WO2019041483A1 - 显示面板及其制造方法与显示装置 - Google Patents

显示面板及其制造方法与显示装置 Download PDF

Info

Publication number
WO2019041483A1
WO2019041483A1 PCT/CN2017/107035 CN2017107035W WO2019041483A1 WO 2019041483 A1 WO2019041483 A1 WO 2019041483A1 CN 2017107035 W CN2017107035 W CN 2017107035W WO 2019041483 A1 WO2019041483 A1 WO 2019041483A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
source
gate
drain
display panel
Prior art date
Application number
PCT/CN2017/107035
Other languages
English (en)
French (fr)
Inventor
卓恩宗
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US15/740,728 priority Critical patent/US20190067388A1/en
Publication of WO2019041483A1 publication Critical patent/WO2019041483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate

Definitions

  • the present application relates to a manufacturing method, and in particular to a display panel, a method of manufacturing the same, and a display device.
  • Flat panel display devices include liquid crystal displays, plasma display panels, electrophoretic displays, and organic light emitting displays.
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • Source matrix OLED panel dominates the panel market with small to medium size and 200 ppi pixels
  • AMOLED WVGA Wide Video Graphics Array, a resolution higher than VGA resolution: 800*480; ⁇ 200ppi
  • high pixel 250ppi, 300ppi and 350ppi will be the future development trend.
  • the existing AMOLED panel production method is mainly based on Side by Side technology, but the technology has certain difficulties in producing products of 300 ppi or more. Therefore, the industry will adopt another implementation method to fabricate an AMOLED panel: a WOLED (White Organic Light Emitting Diode) plus a color filter (CF). Since the WOLED can be vapor-deposited with a fully open metal shield, it is possible to achieve high pixel quality. And the organic light emitting device (OLED) has great application due to its self-illumination, no viewing angle dependence, power saving, simple process, low cost, low temperature operation range, high response speed and full color. Potential, is expected to become the mainstream of the lighting source of the new generation of flat panel displays.
  • a WOLED White Organic Light Emitting Diode
  • CF color filter
  • the self-illuminating display has high contrast, wide color gamut and fast response. Since it does not require a backlight, it can be made lighter and thinner than a liquid crystal display.
  • the self-luminous display mainly controls the switching and brightness of the light-emitting device through a specific active switch array, and performs screen display after adjusting the ratio of the three primary colors.
  • the control active switch array often uses a metal oxide semiconductor, which not only has a high on-state current and a low off-state current, but also has the characteristics of high uniformity and high stability.
  • the basic structure of an OLED is a thin and transparent indium tin oxide (ITO) with semiconductor characteristics, connected to the anode of the power, and another metal cathode, which is wrapped like a sandwich.
  • the structure includes at least a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EL), an electron injection layer (EIL), and an electron transport layer (ETL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EL emission layer
  • EIL electron injection layer
  • ETL electron transport layer
  • an object of the present application is to provide a display panel, a manufacturing method thereof and a display device, which can integrate a photosensor device to save space and thereby reduce manufacturing costs.
  • a display panel includes: a first substrate; a plurality of gate lines formed on the first substrate; a gate cap layer formed on the first substrate and covering the a plurality of data lines formed on the gate cap layer, wherein portions of the data lines intersecting the gate lines form a plurality of active switch arrays, wherein the active switch array has a channel An active layer of the region and the source and drain regions, and a gate for providing a signal to the channel region; a passivation layer formed on the gate cap layer and covering the source and drain a source and a drain; an overcoat layer formed on the passivation layer; an anode electrode layer formed on the overcoat layer and respectively connecting the source of the source and drain regions And a drain and a gate; a bank layer formed on the overcoat layer and covering the anode electrode layer; a pixel defining layer formed on the bank layer and covering the anode electrode layer; a cathode electrode layer formed on
  • Another object of the present invention is to provide a method for manufacturing a display panel, comprising: providing a first substrate; forming a plurality of gate lines on the first substrate; and forming a gate cap layer on the first substrate And covering the gate lines; forming a plurality of data lines on the gate cap layer, wherein portions of the data lines intersecting the gate lines form a plurality of active switch arrays, wherein the active
  • the switch array has an active layer of a channel region and source and drain regions, and a gate for providing a signal to the channel region; a passivation layer is formed on the gate cap layer and covers the a source and a drain of the source and the drain; forming an overcoat layer on the passivation layer; forming an anode electrode layer on the overcoat layer, and respectively connecting the source and the drain a source and a drain and a gate of the polar region; a bank layer formed on the overcoat layer and covering the anode electrode layer; a pixel defining layer formed on the bank layer and covering the An an
  • Still another object of the present application is a display device comprising: a control unit, further comprising the display panel.
  • the source and the drain include at least one of titanium, a titanium alloy, a tantalum, and a tantalum alloy.
  • the active layer includes polysilicon.
  • the overcoat layer includes a color filter.
  • the anode electrode layer is indium tin oxide.
  • the source and the drain include at least one of titanium, a titanium alloy, a tantalum, and a tantalum alloy.
  • the active layer includes polysilicon.
  • the overcoat layer includes a color filter; the anode electrode layer is indium Tin oxide.
  • the application has an in-cell light sensor to enhance the function of the display device, and has a pixel definition layer, thereby improving the image quality of the display color, and having an integrated light sensor device to save space, thereby reducing manufacturing costs.
  • 1a is a schematic cross-sectional view of an exemplary active switch array liquid crystal display device.
  • Figure 1b is a schematic cross-sectional view of an exemplary active matrix display panel.
  • Figure 1c is a schematic diagram of an exemplary organic light emitting diode.
  • FIG. 1d is a schematic structural view of an organic light emitting diode showing an related art.
  • FIG. 2a is a schematic cross-sectional view of a display panel having a pixel defining layer in accordance with an embodiment of the present application.
  • 2b is a schematic cross-sectional view of a display panel having a color filter according to an embodiment of the present application.
  • 2c is a schematic diagram of a pixel definition layer according to an embodiment of the present application.
  • FIG. 3a is a flow chart of a method for manufacturing a display panel according to an embodiment of the present application.
  • FIG. 3b is a flow chart of a method for manufacturing a display panel according to another embodiment of the present application.
  • the word “comprising” is to be understood to include the component, but does not exclude any other component.
  • “on” means located above or below the target component, and does not mean that it must be on the top based on the direction of gravity.
  • FIG. 1a is a schematic cross-sectional view of an exemplary active switch array liquid crystal display device.
  • an active switch array The liquid crystal display device 10 includes: a backlight module 100; an active switch array glass substrate 120; a first polarizer 110 disposed on an outer surface of the active switch array glass substrate 120; and a color filter glass substrate 150, which is disposed opposite to the active switch array glass substrate 120.
  • a color filter layer 160 is formed on the color filter layer glass substrate 150.
  • a liquid crystal layer 130 is formed on the active switch array glass substrate 120.
  • the color filter glass substrate 150 and a second polarizer 140 disposed on an outer surface of the color filter glass substrate 150, wherein the first polarizer 110 and the second The polarization directions of the polarizers 140 are parallel to each other.
  • FIG. 1b is a schematic cross-sectional view of an exemplary active matrix display panel.
  • an active matrix display panel 11 includes: an active switch array glass substrate 120; a color filter layer glass substrate 150 disposed opposite to the active switch array glass substrate 120; an organic material layer 165 is disposed between the active switch array glass substrate 120 and the color filter layer glass substrate 150 and a polarizer 140 disposed on an outer surface of the color filter glass substrate 150.
  • an organic light emitting diode 12 includes: a glass substrate 170; a thin and transparent semiconductor indium tin oxide (ITO) connected to the anode 172 of the power 185, plus another A metal cathode 180 is wrapped in a sandwich structure, wherein the entire structural layer includes at least: a hole injection layer (HIL) 177, a hole transport layer (HTL) 174, an illuminating layer (EL) 176, and an electron.
  • HIL hole injection layer
  • HTL hole transport layer
  • EL illuminating layer
  • EIL injection layer
  • ETL electron transport layer
  • FIG. 2a is a schematic cross-sectional view of a display panel having a pixel defining layer according to an embodiment of the present invention
  • FIG. 2b is a schematic cross-sectional view of a display panel having a color filter according to an embodiment of the present application
  • FIG. 2c is a pixel defining layer according to an embodiment of the present application.
  • a display panel 20 includes: a first substrate 200; a plurality of gate lines 216 formed on the first substrate 200; and a gate cap layer 218 formed on the first substrate.
  • the array 210 wherein the active switch array 210 has an active layer 212, 214 of a channel region and a source 214 and a drain 212 region, and a gate 216 for providing a signal to the channel region; a passivation layer 220 Forming on the gate cap layer 218 and covering the source 214 and the drain 212 of the source 214 and the drain 212 region; an overcoat layer 230 is formed on the passivation layer 220; An anode electrode layer 240, 245 is formed on the overcoat layer 230, and is respectively connected to the source 214 and the drain 212 and the gate 216 of the source 214 and the drain 212 region; a bank layer 250 is formed on The outer coating layer 230 covers the anode electrode layers 240, 245; a pixel defining layer 260
  • the source 214 and the drain 212 comprise at least one of titanium, a titanium alloy, tantalum and niobium alloy.
  • the active layers 212, 214 comprise polysilicon.
  • the anode electrode layers 240, 245 are indium tin oxide.
  • a display panel 21 includes: a first substrate 200; a plurality of gate lines 216 formed on the first substrate 200; and a gate cap layer 218 formed on the On the first substrate 200, and covering the gate lines 216; a plurality of data lines 215 are formed on the gate capping layer 218, wherein the portions of the data lines 215 intersecting the gate lines 216 are formed.
  • Active switching array 210 wherein the active switching array 210 has a channel region and active layers 212, 214 of source and drain 212 and drain 212 regions, and a gate 216 for providing a signal to the channel region;
  • the formation layer 220 is formed on the gate cap layer 218 and covers the source 214 and the drain 212 of the source 214 and the drain 212 region; an overcoat layer 230 is formed on the passivation layer 220.
  • An anode electrode layer 240, 245 is formed on the overcoat layer 230, and is respectively connected to the source 214 and the drain 212 and the gate 216 of the source 214 and the drain 212 region; a bank layer 250 Formed on the outer coating layer 230 and covering the anode electrode layers 240, 245; an organic light emitting diode layer 265 formed on the bank layer 2 50, and covering the anode electrode layer 240; and a cathode electrode layer 270 formed on the organic light emitting diode layer 265.
  • the display panel 21 has an organic light emitting diode layer 265 (shown in FIG. 2b) and the display panel 20 has a pixel defining layer 260 (shown in FIG. 2a).
  • the source 214 and the drain 212 comprise at least one of titanium, a titanium alloy, tantalum and niobium alloy.
  • the active layers 212, 214 comprise polysilicon.
  • the overcoat layer 230 includes a color filter 235.
  • the anode electrode layers 240, 245 are indium tin oxide.
  • a method for manufacturing a display panel 20 includes: providing a first substrate 200; forming a plurality of gate lines 216 on the first substrate 200; A gate cap layer 218 is formed on the first substrate 200 and covers the gate lines 216. A plurality of data lines 215 are formed on the gate cap layer 218, wherein the data lines 215 are opposite to the gate lines 218.
  • the portion where the gate lines 216 intersect forms a plurality of active switch arrays 210, wherein the active switch array 210 has a channel region and active layers 212, 214 of source and drain 212 and drain 212 regions, and is used to channel regions a gate 216 for providing a signal; a passivation layer 220 is formed on the gate cap layer 218, and covers the source 214 and the drain 212 of the source and drain 212 regions; and an overcoat layer 230 is formed on the passivation layer 220; an anode electrode layer 240, 245 is formed on the overcoat layer 230, and is connected to the source 214 and the drain 212 of the source 214 and drain 212 regions, respectively.
  • a gate electrode 216 a bank layer 250 is formed on the overcoat layer 230 and covers the anode electrode layers 240, 245;
  • a layer 260 is formed on the bank layer 250 and covers the anode electrode layer 240; and
  • a cathode electrode layer 270 is formed on the pixel defining layer 260.
  • the source 214 and the drain 212 include titanium, titanium alloy, tantalum, and niobium alloy. One less.
  • the active layers 212, 214 include polysilicon.
  • the anode electrode layers 240, 245 are indium tin oxide.
  • FIG. 3a is a flowchart of a method for manufacturing a display panel according to an embodiment of the present application. Referring to FIG. 3a, in the process S311, a first substrate is provided.
  • step S312 a plurality of gate lines are formed on the first substrate.
  • a gate cap layer is formed on the first substrate and covers the gate lines.
  • a plurality of data lines are formed on the gate capping layer, wherein portions of the data lines intersecting the gate lines form a plurality of active switch arrays, wherein the active
  • the switch array has an active layer of a channel region and source and drain regions, and a gate for providing a signal to the channel region.
  • a passivation layer is formed on the gate cap layer and covers the source and drain of the source and drain regions.
  • an overcoat layer is formed on the passivation layer.
  • step S317 an anode electrode layer is formed on the overcoat layer, and the source and drain and the gate of the source and drain regions are respectively connected.
  • step S318 a bank layer is formed on the overcoat layer and covers the anode electrode layer.
  • a pixel defining layer is formed on the bank layer and covers the anode electrode layer.
  • a cathode electrode layer is formed on the pixel defining layer.
  • a method for manufacturing a display panel 21 includes: providing a first substrate 200; forming a plurality of gate lines 216 on the first substrate 200; A gate cap layer 218 is formed on the first substrate 200 and covers the gate lines 216. A plurality of data lines 215 are formed on the gate cap layer 218, wherein the data lines 215 are opposite to the gate lines 218.
  • the portion where the gate lines 216 intersect forms a plurality of active switch arrays 210, wherein the active switch array 210 has a channel region and active layers 212, 214 of source and drain 212 and drain 212 regions, and is used to channel regions a gate 216 for providing a signal; a passivation layer 220 is formed on the gate cap layer 218, and covers the source 214 and the drain 212 of the source and drain 212 regions; and an overcoat layer 230 is formed on the passivation layer 220; an anode electrode layer 240, 245 is formed on the overcoat layer 230, and is connected to the source 214 and the drain 212 of the source 214 and drain 212 regions, respectively.
  • the source 214 and the drain 212 include at least one of titanium, a titanium alloy, a tantalum, and a tantalum alloy.
  • the active layers 212, 214 include polysilicon.
  • the overcoat layer 230 includes a color filter 235.
  • the anode electrode layers 240, 245 are indium tin oxide.
  • FIG. 3b is a flow chart of a method for manufacturing a display panel according to another embodiment of the present application. Referring to FIG. 3b, in the process S331, a first substrate is provided.
  • a plurality of gate lines are formed on the first substrate.
  • a gate cap layer is formed on the first substrate and covers the gate lines.
  • a plurality of data lines are formed on the gate capping layer, wherein portions of the data lines intersecting the gate lines form a plurality of active switch arrays, wherein the active
  • the switch array has an active layer of a channel region and source and drain regions, and a gate for providing a signal to the channel region.
  • a passivation layer is formed on the gate cap layer and covers the source and drain of the source and drain regions.
  • an overcoat layer is formed on the passivation layer and covers a color filter.
  • step S337 an anode electrode layer is formed on the overcoat layer, and the source and drain electrodes and the gate of the source and drain regions are respectively connected.
  • step S3308 a bank layer is formed on the overcoat layer and covers the anode electrode layer.
  • step S339 an organic light emitting diode layer is formed on the bank layer and covers the anode electrode layer.
  • a cathode electrode layer is formed on the organic light emitting diode layer.
  • a display device includes: a control component (for example: a multi-band antenna) (not shown), and further includes the display panel 20, 21 (for example, QLED or OLED).
  • a control component for example: a multi-band antenna
  • the display panel 20, 21 for example, QLED or OLED
  • the application has an in-cell light sensor to enhance the function of the display device, and has a pixel definition layer, thereby improving the image quality of the display color, and having an integrated light sensor device to save space, thereby reducing manufacturing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制造方法与显示装置,此显示面板包括:一第一基板(200);多条栅极线(216),形成于此第一基板上;一栅极覆盖层(218),形成于此第一基板上,并覆盖该些栅极线;多条数据线(215),形成于此栅极覆盖层上;一钝化层(220),形成于此栅极覆盖层上,并覆盖此源极和漏极区的源极(214)及漏极(212);一外涂层(230),形成于此钝化层上;一阳极电极层(240、245),形成于此外涂层上,并分别连接此源极和漏极区的源极及漏极与栅极;一堤岸层(250),形成于此外涂层上,并覆盖此阳极电极层;一像素定义层(260),形成于此堤岸层上,并覆盖此阳极电极层;以及一阴极电极层(270),形成于此像素定义层上;其中此像素定义层包括一有机发光二极管及一传感器。

Description

显示面板及其制造方法与显示装置 技术领域
本申请涉及一种制造方式,特别是涉及一种显示面板及其制造方法与显示装置。
背景技术
最近开发了多种类型的平板显示设备来代替笨重的阴极射线管。平板显示设备包括液晶显示器、等离子体显示面板、电泳显示器和有机发光显示器。目前,高像素的平面显示面板为市场的趋势,AMOLED(Active Matrix/Organic Light Emitting Diode,有源矩阵有机发光二极管面板)面板吸引了众人的目光,且AMOLED(Active Matrix/Organic Light Emitting Diode,有源矩阵有机发光二极管面板)面板在中小尺寸、像素为200ppi的面板市场中占据主导地位,且AMOLED WVGA(Wide Video Graphics Array,高于VGA分辨率的一种分辨率:800*480;~200ppi)为目前的主流分辨率,而高像素250ppi、300ppi以及350ppi将会是未来的发展趋势。现有的AMOLED面板的生产方式以Side by Side(并排)技术为主,然而所述技术在生产300ppi及以上的产品具有一定的困难度。因此业界会采用另一种实现方式来制作AMOLED面板:WOLED(White Organic Light Emitting Diode,白光有机发光二极管)加彩色滤片(Color Filter,CF)的方式。由于WOLED可以采用全开口的金属屏蔽进行蒸镀,因此有可能实现高像素的画质。且有机发光装置(Organic light emitting device,OLED)因其自发光、无视角依存、省电、制程简易、低成本、低温度操作范围、高应答速度以及全彩化等优点而具有极大的应用潜力,可望成为新世代平面显示器的照明光源主流。
而自发光显示屏具有高对比度、广色域、响应速度快等特点。由于不需使用背光板,因此比液晶显示器更能够做得更轻薄甚至柔性。自发光显示器的主要通过特定的主动开关阵列进行控制调节发光器件的开关和亮度,在调节三原色的比例之后进行画面显示。其中,控制主动开关阵列往往采用金属氧化物半导体,其不仅有较高的开态电流和较低的关态电流,还有均匀性和稳定性较高的特点。OLED(Organic Light Emitting Diode,有机发光二极管)的基本结构是由一薄而透明具半导体特性的铟锡氧化物(ITO),与电力的阳极相连,再加上另一个金属阴极,包成如三明治的结构,其中整个结构层中至少包括:电洞注入层(HIL)、电洞传输层(HTL)、发光层(EL)、电子注入层(EIL)及电子传输层(ETL)。当电力供应至适当电压时,阳极电洞与阴极电荷就会在发光层结合,产生光亮,其依配方不同产生红、绿及蓝三原色,构成基本色彩。但往往需要增加光传感器制程,以造成制造成本过高。
发明内容
为了解决上述技术问题,本申请的目的在于,提供一种显示面板及其制造方法与显示装置,可以集成光传感器设备以节省空间,进而降低制造成本。
本申请的目的及解决其技术问题是采用以下技术方案来实现的。依据本申请提出的一种显示面板,包括:一第一基板;多条栅极线,形成于所述第一基板上;一栅极覆盖层,形成于所述第一基板上,并覆盖该些栅极线;多条数据线,形成于所述栅极覆盖层上,其中该些数据线与该些栅极线相交的部分形成多个主动开关阵列,其中所述主动开关阵列具有沟道区和源极及漏极区的有源层,与用来向沟道区提供信号的栅极;一钝化层,形成于所述栅极覆盖层上,并覆盖所述源极和漏极区的源极及漏极;一外涂层,形成于所述钝化层上;一阳极电极层,形成于所述外涂层上,并分别连接所述源极和漏极区的源极及漏极与栅极;一堤岸层,形成于所述外涂层上,并覆盖所述阳极电极层;一像素定义层,形成于所述堤岸层上,并覆盖所述阳极电极层;以及一阴极电极层,形成于所述像素定义层上;其中所述像素定义层包括一有机发光二极管及一传感器,所述有机发光二极管及所述传感器为阵列排列。
本申请的另一目的一种显示面板的制造方法,包括:提供一第一基板;将多条栅极线形成于所述第一基板上;将一栅极覆盖层形成于所述第一基板上,并覆盖该些栅极线;将多条数据线形成于所述栅极覆盖层上,其中该些数据线与该些栅极线相交的部分形成多个主动开关阵列,其中所述主动开关阵列具有沟道区和源极及漏极区的有源层,与用来向沟道区提供信号的栅极;将一钝化层形成于所述栅极覆盖层上,并覆盖所述源极和漏极区的源极及漏极;将一外涂层形成于所述钝化层上;将一阳极电极层形成于所述外涂层上,并分别连接所述源极和漏极区的源极及漏极与栅极;将一堤岸层形成于所述外涂层上,并覆盖所述阳极电极层;将一像素定义层形成于所述堤岸层上,并覆盖所述阳极电极层;以及将一阴极电极层形成于所述像素定义层上。
本申请的再一目的一种显示装置,包括:一控制部件,还包括所述的显示面板。
本申请解决其技术问题还可采用以下技术措施进一步实现。
在本申请的一实施例中,所述源极及漏极包括钛、钛合金、钽和钽合金中的至少一种。
在本申请的一实施例中,所述有源层包括多晶硅。
在本申请的一实施例中,所述外涂层包括一彩色滤光片。
在本申请的一实施例中,所述阳极电极层为铟锡氧化物。
在本申请的一实施例中,所述制造方法,所述源极及漏极包括钛、钛合金、钽和钽合金中的至少一种。
在本申请的一实施例中,所述制造方法,所述有源层包括多晶硅。
在本申请的一实施例中,所述制造方法,所述外涂层包括一彩色滤光片;所述阳极电极层为铟 锡氧化物。
本申请具有内嵌式的光传感器以提升显示设备的功能,且具有像素定义层,因而能提升显示色彩的画质,并具有集成光传感器设备以节省空间,进而降低制造成本。
附图说明
图1a是范例性的主动开关阵列液晶显示装置横截面示意图。
图1b是范例性的有源矩阵显示面板横截面示意图。
图1c是范例性的有机发光二极管示意图。
图1d是范例性的显示相关技术的有机发光二极管结构示意图。
图2a是本申请一实施例具有像素定义层的显示面板横截面示意图。
图2b是本申请一实施例具有彩色滤光片的显示面板横截面示意图。
图2c是本申请一实施例像素定义层示意图。
图3a是本申请一实施例一种显示面板的制造方法流程图。
图3b是本申请另一实施例一种显示面板的制造方法流程图。
具体实施方式
以下各实施例的说明是参考附加的图式,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。
附图和说明被认为在本质上是示出性的,而不是限制性的。在图中,结构相似的单元是以相同标号表示。另外,为了理解和便于描述,附图中示出的每个组件的尺寸和厚度是任意示出的,但是本申请不限于此。
在附图中,为了清晰起见,夸大了层、膜、面板、区域等的厚度。在附图中,为了理解和便于描述,夸大了一些层和区域的厚度。将理解的是,当例如层、膜、区域或基底的组件被称作“在”另一组件“上”时,所述组件可以直接在所述另一组件上,或者也可以存在中间组件。
另外,在说明书中,除非明确地描述为相反的,否则词语“包括”将被理解为意指包括所述组件,但是不排除任何其它组件。此外,在说明书中,“在......上”意指位于目标组件上方或者下方,而不意指必须位于基于重力方向的顶部上。
为更进一步阐述本申请为达成预定申请目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本申请提出的一种显示面板及其制造方法与显示装置,其具体实施方式、结构、特征及其功效,详细说明如后。
图1a为范例性的主动开关阵列液晶显示装置横截面示意图。请参照图1a,一种主动开关阵列 液晶显示设备10,包括:一背光模块100;一主动开关阵列玻璃基板120;一第一偏光片110,设置于所述主动开关阵列玻璃基板120的一外表面上;一彩色滤光层玻璃基板150,其与所述主动开关阵列玻璃基板120相对设置;一彩色滤光层160,形成于所述彩色滤光层玻璃基板150上;一液晶层130,形成于所述主动开关阵列玻璃基板120与所述彩色滤光层玻璃基板150之间以及一第二偏光片140,设置于所述彩色滤光层玻璃基板150的一外表面上,其中所述第一偏光片110与所述第二偏光片140的偏振方向是互相平行。
图1b为范例性的有源矩阵显示面板横截面示意图。请参照图1b,一种有源矩阵显示面板11,包括:一主动开关阵列玻璃基板120;一彩色滤光层玻璃基板150,其与所述主动开关阵列玻璃基板120相对设置;一有机材料层165,设置于所述主动开关阵列玻璃基板120与所述彩色滤光层玻璃基板150之间以及一偏光片140,设置于所述彩色滤光层玻璃基板150的一外表面上。
图1c为范例性的有机发光二极管示意图及图1d为范例性的显示相关技术的有机发光二极管结构示意图。请参照图1c及图1d,一种有机发光二极管12,包括:一玻璃基板170;一薄而透明具半导体特性的铟锡氧化物(ITO),与电力185的阳极172相连,再加上另一个金属阴极180,包成如三明治的结构,其中整个结构层中至少包括:一电洞注入层(HIL)177、一电洞传输层(HTL)174、一发光层(EL)176、一电子注入层(EIL)(图未示)及一电子传输层(ETL)178。当电力185供应至适当电压时,阳极172电洞182与阴极180电荷181就会在发光层176结合,产生光亮194,其依配方不同产生红、绿及蓝三原色,构成基本色彩。
图2a为本申请一实施例具有像素定义层的显示面板横截面示意图、图2b为本申请一实施例具有彩色滤光片的显示面板横截面示意图及图2c是本申请一实施例像素定义层示意图。请参照图2a,一种显示面板20,包括:一第一基板200;多条栅极线216,形成于所述第一基板200上;一栅极覆盖层218,形成于所述第一基板200上,并覆盖该些栅极线216;多条数据线215,形成于所述栅极覆盖层218上,其中该些数据线215与该些栅极线216相交的部分形成多个主动开关阵列210,其中所述主动开关阵列210具有沟道区和源极214及漏极212区的有源层212、214,与用来向沟道区提供信号的栅极216;一钝化层220,形成于所述栅极覆盖层218上,并覆盖所述源极214及漏极212区的源极214及漏极212;一外涂层230,形成于所述钝化层220上;一阳极电极层240、245,形成于所述外涂层230上,并分别连接所述源极214及漏极212区的源极214及漏极212与栅极216;一堤岸层250,形成于所述外涂层230上,并覆盖所述阳极电极层240、245;一像素定义层260,形成于所述堤岸层250上,并覆盖所述阳极电极层240;以及一阴极电极层270,形成于所述像素定义层260上;(如图2a、图2b及图2c所示)其中所述像素定义层260包括一有机发光二极管265及一传感器260,所述有机发光二极管265及所述传感器260为并列排列。
在一实施例中,所述源极214及漏极212包括钛、钛合金、钽和钽合金中的至少一种。
在一实施例中,所述有源层212、214包括多晶硅。
在一实施例中,所述阳极电极层240、245为铟锡氧化物。
请参照图2a及图2b,一种显示面板21,包括:一第一基板200;多条栅极线216,形成于所述第一基板200上;一栅极覆盖层218,形成于所述第一基板200上,并覆盖该些栅极线216;多条数据线215,形成于所述栅极覆盖层218上,其中该些数据线215与该些栅极线216相交的部分形成多个主动开关阵列210,其中所述主动开关阵列210具有沟道区和源极214及漏极212区的有源层212、214,与用来向沟道区提供信号的栅极216;一钝化层220,形成于所述栅极覆盖层218上,并覆盖所述源极214及漏极212区的源极214及漏极212;一外涂层230,形成于所述钝化层220上;一阳极电极层240、245,形成于所述外涂层230上,并分别连接所述源极214及漏极212区的源极214及漏极212与栅极216;一堤岸层250,形成于所述外涂层230上,并覆盖所述阳极电极层240、245;一有机发光二极管层265,形成于所述堤岸层250上,并覆盖所述阳极电极层240;以及一阴极电极层270,形成于所述有机发光二极管层265上。其中不同之处所述显示面板21为具有一有机发光二极管层265(图2b所示)与所述显示面板20为具有一像素定义层260(图2a所示)。
在一实施例中,所述源极214及漏极212包括钛、钛合金、钽和钽合金中的至少一种。
在一实施例中,所述有源层212、214包括多晶硅。
在一实施例中,所述外涂层230包括一彩色滤光片235。
在一实施例中,所述阳极电极层240、245为铟锡氧化物。
请参照图2a,在本申请一实施例中,一种显示面板20的制造方法,包括:提供一第一基板200;将多条栅极线216形成于所述第一基板200上;将一栅极覆盖层218形成于所述第一基板200上,并覆盖该些栅极线216;将多条数据线215形成于所述栅极覆盖层218上,其中该些数据线215与该些栅极线216相交的部分形成多个主动开关阵列210,其中所述主动开关阵列210具有沟道区和源极214及漏极212区的有源层212、214,与用来向沟道区提供信号的栅极216;将一钝化层220形成于所述栅极覆盖层218上,并覆盖所述源极214和漏极212区的源极214及漏极212;将一外涂层230形成于所述钝化层220上;将一阳极电极层240、245形成于所述外涂层230上,并分别连接所述源极214和漏极212区的源极214及漏极212与栅极216;将一堤岸层250形成于所述外涂层230上,并覆盖所述阳极电极层240、245;将一像素定义层260形成于所述堤岸层250上,并覆盖所述阳极电极层240;以及将一阴极电极层270形成于所述像素定义层260上。
在一实施例中,所述制造方法,所述源极214及漏极212包括钛、钛合金、钽和钽合金中的至 少一种。
在一实施例中,所述制造方法,所述有源层212、214包括多晶硅。
在一实施例中,所述制造方法,所述阳极电极层240、245为铟锡氧化物。
图3a为本申请一实施例一种显示面板的制造方法流程图。请参照图3a,在流程S311中,提供一第一基板。
请参照图3a,在流程S312中,将多条栅极线形成于所述第一基板上。
请参照图3a,在流程S313中,将一栅极覆盖层形成于所述第一基板上,并覆盖该些栅极线。
请参照图3a,在流程S314中,将多条数据线形成于所述栅极覆盖层上,其中该些数据线与该些栅极线相交的部分形成多个主动开关阵列,其中所述主动开关阵列具有沟道区和源极及漏极区的有源层,与用来向沟道区提供信号的栅极。
请参照图3a,在流程S315中,将一钝化层形成于所述栅极覆盖层上,并覆盖所述源极和漏极区的源极及漏极。
请参照图3a,在流程S316中,将一外涂层形成于所述钝化层上。
请参照图3a,在流程S317中,将一阳极电极层形成于所述外涂层上,并分别连接所述源极和漏极区的源极及漏极与栅极。
请参照图3a,在流程S318中,将一堤岸层形成于所述外涂层上,并覆盖所述阳极电极层。
请参照图3a,在流程S319中,将一像素定义层形成于所述堤岸层上,并覆盖所述阳极电极层。
请参照图3a,在流程S320中,将一阴极电极层形成于所述像素定义层上。
请参照图2b,在本申请一实施例中,一种显示面板21的制造方法,包括:提供一第一基板200;将多条栅极线216形成于所述第一基板200上;将一栅极覆盖层218形成于所述第一基板200上,并覆盖该些栅极线216;将多条数据线215形成于所述栅极覆盖层218上,其中该些数据线215与该些栅极线216相交的部分形成多个主动开关阵列210,其中所述主动开关阵列210具有沟道区和源极214及漏极212区的有源层212、214,与用来向沟道区提供信号的栅极216;将一钝化层220形成于所述栅极覆盖层218上,并覆盖所述源极214和漏极212区的源极214及漏极212;将一外涂层230形成于所述钝化层220上;将一阳极电极层240、245形成于所述外涂层230上,并分别连接所述源极214和漏极212区的源极214及漏极212与栅极216;将一堤岸层250形成于所述外涂层230上,并覆盖所述阳极电极层240、245;将一有机发光二极管层265形成于所述堤岸层250上,并覆盖所述阳极电极层240;以及将一阴极电极层270形成于所述有机发光二极管层265上。
在一实施例中,所述制造方法,所述源极214及漏极212包括钛、钛合金、钽和钽合金中的至少一种。
在一实施例中,所述制造方法,所述有源层212、214包括多晶硅。
在一实施例中,所述制造方法,所述外涂层230包括一彩色滤光片235。
在一实施例中,所述制造方法,所述阳极电极层240、245为铟锡氧化物。
图3b为本申请另一实施例一种显示面板的制造方法流程图。请参照图3b,在流程S331中,提供一第一基板。
请参照图3b,在流程S332中,将多条栅极线形成于所述第一基板上。
请参照图3b,在流程S333中,将一栅极覆盖层形成于所述第一基板上,并覆盖该些栅极线。
请参照图3b,在流程S334中,将多条数据线形成于所述栅极覆盖层上,其中该些数据线与该些栅极线相交的部分形成多个主动开关阵列,其中所述主动开关阵列具有沟道区和源极及漏极区的有源层,与用来向沟道区提供信号的栅极。
请参照图3b,在流程S335中,将一钝化层形成于所述栅极覆盖层上,并覆盖所述源极和漏极区的源极及漏极。
请参照图3b,在流程S336中,将一外涂层形成于所述钝化层上,并覆盖一彩色滤光片。
请参照图3b,在流程S337中,将一阳极电极层形成于所述外涂层上,并分别连接所述源极和漏极区的源极及漏极与栅极。
请参照图3b,在流程S338中,将一堤岸层形成于所述外涂层上,并覆盖所述阳极电极层。
请参照图3b,在流程S339中,将一有机发光二极管层形成于所述堤岸层上,并覆盖所述阳极电极层。
请参照图3b,在流程S340中,将一阴极电极层形成于所述有机发光二极管层上。
在本申请一实施例中,一种显示装置,包括:一控制部件(举例:一多频段天线)(图未示),还包括所述的显示面板20、21(举例:QLED或OLED)。
本申请具有内嵌式的光传感器以提升显示设备的功能,且具有像素定义层,因而能提升显示色彩的画质,并具有集成光传感器设备以节省空间,进而降低制造成本。
“在一些实施例中”及“在各种实施例中”等用语被重复地使用。所述用语通常不是指相同的实施例;但它亦可以是指相同的实施例。“包含”、“具有”及“包括”等用词是同义词,除非其前后文意显示出其它意思。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等 同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (20)

  1. 一种显示面板,包括:
    一第一基板;
    多条栅极线,形成于所述第一基板上;
    一栅极覆盖层,形成于所述第一基板上,并覆盖该些栅极线;
    多条数据线,形成于所述栅极覆盖层上,其中该些数据线与该些栅极线相交的部分形成多个主动开关阵列,其中所述主动开关阵列具有沟道区和源极及漏极区的有源层,与用来向沟道区提供信号的栅极;
    一钝化层,形成于所述栅极覆盖层上,并覆盖所述源极和漏极区的源极及漏极;
    一外涂层,形成于所述钝化层上;
    一阳极电极层,形成于所述外涂层上,并分别连接所述源极和漏极区的源极及漏极与栅极;
    一堤岸层,形成于所述外涂层上,并覆盖所述阳极电极层;
    一像素定义层,形成于所述堤岸层上,并覆盖所述阳极电极层;以及
    一阴极电极层,形成于所述像素定义层上;
    其中,所述像素定义层包括有机发光二极管及一传感器,所述有机发光二极管及所述传感器阵列排列。
  2. 如权利要求1所述的显示面板,所述源极包括钛、钛合金、钽和钽合金中的至少一种。
  3. 如权利要求1所述的显示面板,所述漏极包括钛、钛合金、钽和钽合金中的至少一种。
  4. 如权利要求1所述的显示面板,所述有源层包括多晶硅。
  5. 如权利要求1所述的显示面板,所述外涂层包括一彩色滤光片。
  6. 如权利要求1所述的显示面板,其中,所述阳极电极层为铟锡氧化物。
  7. 一种显示面板的制造方法,包括:
    提供一第一基板;
    将多条栅极线形成于所述第一基板上;
    将一栅极覆盖层形成于所述第一基板上,并覆盖该些栅极线;
    将多条数据线形成于所述栅极覆盖层上,其中该些数据线与该些栅极线相交的部分形成多个主动开关阵列,其中所述主动开关阵列具有沟道区和源极及漏极区的有源层,与用来向沟道区提供信号的栅极;
    将一钝化层形成于所述栅极覆盖层上,并覆盖所述源极和漏极区的源极及漏极;
    将一外涂层形成于所述钝化层上;
    将一阳极电极层形成于所述外涂层上,并分别连接所述源极和漏极区的源极及漏极与栅极;
    将一堤岸层形成于所述外涂层上,并覆盖所述阳极电极层;
    将一像素定义层形成于所述堤岸层上,并覆盖所述阳极电极层;以及
    将一阴极电极层形成于所述像素定义层上。
  8. 如权利要求7所述的显示面板的制造方法,所述源极包括钛、钛合金、钽和钽合金中的至少一种。
  9. 如权利要求7所述的显示面板的制造方法,所述漏极包括钛、钛合金、钽和钽合金中的至少一种。
  10. 如权利要求7所述的显示面板的制造方法,所述有源层包括多晶硅。
  11. 如权利要求7所述的显示面板的制造方法,所述外涂层包括一彩色滤光片;
  12. 如权利要求7所述的显示面板的制造方法,其中,所述阳极电极层为铟锡氧化物。
  13. 如权利要求7所述的显示面板的制造方法,所述像素定义层包括有机发光二极管。
  14. 如权利要求13所述的显示面板的制造方法,所述像素定义层包括一传感器。
  15. 如权利要求14所述的显示面板的制造方法,其中,所述有机发光二极管及所述传感器阵列排列。
  16. 一种显示装置,包括:一控制部件,及
    一显示面板,包括:
    一第一基板;
    多条栅极线,形成于所述第一基板上;
    一栅极覆盖层,形成于所述第一基板上,并覆盖该些栅极线;
    多条数据线,形成于所述栅极覆盖层上,其中该些数据线与该些栅极线相交的部分形成多个主动开关阵列,其中所述主动开关阵列具有沟道区和源极及漏极区的有源层,与用来向沟道区提供信号的栅极;
    一钝化层,形成于所述栅极覆盖层上,并覆盖所述源极和漏极区的源极及漏极;
    一外涂层,形成于所述钝化层上;
    一阳极电极层,形成于所述外涂层上,并分别连接所述源极和漏极区的源极及漏极与栅极;
    一堤岸层,形成于所述外涂层上,并覆盖所述阳极电极层;
    一像素定义层,形成于所述堤岸层上,并覆盖所述阳极电极层;以及
    一阴极电极层,形成于所述像素定义层上;
    其中,所述像素定义层包括有机发光二极管及一传感器,所述有机发光二极管及所述传感器阵列排列。
  17. 如权利要求16所述的显示装置,所述源极及漏极包括钛、钛合金、钽和钽合金中的至少一种。
  18. 如权利要求16所述的显示装置,所述有源层包括多晶硅。
  19. 如权利要求16所述的显示装置,所述外涂层包括一彩色滤光片。
  20. 如权利要求16所述的显示装置,其中,所述阳极电极层为铟锡氧化物。
PCT/CN2017/107035 2017-08-28 2017-10-20 显示面板及其制造方法与显示装置 WO2019041483A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/740,728 US20190067388A1 (en) 2017-08-28 2017-10-20 Display panel and manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710750836.7 2017-08-28
CN201710750836.7A CN107591426A (zh) 2017-08-28 2017-08-28 显示面板及其制造方法与显示装置

Publications (1)

Publication Number Publication Date
WO2019041483A1 true WO2019041483A1 (zh) 2019-03-07

Family

ID=61042298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107035 WO2019041483A1 (zh) 2017-08-28 2017-10-20 显示面板及其制造方法与显示装置

Country Status (2)

Country Link
CN (1) CN107591426A (zh)
WO (1) WO2019041483A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607869A (zh) * 2003-10-13 2005-04-20 铼宝科技股份有限公司 有机电激发光元件及其制造方法
CN101635276A (zh) * 2009-08-26 2010-01-27 友达光电股份有限公司 有机发光二极管触控面板及其制作方法
CN106158909A (zh) * 2015-04-28 2016-11-23 上海和辉光电有限公司 一种显示器件结构及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607869A (zh) * 2003-10-13 2005-04-20 铼宝科技股份有限公司 有机电激发光元件及其制造方法
CN101635276A (zh) * 2009-08-26 2010-01-27 友达光电股份有限公司 有机发光二极管触控面板及其制作方法
CN106158909A (zh) * 2015-04-28 2016-11-23 上海和辉光电有限公司 一种显示器件结构及其制备方法

Also Published As

Publication number Publication date
CN107591426A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
US11024686B2 (en) OLED pixel structure and OLED display panel
WO2018054149A1 (zh) 有机发光二极管(oled)阵列基板及其制备方法、显示装置
US9748317B2 (en) Organic light emitting display device, organic light emitting display panel and method of manufacturing the same
US9543368B2 (en) OLED array substrate having black matrix, manufacturing method and display device thereof
KR101983888B1 (ko) 투명 oled 부품 및 그 부품을 적용한 디스플레이 장치
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
US20170200778A1 (en) Organic light emitting display device
WO2016150030A1 (zh) Oled基板及其制作方法、oled显示面板和电子设备
US20160163769A1 (en) Organic light emitting display device and method of manufacturing the same
US20150236082A1 (en) Dual-side display, device for controlling the dual-side display and method for manufacturing the same
US10614753B2 (en) Display panel and electronic device
WO2018227754A1 (zh) 透明oled显示面板及其制作方法
KR20050107840A (ko) 유기전계발광 소자 및 그 제조방법
TWI559526B (zh) 有機發光元件及像素陣列
WO2016095335A1 (zh) Oled显示装置及其制造方法
KR102542177B1 (ko) 유기 발광 표시 장치 및 이를 구비한 전자 기기
US11362152B2 (en) Array substrate, electroluminescent panel and display device
US20140326968A1 (en) In-cell oled touch display panel structure
KR102402173B1 (ko) 양방향 유기발광표시장치
TWI730542B (zh) 顯示裝置
WO2022160860A1 (zh) 显示基板及相关装置
WO2013123779A1 (zh) 多色oled、多色oled单元及显示器件
WO2019041482A1 (zh) 显示面板及其制造方法
JP2005019373A (ja) アクティブマトリックス有機発光ディスプレイ
US20210408436A1 (en) Display panel and method of manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923864

Country of ref document: EP

Kind code of ref document: A1