスA53」)上に均一に塗布し、90℃の熱風対流式乾燥機で10分間乾燥して、乾燥後の厚さが40μmであるバインダーポリマーからなる膜を形成した。次いで高圧水銀灯ランプを有する露光機((株)オーク製作所製、商品名「EXM-1201」)を用いて、照射エネルギー量が400mJ/cmとなるように前記膜を露光した。露光された膜をホットプレート上にて65℃で2分間、次いで95℃で8分間加熱し、熱風対流式乾燥機にて180℃で60分間加熱処理をした後、ポリエチレンテレフタレートフィルムから剥離し、セイコーインスツルメンツ社製TMA/SS6000を用いて、昇温速度5℃/分で温度を上昇させたときの該硬化膜の熱膨張率を測定し、その曲線から得られる変曲点をガラス転移温度Tgとして求めた。
(4) Glass transition temperature (Tg)
The binder polymer solution created above was uniformly applied onto a polyethylene terephthalate film (product name “Purex A53” manufactured by Teijin DuPont Films Ltd.), and dried for 10 minutes with a hot air convection dryer at 90 ° C. A film made of a binder polymer having a thickness of 40 μm after drying was formed. Next, the film was exposed using an exposure machine (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.) having a high-pressure mercury lamp so that the amount of irradiation energy was 400 mJ / cm 2 . The exposed film was heated on a hot plate at 65 ° C. for 2 minutes, then at 95 ° C. for 8 minutes, heated at 180 ° C. for 60 minutes in a hot air convection dryer, and then peeled off from the polyethylene terephthalate film, Using TMA / SS6000 manufactured by Seiko Instruments Inc., the coefficient of thermal expansion of the cured film was measured when the temperature was increased at a rate of temperature increase of 5 ° C./min, and the inflection point obtained from the curve was determined as the glass transition temperature Tg. As sought.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実施例1
<感光性導電フィルムの作製>
[導電フィルム(感光性導電フィルムの導電膜)の作製]
 前記で得られた銀繊維分散液を、支持フィルムである50μm厚のポリエチレンテレフタレートフィルム(PETフィルム、帝人(株)製、商品名「G2-50」)上に25g/mで均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥し、導電膜を形成した。尚、導電膜の乾燥後の膜厚は、約0.1μmであった。
Example 1
<Preparation of photosensitive conductive film>
[Preparation of conductive film (conductive film of photosensitive conductive film)]
The silver fiber dispersion obtained above was uniformly applied at 25 g / m 2 onto a 50 μm-thick polyethylene terephthalate film (PET film, product name “G2-50” manufactured by Teijin Limited) as a support film. The film was dried for 3 minutes with a hot air convection dryer at 100 ° C. to form a conductive film. In addition, the film thickness after drying of the electrically conductive film was about 0.1 micrometer.
[感光性樹脂組成物溶液の作製]
 表6に示す材料を表6に示す量(質量部)で、攪拌機を用いて15分間混合し、感光性樹脂組成物溶液を作製した。
 尚、表中の(A)成分の配合量は、溶媒を除いた固形分の質量部である。表中のSH-30はシリコーンレベリング剤(東レ・ダウコーニング株式会社製)である。
[Preparation of photosensitive resin composition solution]
The materials shown in Table 6 were mixed in the amounts (parts by mass) shown in Table 6 for 15 minutes using a stirrer to prepare a photosensitive resin composition solution.
In addition, the compounding quantity of (A) component in a table | surface is the mass part of solid content except a solvent. SH-30 in the table is a silicone leveling agent (manufactured by Dow Corning Toray).
 バインダーポリマー溶液と同様にして感光性樹脂組成物の水酸基価を測定した。結果を表6に示す。 The hydroxyl value of the photosensitive resin composition was measured in the same manner as in the binder polymer solution. The results are shown in Table 6.
[感光性導電フィルムの作製]
 感光性樹脂組成物溶液を、導電フィルムで導電膜が形成された50μm厚のポリエチレンテレフタレート(ペット)フィルム上に均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥して感光性樹脂層を形成した。その後、感光性樹脂層を、ポリエチレン製の保護フィルム(タマポリ(株)製、商品名「NF-13」)で覆い、感光性導電フィルムを得た。尚、感光性樹脂層の乾燥後の膜厚は5μmであった。
[Preparation of photosensitive conductive film]
The photosensitive resin composition solution is uniformly applied onto a 50 μm-thick polyethylene terephthalate (pet) film on which a conductive film is formed with a conductive film, and dried for 10 minutes in a hot air convection dryer at 100 ° C. for photosensitive resin. A layer was formed. Thereafter, the photosensitive resin layer was covered with a protective film made of polyethylene (manufactured by Tamapoly Co., Ltd., trade name “NF-13”) to obtain a photosensitive conductive film. In addition, the film thickness after drying of the photosensitive resin layer was 5 micrometers.
[感光性導電フィルムの光透過率の測定]
 得られた感光性導電フィルムのポリエチレンフィルムをはがしながら、厚さ1mmのガラス基板上に、感光性樹脂層が接するようにラミネータ(日立化成工業(株)製、商品名HLM-3000型)を用いて、ロール温度110℃、基板送り速度1m/分、圧着圧力(シリンダ圧力)4×10Pa(厚さが1mm、縦10cm×横10cmの基板を用いたため、この時の線圧は9.8×10N/m)の条件でラミネートして、ガラス基板上に、支持体フィルムを含む感光性導電フィルムが積層された基板を作製した。
[Measurement of light transmittance of photosensitive conductive film]
Using a laminator (manufactured by Hitachi Chemical Co., Ltd., trade name: HLM-3000) so that the photosensitive resin layer is in contact with a 1 mm thick glass substrate while peeling the polyethylene film of the obtained photosensitive conductive film. In this case, a substrate having a roll temperature of 110 ° C., a substrate feed speed of 1 m / min, and a pressure bonding pressure (cylinder pressure) of 4 × 10 5 Pa (thickness of 1 mm, length of 10 cm × width of 10 cm is used. 8 × 10 3 N / m) was laminated to prepare a substrate in which a photosensitive conductive film including a support film was laminated on a glass substrate.
 次いで、基板上の感光性導電フィルムに、平行光線露光機(オーク製作所(株)製、EXM1201)を使用して、支持体フィルム側より露光量5×10J/mで(i線(波長365nm)における測定値)、紫外線を照射した後、支持体フィルムを除去し、感光性樹脂層と導電膜(感光層)(膜厚5.0μm)の透過率測定用試料を得た。 Next, using a parallel light exposure machine (EXM1201 manufactured by Oak Manufacturing Co., Ltd.) on the photosensitive conductive film on the substrate, an exposure amount of 5 × 10 2 J / m 2 (i-line ( (Measurement value at a wavelength of 365 nm)) After irradiation with ultraviolet rays, the support film was removed to obtain a sample for measuring transmittance of the photosensitive resin layer and the conductive film (photosensitive layer) (thickness: 5.0 μm).
 次いで、得られた試料を日立計測器サービス(株)製、紫外可視分光光度計(U-3310)を使用して、測定波長域400~700nmで可視光線透過率を測定した。
 得られた試料の透過率は、波長700nmにおいて92%、波長550nmにおいて91%、波長400nmにおいて87%であり、良好な透過率を確保できていた。
Next, the visible light transmittance of the obtained sample was measured in a measurement wavelength range of 400 to 700 nm using an ultraviolet-visible spectrophotometer (U-3310) manufactured by Hitachi Instrument Service Co., Ltd.
The transmittance of the obtained sample was 92% at a wavelength of 700 nm, 91% at a wavelength of 550 nm, and 87% at a wavelength of 400 nm, and good transmittance was secured.
[感光性導電フィルムの銀ペースト接続信頼性試験]
 以下、高温高湿条件下で感光性導電フィルムと銀ペーストとの間で断線不良が発生しにくいものを「銀ペースト接続信頼性が良い」と呼び、断線不良が発生し易いものを「銀ペースト接続信頼性が悪い」と呼ぶことにする。また、銀ペースト接続信頼性の良し悪しを調べる方法を、銀ペースト接続信頼性試験と呼ぶことにする。
[Silver paste connection reliability test for photosensitive conductive film]
Hereinafter, those in which disconnection failure is unlikely to occur between the photosensitive conductive film and the silver paste under high temperature and high humidity conditions are referred to as “good silver paste connection reliability”, and those in which disconnection failure is likely to occur are referred to as “silver paste” The connection reliability is bad. Also, a method for checking whether the silver paste connection reliability is good or bad will be referred to as a silver paste connection reliability test.
 得られた感光性導電フィルムのポリエチレンフィルムをはがしながら、ペットフィルム(東洋紡(株)製、商品名A4300、縦12cm×横12cm、厚さ125μm)上に、感光性樹脂層が接するようにラミネータ(日立化成(株)製、商品名HLM-3000型)を用いて、ロール温度110℃、基板送り速度1m/分、圧着圧力(シリンダ圧力)4×105Paの条件でラミネートして、ペットフィルム基板上に、支持体フィルムを含む感光性導電フィルムが積層された基板を作製した。 While peeling off the polyethylene film of the obtained photosensitive conductive film, a laminator (Toyobo Co., Ltd., trade name A4300, length 12 cm × width 12 cm, thickness 125 μm) is laminated so that the photosensitive resin layer is in contact. Using Hitachi Chemical Co., Ltd. (trade name: HLM-3000 type), laminating under conditions of roll temperature 110 ° C, substrate feed rate 1m / min, pressure bonding pressure (cylinder pressure) 4 × 105Pa, on pet film substrate A substrate on which a photosensitive conductive film including a support film was laminated was prepared.
 次いで、基板上の感光性導電フィルムに、平行光線露光機(オーク製作所(株)製、EXM1201)を使用して、支持体フィルム側(感光性導電フィルム導電膜上方)より露光量5×10J/mで(i線(波長365nm)における測定値)、紫外線を照射した後、支持体フィルムを除去し、さらに感光性導電フィルムの導電膜上方より露光量1×10J/mで(i線(波長365nm)における測定値)紫外線を照射し、感光性樹脂層と導電膜(感光層)(膜厚5.0μm)をペットフィルム全面に形成したフィルム(感光層ベタフィルム)を得た。尚、得られた感光層ベタフィルムのシート抵抗値を、非接触抵抗測定器(ナプソン(株)製、NC-10)により測定したところ、270±20Ω/□であった。 Next, an exposure amount of 5 × 10 2 is applied to the photosensitive conductive film on the substrate from the support film side (above the photosensitive conductive film conductive film) using a parallel beam exposure machine (EXM1201 manufactured by Oak Manufacturing Co., Ltd.). After irradiating ultraviolet rays at J / m 2 (measured value at i-line (wavelength 365 nm)), the support film is removed, and the exposure amount is 1 × 10 4 J / m 2 from above the conductive film of the photosensitive conductive film. (Measured value at i-line (wavelength 365 nm)) A film (photosensitive layer solid film) formed by irradiating ultraviolet rays and forming a photosensitive resin layer and a conductive film (photosensitive layer) (thickness 5.0 μm) on the entire surface of the pet film. Obtained. The sheet resistance value of the obtained photosensitive layer solid film was measured with a non-contact resistance measuring device (Napson Co., Ltd., NC-10) and found to be 270 ± 20Ω / □.
 次いで、得られた前期感光層ベタフィルムの上に、3cm間隔で銀ペースト電極を形成した。銀ペースト電極は、直径2mm、厚さ1mmとなるように塗布した。銀ペーストとして、TB3351C((株)スリーボンド製)、AF4500(太陽インキ製造(株)製)、AF6100(太陽インキ製造(株)製)、DW-117H-41(東洋紡(株)製)、DW-250H-5(東洋紡(株)製)、DW-250H-23(東洋紡(株)製)、DW-420L-2(東洋紡(株)製)、FA-301CA(藤倉化成(株)製)、FA-401CA(藤倉化成(株)製)を使用し、いずれの銀ペーストについても、感光層ベタフィルム上に塗布した後に、箱型乾燥機(楠本化成(株)製、ETAC HISPEC HG220)で120℃/30分、加熱処理した。前記のように、感光層ベタフィルム上に銀ペースト電極を形成して、感光性導電フィルムの銀ペースト接続信頼性評価用試料を得た。 Next, silver paste electrodes were formed on the obtained photosensitive layer solid film at intervals of 3 cm. The silver paste electrode was applied so as to have a diameter of 2 mm and a thickness of 1 mm. As silver paste, TB3351C (manufactured by Three Bond Co., Ltd.), AF4500 (manufactured by Taiyo Ink Manufacturing Co., Ltd.), AF6100 (manufactured by Taiyo Ink Manufacturing Co., Ltd.), DW-117H-41 (manufactured by Toyobo Co., Ltd.), DW- 250H-5 (Toyobo Co., Ltd.), DW-250H-23 (Toyobo Co., Ltd.), DW-420L-2 (Toyobo Co., Ltd.), FA-301CA (Fujikura Kasei Co., Ltd.), FA -401CA (manufactured by Fujikura Kasei Co., Ltd.) was used, and all silver pastes were coated on the photosensitive layer solid film and then 120 ° C. with a box-type dryer (manufactured by Enomoto Kasei Co., Ltd., ETAC HISPEC HG220). / 30 minutes. As described above, a silver paste electrode was formed on the photosensitive layer solid film to obtain a silver paste connection reliability evaluation sample of the photosensitive conductive film.
 得られた銀ペースト接続信頼性評価用試料を用いて、銀ペースト接続信頼性を評価した。まず、3cm間隔で形成した銀ペースト電極間の抵抗値を、ポケットテスター((株)カスタム製、CDM-03D)を用いて測定した。抵抗値は350~400Ωであり、この抵抗値を銀ペースト接続信頼性評価前の初期値(R0)とした The silver paste connection reliability was evaluated using the obtained silver paste connection reliability evaluation sample. First, the resistance value between the silver paste electrodes formed at intervals of 3 cm was measured using a pocket tester (manufactured by Custom Co., Ltd., CDM-03D). The resistance value is 350 to 400Ω, and this resistance value is set as the initial value (R0) before the silver paste connection reliability evaluation.
 次いで、銀ペースト接続信頼性評価用試料を、60℃、90%の高温高湿層に100時間投入した後、大気中に室温で1時間静置してから、改めて銀ペースト電極間の抵抗値を測定した。この抵抗値を銀ペースト接続信頼性評価後の抵抗値(R1)とした。 Next, after putting the silver paste connection reliability evaluation sample into a high-temperature and high-humidity layer at 60 ° C. and 90% for 100 hours, the sample was allowed to stand in the atmosphere at room temperature for 1 hour, and then the resistance value between the silver paste electrodes was again measured. Was measured. This resistance value was defined as the resistance value (R1) after the silver paste connection reliability evaluation.
 感光性導電フィルムの銀ペースト接続信頼性を、信頼性評価前後の抵抗値R0、R1をもとに、以下の評点に従って評価した。ここで、R0とR1の比(R1/R0)をRrとした。結果を表6に示す。
 ◎  ; Rr≦1.1
 ○  ; 1.1<Rr≦1.25
 △  ; 1.25<Rr≦2
 ×  ; Rr>2
 ×× ; Rr>2であり、R1>1×10Ω
The silver paste connection reliability of the photosensitive conductive film was evaluated according to the following ratings based on the resistance values R0 and R1 before and after the reliability evaluation. Here, the ratio of R0 to R1 (R1 / R0) was Rr. The results are shown in Table 6.
◎; Rr ≦ 1.1
○; 1.1 <Rr ≦ 1.25
Δ; 1.25 <Rr ≦ 2
×: Rr> 2
XX; Rr> 2, R1> 1 × 10 6 Ω
実施例2~9
 表6に示す感光性樹脂組成物溶液を用いた以外は、実施例1と同様に感光性導電フィルムを作製し、銀ペースト接続信頼性試験を実施し、銀ペースト接続信頼性を評価した。結果を表6に示す。
Examples 2 to 9
Except having used the photosensitive resin composition solution shown in Table 6, the photosensitive conductive film was produced similarly to Example 1, the silver paste connection reliability test was implemented, and the silver paste connection reliability was evaluated. The results are shown in Table 6.
比較例1~6
 表6に示す感光性樹脂組成物溶液を用いた以外は、実施例1と同様に感光性導電フィルムを作製し、銀ペースト接続信頼性試験を実施し、銀ペースト接続信頼性を評価した。結果を表6に示す。
Comparative Examples 1-6
Except having used the photosensitive resin composition solution shown in Table 6, the photosensitive conductive film was produced similarly to Example 1, the silver paste connection reliability test was implemented, and the silver paste connection reliability was evaluated. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、成分(A)~(C)を組み合わせた実施例1~9においては、銀ペーストの種類によらず、銀ペースト接続信頼性はいずれも良好な結果であった。 As shown in Table 6, in Examples 1 to 9 in which the components (A) to (C) were combined, the silver paste connection reliability was a good result regardless of the type of the silver paste.
 一方、表6に示すように、水酸基価の高いバインダーポリマー(A3)及び(A4)を使用した比較例2,4,5及び6においては、銀ペースト接続信頼性が悪い結果であった。特に、バインダーポリマー(A4)を使用した比較例4及び6においては、どの銀ペーストを使用しても、銀ペースト接続信頼性は悪い結果であった。また、(B)成分として水酸基価の高い光重合性化合物であるPET-30,A-TMM-3,及びA-TMM-3LMNを用いた比較例1,2,3,及び5においても、同様に銀ペースト接続信頼性が悪い結果であった。 On the other hand, as shown in Table 6, in Comparative Examples 2, 4, 5 and 6 using binder polymers (A3) and (A4) having a high hydroxyl value, the silver paste connection reliability was poor. In particular, in Comparative Examples 4 and 6 using the binder polymer (A4), the silver paste connection reliability was poor regardless of which silver paste was used. The same applies to Comparative Examples 1, 2, 3, and 5 using PET-30, A-TMM-3, and A-TMM-3LMN, which are photopolymerizable compounds having a high hydroxyl value as component (B). The silver paste connection reliability was poor.
 本発明の感光性導電フィルムによれば、銀ペーストの組成に依存すること無く、高温高湿条件下でも銀ペーストとの間で断線不良が発生し難い導電パターンを形成することができる。 According to the photosensitive conductive film of the present invention, it is possible to form a conductive pattern that hardly causes disconnection failure with the silver paste even under high temperature and high humidity conditions without depending on the composition of the silver paste.
 前記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
All the contents of the Japanese application specification that is the basis of the priority of Paris in this application are incorporated herein.

Claims (11)

  1.  支持フィルムと、該支持フィルム上に設けられた導電膜及び該導電膜上に設けられた感光性樹脂層を備える感光性導電フィルムであって、前記感光性樹脂層は、
    (A)バインダーポリマー、
    (B)光重合性化合物、
    (C)光重合性開始剤を含有し、
     前記感光性樹脂層の水酸基価が40mgKOH/g以下である、感光性導電フィルム。
    A photosensitive conductive film comprising a support film, a conductive film provided on the support film, and a photosensitive resin layer provided on the conductive film, the photosensitive resin layer comprising:
    (A) a binder polymer,
    (B) a photopolymerizable compound,
    (C) contains a photopolymerizable initiator,
    The photosensitive conductive film whose hydroxyl value of the said photosensitive resin layer is 40 mgKOH / g or less.
  2.  前記(A)成分の水酸基価が60mgKOH/g以下である、請求項1記載の感光性導電フィルム。 The photosensitive conductive film according to claim 1, wherein the hydroxyl value of the component (A) is 60 mgKOH / g or less.
  3.  前記(B)成分の水酸基価が90mgKOH/g以下である、請求項1又は2記載の感光性導電フィルム。 The photosensitive conductive film of Claim 1 or 2 whose hydroxyl value of the said (B) component is 90 mgKOH / g or less.
  4.  前記導電膜が、導電性繊維を少なくとも一種含有する、請求項1~3のいずれか一項に記載の感光性導電フィルム。 The photosensitive conductive film according to any one of claims 1 to 3, wherein the conductive film contains at least one conductive fiber.
  5.  前記導電性繊維が、銀繊維である、請求項4記載の感光性導電フィルム。 The photosensitive conductive film according to claim 4, wherein the conductive fiber is a silver fiber.
  6.  請求項1~5のいずれか一項に記載の感光性導電フィルムを、基板上に前記感光性樹脂層が密着するようにラミネートする工程と、
     前記基板上の前記感光性樹脂層の所定部分に活性光線を照射する露光工程と、
     前記支持フィルムを剥離後、露光した前記感光性樹脂層と導電膜の未露光部を現像することにより導電パターンを形成する現像工程と、
    を備える、導電パターンの形成方法。
    Laminating the photosensitive conductive film according to any one of claims 1 to 5 so that the photosensitive resin layer is in close contact with a substrate;
    An exposure step of irradiating a predetermined portion of the photosensitive resin layer on the substrate with an actinic ray;
    A development step of forming a conductive pattern by developing the exposed photosensitive resin layer and an unexposed portion of the conductive film after peeling the support film;
    A method for forming a conductive pattern.
  7.  請求項1~5のいずれか一項に記載の感光性導電フィルムを、基板上に前記感光性樹脂層が密着するようにラミネートする工程と、
     前記基板上の前記感光性樹脂層の所定部分に活性光線を照射する第一の露光工程と、
     前記支持フィルムを剥離後、酸素存在下で、前記第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、
     前記第二の露光工程の後に、前記感光性樹脂層と導電膜を現像することにより導電パターンを形成する現像工程と、
    を備える、導電パターンの形成方法。
    Laminating the photosensitive conductive film according to any one of claims 1 to 5 so that the photosensitive resin layer is in close contact with a substrate;
    A first exposure step of irradiating a predetermined portion of the photosensitive resin layer on the substrate with an actinic ray;
    After peeling the support film, in the presence of oxygen, a second exposure step of irradiating a part or all of the unexposed portion in the first exposure step with actinic rays,
    A developing step of forming a conductive pattern by developing the photosensitive resin layer and the conductive film after the second exposure step;
    A method for forming a conductive pattern.
  8.  基板上に設けられた感光性樹脂層と、前記感光性樹脂層の前記基板とは反対側の面に設けられた、導電性繊維を含む導電膜の所定部分に活性光線を照射する露光工程と、
     前記感光性樹脂層と導電膜の未露光部を除去することにより導電パターンを形成する現像工程と、を含み、
     前記感光性樹脂層は、(A)バインダーポリマー、(B)光重合性化合物、(C)光重合性開始剤を含有し、前記感光性樹脂層の水酸基価が40mgKOH/g以下である、 導電パターンの製造方法。
    A photosensitive resin layer provided on a substrate; and an exposure step of irradiating a predetermined portion of a conductive film including conductive fibers provided on a surface of the photosensitive resin layer opposite to the substrate with active light rays; ,
    A developing step of forming a conductive pattern by removing the photosensitive resin layer and an unexposed portion of the conductive film,
    The photosensitive resin layer contains (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerizable initiator, and the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less. Pattern manufacturing method.
  9.  基板上に設けられた感光性樹脂層と、前記感光性樹脂層の前記基板とは反対側の面に設けられた、導電性繊維を含む導電膜の所定部分に活性光線を照射する第一の露光工程と、
     酸素存在下で、前記第一の露光工程での未露光部の一部又は全部に活性光線を照射する第二の露光工程と、
     前記第二の露光工程の後に、前記感光性樹脂層と導電膜を現像することにより導電パターンを形成する現像工程とを含み、
     前記感光性樹脂層は、(A)バインダーポリマー、(B)光重合性化合物、(C)光重合性開始剤を含有し、前記感光性樹脂層の水酸基価が40mgKOH/g以下である、 導電パターンの製造方法。
    A photosensitive resin layer provided on a substrate, and a first portion that irradiates a predetermined portion of a conductive film including conductive fibers provided on a surface of the photosensitive resin layer opposite to the substrate with active light. An exposure process;
    A second exposure step of irradiating a part or all of the unexposed portion in the first exposure step with actinic rays in the presence of oxygen;
    A development step of forming a conductive pattern by developing the photosensitive resin layer and the conductive film after the second exposure step;
    The photosensitive resin layer contains (A) a binder polymer, (B) a photopolymerizable compound, and (C) a photopolymerizable initiator, and the hydroxyl value of the photosensitive resin layer is 40 mgKOH / g or less. Pattern manufacturing method.
  10.  請求項6~9のいずれか一項に記載の導電パターンの形成方法により得られた導電パターンと、を備える、導電パターン基板。 A conductive pattern substrate comprising: a conductive pattern obtained by the method for forming a conductive pattern according to any one of claims 6 to 9.
  11.  請求項10記載の導電パターン基板を備える、タッチパネルセンサ。 A touch panel sensor comprising the conductive pattern substrate according to claim 10.
PCT/JP2014/002770 2013-06-04 2014-05-27 Photosensitive electroconductive film, method for forming electroconductive pattern using same, and electroconductive pattern substrate WO2014196154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013117878 2013-06-04
JP2013-117878 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196154A1 true WO2014196154A1 (en) 2014-12-11

Family

ID=52007815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002770 WO2014196154A1 (en) 2013-06-04 2014-05-27 Photosensitive electroconductive film, method for forming electroconductive pattern using same, and electroconductive pattern substrate

Country Status (2)

Country Link
TW (1) TW201502704A (en)
WO (1) WO2014196154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133008A (en) * 2016-01-26 2017-08-03 住友化学株式会社 Colored curable resin composition, color filter and display device comprising the same
WO2018087816A1 (en) * 2016-11-08 2018-05-17 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern, and method for manufacturing conductive pattern base

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139547A (en) * 1985-12-13 1987-06-23 Daicel Chem Ind Ltd Photosensitive laminate body having anti electrostatic property
JP2005321716A (en) * 2004-05-11 2005-11-17 Mitsui Chemicals Inc Dry film and product using the same
WO2010021224A1 (en) * 2008-08-22 2010-02-25 日立化成工業株式会社 Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
JP2010251186A (en) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd Conductive transcription film, and forming method of conductive pattern using it
WO2012108220A1 (en) * 2011-02-10 2012-08-16 富士フイルム株式会社 Laminate for forming conductive film, method of forming conductive film, conductive film, conductive element, touch panel, and integrated-type solar cell
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139547A (en) * 1985-12-13 1987-06-23 Daicel Chem Ind Ltd Photosensitive laminate body having anti electrostatic property
JP2005321716A (en) * 2004-05-11 2005-11-17 Mitsui Chemicals Inc Dry film and product using the same
WO2010021224A1 (en) * 2008-08-22 2010-02-25 日立化成工業株式会社 Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
JP2010251186A (en) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd Conductive transcription film, and forming method of conductive pattern using it
WO2012108220A1 (en) * 2011-02-10 2012-08-16 富士フイルム株式会社 Laminate for forming conductive film, method of forming conductive film, conductive film, conductive element, touch panel, and integrated-type solar cell
WO2013051516A1 (en) * 2011-10-03 2013-04-11 日立化成株式会社 Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133008A (en) * 2016-01-26 2017-08-03 住友化学株式会社 Colored curable resin composition, color filter and display device comprising the same
WO2018087816A1 (en) * 2016-11-08 2018-05-17 日立化成株式会社 Photosensitive conductive film, method for forming conductive pattern, and method for manufacturing conductive pattern base

Also Published As

Publication number Publication date
TW201502704A (en) 2015-01-16

Similar Documents

Publication Publication Date Title
JP5257558B1 (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP6402791B2 (en) Conductive film substrate and method of using the same
WO2013151052A1 (en) Method for forming electroconductive pattern, and electroconductive pattern substrate
JP6206028B2 (en) Manufacturing method of conductive pattern, conductive pattern substrate including conductive pattern manufactured by the method, touch panel sensor including the conductive pattern substrate, and photosensitive conductive film
WO2016167228A1 (en) Photosensitive conductive film, method for forming conductive pattern, substrate having conductive pattern, and touch panel sensor
JP6205925B2 (en) Photosensitive conductive film, conductive pattern forming method using the same, and conductive pattern substrate
JP5569144B2 (en) Photosensitive conductive film, method for forming conductive film, and method for forming conductive pattern
JP2016031503A (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
WO2014196154A1 (en) Photosensitive electroconductive film, method for forming electroconductive pattern using same, and electroconductive pattern substrate
JP6399175B2 (en) Manufacturing method of conductive pattern, conductive pattern substrate including conductive pattern manufactured by the method, touch panel sensor including the conductive pattern substrate, and photosensitive conductive film
JP2017198878A (en) Photosensitive conductive film and conductive pattern comprising the same, conductive pattern substrate, and method for producing touch panel sensor
JP2017201350A (en) Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate
WO2018008599A1 (en) Photosensitive conductive film, method for manufacturing conductive pattern, conductive pattern substrate, and touch panel sensor
JP2018022030A (en) Photosensitive conducive film, and method for forming conductive pattern using the same, conductive pattern substrate and touch panel sensor
JP2017228312A (en) Photosensitive conductive film, and method of forming conductive pattern using the same, and conductive pattern substrate including the same
JP2018040934A (en) Photosensitive conductive film, conductive pattern substrate and method for manufacturing the same using the photosensitive conductive film, and touch panel sensor
JP2017201349A (en) Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate
JP2018049054A (en) Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern and method for forming conductive film substrate
JP2018139076A (en) Photosensitive conductive film and method for manufacturing the same, method for manufacturing conductive pattern, conductive pattern base material, and touch panel sensor
JP2018116841A (en) Conductive layer with base material, method for producing the same, and sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP