WO2019043771A1 - 熱交換器ユニットおよび冷凍サイクル装置 - Google Patents

熱交換器ユニットおよび冷凍サイクル装置 Download PDF

Info

Publication number
WO2019043771A1
WO2019043771A1 PCT/JP2017/030840 JP2017030840W WO2019043771A1 WO 2019043771 A1 WO2019043771 A1 WO 2019043771A1 JP 2017030840 W JP2017030840 W JP 2017030840W WO 2019043771 A1 WO2019043771 A1 WO 2019043771A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchange
heat exchanger
refrigerant
air
Prior art date
Application number
PCT/JP2017/030840
Other languages
English (en)
French (fr)
Inventor
篤史 岐部
洋貴 佐藤
智隆 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65525068&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019043771(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780094028.8A priority Critical patent/CN111065868B/zh
Priority to JP2019538776A priority patent/JP6888102B2/ja
Priority to PCT/JP2017/030840 priority patent/WO2019043771A1/ja
Priority to GB2001225.8A priority patent/GB2579476B/en
Publication of WO2019043771A1 publication Critical patent/WO2019043771A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to a heat exchanger unit provided with an electrical component box.
  • Patent Document 1 a heat exchanger unit provided with an electrical component box is known (see, for example, Patent Document 1).
  • Patent Document 1 the heat sink attached to the electrical component box is exposed to the heat exchange chamber, and the heat sink is cooled by the air flowing into the heat exchange chamber.
  • This invention is made in view of the above subjects, and it aims at obtaining the heat exchanger unit which can perform heat dissipation of an electrical-goods box efficiently.
  • a heat exchanger unit is a heat exchanger having a first heat exchange unit that exchanges heat with a refrigerant, and a second heat exchange unit that exchanges heat with the refrigerant that has been heat exchanged by the first heat exchange unit.
  • the heat exchanger includes: an exchanger; an air blower that forms an air flow that allows air to pass through the heat exchanger; and an electrical component box containing electrical components, wherein the electrical component box has a second heat exchange section than the first heat exchange unit. It is provided close to the exchange unit.
  • FIG. 1 is a front view of a heat exchanger unit according to Embodiment 1 of the present invention
  • FIG. 2 is a view showing an example of the inside of the heat exchanger unit shown in FIG. 3 is a figure which shows an example of the heat exchanger of FIG. 2
  • FIG. 4 is a figure which shows an example of the refrigerating-cycle apparatus based on Embodiment 1 of this invention
  • FIG. 5 is FIG. It is the figure which looked at the described heat exchange chamber from upper direction.
  • the heat exchanger unit 100 described in FIG. 1 is an outdoor unit provided outside the room outside the room. As shown in FIG. 4, in this embodiment, an example in which the heat exchanger 3 functions as a condenser 3A will be mainly described.
  • the heat exchanger unit 100 is installed, for example, outdoors or in a machine room, and is connected to the indoor unit 400 via the pipe 410 and the pipe 420.
  • the pipe 410 flows a liquid refrigerant
  • the pipe 420 flows a gas refrigerant.
  • the indoor unit 400 is, for example, a unit cooler which is provided inside a room such as a warehouse and cools the inside of the room.
  • the indoor unit 400 may be provided in the showcase to cool the interior of the showcase.
  • the indoor unit 400 has an expansion valve 402 and an evaporator 404.
  • the expansion valve 402 is for expanding the refrigerant.
  • the evaporator 404 exchanges heat with the air to evaporate the refrigerant. In the vicinity of the evaporator 404, a fan 406 is provided.
  • the operation of the fan 406 causes air to be taken into the indoor unit 400 from the cooling space, and the taken-in air passes through the evaporator 404, passes through the evaporator 404, and the cold air subjected to heat exchange is blown out into the cooling space. Ru.
  • the heat exchanger unit 100 has a housing 110 in which the heat exchange chamber 10 and the machine chamber 20 are partitioned by the partition plate 25.
  • the heat exchange chamber 10 is provided with a heat exchanger 3 and a liquid reservoir 54.
  • the heat exchanger 3 exchanges the heat of the refrigerant with the air. Since the heat exchanger 3 is provided in the heat exchange chamber 10 partitioned by the machine chamber 20 and the partition plate 25, the heat exchanger 3 can perform heat exchange efficiently.
  • the liquid reservoir 54 separates the gas-liquid two-phase refrigerant into a gas refrigerant and a liquid refrigerant, stores the gas refrigerant, and flows out the liquid refrigerant.
  • the liquid reservoir 54 is provided at the lower portion inside the heat exchange chamber 10. By providing the liquid reservoir 54 at a position where the temperature inside the heat exchange chamber 10 is low, evaporation of the liquid refrigerant can be suppressed.
  • the liquid reservoir 54 may be provided in the machine chamber 20.
  • a first blower 14 and a second blower 18 are provided in front of the heat exchange chamber 10.
  • the first blower 14 and the second blower 18 form an air flow to be passed through the heat exchanger 3.
  • the first blower 14 or the second blower 18 corresponds to the "blower" in the present invention.
  • the first blower 14 is provided closer to the first heat exchanger 31 than the second heat exchanger 32.
  • the second blower 18 is provided below the first blower 14 and closer to the second heat exchanger 32 than the first heat exchanger 31.
  • a first fan guard 12 is provided in front of the first blower 14, and a second fan guard 16 is provided in front of the second blower 18.
  • the heat exchanger unit 100 is provided, for example, with an air suction portion at the left side and the rear side of the housing 110, and can draw air from the left side and the rear side. As shown in FIG. 5, air is taken in from the back and left side of the heat exchanger 3 by operating the first fan 14 or the second fan 18, and the air passing through the heat exchanger 3 is viewed from the front. Be blown out. That is, the heat exchanger unit 100 of the example of this embodiment is a side flow type heat source unit that blows out air in a direction intersecting the vertical direction. In this embodiment, although an example having two blowers of the first blower 14 and the second blower 18 is described, the second blower 18 is omitted and only the first blower 14 is included. It is good also as composition. Further, three or more blowers having the first blower 14, the second blower 18, and another blower (not shown) may be provided.
  • the machine room 20 is provided with a compressor 52, an electrical component box 210, and refrigerant circuit parts (not shown) such as connection pipes for controlling the flow of the refrigerant.
  • the electrical component box 210 is attached to, for example, a partition plate 25 that divides the heat exchange chamber 10 and the machine chamber 20 from each other.
  • the surface of the electrical component box 210 provided with the heat radiation promoting portion 212 forms a part of the partition plate 25.
  • the electrical component box 210 is provided on the top of the compressor 52. By providing the electrical component box 210 at the top, convenience such as maintenance is improved. By providing the compressor 52 in the lower part, the influence of the vibration of the compressor 52 can be reduced.
  • the electrical component box 210 accommodates the electrical component 213, the temperature sensor 213a, the control device 220, and the like. Among the elements housed in the electric component box 210, the electric component 213 has a large calorific value.
  • the electrical component 213 includes, for example, a compressor 52 or an inverter that drives the first blower 14 or the second blower 18.
  • the heat radiation promotion part 212 is provided in the electrical goods box 210.
  • the heat radiation promotion part 212 is for promoting the heat radiation of the electric product 213, and is a heat sink formed of a material such as aluminum having a good heat conductivity.
  • the heat radiation promoting portion 212 is indirectly attached to the electrical product 213 via, for example, a substrate (not shown) on which the electrical product 213 is provided.
  • the heat radiation promotion part 212 may be directly attached with the electrical product 213.
  • the heat radiation promoting portion 212 enters the heat exchange chamber 10 and is exposed to the heat exchange chamber 10.
  • the heat generated by the electrical product 213 or the like is exhausted to the heat exchange chamber 10 via the heat radiation promoting portion 212.
  • the temperature sensor 213a detects the temperature of the electrical component 213 directly or indirectly.
  • the control device 220 controls the whole of the refrigeration cycle apparatus 101 shown in FIG. 4 and is constituted of, for example, a microcomputer.
  • the control device 220 controls the refrigeration cycle apparatus 101 together with a centralized controller (not shown) provided outside the heat exchanger unit 100 or a control device (not shown) provided in the indoor unit 400. It may be one.
  • the heat exchanger 3 has, for example, a one-time bending shape, and can perform heat exchange efficiently while saving space.
  • the heat exchanger 3 may have a bending shape twice or more, or may not have a bending shape.
  • the heat exchanger 3 includes a first heat exchanger 31 and a second heat exchanger 32.
  • the first heat exchanger 31 and the second heat exchanger 32 are connected by a second connection pipe 34.
  • the second connection pipe 34 is formed of a circular pipe having a flow path with a circular cross section.
  • the refrigerant heat-exchanged in the first heat exchanger 31 passes through the second connection pipe 34 and is heat-exchanged in the second heat exchanger 32.
  • the first heat exchanger 31 is provided at the top of the second heat exchanger 32.
  • the first heat exchanger 31 and the second heat exchanger 32 may be integrally formed.
  • the first heat exchanger 31 and the second heat exchanger 32 are formed to include a refrigerant pipe having a flat shape and a refrigerant flowing therein, and a corrugated fin having a waveform and connecting the refrigerant pipes.
  • the heat exchanger 3 in the example of this embodiment is, for example, an aluminum flat tube corrugated fin heat exchanger in which a flat tube and a corrugated fin are formed of aluminum, and weight reduction, cost reduction, miniaturization, and the like are realized. ing. Since the refrigerant pipe of the heat exchanger 3 has a flat shape, the heat exchange efficiency between the refrigerant and the air can be improved, and furthermore, the air passage resistance can be reduced.
  • the heat exchanger 3 can be miniaturized, and the amount of the enclosed refrigerant can be reduced. Furthermore, since the fins are corrugated fins, the heat transfer area can be increased.
  • the first heat exchanger 31 has a first heat exchange section 31A and a second heat exchange section 31B.
  • the second heat exchange unit 31B is provided on the top of the first heat exchange unit 31A.
  • the first heat exchange unit 31A and the second heat exchange unit 31B have a plurality of flow paths through which the refrigerant flows in parallel.
  • a first inflow / outflow header 310 is attached to one end of the first heat exchanger 31, and a first connection pipe 312 is attached to the other end.
  • the first inflow / outflow header 310 is formed of a circular pipe having a flow path whose cross section is circular.
  • the first inflow / outflow header 310 has a first inflow portion 310A and a first outflow portion 310B.
  • the first inflow portion 310A and the first outflow portion 310B are partitioned by a first partition portion 310C.
  • the first inflow pipe 311 is attached to the first inflow portion 310A, and the first outflow pipe 313 is attached to the first outflow portion 310B.
  • the first connection pipe 312 is formed of a circular pipe having a flow path with a circular cross section.
  • the first connection pipe 312 has a pipe diameter larger than 10 mm in diameter.
  • the refrigerant flowing in from the first inflow pipe 311 is distributed at the first inflow portion 310A, and flows in parallel through the first heat exchange portion 31A.
  • the refrigerants flowing out of the first heat exchange section 31A are joined and distributed at the first connection pipe 312, and flow in parallel through the second heat exchange section 31B.
  • the refrigerants flowing out of the second heat exchange unit 31B join at the first outlet 310B and flow out of the first outlet pipe 313.
  • the electrical component box 210 since the electrical component box 210 is provided closer to the second heat exchange portion 31B than the first heat exchange portion 31A, The box 210 can dissipate heat efficiently. This is because the temperature of the second heat exchange unit 31B is lower than that of the first heat exchange unit 31A. Furthermore, in the example of the present embodiment, the electrical component box 210 is connected to the refrigerant outflow portion of the second heat exchange portion 31B more than the first connection pipe 312 which becomes the refrigerant inflow portion of the second heat exchange portion 31B. The electric product box 210 can efficiently dissipate heat because it is provided close to the first outflow portion 310B. This is because the temperature of the refrigerant outflow portion of the second heat exchange portion 31B is lower than that of the refrigerant inflow portion of the second heat exchange portion 31B.
  • the second heat exchanger 32 has a third heat exchange section 32A and a fourth heat exchange section 32B.
  • the third heat exchange unit 32A is provided on the top of the fourth heat exchange unit 32B.
  • the third heat exchange unit 32A and the fourth heat exchange unit 32B have a plurality of flow paths through which the refrigerant flows in parallel.
  • the second heat exchanger 32 has a second inlet / outlet header 320 attached to one end, and a third connection pipe 322 attached to the other end.
  • the second inflow / outflow header 320 is formed of a circular pipe having a flow passage with a circular cross section.
  • the second inflow / outflow header 320 has a second inflow portion 320A and a second outflow portion 320B.
  • the second inflow portion 320A and the second outflow portion 320B are partitioned by a second partition portion 312C.
  • the second inflow pipe 321 is attached to the second inflow portion 320A
  • the second outflow pipe 323 is attached to the second outflow portion 320B.
  • the third connection pipe 322 is formed of a circular pipe having a flow path with a circular cross section.
  • the refrigerant flowing in from the second inflow pipe 321 is distributed at the second inflow portion 320A, and flows in parallel through the third heat exchange portion 32A.
  • the refrigerants flowing out of the third heat exchange section 32A join together at the third connection pipe 322, are distributed, and flow in parallel through the fourth heat exchange section 32B.
  • the refrigerant flowing out of the fourth heat exchange unit 32B joins at the second outflow unit 320B and flows out of the second outflow pipe 323.
  • the refrigerant heat-exchanged with air in the first heat exchange section 31A becomes a gas-liquid two-phase refrigerant having a high ratio of gas refrigerant or gas refrigerant.
  • the gas-liquid two-phase refrigerant having a high ratio of gas refrigerant or gas refrigerant flows while rising through the first connection pipe 312, the liquid refrigerant or the gas-liquid having a high ratio of liquid refrigerant Compared to the case where the two-phase refrigerant flows upward through the first connection pipe 312, the influence of the pressure loss is reduced, and the distribution of the refrigerant to the second heat exchange unit 31B is equalized.
  • the gas refrigerant has a density lower than that of the liquid refrigerant.
  • the first connection pipe 312 is formed of a circular pipe having a pipe diameter larger than, for example, 10 mm in diameter, the influence of pressure loss is reduced.
  • the area of the first heat exchange unit 31A smaller than the area of the second heat exchange unit 31B, the ratio of the liquid refrigerant flowing to the first connection pipe 312 can be reduced. Therefore, the influence of the pressure loss can be further reduced, and the distribution of the refrigerant to the second heat exchange section 31B can be further uniformed.
  • the refrigerant that has exchanged heat with air while flowing in the second heat exchange section 31B in a direction intersecting the vertical direction is the first outflow section 310B, the first outflow pipe 313, the second connection pipe 34, and the second inflow. It flows into the third heat exchange unit 32A in the lower part of the first heat exchange unit 31A and the second heat exchange unit 31B through the pipe 321 and the second inflow unit 320A.
  • the refrigerant that has exchanged heat with air in the second heat exchange unit 31B becomes a gas-liquid two-phase refrigerant having a high ratio of liquid refrigerant.
  • the second heat exchange unit 31B and the third heat exchange unit 31A are provided.
  • the height difference with the heat exchange section 32A of the second embodiment can be increased.
  • the flow velocity of the refrigerant flowing into the second inflow unit 320A can be increased, and thus the third heat exchange unit Distribution of the refrigerant flowing into 32A can be made uniform.
  • the heat exchange efficiency in the third heat exchange unit 32A is improved.
  • the refrigerant heat-exchanged with the air while flowing in the direction intersecting the vertical direction with the third heat exchange portion 32A flows into the fourth heat exchange portion 32B via the third connection pipe 322.
  • the refrigerant heat-exchanged with air in the third heat exchange section 32A becomes a gas-liquid two-phase refrigerant in which the ratio of liquid refrigerant is further increased. Since the gas-liquid two-phase refrigerant having a high ratio of liquid refrigerant flows downward, the influence of pressure loss can be reduced, so that the refrigerant can flow efficiently.
  • the refrigerant heat-exchanged with air while flowing in the direction intersecting the vertical direction with the fourth heat exchange portion 32B flows out of the second outflow pipe 323 via the second outflow portion 320B.
  • the refrigeration cycle apparatus 101 of the example of this embodiment has a refrigerant circulation circuit 102 in which the refrigerant circulates, and an injection channel 103 for returning the condensed refrigerant to the compressor 52.
  • the refrigerant applied to the refrigeration cycle apparatus 101 according to this embodiment is, for example, a refrigerant having a low global warming potential (GWP) such as R410A, R32 or CO 2 , but includes at least one of them. It may be a mixed refrigerant or another type of refrigerant different from these.
  • GWP global warming potential
  • the refrigeration cycle apparatus 101 of the example of this embodiment can also use a non-azeotropic mixed refrigerant.
  • the non-azeotropic mixed refrigerant is, for example, R407C or R448A.
  • Non-azeotropic mixed refrigerant, the R32, and R125, and R134a, and R1234yf, a mixed refrigerant of CO 2 and conditions the ratio of R32 XR32 (wt%) is 33 ⁇ XR32 ⁇ 39, the proportion of R125 XR125
  • the condition that (wt%) is 27 ⁇ XR125 ⁇ 33
  • the condition that the ratio XR134a (wt%) of R134a is 11 ⁇ XR134a ⁇ 17
  • the ratio XR1234yf (wt%) of R1234yf is 11 ⁇ XR1234yf ⁇ 17 there condition and a condition rate XCO 2 of CO 2 (wt%) is 3 ⁇ XCO 2 ⁇ 9
  • a compressor 52 In the refrigerant circulation circuit 102, a compressor 52, a condenser 3A, a liquid reservoir 54, a subcooler 56, an expansion valve 402, and an evaporator 404 are connected by piping.
  • the compressor 52 compresses the sucked refrigerant to discharge the refrigerant at high temperature and high pressure.
  • the compressor 52 is, for example, an inverter compressor that is controlled by an inverter, and can change the capacity (the amount of refrigerant to be discharged per unit time) by arbitrarily changing the operating frequency.
  • the compressor 52 may be a constant speed compressor operating at a constant operating frequency. In the example of this embodiment, although the example which has one compressor 52 is explained, the compressor 52 may have a plurality of compressors connected in parallel or in series.
  • the condenser 3A exchanges heat with the air to condense the refrigerant.
  • the liquid reservoir 54 is a container for storing a refrigerant.
  • the subcooler 56 performs heat exchange between the refrigerant flowing in the refrigerant circulation circuit 102 and the refrigerant flowing in the injection flow path 103 to supercool the refrigerant flowing in the refrigerant circulation circuit 102.
  • the subcooler 56 is formed of, for example, a plate-type heat exchanger or a double-pipe heat exchanger, but it exchanges heat between the refrigerant flowing in the refrigerant circulation circuit 102 and the refrigerant flowing in the injection flow path 103. I hope there is.
  • the subcooler 56 may be omitted, the structure having the subcooler 56 can increase the degree of subcooling, so that the refrigeration capacity of the refrigeration cycle apparatus 101 can be increased. .
  • the expansion valve 402 is for expanding the refrigerant.
  • the expansion valve 402 is formed of, for example, an electronic expansion valve capable of adjusting the opening degree or a thermal expansion valve or the like, but may be formed of a capillary tube or the like which can not adjust the opening degree.
  • the expansion valve 402 may also be formed by a combination of a plurality of flow paths in which capillary tubes having different lengths are connected in parallel, and an on-off valve provided in at least one of the plurality of flow paths. it can.
  • the evaporator 404 evaporates the refrigerant.
  • the evaporator 404 is, for example, a finned-tube heat exchanger formed to include a pipe through which a refrigerant flows and a fin attached to the pipe.
  • the injection flow path 103 is for returning part of the refrigerant condensed by the condenser 3A to the compressor 52.
  • the injection flow path 103 is formed by a pipe that connects between the subcooler 56 and the expansion valve 402 and a compression chamber (not shown) of the intermediate pressure of the compressor 52.
  • the injection flow path 103 may be a pipe connecting the subcooler 56 and the expansion valve 402 to each other and the low pressure side of the compressor 52.
  • An injection expansion valve 58 is provided in the injection flow path 103.
  • the injection expansion valve 58 is for expanding the refrigerant flowing into the injection flow path 103.
  • the injection expansion valve 58 is formed of, for example, an electronic expansion valve capable of adjusting the opening degree or a thermal expansion valve or the like, but may be formed of a capillary tube or the like whose opening degree can not be adjusted. Further, the injection expansion valve 58 is formed by a combination of a plurality of flow paths in which capillary tubes having different lengths are connected in parallel, and an on-off valve provided in at least one of the plurality of flow paths. You can also.
  • the refrigerant compressed by the compressor 52 is condensed by the condenser 3A.
  • the refrigerant condensed by the condenser 3 A passes through the liquid reservoir 54 and is cooled by the subcooler 56.
  • the refrigerant cooled by the subcooler 56 is expanded by the expansion valve 402.
  • the refrigerant expanded by the expansion valve 402 is evaporated by the evaporator 404.
  • the refrigerant evaporated by the evaporator 404 is sucked into the compressor 52 and compressed again.
  • a portion of the refrigerant cooled by the subcooler 56 is expanded by the injection expansion valve 58 of the injection flow path 103, passes through the subcooler 56 of the injection flow path 103, and is returned to the compressor 52.
  • the heat radiation promoting portion 212 exposed to the heat exchange chamber 10 is provided downstream of the air flow than the heat exchanger 3. Specifically, the heat radiation promoting portion 212 is provided at a position higher than the first partition portion 310C described in FIG. 3, and is provided at a position where the air passing through the second heat exchange portion 31B passes. ing.
  • the cooling structure of the electrical component box 210 can be simplified. By simplifying the cooling structure of the electrical component box 210, the heat exchanger unit 100 can be miniaturized.
  • the air passing through the heat release promoting portion 212 is the air having passed through the second heat exchange portion 31B, air having a lower temperature passes through as compared to the air passing through the first heat exchange portion 31A. It will be. Furthermore, since the air passing through the heat radiation promoting portion 212 is air that has passed near the first outflow portion 310B near the refrigerant outflow portion of the second heat exchange portion 31B, the refrigerant of the second heat exchange portion 31B Compared with the air passing near the first connection pipe 312 near the inflow portion, air having a lower temperature will pass. Since the temperature of the air passing through the heat radiation promoting portion 212 is low, the heat radiation in the heat radiation promoting portion 212 can be efficiently performed.
  • the temperature of the refrigerant flowing into the heat exchanger 3 may be 100 degrees or more.
  • the heat exchange efficiency of the heat exchanger 3 is improved, and The heat radiation in the heat radiation promotion part 212 can be performed efficiently.
  • FIG. 6 is a diagram showing an example of the configuration of the control device shown in FIG. 1, and FIG. 7 is a diagram showing an example of the operation of the control device shown in FIG.
  • the control device 220 controls the first blower 14, the second blower 18, the compressor 52, the injection expansion valve 58, the expansion valve 402, the fan 406, and the like.
  • the indoor unit 400 shown in FIG. 4 includes a control device (not shown)
  • the control device 220 controls the first fan 14, the second fan 18 and the compressor 52 of the heat exchanger unit 100.
  • the control of the injection expansion valve 58 may be performed, and the control unit (not shown) of the indoor unit 400 may be configured to control the expansion valve 402 or the fan 406 of the indoor unit 400.
  • control device 220 controls the first blower 14, the second blower 18, or the compressor 52 using the temperature of the electrical component 213 detected by the temperature sensor 213 a.
  • the refrigeration cycle apparatus 101 shown in FIG. 3 carries out the normal operation.
  • step S04 in FIG. 7 it is determined whether the temperature of the electrical component 213 detected by the temperature sensor 213a is equal to or higher than a first threshold. If the temperature of the electrical component 213 detected by the temperature sensor 213a is lower than the first threshold, the process returns to step S02.
  • the air volume of the first blower 14 described in FIG. 5 is increased in step S06, and the second The air volume of the blower 18 is maintained.
  • the air volume passing through the heat radiation promoting portion 212 is increased, so that the heat radiation of the electric product 213 is promoted.
  • the temperature of the electric product 213 when the temperature of the electric product 213 becomes high, it is sufficient to increase the air volume of only the first blower 14 of the first blower 14 and the second blower 18, so low consumption Power can be realized. Furthermore, when the temperature of the electrical component 213 becomes equal to or higher than the first threshold, the rotational speed of the compressor 52 is not reduced or the compressor 52 is not stopped, so that the temperature rise in the cooling space is suppressed.
  • step S08 in FIG. 7 it is determined whether the temperature of the electrical product 213 detected by the temperature sensor 213a is equal to or higher than a second threshold.
  • the second threshold is a value corresponding to a temperature higher than the first threshold. If the temperature of the electrical component 213 detected by the temperature sensor 213a is lower than the second threshold, the process returns to step S04.
  • the rotation speed of the compressor 52 is reduced in step S10. By reducing the rotational speed of the compressor 52, the heat generation of the electrical product 213 is suppressed.
  • the compressor 52 is not stopped and the rotational speed of the compressor 52 is reduced to suppress the temperature rise in the cooling space. doing.
  • step S12 it is determined whether the temperature of the electrical product 213 detected by the temperature sensor 213a is equal to or higher than a third threshold.
  • the third threshold is a value corresponding to a temperature higher than the second threshold. If the temperature of the electrical component 213 detected by the temperature sensor 213a is lower than the third threshold, the process returns to step S08.
  • the compressor 52 is stopped in step S14. By stopping the compressor 52, the heat generation of the electric product 213 is suppressed.
  • the compressor 52 is stopped when the temperature of the electrical product 213 becomes equal to or higher than the third threshold value, deterioration or damage of the electrical product 213 is suppressed. Further, by stopping the compressor 52 when the temperature of the electrical product 213 becomes equal to or higher than the third threshold value, it is possible to suppress a failure or the like of the refrigeration cycle apparatus 101 due to an abnormality of the first blower 14.
  • the cooling of the electrical component box 210 since the cooling of the electrical component box 210 is promoted, the temperature of the electrical component 213 becoming higher than the first threshold value is suppressed. Therefore, protection control for eliminating the high temperature state of the electric product 213 is difficult to be executed. Furthermore, in the example of this embodiment, when the temperature of the electrical component 213 becomes equal to or higher than the first threshold value, the rotational speed of the compressor 52 is not reduced or the compressor 52 is not stopped. The temperature rise is suppressed. Furthermore, in the example of this embodiment, when the temperature of the electrical component 213 becomes equal to or higher than the second threshold, the compressor 52 is not stopped and the number of rotations of the compressor 52 is reduced. It is suppressing the temperature rise. Therefore, according to this embodiment, deterioration of the object to be cooled contained in the cooling space can be suppressed.
  • the heat exchanger unit 100 exchanges heat with the first heat exchange unit 31A that exchanges heat with the refrigerant and the refrigerant that has been heat exchanged with the first heat exchange unit 31A.
  • a heat exchanger 3 having a second heat exchange unit 31B, a blower 14 for forming an air flow that allows the heat exchanger 3 to pass air, and an electric component box 210 containing an electric component 213, The electric component box 210 is provided closer to the second heat exchange unit 31B than the first heat exchange unit 31A.
  • the compressor 52, the condenser 3A, the expansion valve 402, and the evaporator 404 are connected, and the refrigerant circulation circuit 102 in which the refrigerant circulates and the electrical product 213 are accommodated.
  • the condenser 3A includes a first heat exchange unit 31A that exchanges heat with the refrigerant, and a second heat exchange unit that exchanges heat with the refrigerant that has been heat-exchanged by the first heat exchange unit 31A.
  • a heat exchanger 3 having an exchange section 31B is provided, and the electrical component box 210 is provided closer to the second heat exchange section 31B than the first heat exchange section 31A.
  • the electrical component box 210 since the electrical component box 210 is provided close to the second heat exchange unit 31B whose temperature is lower than that of the first heat exchange unit 31A, the electrical component box 210 efficiently dissipates heat. It can be performed.
  • the second heat exchange unit 31B includes a plurality of flow paths through which the refrigerant flows in parallel, and uses air around the second heat exchange unit 31B whose temperature is lower than that of the first heat exchange unit 31A.
  • the electrical component box 210 can efficiently dissipate heat.
  • the electric component box 210 is provided closer to the refrigerant outflow portion than the refrigerant inflow portion of the second heat exchange portion 31B, the temperature is higher than that of the refrigerant inflow portion of the second heat exchange portion 31B.
  • the electrical component box 210 can efficiently dissipate heat.
  • a heat radiation promoting unit 212 is provided at a position through which the air having passed through the second heat exchange unit 31B passes and which promotes the heat radiation of the electric product 213.
  • a cooling structure of electrical-goods box 210 can be simplified.
  • the heat exchanger unit 100 can be miniaturized.
  • the housing 110 includes the heat exchange chamber 10 in which the heat exchanger 3 is housed and the machine chamber 20 in which the electrical goods box 210 is housed, and the heat radiation promotion unit 212 is the heat exchange chamber 10. Exposed to By providing the heat exchanger 3 in the heat exchange chamber 10, the heat exchange of the heat exchanger 3 is made more efficient, and furthermore, since the heat radiation promotion portion 212 is exposed to the heat exchange chamber 10, the heat radiation promotion portion 212 Can be efficiently dissipated.
  • the second heat exchange unit 31B is provided in the upper part of the first heat exchange unit 31A, and the electrical component box 210 is provided at a position higher than the first heat exchange unit 31A. .
  • the electric product box 210 By providing the electric product box 210 at a high position, convenience such as maintenance can be improved.
  • the first heat exchange unit 31A when the heat exchanger 3 functions as the condenser 3A and the second heat exchange unit 31B is provided on the top of the first heat exchange unit 31A, the first heat exchange unit 31A and By forming the first connection pipe 312 connecting the second heat exchange unit 31B as a circular pipe, the influence of pressure loss can be reduced.
  • the first connection pipe 312 may be formed, for example, with a pipe diameter larger than 10 mm in diameter.
  • the third heat exchange unit 32A is The difference in height between the second heat exchange unit 31B and the third heat exchange unit 32A can be increased by being provided below the first heat exchange unit 31A.
  • the third heat exchange unit 32A has a plurality of flow paths through which the refrigerant flows in parallel, and the third heat exchange unit 32A increases the difference in height between the second heat exchange unit 31B and the third heat exchange unit 32A.
  • the flow rate of the refrigerant flowing to the second connection pipe 34 can be increased to make the distribution of the refrigerant flowing into the third heat exchange unit 32A uniform.
  • first heat exchange unit 31A, the second heat exchange unit 31B, and the third heat exchange unit 32A are configured to provide the gas refrigerant or the refrigerant that has passed through the first heat exchange unit 31A.
  • a gas-liquid two-phase refrigerant having a high ratio of gas refrigerant can be obtained.
  • the refrigerant flowing in the first connection pipe 312 connecting the first heat exchange unit 31A and the second heat exchange unit 31B is a gas-liquid two-phase refrigerant with a high ratio of gas refrigerant or gas refrigerant, so that the pressure is reduced. The impact of losses can be reduced.
  • the blower 14 has a first blower 14 for blowing air to the second heat exchange unit 31B and a second blower 18 for blowing air to the third heat exchange unit 32A. There is. With the configuration having the first blower 14 and the second blower 18, for example, the amount of heat exchange in the second heat exchange unit 31B and the amount of heat exchange in the third heat exchange unit 32A are adjusted. Thus, the refrigerant can be heat-exchanged efficiently.
  • the air flow of the second fan 18 is maintained and the air flow of the first fan 14 is increased. Promote heat dissipation. It is only necessary to increase the air volume of only the first blower 14 of the first blower 14 and the second blower 18 when the temperature of the electrical product 213 becomes high, so that low power consumption can be realized. Can.
  • the rotational speed of the compressor 52 is reduced, and the temperature detected by the temperature sensor 213a is the second When the temperature exceeds the third threshold corresponding to the temperature higher than the threshold, the compressor 52 is stopped.
  • the rotational speed of the compressor 52 is not immediately reduced or the compressor is not stopped, so the temperature rise in the cooling space is suppressed. be able to.
  • the refrigerant pipe of the heat exchanger 3 is flat, air passage resistance can be reduced, heat exchange efficiency can be improved, and the heat exchanger 3 can be miniaturized.
  • the liquid reservoir 54 is provided at a position where the temperature of the lower portion inside the heat exchange chamber 10 is low, so that the evaporation of the liquid refrigerant can be suppressed.
  • the heat exchanger 3 functions as the condenser 3A
  • the above-mentioned effects become remarkable.
  • the temperature of the refrigerant flowing into the heat exchanger 3 may be 100 degrees or more.
  • the refrigerant is a non-azeotropic mixture refrigerant
  • the above-mentioned effects become remarkable.
  • the non-azeotropic mixture refrigerant has a temperature gradient, the temperature difference between the temperature of the refrigerant passing through the first heat exchange section 31A and the temperature of the refrigerant passing through the second heat exchange section 31B is large. It is.
  • the heat radiation promoting portion 212 can be miniaturized.
  • the cost of the heat radiation promoting portion 212 can be reduced, the pressure loss of the air passage can be reduced, and the refrigeration cycle apparatus 101 can be miniaturized.
  • FIG. 8 is a view showing a modified example 1 of FIG. 5, and FIG. 9 is a view of the heat exchanger, the air passage forming portion and the heat radiation promoting portion of FIG.
  • the same components as in FIG. 5 will be assigned the same reference numerals and descriptions thereof will be omitted or simplified.
  • the first modification has an air passage forming portion 214.
  • the air passage forming unit 214 forms an air passage that allows the air that has passed through the heat exchanger 3 to pass through the heat radiation promoting unit 212.
  • the air passage forming unit 214 is provided downwind of the first heat exchange unit 31A, and is attached to, for example, the partition plate 25 or the electrical component box 210.
  • the air passage forming portion 214 has a shape in which the flow velocity of the air passing through the heat radiation promoting portion 212 is faster than the flow velocity of the air passing through the heat exchanger 3.
  • the air passage forming portion 214 has a trumpet shape in which the opening area of the air intake portion on the upstream side of the air flow is formed larger than on the downstream side.
  • the air intake portion of the air passage formation portion 214 is formed within the range of the second heat exchange portion 31B, and can take in the air having passed through the second heat exchange portion 31B.
  • the heat radiation promotion unit 212 can efficiently carry out heat radiation.
  • the opening of the air intake portion of the air passage formation portion 214 may be formed to be twice or more as large as the cross-sectional area of the heat radiation promotion portion 212.
  • the air passage forming portion 214 since the air passage forming portion 214 is provided, the amount of air passing through the heat dissipation promoting portion 212 can be increased, and the speed of the air passing through the heat dissipation promoting portion 212 can be increased. Heat dissipation in the portion 212 can be promoted. Further, in the first modification, since the air passage formation portion 214 is provided, the heat radiation promotion portion 212 can be miniaturized.
  • FIG. 10 is a view showing a modified example 2 of FIG. 8, and FIG. 11 is a view of the heat exchanger, the air passage forming portion and the heat radiation promoting portion of FIG.
  • the same components as in FIG. 8 will be assigned the same reference numerals and descriptions thereof will be omitted or simplified.
  • the air passage forming portion 214 has a ventilation portion 214 ⁇ / b> A that covers at least a part of the heat radiation promoting portion 212.
  • the ventilating portion 214A is provided so as not to be in contact with the heat dissipation promoting portion 212, and can dissipate heat from the outer surface of the heat dissipation promoting portion 212.
  • a gap of 1 to 3 mm is provided between the ventilating portion 214A and the heat radiation promoting portion 212.
  • the ventilating portion 214A By providing the ventilating portion 214A, the air can be reliably blown to the heat radiation promoting portion 212.
  • the ventilation portion 214A it is possible to suppress the high temperature air having passed through the first heat exchange portion 31A from passing through the heat dissipation promoting portion 212, so the heat dissipation in the heat dissipation promoting portion 212 is efficient.
  • the ventilating portion 214A may have a shape that covers at least a part of the heat radiation promoting portion 212, but the air flow to the heat radiation promoting portion 212 can be further assured by forming the shape so as to cover the entire heat radiation promoting portion 212. .
  • the ventilating portion 214A may be formed such that the speed of air passing through the heat radiation promoting portion 212 is 3 m / sec or more. By forming the ventilation part 214A so that the speed of the air passing through the heat radiation promotion part 212 is 3 m / sec or more, the heat radiation in the heat radiation promotion part 212 is made efficient.
  • the ventilating portion 214A may be omitted as in the first modification.
  • the speed of the air passing through the heat radiation promoting portion 212 is less than 3 m / sec, the high temperature air heat-exchanged by the heat radiation promoting portion 212 may stay in the ventilating portion 214A.
  • the ventilating portion 214A is heated by the high temperature air passing through the first heat exchange portion 31A, and the heat radiation promoting portion 212 It is because there is a possibility that heat dissipation may be inhibited.
  • FIG. 12 is a view showing an example of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the same components as in FIG. 4 will be assigned the same reference numerals and descriptions thereof will be omitted or simplified.
  • the description of the same configuration as the first embodiment will be omitted or simplified.
  • the heat exchanger unit 100A of the refrigeration cycle apparatus 101A of the example of this embodiment has a liquid reservoir 54A between the first heat exchanger 31 and the second heat exchanger 32. It is provided.
  • the gas-liquid two-phase refrigerant flowing out of the first heat exchanger 31 is separated into the gas refrigerant and the liquid refrigerant in the liquid reservoir 54A, and the liquid refrigerant flows out from the liquid reservoir 54A.
  • the liquid refrigerant flowing out of the liquid reservoir 54A is subjected to heat exchange in the second heat exchanger 32.
  • the degree of subcooling of the refrigerant flowing out of the heat exchanger 3 can be increased. Therefore, according to the example of this embodiment, the refrigeration capacity of the refrigeration cycle apparatus 101A can be increased.
  • the electrical component box 210 is provided closer to the second heat exchanger 32 than the first heat exchanger 31.
  • the first heat exchanger 31 corresponds to the "first heat exchange portion" of the present invention
  • the second heat exchanger 32 corresponds to the "second heat exchange” of the present invention.
  • the electric component box 210 is provided by bringing the electric component box 210 close to the second heat exchanger 32. Heat can be dissipated efficiently. This is because the temperature of the liquid refrigerant in which the gas refrigerant is separated and heat-exchanged with air is lower than that of the gas-liquid two-phase refrigerant.
  • the heat radiation promoting unit 212 is provided at a position through which the air having passed through the second heat exchanger 32 passes, and the heat radiation promoting unit 212 can efficiently carry out heat radiation.
  • the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be appropriately improved, and at least a part may be replaced with another configuration. Furthermore, the configuration requirements without particular limitation on the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
  • first embodiment and the second embodiment to provide a liquid reservoir between the first heat exchange portion 31A and the second heat exchange portion 31B of the first embodiment shown in FIG. it can.
  • a liquid reservoir is provided between the first heat exchanger 31 and the second heat exchanger 32 of the first embodiment shown in FIG. It can be provided close to the second heat exchanger 32.
  • the refrigeration cycle apparatus applied to a large refrigeration system for cooling the inside of a freezer storage or the like has been described, but the refrigeration cycle apparatus is not limited to a refrigerator etc. It can be applied to a small refrigeration system.
  • the refrigeration cycle apparatus can also be applied to an air conditioner that cools or heats the inside of a room, and a heating device that heats water and the like.
  • the heat exchanger 3 may function as an evaporator.
  • the heat exchanger 3 having the first heat exchanger 31 and the second heat exchanger 32 provided below the first heat exchanger 31 will be described.
  • Embodiment 1 is not limited to such.
  • the heat exchanger 3 can omit the second heat exchanger 32 and make only the first heat exchanger 31 or the first heat exchanger 31 and the second heat exchange It may be configured to have three or more heat exchangers having the vessel 32 and the additional heat exchangers.
  • the first heat exchanger 31 having the first heat exchange unit 31A and the second heat exchange unit 31B, the third heat exchange unit 32A, and the fourth heat exchange Although the heat exchanger 3 having the portion 32B has been described, the first heat exchange portion 31A, the second heat exchange portion 31B, the third heat exchange portion 32A, and the fourth heat exchange portion 32B are described. Each may be formed separately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

熱交換器ユニットは、冷媒を熱交換する第1の熱交換部と、第1の熱交換部で熱交換された冷媒を熱交換する第2の熱交換部と、を有する熱交換器と、熱交換器に空気を通過させる空気流を形成する送風機と、電気品を収容した電気品箱と、を備え、電気品箱が、第1の熱交換部よりも第2の熱交換部に近づけて設けられたものである。

Description

熱交換器ユニットおよび冷凍サイクル装置
 この発明は、電気品箱を備えた熱交換器ユニットに関するものである。
 従来から、電気品箱を備えた熱交換器ユニットが知られている(例えば、特許文献1参照)。特許文献1では、電気品箱に取り付けられたヒートシンクを熱交換室に露出させて、熱交換室内に流れる風でヒートシンクを冷却している。
特開2016-166734号公報
 しかしながら、特許文献1では、ヒートシンクと熱交換器との位置関係によっては、電気品箱の放熱が不十分となることがある。電気品箱の放熱が不十分となると、電気品箱に収容された電気品が劣化し、または損傷するおそれ等がある。
 この発明は、上記のような課題を鑑みてなされたもので、電気品箱の放熱を効率よく行うことができる熱交換器ユニットを得ることを目的としている。
 この発明に係る熱交換器ユニットは、冷媒を熱交換する第1の熱交換部と、第1の熱交換部で熱交換された冷媒を熱交換する第2の熱交換部と、を有する熱交換器と、熱交換器に空気を通過させる空気流を形成する送風機と、電気品を収容した電気品箱と、を備え、電気品箱が、第1の熱交換部よりも第2の熱交換部に近づけて設けられたものである。
 この発明によれば、電気品箱の放熱を効率よく行うことができる熱交換器ユニットを得ることができる。
この発明の実施の形態1に係る熱交換器ユニットを正面から見た図である。 図1に記載の熱交換器ユニットの内部の一例を示す図である。 図2に記載の熱交換器の一例を示す図である。 この発明の実施の形態1に係る冷凍サイクル装置の一例を示す図である。 図2に記載の熱交換室を上方から見た図である。 図1に記載の制御装置の構成の一例を示す図である。 図6に記載の制御装置の動作の一例を示す図である。 図5の変形例1を示す図である。 図8の熱交換器、風路形成部および放熱促進部を側方から見た図である。 図8の変形例2を示す図である。 図10の熱交換器、風路形成部および放熱促進部を側方から見た図である。 この発明の実施の形態2に係る冷凍サイクル装置の一例を示す図である。
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、この発明の範囲内で適宜変更することができる。
実施の形態1.
 図1は、この発明の実施の形態1に係る熱交換器ユニットを正面から見た図であり、図2は、図1に記載の熱交換器ユニットの内部の一例を示す図であり、図3は、図2に記載の熱交換器の一例を示す図であり、図4は、この発明の実施の形態1に係る冷凍サイクル装置の一例を示す図であり、図5は、図2に記載の熱交換室を上方から見た図である。図1に記載の熱交換器ユニット100は、部屋の外部の室外に設けられる室外機である。図4に示すように、この実施の形態では、熱交換器3が凝縮器3Aとして機能する例を中心に説明する。熱交換器ユニット100は、例えば、屋外または機械室等に設置され、配管410および配管420を介して、室内ユニット400と接続される。配管410は、液冷媒が流れるものであり、配管420は、ガス冷媒が流れるものである。室内ユニット400は、例えば、倉庫等の部屋の内部に設けられ、部屋の内部を冷却するユニットクーラである。室内ユニット400は、ショーケースに設けられ、ショーケースの内部を冷却するものであってもよい。室内ユニット400は、膨張弁402と蒸発器404とを有している。膨張弁402は冷媒を膨張するものである。蒸発器404は、冷媒を空気と熱交換して、冷媒を蒸発するものである。蒸発器404の近傍には、ファン406が設けられている。ファン406が動作することで、冷却空間から室内ユニット400に空気が取り込まれ、取り込まれた空気が蒸発器404を通過し、蒸発器404を通過して熱交換された冷気が冷却空間に吹き出される。
[熱交換器ユニット]
 図1および図2に示すように、熱交換器ユニット100は、熱交換室10と機械室20とが仕切り板25によって区画された筐体110を有している。熱交換室10には、熱交換器3と液溜め54とが設けられている。熱交換器3は、冷媒を空気と熱交換するものである。熱交換器3が、機械室20と仕切り板25で仕切られた熱交換室10に設けられているため、熱交換器3が熱交換を効率よく行うことができる。液溜め54は、気液二相冷媒をガス冷媒と液冷媒とに分離して、ガス冷媒を貯留し、液冷媒を流出するものである。液溜め54は、熱交換室10の内部の下部に設けられている。液溜め54が熱交換室10の内部の温度が低い位置に設けられることで、液冷媒の蒸発を抑制することができる。なお、液溜め54は、機械室20に設けられてもよい。
 図1に示すように、熱交換室10の前方には、第1の送風機14および第2の送風機18が設けられている。第1の送風機14および第2の送風機18は、熱交換器3に通過させる空気流を形成するものである。第1の送風機14または第2の送風機18は、この発明の「送風機」に相当するものである。第1の送風機14は、第2の熱交換器32よりも第1の熱交換器31の近くに設けられている。第2の送風機18は、第1の送風機14の下部であり、且つ第1の熱交換器31よりも第2の熱交換器32の近くに設けられている。第1の送風機14の前方には、第1のファンガード12が設けられており、第2の送風機18の前方には、第2のファンガード16が設けられている。熱交換器ユニット100は、例えば筐体110の左側部および背面部に空気吸込み部が設けられており、左側部および背面部から空気を吸い込むことができるようになっている。図5に示すように、第1の送風機14または第2の送風機18が動作することで、熱交換器3の背面および左側面から空気が取り込まれ、熱交換器3を通過した空気が正面から吹き出される。すなわち、この実施の形態の例の熱交換器ユニット100は、上下方向と交差する方向に空気を吹き出すサイドフロータイプの熱源機である。なお、この実施の形態では、第1の送風機14および第2の送風機18の2つの送風機を有する例についての説明を行うが、第2の送風機18を省略して第1の送風機14のみを有する構成としてもよい。また、第1の送風機14と第2の送風機18と他の送風機(図示を省略)とを有する3つ以上の送風機を有する構成としてもよい。
 機械室20には、圧縮機52、電気品箱210、および冷媒の流れを制御する接続配管等の冷媒回路部品(図示を省略)等が設けられている。電気品箱210は、例えば、熱交換室10と機械室20とを仕切っている仕切り板25に取り付けられている。例えば、電気品箱210の放熱促進部212が設けられた面は、仕切り板25の一部分を形成している。電気品箱210は、圧縮機52の上部に設けられている。電気品箱210が上部に設けられることで、メンテナンス等の利便性が向上する。圧縮機52が下部に設けられることで、圧縮機52の振動の影響を低減することができる。
 電気品箱210には、電気品213、温度センサ213aおよび制御装置220等が収容されている。電気品213は、電気品箱210に収容されている要素のなかで、発熱量が大きいものである。電気品213は、例えば、圧縮機52、または第1の送風機14もしくは第2の送風機18を駆動するインバータ等を含んでいる。電気品箱210には、放熱促進部212が設けられている。放熱促進部212は、電気品213の放熱を促進するものであり、例えばアルミニウム等の熱伝導性がよい材質で形成されたヒートシンクである。放熱促進部212は、例えば、電気品213が設けられた基板(図示を省略)を介して、間接的に電気品213と取り付けられている。なお、放熱促進部212は、電気品213と直接的に取り付けられていてもよい。放熱促進部212は、熱交換室10に入り込み、熱交換室10に露出している。電気品213等が発した熱は、放熱促進部212を介して、熱交換室10に排熱される。温度センサ213aは、電気品213の温度を直接的または間接的に検出するものである。制御装置220は、図4に示す冷凍サイクル装置101の全体の制御を行うものであり、例えば、マイクロコンピュータなどで構成されている。なお、制御装置220は、熱交換器ユニット100の外部に設けられた集中コントローラ(図示を省略)または室内ユニット400に設けられた制御装置(図示を省略)とともに、冷凍サイクル装置101の制御を行うものであってもよい。
[熱交換器]
 図5に示すように、熱交換器3は、例えば、1回曲げ形状を有しており、省スペースで効率よく熱交換を行うことができる。なお、熱交換器3は、2回以上の曲げ形状を有するものであってもよく、曲げ形状を有しないものであってもよい。図2および図3に示すように、熱交換器3は、第1の熱交換器31と第2の熱交換器32とを有している。第1の熱交換器31と第2の熱交換器32とは、第2の接続管34で接続されている。第2の接続管34は、断面が円形状の流路を有する円管で形成されている。第1の熱交換器31で熱交換された冷媒は、第2の接続管34を通って、第2の熱交換器32で熱交換される。第1の熱交換器31は、第2の熱交換器32の上部に設けられている。なお、第1の熱交換器31と第2の熱交換器32とは、一体的に形成されていてもよい。
 第1の熱交換器31および第2の熱交換器32は、扁平形状を有し内部に冷媒が流れる冷媒管と、波形状を有し冷媒管同士を接続するコルゲートフィンとを含んで形成されている。この実施の形態の例の熱交換器3は、例えば扁平管とコルゲートフィンとがアルミニウムで形成されたアルミニウム扁平管コルゲートフィン熱交換器であり、軽量化、低コスト化、小型化等が実現されている。熱交換器3の冷媒管が扁平形状であるため、冷媒と空気との熱交換効率が向上し、さらに、風路抵抗を低減することができる。さらに、熱交換器3の冷媒管が扁平形状であるため、熱交換器3を小型化して、冷媒の封入量を低減することができる。さらに、フィンが波形状を有するコルゲートフィンであるため、伝熱面積を大面積化することができる。
 第1の熱交換器31は、第1の熱交換部31Aと第2の熱交換部31Bとを有している。第2の熱交換部31Bは、第1の熱交換部31Aの上部に設けられている。第1の熱交換部31Aおよび第2の熱交換部31Bは、冷媒が並行に流れる複数の流路を有している。第1の熱交換器31には、一方の端部に第1の流入出ヘッダ310が取り付けられており、他方の端部に第1の接続管312が取り付けられている。第1の流入出ヘッダ310は、断面が円形状の流路を有する円管で形成されている。第1の流入出ヘッダ310は、第1の流入部310Aと第1の流出部310Bとを有している。第1の流入部310Aと第1の流出部310Bとは、第1の仕切り部310Cで仕切られている。第1の流入部310Aには、第1の流入管311が取り付けられており、第1の流出部310Bには、第1の流出管313が取り付けられている。第1の接続管312は、断面が円形状の流路を有する円管で形成されている。第1の接続管312は、直径10mmよりも大きい配管径を有している。第1の流入管311から流入した冷媒は、第1の流入部310Aで分配されて、第1の熱交換部31Aを並行に流れる。第1の熱交換部31Aから流出した冷媒は、第1の接続管312で合流して、分配されて、第2の熱交換部31Bを並行に流れる。第2の熱交換部31Bから流出した冷媒は、第1の流出部310Bで合流して、第1の流出管313から流出する。
 この実施の形態の例では、図1および図2に示すように、電気品箱210が第1の熱交換部31Aよりも第2の熱交換部31Bに近づけて設けられているため、電気品箱210が効率よく放熱を行うことができる。第2の熱交換部31Bは、第1の熱交換部31Aよりも温度が低くなるためである。さらに、この実施の形態の例では、電気品箱210が、第2の熱交換部31Bの冷媒流入部となる第1の接続管312よりも、第2の熱交換部31Bの冷媒流出部となる第1の流出部310Bに近づけて設けられているため、電気品箱210が効率よく放熱を行うことができる。第2の熱交換部31Bの冷媒流出部は、第2の熱交換部31Bの冷媒流入部よりも温度が低くなるためである。
 図2および図3に示すように、第2の熱交換器32は、第3の熱交換部32Aと第4の熱交換部32Bとを有している。第3の熱交換部32Aは、第4の熱交換部32Bの上部に設けられている。第3の熱交換部32Aおよび第4の熱交換部32Bは、冷媒が並行に流れる複数の流路を有している。第2の熱交換器32には、一方の端部に第2の流入出ヘッダ320が取り付けられており、他方の端部に第3の接続管322が取り付けられている。第2の流入出ヘッダ320は、断面が円形状の流路を有する円管で形成されている。第2の流入出ヘッダ320は、第2の流入部320Aと第2の流出部320Bとを有している。第2の流入部320Aと第2の流出部320Bとは、第2の仕切り部312Cで仕切られている。第2の流入部320Aには、第2の流入管321が取り付けられており、第2の流出部320Bには、第2の流出管323が取り付けられている。第3の接続管322は、断面が円形状の流路を有する円管で形成されている。第2の流入管321から流入した冷媒は、第2の流入部320Aで分配されて、第3の熱交換部32Aを並行に流れる。第3の熱交換部32Aから流出した冷媒は、第3の接続管322で合流して、分配されて、第4の熱交換部32Bを並行に流れる。第4の熱交換部32Bから流出した冷媒は、第2の流出部320Bで合流して、第2の流出管323から流出する。
[凝縮器での冷媒の流れ]
 次に、凝縮器3Aでの冷媒の流れについて説明する。図4に記載の圧縮機52で圧縮された高温および高圧のガス冷媒は、図3に記載の第1の流入管311、第1の流入部310Aを介して、第1の熱交換部31Aに流入する。第1の熱交換部31Aを上下方向と交差する方向に流れながら空気と熱交換した冷媒は、第1の接続管312を介して、第1の熱交換部31Aの上部の第2の熱交換部31Bに流入する。第1の熱交換部31Aで空気と熱交換した冷媒は、ガス冷媒またはガス冷媒の比率が高い気液二相冷媒となる。この実施の形態では、ガス冷媒またはガス冷媒の比率が高い気液二相冷媒が第1の接続管312を上昇しながら流れる構成となっているため、液冷媒または液冷媒の比率が高い気液二相冷媒が第1の接続管312を上昇しながら流れる場合と比較して、圧力損失の影響が低減され、さらに、第2の熱交換部31Bへの冷媒の分配が均一化される。ガス冷媒は、液冷媒よりも密度が低いためである。さらに、この実施の形態では、第1の接続管312が、例えば直径10mmよりも大きい配管径を有する円管で形成されているため、圧力損失の影響が低減されている。なお、例えば、第1の熱交換部31Aの面積を、第2の熱交換部31Bの面積よりも小さく形成することで、第1の接続管312に流れる液冷媒の比率を低くすることができるため、圧力損失の影響を更に低減し、第2の熱交換部31Bへの冷媒の分配を更に均一化することができる。
 第2の熱交換部31Bを上下方向と交差する方向に流れながら空気と熱交換した冷媒は、第1の流出部310B、第1の流出管313、第2の接続管34、第2の流入管321、第2の流入部320Aを介して、第1の熱交換部31Aおよび第2の熱交換部31Bの下部の第3の熱交換部32Aに流入する。第2の熱交換部31Bで空気と熱交換した冷媒は、液冷媒の比率が高い気液二相冷媒となる。この実施の形態では、第2の熱交換部31Bと第3の熱交換部32Aとの間に、第1の熱交換部31Aが設けられているため、第2の熱交換部31Bと第3の熱交換部32Aとの高低差を大きくすることができる。第2の熱交換部31Bと第3の熱交換部32Aとの高低差を大きくすることで、第2の流入部320Aに流入する冷媒の流速を上げることができるため、第3の熱交換部32Aに流入する冷媒の分配を均一化することができる。第3の熱交換部32Aに流入する気液二相冷媒が均一化されることで、第3の熱交換部32Aでの熱交換効率が向上する。
 第3の熱交換部32Aを上下方向と交差する方向に流れながら空気と熱交換した冷媒は、第3の接続管322を介して、第4の熱交換部32Bに流入する。第3の熱交換部32Aで空気と熱交換した冷媒は、液冷媒の比率が更に高まった気液二相冷媒となる。液冷媒の比率が高い気液二相冷媒を下方に向けて流す構成とすることで、圧力損失の影響を低減することができるため、効率よく冷媒を流すことができる。第4の熱交換部32Bを上下方向と交差する方向に流れながら空気と熱交換した冷媒は、第2の流出部320Bを介して、第2の流出管323から流出する。
[冷凍サイクル装置]
 図4に示すように、この実施の形態の例の冷凍サイクル装置101は、冷媒が循環する冷媒循環回路102と、凝縮された冷媒を圧縮機52に戻すインジェクション流路103とを有している。この実施の形態の冷凍サイクル装置101に適用される冷媒は、例えば、R410A、R32またはCO等の地球温暖化係数(GWP)が低い冷媒であるが、これらのうちの少なくとも1つを含んだ混合冷媒またはこれらとは異なる他の種類の冷媒であってもよい。また、この実施の形態の例の冷凍サイクル装置101は、非共沸混合冷媒を使用することもできる。非共沸混合冷媒は、例えば、R407CまたはR448Aである。非共沸混合冷媒は、R32と、R125と、R134aと、R1234yfと、COの混合冷媒であり、R32の割合XR32(wt%)が33<XR32<39である条件と、R125の割合XR125(wt%)が27<XR125<33である条件と、R134aの割合XR134a(wt%)が11<XR134a<17である条件と、R1234yfの割合XR1234yf(wt%)が11<XR1234yf<17である条件と、COの割合XCO(wt%)が3<XCO<9である条件と、XR32とXR125とXR134aとXR1234yfとXCOの総和が100である条件と、を全て満たす冷媒であってもよい。
 冷媒循環回路102は、圧縮機52と凝縮器3Aと液溜め54と過冷却器56と膨張弁402と蒸発器404とが配管で接続されたものである。圧縮機52は、吸入した冷媒を圧縮して、冷媒を高温および高圧の状態にして吐出するものである。圧縮機52は、例えば、インバータで制御が行われるインバータ圧縮機であり、運転周波数を任意に変化させて、容量(単位時間あたりに冷媒を送り出す量)を変化させることができる。圧縮機52は、一定の運転周波数で動作する一定速圧縮機であってもよい。この実施の形態の例では、1台の圧縮機52を有する例について説明するが、圧縮機52は、並列または直列に接続された複数台の圧縮機を有するものであってもよい。凝縮器3Aは、冷媒を空気と熱交換させて冷媒を凝縮するものである。液溜め54は、冷媒を貯留する容器である。
 過冷却器56は、冷媒循環回路102を流れる冷媒とインジェクション流路103を流れる冷媒とを熱交換させて、冷媒循環回路102に流れる冷媒を過冷却するものである。過冷却器56は、例えば、プレート型熱交換器または二重管熱交換器等で形成されているが、冷媒循環回路102に流れる冷媒とインジェクション流路103に流れる冷媒とを熱交換させるものであればよい。なお、過冷却器56は省略してもよいが、過冷却器56を有する構成とすることで、過冷却度を増加することができるため、冷凍サイクル装置101の冷凍能力を増大することができる。
 膨張弁402は、冷媒を膨張させるものである。膨張弁402は、例えば開度を調整できる電子膨張弁、または温度式膨張弁等で形成されているが、開度を調整できないキャピラリーチューブ等で形成されてもよい。なお、膨張弁402は、長さが異なるキャピラリーチューブが並列に接続された複数の流路と、複数の流路のうちの少なくとも1つに設けられた開閉弁と、の組み合わせによって形成することもできる。蒸発器404は、冷媒を蒸発するものである。蒸発器404は、例えば、冷媒が流れる配管と、該配管に取り付けられたフィンと、を含んで形成されているフィンチューブ式の熱交換器である。
 インジェクション流路103は、凝縮器3Aで凝縮された冷媒の一部を圧縮機52に戻すものである。インジェクション流路103は、過冷却器56と膨張弁402との間を接続する配管と、圧縮機52の中間圧の圧縮室(図示を省略)と、を接続する配管で形成されている。インジェクション流路103は、過冷却器56と膨張弁402との間を接続する配管と、圧縮機52の低圧側と、を接続する配管であってもよい。インジェクション流路103には、インジェクション膨張弁58が設けられている。インジェクション膨張弁58は、インジェクション流路103に流入した冷媒を膨張するものである。インジェクション膨張弁58は、例えば開度を調整できる電子膨張弁、または温度式膨張弁等で形成されているが、開度を調整できないキャピラリーチューブ等で形成されてもよい。また、インジェクション膨張弁58は、長さが異なるキャピラリーチューブが並列に接続された複数の流路と、複数の流路のうちの少なくとも1つに設けられた開閉弁と、の組み合わせによって形成することもできる。
[冷凍サイクル装置の動作]
 次に、冷凍サイクル装置101の動作について説明する。圧縮機52で圧縮された冷媒は、凝縮器3Aで凝縮する。凝縮器3Aで凝縮された冷媒は、液溜め54を通過して、過冷却器56で冷却される。過冷却器56で冷却された冷媒は、膨張弁402で膨張する。膨張弁402で膨張された冷媒は、蒸発器404で蒸発する。蒸発器404で蒸発された冷媒は、圧縮機52に吸入され、再び圧縮される。過冷却器56で冷却された冷媒の一部は、インジェクション流路103のインジェクション膨張弁58で膨張され、インジェクション流路103の過冷却器56を通って、圧縮機52に戻される。
[電気品箱の冷却構造]
 図5に示すように、熱交換室10に露出した放熱促進部212は、熱交換器3よりも、空気流の下流に設けられている。具体的には、放熱促進部212は、図3に記載の第1の仕切り部310Cよりも高い位置に設けられており、第2の熱交換部31Bを通過した空気が通過する位置に設けられている。熱交換器3を通過した空気が放熱促進部212に通過する構成とすることで、電気品箱210の冷却構造を簡素化することができる。電気品箱210の冷却構造を簡素化することで、熱交換器ユニット100を小型化することができる。さらに、放熱促進部212に通過する空気が、第2の熱交換部31Bを通過した空気となるため、第1の熱交換部31Aを通過した空気と比較して、低い温度の空気が通過することとなる。さらに、放熱促進部212に通過する空気が、第2の熱交換部31Bの冷媒流出部に近い第1の流出部310Bの近くを通過した空気となるため、第2の熱交換部31Bの冷媒流入部に近い第1の接続管312の近くを通過した空気と比較して、低い温度の空気が通過することとなる。放熱促進部212に通過する空気の温度が低い温度となる構成となっているため、放熱促進部212での放熱を効率よく行うことができる。なお、熱交換器3が凝縮器3Aとして機能する冷凍装置等においては、熱交換器3に流入する冷媒の温度が100度以上となることがある。そのような場合に、第1の流出部310Bを通過する冷媒の温度が60度未満となるように、熱交換器3を構成することで、熱交換器3の熱交換効率が良好となり、且つ放熱促進部212での放熱を効率よく行うことができる。
[制御装置の動作]
 図6は、図1に記載の制御装置の構成の一例を示す図であり、図7は、図6に記載の制御装置の動作の一例を示す図である。図6に示すように、制御装置220は、第1の送風機14、第2の送風機18、圧縮機52、インジェクション膨張弁58、膨張弁402、またはファン406等を制御するものである。なお、図4に示す室内ユニット400が制御装置(図示を省略)を備えているときは、制御装置220が、熱交換器ユニット100の第1の送風機14、第2の送風機18、圧縮機52、またはインジェクション膨張弁58の制御を行い、室内ユニット400の制御装置(図示を省略)が、室内ユニット400の膨張弁402またはファン406の制御を行う構成とすることもできる。例えば、制御装置220は、温度センサ213aが検出した電気品213の温度を利用して、第1の送風機14、第2の送風機18、または圧縮機52を制御する。図7に示すように、ステップS02にて、図3に示す冷凍サイクル装置101が通常運転を実施している。
 図7のステップS04にて、温度センサ213aが検出した電気品213の温度が第1の閾値以上であるかを判断する。温度センサ213aが検出した電気品213の温度が第1の閾値よりも低いときは、ステップS02に戻る。ステップS04にて、温度センサ213aが検出した電気品213の温度が第1の閾値以上となると、ステップS06にて、図5に記載の第1の送風機14の風量を大きくして、第2の送風機18の風量を維持する。第1の送風機14の風量を大きくすることで、放熱促進部212を通過する風量が大きくなるため、電気品213の放熱が促進される。この実施の形態では、電気品213の温度が高温となったときに、第1の送風機14および第2の送風機18のうちの第1の送風機14のみの風量を大きくすればよいため、低消費電力化を実現することができる。さらに、電気品213の温度が第1の閾値以上となったときは、圧縮機52の回転数を低下せず、または圧縮機52を停止しないため、冷却空間の温度上昇が抑制されている。
 図7のステップS08にて、温度センサ213aが検出した電気品213の温度が第2の閾値以上であるかを判断する。第2の閾値は、第1の閾値よりも高い温度に対応する値である。温度センサ213aが検出した電気品213の温度が第2の閾値よりも低いときは、ステップS04に戻る。ステップS08にて、温度センサ213aが検出した電気品213の温度が第2の閾値以上となると、ステップS10にて、圧縮機52の回転数を低下する。圧縮機52の回転数を低下することで、電気品213の発熱が抑制される。この実施の形態では、電気品213の温度が第2の閾値以上となったときは、圧縮機52を停止せず、圧縮機52の回転数を低下させることで、冷却空間の温度上昇を抑制している。
 ステップS12にて、温度センサ213aが検出した電気品213の温度が第3の閾値以上であるかを判断する。第3の閾値は、第2の閾値よりも高い温度に対応する値である。温度センサ213aが検出した電気品213の温度が第3の閾値よりも低いときは、ステップS08に戻る。ステップS12にて、温度センサ213aが検出した電気品213の温度が第3の閾値以上となると、ステップS14にて、圧縮機52を停止する。圧縮機52を停止することで、電気品213の発熱が抑制される。この実施の形態では、電気品213の温度が第3の閾値以上となったときは、圧縮機52を停止するため、電気品213の劣化もしくは損傷が抑制される。また、電気品213の温度が第3の閾値以上となったときに、圧縮機52を停止することで、第1の送風機14の異常による冷凍サイクル装置101の故障等を抑制することができる。
 上記のように、この実施の形態の例では、電気品箱210の冷却が促進される構成となっているため、電気品213が第1の閾値以上の高温となることが抑制されている。したがって、電気品213の高温状態を解消する保護制御が実行され難い構成となっている。さらに、この実施の形態の例では、電気品213の温度が第1の閾値以上となったときは、圧縮機52の回転数を低下せず、または圧縮機52を停止しないため、冷却空間の温度上昇が抑制されている。さらに、この実施の形態の例では、電気品213の温度が第2の閾値以上となったときは、圧縮機52を停止せず、圧縮機52の回転数を低下させることで、冷却空間の温度上昇を抑制している。したがって、この実施の形態によれば、冷却空間に収容された被冷却物の劣化を抑制することができる。
 上記のように、この実施の形態の例の熱交換器ユニット100は、冷媒を熱交換する第1の熱交換部31Aと、第1の熱交換部31Aで熱交換された冷媒を熱交換する第2の熱交換部31Bと、を有する熱交換器3と、熱交換器3に空気を通過させる空気流を形成する送風機14と、電気品213を収容した電気品箱210と、を備え、電気品箱210が、第1の熱交換部31Aよりも第2の熱交換部31Bに近づけて設けられたものである。また、この実施の形態の例の冷凍サイクル装置101は、圧縮機52と凝縮器3Aと膨張弁402と蒸発器404とが接続され、冷媒が循環する冷媒循環回路102と、電気品213を収容した電気品箱210と、を備え、凝縮器3Aは、冷媒を熱交換する第1の熱交換部31Aと、第1の熱交換部31Aで熱交換された冷媒を熱交換する第2の熱交換部31Bと、を有する熱交換器3を有し、電気品箱210が、第1の熱交換部31Aよりも第2の熱交換部31Bに近づけて設けられたものである。この実施の形態の例では、電気品箱210が、第1の熱交換部31Aよりも温度が低い第2の熱交換部31Bに近づけて設けられているため、電気品箱210が効率よく放熱を行うことができる。
 例えば、第2の熱交換部31Bは、冷媒が並行に流れる複数の流路を備えており、第1の熱交換部31Aよりも温度が低い第2の熱交換部31Bの周囲の空気を利用して、電気品箱210が効率よく放熱を行うことができる。
 また、例えば、電気品箱210が、第2の熱交換部31Bの冷媒流入部よりも冷媒流出部に近づけて設けられているため、第2の熱交換部31Bの冷媒流入部よりも温度が低い冷媒流出部の周囲の空気を利用して、電気品箱210が効率よく放熱を行うことができる。
 また、例えば、第2の熱交換部31Bを通過した空気が通過する位置に設けられ、電気品213の放熱を促進する放熱促進部212を備えている。第2の熱交換部31Bを通過した空気を放熱促進部212に通過させる構成とすることで、電気品箱210の冷却構造を簡素化することができる。電気品箱210の冷却構造を簡素化することで、熱交換器ユニット100を小型化することができる。
 また、例えば、筐体110は、熱交換器3が収容された熱交換室10と電気品箱210が収容された機械室20とを有しており、放熱促進部212が、熱交換室10に露出している。熱交換器3が熱交換室10に設けられることで、熱交換器3の熱交換が効率化され、さらに、放熱促進部212が、熱交換室10に露出しているため、放熱促進部212での放熱を効率よく行うことができる。
 また、例えば、第2の熱交換部31Bが、第1の熱交換部31Aの上部に設けられており、電気品箱210が、第1の熱交換部31Aよりも高い位置に設けられている。電気品箱210が高い位置に設けられることで、メンテナンス等の利便性が向上する。
 また、例えば、熱交換器3が凝縮器3Aとして機能し、第2の熱交換部31Bが、第1の熱交換部31Aの上部に設けられているときに、第1の熱交換部31Aと第2の熱交換部31Bとを接続する第1の接続管312が円管で形成されることで、圧力損失の影響を低減することができる。第1の接続管312は、例えば直径10mmよりも大きい配管径を有するもので形成されるとよい。
 また、例えば、熱交換器3が凝縮器3Aとして機能し、第2の熱交換部31Bが、第1の熱交換部31Aの上部に設けられているときに、第3の熱交換部32Aが、第1の熱交換部31Aの下部に設けられることで、第2の熱交換部31Bと第3の熱交換部32Aとの高低差を大きくすることができる。第3の熱交換部32Aは、冷媒が並行に流れる複数の流路を有しており、第2の熱交換部31Bと第3の熱交換部32Aとの高低差を大きくすることで、第2の接続管34に流れる冷媒の流速を上げて、第3の熱交換部32Aに流入する冷媒の分配を均一化することができる。さらに、第1の熱交換部31Aと第2の熱交換部31Bと第3の熱交換部32Aとを有する構成とすることで、第1の熱交換部31Aを通過した冷媒を、ガス冷媒またはガス冷媒の比率が高い気液二相冷媒とすることができる。第1の熱交換部31Aと第2の熱交換部31Bとを接続する第1の接続管312に流れる冷媒が、ガス冷媒またはガス冷媒の比率が高い気液二相冷媒となることで、圧力損失の影響を低減することができる。
 また、例えば、送風機14は、第2の熱交換部31Bへの送風を行う第1の送風機14と、第3の熱交換部32Aへの送風を行う第2の送風機18と、を有している。第1の送風機14と第2の送風機18とを有する構成とすることで、例えば、第2の熱交換部31Bでの熱交換量と第3の熱交換部32Aでの熱交換量とを調整して、冷媒を効率よく熱交換することができる。
 また、例えば、温度センサ213aが検出した温度が第1の閾値以上となると、第2の送風機18の風量を維持して、第1の送風機14の風量を多くすることで、放熱促進部212での放熱を促進させる。電気品213の温度が高温となったときに、第1の送風機14および第2の送風機18のうちの第1の送風機14のみの風量を大きくすればよいため、低消費電力化を実現することができる。さらに、温度センサ213aが検出した温度が第1の閾値よりも高い温度に対応する第2の閾値以上となると、圧縮機52の回転数を低下し、温度センサ213aが検出した温度が第2の閾値よりも高い温度に対応する第3の閾値以上となると、圧縮機52を停止する。この実施の形態の例では、電気品213の温度が上昇したときであっても、直ちに圧縮機52の回転数を低下せず、または圧縮機を停止しないため、冷却空間の温度上昇を抑制することができる。
 また、例えば、熱交換器3の冷媒管が扁平形状であるため、風路抵抗を低減し、熱交換効率を向上させ、熱交換器3を小型化することができる。
 また、例えば、液溜め54が熱交換室10の内部の下部の温度が低い位置に設けられることで、液冷媒の蒸発を抑制することができる。
 なお、この実施の形態は、熱交換器3が凝縮器3Aとして機能するときに、上記の効果が顕著となる。なぜなら、熱交換器3が凝縮器3Aとして機能する冷凍装置等においては、熱交換器3に流入する冷媒の温度が100度以上となることがある。100度以上の冷媒と熱交換を行った高温の空気の影響が少ない位置に、電気品箱210を設けることで、電気品箱210の冷却構造を簡素化することができる。
 また、この実施の形態は、冷媒が非共沸混合冷媒であるときに、上記の効果が顕著となる。非共沸混合冷媒は温度勾配を有しているため、第1の熱交換部31Aを通過する冷媒の温度と第2の熱交換部31Bを通過する冷媒の温度との温度差が大きくなるためである。
 上記のように、この実施の形態によれば、放熱促進部212での放熱が効率化されているため、放熱促進部212を小型化することができる。放熱促進部212を小型化することで、放熱促進部212を低コスト化し、風路の圧力損失を低減し、冷凍サイクル装置101を小型化することができる。
 なお、この実施の形態は、上記で説明したものに限定されない。
[変形例1]
 例えば、図8は、図5の変形例1を示す図であり、図9は、図8の熱交換器、風路形成部および放熱促進部を側方から見た図である。図8において、図5と同一の構成については、同一の符号を付して、説明を省略しまたは簡略化する。図8および図9に示すように、変形例1は、風路形成部214を有している。風路形成部214は、熱交換器3を通過した空気を放熱促進部212に通過させる風路を形成するものである。風路形成部214は、第1の熱交換部31Aの風下に設けられており、例えば、仕切り板25または電気品箱210に取り付けられている。風路形成部214は、放熱促進部212を通過する空気の流速が、熱交換器3を通過する空気の流速よりも、速くなる形状を有している。例えば、風路形成部214は、空気流の上流の空気取込部の開口面積を、下流側よりも大きく形成したラッパ形状を有している。風路形成部214の空気取込部を大きく形成することで、多くの空気を取り込んで、放熱促進部212に多くの空気を通過させることができる。放熱促進部212は、図3の第1の仕切り部310Cよりも高い位置に設けられている。風路形成部214の空気取込部は、第2の熱交換部31Bの範囲内に形成されており、第2の熱交換部31Bを通過した空気を取り込むことができるようになっている。第2の熱交換部31Bを通過した空気を、放熱促進部212に通過させることで、放熱促進部212での放熱を効率よく行うことができる。例えば、風路形成部214の空気取込部の開口は、放熱促進部212の断面積と比較して、2倍以上の大きさに形成するとよい。変形例1では、風路形成部214を備えているため、放熱促進部212に通過する空気の量を多くし、且つ放熱促進部212に通過する空気の速度を速めることができるため、放熱促進部212での放熱を促進することができる。また、変形例1では、風路形成部214が設けられているため、放熱促進部212を小型化することができる。
[変形例2]
 また、例えば、図10は、図8の変形例2を示す図であり、図11は、図10の熱交換器、風路形成部および放熱促進部を側方から見た図である。なお、図10において、図8と同一の構成については、同一の符号を付して、説明を省略しまたは簡略化する。図10および図11に示すように、変形例2は、風路形成部214が、放熱促進部212の少なくとも一部分を覆う通風部214Aを有している。通風部214Aは、放熱促進部212と接触しないように設けられており、放熱促進部212の外表面から放熱できるようになっている。通風部214Aと放熱促進部212との間には、例えば、1~3mmの間隙が設けられている。通風部214Aを設けることで、放熱促進部212への送風を確実化することができる。また、通風部214Aを設けることで、第1の熱交換部31Aを通過した高温の空気が、放熱促進部212に通過することを抑制することができるため、放熱促進部212での放熱が効率化される。通風部214Aは、放熱促進部212の少なくとも一部分を覆う形状であればよいが、放熱促進部212の全体を覆う形状とすることで、放熱促進部212への送風を更に確実化することができる。なお、通風部214Aは、放熱促進部212を通過する空気の速度が3m/sec以上となるように形成するとよい。放熱促進部212を通過する空気の速度が3m/sec以上となるように通風部214Aを形成することで、放熱促進部212での放熱が効率化される。通風部214Aを形成することで、放熱促進部212を通過する空気の速度が3m/sec未満となるときは、変形例1のように、通風部214Aを省略するとよい。放熱促進部212を通過する空気の速度が3m/sec未満となるときは、放熱促進部212で熱交換された高温の空気が、通風部214Aに滞留するおそれがあるためである。さらに、放熱促進部212を通過する空気の速度が3m/sec未満となるときは、第1の熱交換部31Aを通過した高温の空気によって、通風部214Aが加熱され、放熱促進部212での放熱が阻害されるおそれがあるためである。
実施の形態2.
 図12は、この発明の実施の形態2に係る冷凍サイクル装置の一例を示す図である。なお、図12において、図4と同一の構成については、同一の符号を付して、説明を省略しまたは簡略化する。また、実施の形態2では、実施の形態1と同一の構成については、説明を省略しまたは簡略化する。図12に示すように、この実施の形態の例の冷凍サイクル装置101Aの熱交換器ユニット100Aは、第1の熱交換器31と第2の熱交換器32との間に、液溜め54Aが設けられている。第1の熱交換器31から流出した気液二相冷媒は、液溜め54Aでガス冷媒と液冷媒とに分離され、液冷媒が液溜め54Aから流出する。液溜め54Aから流出した液冷媒は、第2の熱交換器32で熱交換される。この実施の形態の例では、液溜め54Aから流出した液冷媒が第2の熱交換器32で熱交換されるため、熱交換器3から流出する冷媒の過冷却度を増加することができる。したがって、この実施の形態の例によれば、冷凍サイクル装置101Aの冷凍能力を増大することができる。
 電気品箱210は、第1の熱交換器31よりも第2の熱交換器32に近づけて設けられている。なお、実施の形態2では、第1の熱交換器31が、この発明の「第1の熱交換部」に相当し、第2の熱交換器32が、この発明の「第2の熱交換部」に相当する。第2の熱交換器32には、液溜め54Aでガス冷媒が分離された液冷媒が流れるため、電気品箱210を第2の熱交換器32に近づけて設けることで、電気品箱210が効率よく放熱を行うことができる。ガス冷媒が分離されて空気と熱交換した液冷媒は、気液二相冷媒と比較して、温度が低くなるためである。放熱促進部212は、第2の熱交換器32を通過した空気が通過する位置に設けられており、放熱促進部212での放熱を効率よく行うことができる。
 この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。
 例えば、実施の形態1と実施の形態2とを組み合わせて、図3に示す実施の形態1の第1の熱交換部31Aと第2の熱交換部31Bとの間に液溜めを設けることができる。また、図3に示す実施の形態1の第1の熱交換器31と第2の熱交換器32との間に液溜めを設け、電気品箱210を第1の熱交換器31よりも第2の熱交換器32に近づけて設けることができる。
 また、例えば、実施の形態1および実施の形態2では、冷凍倉庫等の内部を冷却する大型の冷凍装置に適用される冷凍サイクル装置についての説明を行ったが、冷凍サイクル装置は、冷蔵庫等の小型の冷凍装置に適用することができる。また、冷凍サイクル装置は、部屋の内部の冷房または暖房を行う空気調和装置、水等の加熱を行う加熱装置に適用することもできる。
 また、例えば、実施の形態1では、熱交換器3が凝縮器として機能する例についての説明を行ったが、熱交換器3は蒸発器として機能するものであってもよい。
 また、例えば、実施の形態1では、第1の熱交換器31と第1の熱交換器31の下部に設けられた第2の熱交換器32とを有する熱交換器3についての説明を行ったが、実施の形態1は、そのようなものに限定されない。例えば、熱交換器3は、第2の熱交換器32を省略して第1の熱交換器31のみの構成とすることができ、または、第1の熱交換器31と第2の熱交換器32と更なる熱交換器とを有する3個以上の熱交換器を有する構成とすることができる。
 また、例えば、実施の形態1では、第1の熱交換部31Aと第2の熱交換部31Bとを有する第1の熱交換器31と、第3の熱交換部32Aと第4の熱交換部32Bと、を有する熱交換器3についての説明を行ったが、第1の熱交換部31Aと第2の熱交換部31Bと第3の熱交換部32Aと第4の熱交換部32Bとは、それぞれが別体で形成されたものであってもよい。
 3 熱交換器、3A 凝縮器、10 熱交換室、12 第1のファンガード、14 第1の送風機、16 第2のファンガード、18 第2の送風機、20 機械室、25 仕切り板、31 第1の熱交換器、31A 第1の熱交換部、31B 第2の熱交換部、32 第2の熱交換器、32A 第3の熱交換部、32B 第4の熱交換部、34 第2の接続管、52 圧縮機、54 液溜め、54A 液溜め、56 過冷却器、58 インジェクション膨張弁、100 熱交換器ユニット、100A 熱交換器ユニット、101 冷凍サイクル装置、101A 冷凍サイクル装置、102 冷媒循環回路、103 インジェクション流路、110 筐体、210 電気品箱、212 放熱促進部、213 電気品、213a 温度センサ、214 風路形成部、214A 通風部、220 制御装置、310 第1の流入出ヘッダ、310A 第1の流入部、310B 第1の流出部、310C 第1の仕切り部、311 第1の流入管、312 第1の接続管、312C 第2の仕切り部、313 第1の流出管、320 第2の流入出ヘッダ、320A 第2の流入部、320B 第2の流出部、321 第2の流入管、322 第3の接続管、323 第2の流出管、400 室内ユニット、402 膨張弁、404 蒸発器、406 ファン、410 配管、420 配管。

Claims (23)

  1.  冷媒を熱交換する第1の熱交換部と、前記第1の熱交換部で熱交換された冷媒を熱交換する第2の熱交換部と、を有する熱交換器と、
     前記熱交換器に空気を通過させる空気流を形成する送風機と、
     電気品を収容した電気品箱と、を備え、
     前記電気品箱が、前記第1の熱交換部よりも前記第2の熱交換部に近づけて設けられた、
     熱交換器ユニット。
  2.  前記第1の熱交換部と前記第2の熱交換部との間に設けられた液溜めを備えた、
     請求項1に記載の熱交換器ユニット。
  3.  前記第2の熱交換部は、冷媒が並行に流れる複数の流路を有する、
     請求項1または請求項2に記載の熱交換器ユニット。
  4.  前記電気品箱が、前記第2の熱交換部の冷媒流入部よりも冷媒流出部に近づけて設けられた、
     請求項1~請求項3の何れか一項に記載の熱交換器ユニット。
  5.  前記第2の熱交換部を通過した空気が通過する位置に設けられ、前記電気品の放熱を促進する放熱促進部を備えた、
     請求項1~請求項4の何れか一項に記載の熱交換器ユニット。
  6.  前記熱交換器が収容された熱交換室と前記電気品箱が収容された機械室とを有する筐体を備え、
     前記放熱促進部が、前記熱交換室に露出している、
     請求項5に記載の熱交換器ユニット。
  7.  前記熱交換器を通過した空気を前記放熱促進部に通過させる風路を形成する風路形成部を備え、
     前記風路形成部は、前記放熱促進部を通過する空気の流速が前記熱交換器を通過する空気の流速よりも速くなる形状を有する、
     請求項5または請求項6に記載の熱交換器ユニット。
  8.  前記風路形成部は、前記第2の熱交換部を通過した空気が通過する範囲内に空気を取り込む取込部を有する、
     請求項7に記載の熱交換器ユニット。
  9.  前記風路形成部は、前記放熱促進部の少なくとも一部分を覆う通風部を有する、
     請求項7または請求項8に記載の熱交換器ユニット。
  10.  前記第2の熱交換部が、前記第1の熱交換部の上部に設けられた、
     請求項1~請求項9の何れか一項に記載の熱交換器ユニット。
  11.  前記電気品箱が、前記第1の熱交換部よりも高い位置に設けられた、
     請求項10に記載の熱交換器ユニット。
  12.  前記熱交換器は、前記第1の熱交換部から流出した冷媒を前記第2の熱交換部に流入させる配管であり円形状の流路を有する円管で形成された第1の接続管を有する、
     請求項10または請求項11に記載の熱交換器ユニット。
  13.  前記第1の接続管は、直径10mmよりも大きい配管径を有する、
     請求項12に記載の熱交換器ユニット。
  14.  前記熱交換器は、前記第1の熱交換部の下部に設けられ前記第2の熱交換部で熱交換された冷媒を熱交換する第3の熱交換部を有する、
     請求項1~請求項13の何れか一項に記載の熱交換器ユニット。
  15.  前記第3の熱交換部は、冷媒が並行に流れる複数の流路を有する、
     請求項14に記載の熱交換器ユニット。
  16.  前記送風機は、前記第2の熱交換部への送風を行う第1の送風機と、前記第3の熱交換部への送風を行う第2の送風機と、を有する、
     請求項14または請求項15に記載の熱交換器ユニット。
  17.  前記電気品の温度を検出する温度センサを備え、
     前記温度センサが検出した温度が第1の閾値以上となると、前記第2の送風機の風量を維持して、前記第1の送風機の風量を多くする、
     請求項16に記載の熱交換器ユニット。
  18.  冷媒を圧縮する圧縮機を備え、
     前記温度センサが検出した温度が前記第1の閾値よりも高い温度に対応する第2の閾値以上となると、前記圧縮機の回転数を低下し、
     前記温度センサが検出した温度が前記第2の閾値よりも高い温度に対応する第3の閾値以上となると、前記圧縮機を停止する、
     請求項17に記載の熱交換器ユニット。
  19.  前記熱交換器は、扁平形状に形成された冷媒管を有する、
     請求項1~請求項18の何れか一項に記載の熱交換器ユニット。
  20.  前記熱交換器が凝縮器として機能する、
     請求項1~請求項19の何れか一項に記載の熱交換器ユニット。
  21.  前記熱交換室の内部の下部に設けられ、前記熱交換器で熱交換した冷媒を貯留する液溜めを備えた、
     請求項6を引用する請求項20に記載の熱交換器ユニット。
  22.  冷媒が非共沸混合冷媒である、
     請求項1~請求項21の何れか一項に記載の熱交換器ユニット。
  23.  圧縮機と凝縮器と膨張弁と蒸発器とが接続され、冷媒が循環する冷媒循環回路と、
     電気品を収容した電気品箱と、を備え、
     前記凝縮器は、冷媒を熱交換する第1の熱交換部と、前記第1の熱交換部で熱交換された冷媒を熱交換する第2の熱交換部と、を有する熱交換器を有し、
     前記電気品箱が、前記第1の熱交換部よりも前記第2の熱交換部に近づけて設けられた、
     冷凍サイクル装置。
PCT/JP2017/030840 2017-08-29 2017-08-29 熱交換器ユニットおよび冷凍サイクル装置 WO2019043771A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780094028.8A CN111065868B (zh) 2017-08-29 2017-08-29 热交换器单元以及制冷循环装置
JP2019538776A JP6888102B2 (ja) 2017-08-29 2017-08-29 熱交換器ユニットおよび冷凍サイクル装置
PCT/JP2017/030840 WO2019043771A1 (ja) 2017-08-29 2017-08-29 熱交換器ユニットおよび冷凍サイクル装置
GB2001225.8A GB2579476B (en) 2017-08-29 2017-08-29 Heat exchanger unit and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030840 WO2019043771A1 (ja) 2017-08-29 2017-08-29 熱交換器ユニットおよび冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019043771A1 true WO2019043771A1 (ja) 2019-03-07

Family

ID=65525068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030840 WO2019043771A1 (ja) 2017-08-29 2017-08-29 熱交換器ユニットおよび冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JP6888102B2 (ja)
CN (1) CN111065868B (ja)
GB (1) GB2579476B (ja)
WO (1) WO2019043771A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208690A1 (ja) * 2019-04-08 2020-10-15 三菱電機株式会社 空気調和機の室外ユニット
EP3988853A4 (en) * 2019-07-18 2023-07-05 Brother Kogyo Kabushiki Kaisha AIR CONDITIONING DEVICE
WO2023132023A1 (ja) * 2022-01-06 2023-07-13 三菱電機株式会社 リモートコンデンサユニット、冷凍サイクル装置および冷凍装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208945A1 (de) 2021-08-16 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Elektronikvorrichtung für eine Wärmepumpe und Wärmepumpenvorrichtung mit einer solchen Elektronikvorrichtung
CN113883608B (zh) * 2021-10-14 2023-03-17 青岛海信日立空调***有限公司 一种多联机室外机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257337A (ja) * 1996-01-16 1997-10-03 Calsonic Corp 補機部品付コンデンサ
JPH109616A (ja) * 1996-06-20 1998-01-16 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2008304115A (ja) * 2007-06-07 2008-12-18 Sharp Corp ヒートポンプユニット,ヒートポンプ式給湯機
JP2009192145A (ja) * 2008-02-14 2009-08-27 Fujitsu General Ltd 空気調和機の室外機
JP2011127807A (ja) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp 室外機、空気調和装置、空気調和装置の運転方法
JP2012163285A (ja) * 2011-02-08 2012-08-30 Fujitsu General Ltd 空気調和機の室外機
JP2014098502A (ja) * 2012-11-13 2014-05-29 Samsung R&D Institute Japan Co Ltd 空気調和機
JP2014119146A (ja) * 2012-12-14 2014-06-30 Sharp Corp 空気調和機
JP2014153019A (ja) * 2013-02-12 2014-08-25 Sharp Corp ヒートポンプ機器の室外機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803199B2 (ja) * 2008-03-27 2011-10-26 株式会社デンソー 冷凍サイクル装置
JP5931043B2 (ja) * 2013-12-05 2016-06-08 三菱電機株式会社 空気調和機の室外機
KR102205848B1 (ko) * 2013-12-31 2021-01-21 한온시스템 주식회사 쿨링모듈 및 차량용 냉방시스템
CN203928496U (zh) * 2014-03-26 2014-11-05 广东美的集团芜湖制冷设备有限公司 平行流换热器及空调器
JP6253814B2 (ja) * 2015-01-30 2017-12-27 三菱電機株式会社 熱交換器、及び冷凍サイクル装置
JP2016200292A (ja) * 2015-04-07 2016-12-01 ダイキン工業株式会社 熱交換器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257337A (ja) * 1996-01-16 1997-10-03 Calsonic Corp 補機部品付コンデンサ
JPH109616A (ja) * 1996-06-20 1998-01-16 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2008304115A (ja) * 2007-06-07 2008-12-18 Sharp Corp ヒートポンプユニット,ヒートポンプ式給湯機
JP2009192145A (ja) * 2008-02-14 2009-08-27 Fujitsu General Ltd 空気調和機の室外機
JP2011127807A (ja) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp 室外機、空気調和装置、空気調和装置の運転方法
JP2012163285A (ja) * 2011-02-08 2012-08-30 Fujitsu General Ltd 空気調和機の室外機
JP2014098502A (ja) * 2012-11-13 2014-05-29 Samsung R&D Institute Japan Co Ltd 空気調和機
JP2014119146A (ja) * 2012-12-14 2014-06-30 Sharp Corp 空気調和機
JP2014153019A (ja) * 2013-02-12 2014-08-25 Sharp Corp ヒートポンプ機器の室外機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208690A1 (ja) * 2019-04-08 2020-10-15 三菱電機株式会社 空気調和機の室外ユニット
JPWO2020208690A1 (ja) * 2019-04-08 2021-10-21 三菱電機株式会社 空気調和機の室外ユニット
JP7186863B2 (ja) 2019-04-08 2022-12-09 三菱電機株式会社 空気調和機の室外ユニット
EP3988853A4 (en) * 2019-07-18 2023-07-05 Brother Kogyo Kabushiki Kaisha AIR CONDITIONING DEVICE
WO2023132023A1 (ja) * 2022-01-06 2023-07-13 三菱電機株式会社 リモートコンデンサユニット、冷凍サイクル装置および冷凍装置

Also Published As

Publication number Publication date
CN111065868B (zh) 2022-03-15
JP6888102B2 (ja) 2021-06-16
GB202001225D0 (en) 2020-03-11
GB2579476B (en) 2021-08-04
CN111065868A (zh) 2020-04-24
JPWO2019043771A1 (ja) 2020-04-23
GB2579476A (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6888102B2 (ja) 熱交換器ユニットおよび冷凍サイクル装置
US10386081B2 (en) Air-conditioning device
US20110126581A1 (en) Air conditioner and outdoor unit thereof
WO2014119430A1 (ja) 室外機及び冷凍サイクル装置
JP5447569B2 (ja) 空気調和装置の熱交換器及び空気調和装置
JP6042026B2 (ja) 冷凍サイクル装置
JP2018197613A (ja) 冷凍サイクル装置
CN111114243B (zh) 用于车辆的冷却模块
JP6466047B1 (ja) 熱交換器及び空気調和装置
JP2006343088A (ja) 空気調和機
JP2021055957A (ja) 蒸発器、およびそれを備えた冷凍サイクル装置
JP2009299974A (ja) 空気調和機
JP2012102992A (ja) 室外機のパラレルフロー多段凝縮過冷却器
JP6769315B2 (ja) 小型冷凍サイクル装置
WO2022030376A1 (ja) 熱交換器
KR20070052547A (ko) 공기조화기
JPWO2014203500A1 (ja) 空気調和機
JP5627647B2 (ja) オープンショーケース
JP2021055958A (ja) 冷凍装置
JP7423799B2 (ja) 空気調和機の室外ユニット
WO2018061359A1 (ja) 熱交換器および冷凍サイクル装置
KR100625751B1 (ko) 냉난방 겸용 에어컨
CN217057759U (zh) 空调室外机
JP5796588B2 (ja) オープンショーケース
JP2009074701A (ja) 空気調和機用室外機ユニットおよび空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538776

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202001225

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170829

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922949

Country of ref document: EP

Kind code of ref document: A1