WO2013123779A1 - 多色oled、多色oled单元及显示器件 - Google Patents

多色oled、多色oled单元及显示器件 Download PDF

Info

Publication number
WO2013123779A1
WO2013123779A1 PCT/CN2012/083323 CN2012083323W WO2013123779A1 WO 2013123779 A1 WO2013123779 A1 WO 2013123779A1 CN 2012083323 W CN2012083323 W CN 2012083323W WO 2013123779 A1 WO2013123779 A1 WO 2013123779A1
Authority
WO
WIPO (PCT)
Prior art keywords
oled
layer
color
electrode
oleds
Prior art date
Application number
PCT/CN2012/083323
Other languages
English (en)
French (fr)
Inventor
杨栋芳
肖田
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2013123779A1 publication Critical patent/WO2013123779A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers

Definitions

  • Multi-color OLED multi-color OLED unit and display device
  • Embodiments of the present invention relate to a multi-color organic light emitting diode (OLED), a multi-color OLED unit, and a display device.
  • OLED organic light emitting diode
  • OLED unit a multi-color OLED unit
  • display device a display device.
  • CTR Cathode ray tubes
  • LCD Liquid Crystal Display
  • PDP Plasma Display Panel
  • FED Field Emission Display
  • OLED Organic Light-Emitting Diode, Organic Light Emitting Diode
  • LCD is currently the most popular flat panel display, since the LCD panel itself cannot emit light, it must be illuminated by a backlight to display the panel, so that it is in device thickness, viewing angle range, reaction speed, brightness, contrast, power consumption, etc. There are certain restrictions on the aspect, and no further improvement can be obtained.
  • OLED organic light-emitting diode
  • OLED organic light-emitting diode
  • An organic light-emitting diode (OLED) display made of an organic electroluminescent material has a self-luminous (no backlight), high contrast, thin thickness, wide viewing angle, fast response, and can be used for a flexible panel.
  • the wide temperature range, simple construction and simple process will become the mainstream technology for next-generation flat panel displays.
  • multiple colors (currently usually three main colors of red R, green 0, and blue B) must be provided at the same pixel position of the display, as is the case in LCD or OLED displays.
  • one pixel of an LCD or OLED display includes three sub-pixels of red, green and blue. The three sub-pixels are spatially arranged in parallel, and each sub-pixel forms a color of light and then combines.
  • it is necessary to reduce the size of the pixel but the method of reducing the pixel size is difficult and complicated.
  • the light at each pixel is made up of multiple different colors.
  • the OLEDs are separately produced and mixed.
  • To reduce the pixel size it is necessary to reduce the size of each sub-pixel OLED device. Since the highest precision of the mask for performing organic layer evaporation in the preparation of an OLED is limited by various factors, when the OLED device is fabricated in a conventional manner, when the resolution reaches a certain level, it is difficult to greatly improve. . At the same time, the more expensive the mask is, the more expensive it is, which is a huge expense for panel manufacturers.
  • Chinese Patent Publication No. CN1293425A discloses a 3-layer OLED pixel unit in which three OLEDs of different colors are stacked in one OLED unit, and a combined electrode of an ITO layer and a metal layer is interposed between each two OLEDs. separate.
  • This structure also allows a pixel to occupy only one OLED size to emit a 3-color combination, thereby reducing the pixel size.
  • this structure is to be vapor-deposited between two adjacent OLEDs (i.e., a metal layer is used to connect with an electron injection layer of one OLED, and an ITO layer is used to connect with a hole injection layer of another OLED).
  • embodiments of the present invention provide a multi-color OLED, a multi-color OLED unit and a display device, which are realized by a simple structure and a process.
  • the stacking of OLEDs allows for better performance without major improvements in existing processes.
  • an aspect of the present invention provides a multi-color OLED, the multi-color OLED Include at least two OLEDs stacked on each other and emitting different colors of light;
  • each OLED is sequentially composed of an anode, a first organic layer, an organic light-emitting layer, a second organic layer and a cathode
  • the first organic layer is composed of a hole injection layer, a hole transport layer and an electron blocking layer.
  • At least one layer is sequentially formed
  • the second organic layer is sequentially composed of at least one of a hole blocking layer, an electron transport layer, and an electron injection layer;
  • a common electrode layer is shared between each adjacent two OLEDs, and the common electrode layer acts as an anode or a cathode of one OLED in each adjacent two OLEDs and also serves as an anode or a cathode of another OLED.
  • P-type doping is performed on the first organic layer of each OLED, and N-type doping is performed on the second organic layer.
  • one OLED of each adjacent two OLEDs is inverted with respect to another OLED hierarchy, which simultaneously serves as a common anode or a common cathode of the adjacent two OLEDs.
  • the at least two OLEDs emitting different colors of light are any combination of at least two of a red OLED, a green OLED, and a blue OLED.
  • each of the multicolor OLED layers is a metal, an alloy, an oxide having a good electrical conductivity, or a single electrode layer formed by combining at least two of the above.
  • another aspect of the present invention provides a multicolor OLED unit comprising a substrate and a multicolor OLED as described above formed on one side of the substrate.
  • the substrate or a layer of the electrode adjacent to the substrate is made of a material having good reflectivity and being opaque, and the remaining layers of the electrode not adjacent to the substrate are transparent.
  • An electrode, the multi-color OLED unit constitutes a top emitting device.
  • the outermost electrode remote from the substrate is made of a material having good reflectivity and opaque light, and the substrate and the remaining layer electrodes are light transmissive layers,
  • the multi-color OLED unit constitutes a bottom emitting device.
  • each pixel of the display device being constituted by a multi-color OLED unit as described above.
  • Embodiments of the present invention are stacked by a plurality of OLEDs, and a multi-color OLED emitting different color lights in one unit can be obtained by using only one common electrode between two adjacent OLEDs, thereby reducing the number of process steps and eliminating the need for existing equipment. Changes can be made, equipment requirements are simple and the desired results are achieved.
  • FIG. 1 is a schematic view showing the structure of a multicolor OLED unit in the present invention. detailed description
  • An OLED display includes a plurality of gate lines and a plurality of data lines, the gate lines and the data lines crossing each other thereby defining pixel units arranged in a matrix, each of the pixel units including a thin film transistor and a light emitting as a switching element Device.
  • the gate of the thin film transistor of each pixel is electrically connected or integrally formed with the corresponding gate line
  • the source is electrically connected or integrally formed with the corresponding data line
  • the drain is electrically connected or integrally formed with the corresponding pixel electrode.
  • the following description is mainly made for a single or a plurality of pixel units, but other pixel units may be formed identically.
  • Embodiments of the present invention relate to multi-color OLEDs that emit polychromatic light at the same pixel location and devices thereof.
  • the unit includes an OLED that emits an active layer of two or more colors of light, and the adjacent two OLEDs are separated by a common electrode. This enables multiple color display of one pixel, greatly improving the resolution of the panel.
  • the anode needs to be HOMO (Highest Occupied Molecular Orbital, the highest occupied orbit, indicating the highest energy level of the occupied electrons) of the first organic layer on the hole injection/transport side.
  • the cathode needs to match the LUMO (Lower Unoccupied Molecular Orbital, the lowest unoccupied orbit, which represents the lowest energy level of the electron-free region) of the second organic layer on the electron injection/transport side. Therefore, two electrodes are generally used for stacking to match adjacent OLED devices, i.e., stacked in the form of a first organic layer/electrode 1 (anode) / electrode 2 (cathode) / second organic layer.
  • the anode of the conventional OLED device is a transparent oxide film (such as ITO or IZO)
  • sputtering the oxide layer on the already fabricated device also damages the organic layer which has been evaporated.
  • the P-type doping is performed on the first organic layer, and the N-type doping is performed on the second organic layer, thereby solving the problem of energy level matching between the organic layer and the electrode layer, so that each adjacent A stack of a plurality of OLEDs can be realized by sharing a common electrode layer between the two OLEDs.
  • the materials used for the electrodes are no longer limited to transparent oxide films, but metals, alloys or other conductive oxides may be used or doped. This reduces the matching requirements of the electrode and the organic layer, and also makes the material of the selected common electrode layer more extensive, and the process steps are simpler.
  • the second of the two adjacent OLED devices can also be designed.
  • the device structure is opposite to the previous device structure, which is often referred to as an inverted device.
  • the so-called inverted OLED device is a device having a reverse order of preparation from the previous device, that is, if the former device is first made of an anode, then an organic film is vapor-deposited, and finally a cathode is formed, the inverted device first forms a cathode, and then The organic film is vapor-deposited, and the anode is finally formed, so that the intermediate cathode layer can be shared and the preparation process of one cathode layer can be omitted when the stack is inverted.
  • a common electrode layer to be shared between two adjacent OLEDs, thereby achieving stacking of a plurality of OLEDs, thereby forming, for example, a first organic layer/common electrode layer (anode) / a first organic layer or a second organic layer /
  • the material as the electrode is no longer limited to the transparent oxide film, but a metal, an alloy or other conductive oxide may also be selected or doped.
  • the stacked structure formed by such an inverted device also reduces the number of process steps, and can be realized without changing the existing equipment, and the device requirements are simple.
  • This embodiment 1 is a preferred embodiment of the present invention for describing in detail a preferred structure of the multicolor OLED unit of the present invention.
  • the structure of the multi-color OLED unit of the first embodiment is as shown in FIG. 1, and includes a substrate 1, a first electrode 2, a first OLED 3, a second electrode 4, a second OLED 5, and a third electrode 6, which are composed of these components.
  • Top emitting device unit includes a substrate 1, a first electrode 2, a first OLED 3, a second electrode 4, a second OLED 5, and a third electrode 6, which are composed of these components.
  • the second electrode 4 is a cathode common to the first OLED 3 and the second OLED 5, and the first electrode 2 and the third electrode 6 are the anodes of the first OLED 3 and the second OLED 5, respectively.
  • the first electrode 2 is an anode having good reflectance and opaque, and may be a metal, an alloy, or a combination of a metal, an alloy, and an oxide having a good electrical conductivity.
  • Specific examples include Ag, Au, Pd, Pt, Ag: Au (i.e., an alloy of Ag and Au), Ag: Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au, Ag/Pd (ie, a stack of Ag and Pd), Ag/Pt, Ag/ITO, Ag/IZO, Al/Au, Al/Pd, Al/Pt, Al/ITO, Al/IZO, Ag: Pd/ITO, Ag: Pt/ITO, Al: Au/ITO, Al: Pd/ITO, Al: Pt/ITO, Ag: Au/ITO, Ag: Pd/IZO, Ag: Pt/IZO, Al: Au/IZO, Al: Pd/IZO, Al: Au/IZO, Al: Pd/
  • the second electrode 4 is a common transparent cathode and is a metal, an alloy, or an oxide having a good electrical conductivity, such as Al, Mg, Ca, Yb, Mg: Ag, Yb: Ag, or the like.
  • the electrode needs to have good conductivity, good transmittance, good chemical and morphological stability, work function matching with the second organic layer of the first OLED 3 and the second organic layer of the second OLED 5, preferably, the work The function is preferably less than 4.0 ev.
  • the third electrode 6 is a transparent anode and is a metal or an alloy such as Ag, Au, Pd, Pt, Ag: Au, Ag: Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au , Ag/Au, Ag/Pd, Ag/Pt, Al/Au, Al/Pd, Al/Pt, and the like.
  • the electrode needs to have good electrical conductivity, good transmittance, good chemical and morphological stability, and a work function matching the first organic layer of the second OLED 5.
  • the work function is preferably greater than 4.0 ev.
  • the first OLED 3 is a top emitting device.
  • the light emitted by the first OLED 3 can be emitted through the second electrode 4, the second OLED 5, and the third electrode 6, and the light emitted by the first OLED 3 toward the first electrode 2 can be reflected by the first electrode 2, and the reflected light passes through the first An OLED 3, a second electrode 4, a second OLED 5, and a third electrode 6 are emitted.
  • the second OLED 5 is an inverted OLED device.
  • the light emitted by the second OLED 5 can be emitted through the third electrode 6, and the light emitted by the second OLED 5 in the direction of the first electrode 2 can be completely reflected by the first electrode 2, and the reflected light passes through the first OLED 3 and the second electrode 4.
  • the second OLED 5 and the third electrode 6 are emitted.
  • the multicolor OLED unit can emit two different lights simultaneously.
  • This unit can also be extended to the N layer (N is a natural number greater than 1), the adjacent two OLED devices of the common electrode are non-inverted devices, one is an inverted device, and all cells can emit different colors of light. .
  • the multi-color OLED unit of the second embodiment also constitutes a top-emitting device unit, and its structure is basically the same as that of the embodiment 1, as shown in FIG. The difference is that in the second embodiment, the first OLED 3 is an inverted OLED device, and the second OLED 5 is an ordinary top emitting device.
  • the first OLED 3 is an inverted OLED device
  • the second OLED 5 is an ordinary top emitting device.
  • the second electrode 4 is a common anode
  • the first electrode 2 and the third electrode 6 are the cathodes of the first OLED 3 and the second OLED 5, respectively.
  • the first electrode 2 is a cathode having good reflectivity and opaque light, and is a combination of a metal, an alloy or a metal, an alloy and an oxide having a good electrical conductivity, for example: Al, Ag: Al, Ag: Mg, Ag/AK Ag/Mg, ITO/AK ITO/Ag: Al, ITO/Ag: Mg, ITO/Ag/AK ITO/Ag/Mg, and the like.
  • the electrode needs to have good electrical conductivity, good reflectivity, good chemical and morphological stability, and a work function matching the second organic layer of the first OLED 3.
  • the work function is preferably less than 4.0 ev.
  • the second electrode 4 is a transparent anode, which is a metal, an alloy, or an oxide having a good electrical conductivity, or a combination of a metal and an oxide having a good electrical conductivity, such as Ag, Au, Pd, Pt, Ag: Au, Ag. : Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au, and the like.
  • the electrode needs to have good electrical conductivity, good transmittance, good chemical and morphological stability, and a work function matching the first organic layer of the first OLED 3 and the first organic layer of the second OLED 5.
  • the work function is preferably greater than 4.0e).
  • the third electrode 6 is a transparent cathode and is a metal or an alloy such as Al, Mg, Ca,
  • the electrode needs to have good electrical conductivity, good transmittance, good chemical and morphological stability, and a work function matching the second organic layer of the second OLED 5.
  • the work function is preferably less than 4.0 ev.
  • the structure of the multi-color OLED unit in the third embodiment is also as shown in FIG. 1, except that it changes the two schemes of Embodiment 1 and Embodiment 2 into a bottom-emitting device unit, that is, a transparent substrate is required. 1 and the first electrode 2 connected to the substrate 1 also needs to be transparent, while the third electrode 6 needs to be formed as an electrode having good reflectivity.
  • the first electrode 2 when it is an anode, it needs to be a transparent anode, and may be a metal, an alloy, an oxide having a good electrical conductivity, or a combination of a metal, an alloy, and an oxide having a good electrical conductivity, for example: Ag, Au, Pd, Pt, ITO, IZO, Ag: Au, Ag: Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au, Ag/Pd, Ag/Pt, Ag/ITO, Ag/IZO, Al/Au, Al/Pd, Al/Pt, Al/ITO, Al/IZO, Ag: Pd/ITO, Ag: Pt/ITO, Al: Au/ITO, Al: Pd/ITO, Al: Pt/ITO, Ag: Au/ITO, Ag: Pd/IZO, Ag: Pt/IZO, Al: Au/IZO, Al: Pd/IZO, Al: Au/IZO, Al: Pd/IZO
  • the third electrode 6 needs to be an anode having good reflectivity and opacity, and may be a metal or an alloy, for example: Ag, Au, Pd, Pt, Ag: Au, Ag: Pd, Ag: Pt, Al: Au , Al: Pd, Al: Pt, Ag: Au, Au/Ag, Pd/Ag, Pt/Ag, and the like.
  • This electrode requires good electrical conductivity, good reflectivity, good chemical and morphological stability, and a work function that matches the first organic layer of the second OLED 5.
  • the work function is preferably greater than 4.0 ev.
  • the first electrode 2 When the first electrode 2 is a cathode, it needs to be a transparent cathode, which may be a metal, an alloy, an oxide having a good electrical conductivity, or a combination of a metal, an alloy and an oxide having a good electrical conductivity, such as Al, Mg, Ca.
  • a transparent cathode which may be a metal, an alloy, an oxide having a good electrical conductivity, or a combination of a metal, an alloy and an oxide having a good electrical conductivity, such as Al, Mg, Ca.
  • Li, Yb, ITO, IZO, Mg Ag, Yb: Ag, Ag/Mg, Ag/Yb, Ag/Li, Ag/AK Ca/Ag, ITO/AK ITO/Ca, ITO/Li, ITO/Yb ITO/Mg, ITO/Mg: Ag, ITO/Yb: Ag, IZO/AK IZO/Ca, IZO/Li, IZO/Yb, IZO/Mg, IZO/Mg: Ag, IZO/Yb: Ag, and the like.
  • the electrode needs to have good electrical conductivity, good transmittance, good chemical and morphological stability, and a work function matching the second organic layer of the first OLED 3.
  • the work function is preferably less than 4.0 ev.
  • the third electrode 6 needs to be a cathode having good reflectance and opaque light, and is a metal or an alloy such as Al, Ag, Mg, Al: Ag, Mg: Ag, Al/Ag, Mg/Ag or the like.
  • the electrode needs to have good electrical conductivity, good reflectivity, good chemical and morphological stability, and a work function matching the second organic layer of the second OLED 5.
  • the work function is preferably less than 4.0 ev.
  • the structure of the multi-color OLED unit in the fourth embodiment is also shown in FIG. 1 , except that the first organic layer in the first OLED 3 and the second OLED 5 that is in contact with the anode is also P-type in the fourth embodiment. Doping, N-type doping of the second organic layer in contact with the cathode, and the matching of the organic layer to the electrode after the above treatment is required to be reduced.
  • the second OLED 5 The first OLED 3 may be of an inverted type, or may be directly stacked without using the same hierarchical structure instead of the inverted type. Since the scheme of direct stacking is relatively simple, the inversion type is still taken as an example in the fourth embodiment.
  • the second electrode 4 is a cathode common to the first OLED 3 and the second OLED 5.
  • the first electrode 2 and the third electrode 6 are the anodes of the first OLED 3 and the second OLED 5, respectively;
  • the first electrode 2 is an anode having good reflectivity and opaque light, and is a combination of a metal, an alloy, or an oxide of a metal or an alloy and a good conductive function, for example: Ag, Au, Pd, Pt, Al, Mg, Li, Ca, Yb, Ag: Au, Ag: Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au, Mg: Ag, Ag/Pd, Ag/Pt, Ag/ITO, Ag/IZO, Al/Au, Al/Pd, Al/Pt, Al/ITO, Al/IZO, Ag: Pd/ITO, Ag: Pt/ITO, Al: Au/ITO, Al: Pd/ITO, Al: Pt/ITO, Ag: Au/ITO, Ag: Pd/IZO, Al: Au/IZO, Al: Pd/IZO, Al: Au/IZO, Al: Pd/IZO, Al: Au/IZO, Al: Pd/IZO
  • the second electrode 4 and the third electrode 6 are transparent electrodes and are metal or alloy, for example: Ag, Au, Pd, Pt, Al, Mg, Li, Ca, Yb, Ag: Au, Ag: Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au, Mg: Ag, Ag/Pd, Ag/Pt, and the like.
  • the electrode needs to have good electrical conductivity, good transmittance, good chemical and physical stability, but does not require a work function to match the organic layer of the first OLED 3 and/or the second OLED 5 .
  • the structure of the multi-color OLED unit in the embodiment 5 is also as shown in FIG. 1. Compared with the embodiment 4, the difference is only that the first electrode 2 and the third electrode 6 are the cathodes of the first OLED 3 and the second OLED 5, respectively. , the second electrode 4 is a common anode
  • the first electrode 2 is a cathode having good reflectance and opaque, and is a combination of a metal, an alloy, or a metal and an oxide having a good electrical conductivity. This electrode needs to have good electrical conductivity, good reflectivity, good chemical and physical stability, but does not require a work function. No matching with the organic layer of the first OLED 3.
  • the second electrode 4 is a common transparent anode which is a metal or an alloy.
  • the electrode needs to have good electrical conductivity, good transmittance, good chemical and physical stability, but does not require whether the work function matches the organic layers of the first OLED 3 and the second OLED 5.
  • the third electrode 6 is a cathode which is opaque and has a good reflection function and is a metal or an alloy.
  • the electrode needs to have good electrical conductivity, good transmittance, good chemical and morphological stability, but does not require a work function to match the organic layer of the second OLED 5.
  • top-emitting device unit in the embodiment 4 and the embodiment 5 can also be modified into a bottom-emitting device unit, and the modification is similar to that of the embodiment 3, and details are not described herein again.
  • the multi-color OLED in the embodiment of the present invention is stacked and/or used in different doping forms by the inverted OLED to reduce the matching requirement of the organic layer to the electrode, so that only one common electrode can be used between the adjacent two OLEDs.
  • the resulting multi-color OLED unit can greatly reduce the size of the display pixel and obtain a better display effect and an ideal device thickness, while reducing the number of process steps, without Changes can be made to existing equipment, and equipment requirements are simple.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种多色有机发光二极管(OLED)、多色OLED单元及显示器件。多个OLED进行堆叠,并且相邻的两个OLED间存在一层公共电极(4),从而可获得在一个发光单元中发出不同颜色光的多色OLED。由此,得到的多色OLED单元可大大缩小显示器的像素点大小并获得较佳的显示效果,同时减少了工艺步骤,并且不需要对现有设备进行改变就可实现,设备要求简单。

Description

多色 OLED、 多色 OLED单元及显示器件 技术领域
本发明的实施例涉及一种多色有机发光二极管(OLED)、 多色 OLED单元及显示器件。 背景技术
传统的 CRT ( Cathode ray tubes, 阴极射线管 )显示器因其产品在 厚度、 重量、 辐射及功耗等方面存在的严重不足, 已逐渐被各种平板 显示器所替代。 己知的平板显示技术包括 LED ( Light Emitting Diode, 发光二极管)、 LCD ( Liquid Crystal Display,液晶显示)、 PDP ( Plasma Display Panel, 等离子显示)、 FED ( Field Emission Display, 场发射 显示)、 OLED ( Organic Light-Emitting Diode, 有机发光二极管)等。
虽然目前 LCD是最主流的平板显示器,然而由于 LCD面板本身不 能发光, 而必须釆用背光源对面板进行照射来显示, 因而其在器件厚 度、 视角范围、 反应速度、 亮度、 对比度以及功耗等方面均存在一定 限制, 无法获得更进一步的提升。
利用有机电致发光材料制成的有机发光二极管( OLED )显示器, 由于同时具备自发光(不需背光源)、 对比度高、 厚度薄、 视角广、 反应速度快、 可用于挠曲性面板、 使用温度范围广、 构造及制程简单 等特点, 将可能成为下一代平板显示器的主流技术。
要实现彩色显示,在显示器的同一像素位置上必须要能够同时提 供多种颜色 (目前通常是红 R、 绿0、 蓝 B三种主要颜色)进行组合, 在 LCD或 OLED显示器中即是如此。 一般来说, LCD或 OLED显示器 中一个像素点包含红绿蓝三个子像素,这三个子像素在空间上是并行 排列的, 各个子像素分别形成一种颜色的光再进行组合。要想获得高 分辨率的面板, 就需要缩小像素点的尺寸, 但缩小像素点尺寸的方法 比较困难, 工艺复杂。
对于彩色 OLED显示器来说, 每个像素点的光是由多个不同颜色 的 OLED分别产生并混合得到的。 要缩小像素点尺寸, 就需要缩小各 子像素 OLED器件的大小。 由于制备 OLED时进行有机层蒸镀的精细 掩膜(Mask )的最高精度受各种因素限制,因此以传统方式制作 OLED 器件时, 当解析度达到一定程度后, 很难再有大幅度的提高。 同时越 精细的 mask价格越贵, 对面板生产厂家来说也是一笔巨大的支出。
为此, 现有技术中出现了一种将多个不同颜色 OLED器件 (一般 为 RGB三种颜色)重叠在一起, 以期使一个像素点只占用一个 OLED 的大小。 在这种方式下, 多个重叠的 OLED便存在 2倍数目的电极(例 如三种颜色, 就需要有 6个电极)。 因为这些电极并不是完全透明的, 所以很多光被多个电极吸收, 由此光的输出变差, 显示亮度和对比度 相对较低。 而且, 所有器件的阳极为 ITO, 工艺复杂, 溅射 ITO时容 易损伤已经蒸镀好的 OLED器件。
此外, 中国专利公开文献 CN1293425A中公开了一种 3叠层 OLED 像素单元, 在一个 OLED单元中叠放了 3个不同颜色的 OLED, 每两个 OLED间由一个 ITO层与金属层组合的组合电极分开。 这种结构也可 以使一个像素点只占用一个 OLED的大小即可发出 3色光组合,因而缩 小了像素点大小。 但是, 这种结构在相邻的两个 OLED之间要蒸镀两 匹配(即使用金属层来与一个 OLED的电子注入层连接, 而使用 ITO 层与另一个 OLED的空穴注入层连接)。这样就增加了工艺的步骤, 而 且在有机层上溅射 ITO层容易影响有机层器件性能, 对设备的要求也 更高, 同时对光输出效果及厚度的改进也并未提高很多。 发明内容
为了解决现有技术中多色 OLED结构和工艺复杂、 性能不佳的问 题, 本发明的实施例提供了一种多色 OLED、 多色 OLED单元及显示 器件, 通过简单的结构和工艺实现多个 OLED的堆叠, 无需对现有工 艺做大的改进即可获得较佳的性能。
首先, 本发明的一个方面提供一种多色 OLED, 所述多色 OLED 包括至少两个彼此堆叠且发不同颜色光的 OLED;
其中, 每个 OLED的层次结构依次由阳极、 第一有机层、 有机发 光层、 第二有机层和阴极构成, 所述第一有机层由空穴注入层、 空穴 传输层和电子阻挡层中至少一层依序构成,所述第二有机层由空穴阻 挡层、 电子传输层、 电子注入层中至少一层依序构成;
并且, 每相邻两个 OLED间共用一层公共电极层, 所述公共电极 层作为每相邻两个 OLED中一个 OLED的阳极或阴极的同时也作为另 一个 OLED的阳极或阴极。
在该多色 OLED中, 优选地, 在每个 OLED的第一有机层进行 P型 掺杂、 第二有机层进行 N型掺杂。
在该多色 OLED中, 优选地, 每相邻两个 OLED中有一个 OLED相 对于另一个 OLED层次结构倒置, 所述公共电极层同时作为所述相邻 两个 OLED的公共阳极或公共阴极。
在该多色 OLED中,优选地,所述至少两个发不同颜色光的 OLED 是红色 OLED、 绿色 OLED和蓝色 OLED中至少两个的任意组合。
在该多色 OLED中, 优选地, 所述多色 OLED中的每一电极层为 金属、合金、有良好导电功能的氧化物或者上述几种中至少两种的组 合一次形成的单一电极层。
更进一步地,本发明的另一个方面还提供了一种多色 OLED单元, 所述多色 OLED单元由衬底和在所述衬底一侧形成的如上所述的多色 OLED构成。
在该多色 OLED单元中, 优选地, 所述衬底或贴近衬底的一层电 极由有良好反射率且不透光的材料构成,不与所述衬底贴近的其余各 层电极为透明电极, 所述多色 OLED单元构成顶发射器件。
在该多色 OLED单元中, 优选地, 远离所述衬底的最外层电极由 有良好反射率且不透光的材料构成,所述衬底及其余各层电极为透光 层, 所述多色 OLED单元构成底发射器件。
最后, 本发明的再一个方面还提供了一种显示器件, 所述显示器 件的每一像素点由一个如上所述的多色 OLED单元构成。 本发明的实施例通过多个 OLED进行堆叠, 相邻两 OLED间只利 用一层公共电极即可获得在一个单元中发出不同颜色光的多色 OLED, 减少了工艺步骤, 不需要对现有设备进行改变就可以实现, 设备要求简单并能获得理想的效果。 附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本发明 的一些实施例, 而非对本发明的限制。
图 1为本发明中多色 OLED单元的结构示意图。 具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结 合本发明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整 地描述。 显然, 所描述的实施例是本发明的一部分实施例, 而不是全 部的实施例。基于所描述的本发明的实施例, 本领域普通技术人员在 无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保 护的范围。
本发明实施例的 OLED显示器包括多条栅线和多条数据线, 这些 栅线和数据线彼此交叉由此限定了排列为矩阵的像素单元,每个像素 单元包括作为开关元件的薄膜晶体管和发光器件。 例如, 每个像素的 薄膜晶体管的栅极与相应的栅线电连接或一体形成,源极与相应的数 据线电连接或一体形成, 漏极与相应的像素电极电连接或一体形成。 下面的描述主要针对单个或多个像素单元进行,但是其他像素单元可 以相同地形成。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明 所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请 说明书以及权利要求书中使用的 "第一"、 "第二" 以及类似的词语并 不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。 同样, "一个" 或者 "一" 等类似词语也不表示数量限制, 而是表示 存在至少一个。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间 接的。 "上"、 "下"、 "左"、 "右" 等仅用于表示相对位置关系, 当被 描述对象的绝对位置改变后, 则该相对位置关系也相应地改变。
本发明的实施例涉及同一像素位置上发出多色光的多色 OLED及 其器件。 通过在一个像素内设置一个多色 OLED单元, 此单元包括发 两种或两种以上颜色光的有源层的 OLED, 相邻的两个 OLED之间由 一层公用电极分开。 这可以实现一个像素点的多种颜色显示, 大大地 提高了面板的分辨率。
普通 OLED器件对电极的功函数要求比较高, 阳极需要与空穴注 入 /传输侧的第一有机层的 HOMO ( Highest Occupied Molecular Orbital,最高已占轨道,表示已占有电子的能级最高的轨道)相匹配, 阴极需要与电子注入 /传输侧第二有机层的 LUMO ( Lower Unoccupied Molecular Orbital, 最低未占轨道, 表示未占有电子的能级最低的轨 道)相匹配。所以,堆叠时一般需使用两个电极来分别与相邻的 OLED 器件匹配, 即以第一有机层 /电极 1 (阳极) /电极 2 (阴极) /第二有机 层的形式堆叠。 这样一来, 对工艺与设备的要求变得更高了。 同时, 由于普通 OLED器件的阳极均为透明氧化物薄膜(如 ITO或 IZO等 ), 在已经制作好的器件上溅射氧化物层, 还会损伤已经蒸镀好的有机 层。
而本发明的实施例中只需要在第一有机层进行 P型掺杂, 在第二 有机层进行 N型掺杂, 解决了有机层与电极层之间的能级匹配问题, 使得每相邻两个 OLED间可共用一层公共电极层即实现多个 OLED的 堆叠。 此外, 用于电极(尤其是阳极)的材料也不再局限于透明氧化 物薄膜, 而可以选用或掺杂金属、 合金或其他导电氧化物。 这样就降 低了电极与有机层的匹配要求,也使得选取的公共电极层的材料更加 广泛, 而且工艺步骤更简单。
或者, 本发明的实施例中还可以设计相邻两个 OLED器件中第二 个器件结构与前一个器件结构相反, 也就是常说的倒置型器件。 该所 谓倒置型 OLED器件,就是与前一个器件的层次制备顺序相反的器件, 即, 若前一个器件先制作阳极、 再蒸镀有机薄膜、 最后制作阴极, 则 倒置型器件就先制作阴极, 再蒸镀有机薄膜、 最后制作阳极, 这样在 倒置堆叠时即可共用中间的阴极层并省掉一个阴极层的制备过程。这 样使得相邻两个 OLED之间共用一层公共电极层, 由此实现多个 OLED的堆叠, 从而形成如第一有机层 /公共电极层 (阳极) /第一有 机层或第二有机层 /公共电极层 (阴极) /第二有机层的结构。 此时, 作为电极(尤其是阳极)的材料也不再局限于透明氧化物薄膜, 而同 样可以选用或掺杂金属、合金或其他导电氧化物。 这种倒置型器件形 成的堆叠结构, 也减少了工艺步骤, 且不需要对现有设备进行改变就 可以实现, 设备要求简单。
下面结合具体的实施例更进一步地说明本发明实施例的多色 OLED及其器件。
实施例 1
本实施例 1为本发明的一个优选实施例, 用于详细介绍本发明中 的多色 OLED单元的一种优选结构。
本实施例 1的多色 OLED单元的结构如图 1所示, 包括衬底 1、第一 电极 2、 第一 OLED3、 第二电极 4、 第二 OLED5、 第三电极 6, 由这些 部件构成了顶发射器件单元。
第二电极 4为第一 OLED3与第二 OLED5公用的阴极, 第一电极 2、 第三电极 6则分别为第一 OLED3与第二 OLED5的阳极。
第一电极 2为有良好反射率且不透光的阳极, 可以为金属、合金、 或者金属、 合金与有良好导电功能的氧化物的组合。 具体示例包括 Ag、 Au、 Pd、 Pt、 Ag: Au (即 Ag和 Au的合金)、 Ag: Pd、 Ag: Pt、 Al: Au、 Al: Pd、 Al: Pt、 Ag: Au、 Ag/Pd (即 Ag和 Pd的叠层)、 Ag/Pt、 Ag/ITO、 Ag/IZO, Al/Au、 Al/Pd、 Al/Pt、 Al/ITO、 Al/IZO, Ag: Pd/ITO、 Ag: Pt/ITO、 Al: Au/ITO、 Al: Pd/ITO、 Al: Pt/ITO、 Ag: Au/ITO、 Ag: Pd/IZO, Ag: Pt/IZO, Al: Au/IZO, Al: Pd/IZO, Al: Pt/IZO, Ag: Au/IZO等。 此电极需要有良好的导电性、 良好的反射率、 良好 的化学及形态的稳定性、功函数与第一 OLED3的第一有机层匹配。优 选地, 功函数最好大于 4.0电子伏特(ev )。
第二电极 4为公用的透明的阴极, 为金属、 合金、 或者有良好导 电功能的氧化物, 例如: Al、 Mg、 Ca、 Yb、 Mg:Ag、 Yb:Ag等。 此 电极需要有良好的导电性、 良好的透过率、 良好的化学及形态的稳定 性、 功函数与第一 OLED3的第二有机层及第二 OLED5的第二有机层 匹配, 优选地, 功函数最好小于 4.0ev。
第三电极 6为透明的阳极, 为金属或者合金, 例如 Ag、 Au、 Pd、 Pt、 Ag: Au、 Ag: Pd、 Ag: Pt、 Al: Au、 Al: Pd、 Al: Pt、 Ag: Au、 Ag/Au、 Ag/Pd、 Ag/Pt、 Al/Au、 Al/Pd、 Al/Pt等。 此电极需要有良好 的导电性、 良好的透过率、 良好的化学及形态的稳定性、 功函数与第 二 OLED5的第一有机层匹配。 优选地, 功函数最好大于 4.0ev。
第一 OLED3为顶发射器件。 第一 OLED3所发出的光可以透过第 二电极 4、 第二 OLED5、 第三电极 6射出, 同时第一 OLED3向第一电 极 2方向发出的光可以被第一电极 2反射,反射光通过第一 OLED3、第 二电极 4、 第二 OLED5、 第三电极 6射出。
第二 OLED5为倒置型的 OLED器件。第二 OLED5所发出的光可以 透过第三电极 6射出,同时第二 OLED5向第一电极 2方向发出的光可以 被第一电极 2完全反射, 反射光通过第一 OLED3、 第二电极 4、 第二 OLED5、 第三电极 6射出。
在本实施例 1中, 多色 OLED单元能同时发出两种不同的光。此单 元还可以扩展到 N层 (N为大于 1的自然数), 公用电极的相邻两个 OLED器件一个是非倒置型器件, 一个是倒置型器件就可以, 而且所 有单元能发发射不同颜色的光。
实施例 2
本实施例 2中多色 OLED单元也构成顶发射器件单元,其结构与实 施例 1基本相同, 也如图 1所示。 不同之处在于, 在本实施例 2中第一 OLED3为倒置型的 OLED器件、 第二 OLED5为普通的顶发射器件。 因 而第二电极 4为公用的阳极,第一电极 2、第三电极 6分别为第一 OLED3 和第二 OLED5的阴极。
第一电极 2为有良好反射率且不透光的阴极, 为金属、 合金或者 金属、 合金与有良好导电功能的氧化物的组合, 例如: Al、 Ag: Al、 Ag: Mg、 Ag/AK Ag/Mg、 ITO/AK ITO/Ag: Al、 ITO/Ag: Mg、 ITO/Ag/AK ITO/Ag/Mg等。 此电极需要有良好的导电性、 良好的反射率、 良好的 化学及形态的稳定性、功函数与第一 OLED3的第二有机层匹配。优选 地, 功函数最好小于 4.0ev。
第二电极 4为透明的阳极, 为金属、 合金、 或者有良好导电功能 的氧化物, 或者金属与有良好导电功能的氧化物的组合, 例如 Ag、 Au、 Pd、 Pt、 Ag: Au、 Ag: Pd、 Ag: Pt、 Al: Au、 Al: Pd、 Al: Pt、 Ag: Au等。 此电极需要有良好的导电性、 良好的透射率、 良好 的化学及形态的稳定性、 功函数与第一 OLED3的第一有机层及第二 OLED5的第一有机层匹配。 优选地, 功函数最好大于 4.0e )。
第三电极 6为透明的阴极, 为金属或者合金, 例如 Al、 Mg、 Ca、
Li、 Yb、 Mg:Ag、 Yb:Ag、 Mg/Ag、 Yb/Ag、 Li/Ag、 Al/Ag、 Ca/Ag等。 此电极需要有良好的导电性、 良好的透射率、 良好的化学及形态的稳 定性、 功函数与第二 OLED5的第二有机层匹配。优选地, 功函数最好 小于 4.0ev。
实施例 3
本实施例 3中多色 OLED单元的结构也如图 1所示,不同之处在于, 其将实施例 1和实施例 2的两种方案改成了底发射器件单元,即需要透 明的衬底 1以及与衬底 1相连的第一电极 2也需要是透明的, 同时第三 电极 6需要做成有良好反射率的电极。
具体地, 当第一电极 2为阳极时, 需要为透明阳极, 可以为金属、 合金、 有良好导电功能的氧化物、 或者金属、 合金与有良好导电功能 的氧化物的组合, 例如: Ag、 Au、 Pd、 Pt、 ITO、 IZO、 Ag: Au、 Ag: Pd、 Ag: Pt、 Al: Au、 Al: Pd、 Al: Pt、 Ag: Au、 Ag/Pd、 Ag/Pt、 Ag/ITO、 Ag/IZO, Al/Au、 Al/Pd、 Al/Pt、 Al/ITO、 Al/IZO、 Ag: Pd/ITO、 Ag: Pt/ITO、 Al: Au/ITO、 Al: Pd/ITO、 Al: Pt/ITO、 Ag: Au/ITO、 Ag: Pd/IZO, Ag: Pt/IZO, Al: Au/IZO、 Al: Pd/IZO, Al: Pt/IZO, Ag: Au/IZO等。 此电极需要有良好的导电性、 良好的透射率、 良好 的化学及形态的稳定性、功函数与第一 OLED3的第一有机层匹配。优 选地, 功函数最好大于 4.0ev。
此时第三电极 6需要为有良好反射率且不透光的阳极, 可以为金 属或者合金, 例如: Ag、 Au、 Pd、 Pt、 Ag: Au、 Ag: Pd、 Ag: Pt、 Al: Au、 Al: Pd、 Al: Pt、 Ag: Au、 Au/Ag、 Pd/Ag、 Pt/Ag等。 此电 极需要有良好的导电性、良好的反射率、良好的化学及形态的稳定性、 功函数与第二 OLED5的第一有机层匹配。 优选地, 功函数最好大于 4.0ev。
当第一电极 2为阴极时, 需要为透明的阴极, 可以为金属、 合金、 有良好导电功能的氧化物、 或者金属、合金与有良好导电功能的氧化 物的组合, 例如 Al、 Mg、 Ca、 Li、 Yb、 ITO、 IZO、 Mg:Ag、 Yb:Ag、 Ag/Mg、 Ag/Yb、 Ag/Li、 Ag/AK Ca/Ag、 ITO/AK ITO/Ca, ITO/Li、 ITO/Yb、 ITO/Mg, ITO/Mg:Ag、 ITO/Yb:Ag、 IZO/AK IZO/Ca, IZO/Li、 IZO/Yb、 IZO/Mg, IZO/Mg:Ag、 IZO/Yb:Ag等。 此电极需要有良好的 导电性、 良好的透射率、 良好的化学及形态的稳定性、 功函数与第一 OLED3的第二有机层匹配。 优选地, 功函数最好小于 4.0ev。
此时第三电极 6需要为有良好反射率且不透光的阴极, 为金属或 者合金, 例如: Al、 Ag、 Mg、 Al:Ag、 Mg:Ag、 Al/Ag、 Mg/Ag等。 此电极需要有良好的导电性、 良好的反射率、 良好的化学及形态的稳 定性、 功函数与第二 OLED5的第二有机层匹配。优选地, 功函数最好 小于 4.0ev。
实施例 4
本实施例 4中多色 OLED单元的结构也如图 1所示,不同之处在于, 本实施例 4中还对第一 OLED3及第二 OLED5中与阳极相接触的第一 有机层进行 P型掺杂, 对与阴极相接触的第二有机层进行 N型掺杂, 进行上述处理后的有机层对电极的匹配要求降低。此时,第二 OLED5 相对于第一 OLED3可以为倒置型,也可以不为倒置型而釆用相同的层 次结构直接堆叠。 因直接堆叠的方案相对简单, 本实施例 4中仍以倒 置型为例进行说明。
本实施例 4中, 第二电极 4为第一 OLED3与第二 OLED5公用的阴 极, 第一电极 2、 第三电极 6分别为第一 OLED3与第二 OLED5的阳极; 共同构成顶发射器件单元。
第一电极 2为有良好反射率且不透光的阳极, 为金属、 合金、 或 者金属、 合金与有良好导电功能的氧化物的组合, 例如: Ag、 Au、 Pd、 Pt、 Al、 Mg、 Li、 Ca、 Yb、 Ag: Au、 Ag: Pd、 Ag: Pt、 Al: Au、 Al: Pd、 Al: Pt、 Ag: Au、 Mg: Ag、 Ag/Pd、 Ag/Pt、 Ag/ITO、 Ag/IZO, Al/Au、 Al/Pd、 Al/Pt、 Al/ITO、 Al/IZO, Ag: Pd/ITO、 Ag: Pt/ITO、 Al: Au/ITO、 Al: Pd/ITO、 Al: Pt/ITO、 Ag: Au/ITO、 Ag: Pd/IZO, Ag: Pt/IZO, Al: Au/IZO, Al: Pd/IZO, Al: Pt/IZO, Ag: Au/IZO等金属均可。 此电极需要有良好的导电性、 良好的反射率、 良 好的化学及形态的稳定性,但不要求功函数是否与第一 OLED3的有机 层匹配。
而第二电极 4、第三电极 6为透明的电极,为金属或者合金,例如: Ag、 Au、 Pd、 Pt、 Al、 Mg、 Li、 Ca、 Yb、 Ag: Au、 Ag: Pd、 Ag: Pt、 Al: Au、 Al: Pd、 Al: Pt、 Ag: Au、 Mg: Ag、 Ag/Pd、 Ag/Pt 等。 此电极需要有良好的导电性、 良好的透过率、 良好的化学及形态 的稳定性, 但不要求功函数是否与第一 OLED3和 /或第二 OLED5的有 机层匹配。
实施例 5
本实施例 5中多色 OLED单元的结构也如图 1所示, 相对于实施例 4, 其不同之处仅在于第一电极 2、 第三电极 6分别为第一 OLED3与第 二 OLED5的阴极, 第二电极 4为公用阳极
第一电极 2为有良好反射率且不透光的阴极, 为金属、 合金、 或 者金属与有良好导电功能的氧化物的组合。此电极需要有良好的导电 性、 良好的反射率、 良好的化学及形态的稳定性, 但不要求功函数是 否与第一 OLED3的有机层匹配。
第二电极 4为公用的透明的阳极, 为金属或者合金。 此电极需要 有良好的导电性、 良好的透射率、 良好的化学及形态的稳定性、 但不 要求功函数是否与第一 OLED3、 第二 OLED5的有机层匹配。
第三电极 6为不透明且有很好反射功能的阴极,为金属或者合金。 此电极需要有良好的导电性、 良好的透射率、 良好的化学及形态的稳 定性、 但不要求功函数是否与第二 OLED5的有机层匹配。
实施例 6
进一步地,实施例 4及实施例 5中的顶发射器件单元也可以改成底 发射器件单元, 改进方式与实施例 3相类似, 在此不再赘述。
本发明实施例中的多色 OLED通过倒置的 OLED进行堆叠和 /或釆 用不同的掺杂形式以降低有机层对电极的匹配要求,从而使得相邻两 OLED间只利用一层公共电极即可获得在一个单元中发出不同颜色光 的多色 OLED, 由此得到的多色 OLED单元可大大缩小显示器像素点 大小并获得较佳地显示效果和理想的器件厚度, 同时减少了工艺步 骤, 不需要对现有设备进行改变就可以实现, 设备要求简单。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的 保护范围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种多色有机发光二极管( OLED ), 包括至少两个彼此堆叠且发不同 颜色光的 OLED;
其中, 每个 OLED的层次结构依次由阳极、 第一有机层、 有机发光层、 第 二有机层和阴极构成, 所述第一有机层由空穴注入层、 空穴传输层和电子阻 挡层中至少一层依序构成, 所述第二有机层由空穴阻挡层、 电子传输层、 电 子注入层中至少一层依序构成;
并且,每相邻两个 OLED间共用一层公共电极层, 所述公共电极层作为每 相邻两个 OLED中一个 OLED的阳极或阴极的同时也作为另一个 OLED的阳极 或阴极。
2、 根据权利要求 1所述的多色 OLED, 其中, 在每个 OLED的第一有机层 进行 P型掺杂、 第二有机层进行 N型掺杂。
3、 根据权利要求 1或 2所述的多色 OLED, 其中, 每相邻两个 OLED中有 一个 OLED相对于另一个 OLED层次结构倒置, 所述公共电极层同时作为所述 相邻两个 OLED的公共阳极或公共阴极。
4、 根据权利要求 1-3任一所述的多色 OLED, 其中, 所述至少两个发不同 颜色光的 OLED是红色 OLED、 绿色 OLED和蓝色 OLED中至少两个的任意组 合。
5、 根据权利要求 1-4任一所述的多色 OLED, 其中, 所述多色 OLED中的 每一电极层为金属、 合金、 有良好导电功能的氧化物或者上述几种中至少两 种的组合一次形成的单一电极层。
6、 一种多色 OLED单元, 其中, 所述多色 OLED单元由衬底和在所述衬 底一侧形成的如权利要求 1-5任一项所述的多色 OLED构成。
7、 根据权利要求 6所述的多色 OLED单元, 其中, 所述衬底或贴近衬底的 一层电极由有良好反射率且不透光的材料构成, 不与所述衬底贴近的其余各 层电极为透明电极, 所述多色 OLED单元构成顶发射器件。
8、 根据权利要求 6所述的多色 OLED单元, 其中, 远离所述衬底的最外层 电极由有良好反射率且不透光的材料构成, 所述衬底及其余各层电极为透光 层, 所述多色 OLED单元构成底发射器件。
9、 一种显示器件, 其中, 所述显示器件的每一像素点由一个如权利要求-8任一项所述的多色 0LED单元构成。
PCT/CN2012/083323 2012-02-23 2012-10-22 多色oled、多色oled单元及显示器件 WO2013123779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210043826.7 2012-02-23
CN2012100438267A CN102655219A (zh) 2012-02-23 2012-02-23 多色oled、多色oled单元及显示器件

Publications (1)

Publication Number Publication Date
WO2013123779A1 true WO2013123779A1 (zh) 2013-08-29

Family

ID=46730807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083323 WO2013123779A1 (zh) 2012-02-23 2012-10-22 多色oled、多色oled单元及显示器件

Country Status (2)

Country Link
CN (1) CN102655219A (zh)
WO (1) WO2013123779A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655219A (zh) * 2012-02-23 2012-09-05 京东方科技集团股份有限公司 多色oled、多色oled单元及显示器件
CN103872068B (zh) * 2012-12-14 2017-04-26 京东方科技集团股份有限公司 一种可变色发光元件、像素结构及显示装置
CN104183708A (zh) * 2013-05-21 2014-12-03 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104183750A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制作方法
CN104183765A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 有机电致发光器件及其制作方法
CN104183722A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 白光有机电致发光器件及其制备方法
CN104183755A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 白光有机电致发光器件及其制备方法
CN103488020A (zh) * 2013-08-09 2014-01-01 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN104022142B (zh) * 2014-06-12 2017-10-17 四川虹视显示技术有限公司 高开口率的顶发射amoled器件与制成方法
KR102439307B1 (ko) 2018-01-29 2022-09-02 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법
CN114899291B (zh) * 2022-07-12 2022-10-25 诺视科技(苏州)有限公司 用于半导体器件的像素单元及其制作方法、微显示屏

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160167A1 (en) * 2002-04-30 2004-08-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
CN101371619A (zh) * 2006-01-18 2009-02-18 Lg化学株式会社 具有堆叠式有机发光单元的oled
CN102077385A (zh) * 2008-06-30 2011-05-25 佳能株式会社 发光装置
CN102655219A (zh) * 2012-02-23 2012-09-05 京东方科技集团股份有限公司 多色oled、多色oled单元及显示器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707745A (en) * 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
KR20110045569A (ko) * 2009-10-27 2011-05-04 한국전자통신연구원 적층형 유기 전기 발광 소자
US20130240847A1 (en) * 2010-05-21 2013-09-19 Solarno, Inc. Monolithic parallel multijunction oled with independent tunable color emission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160167A1 (en) * 2002-04-30 2004-08-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
CN101371619A (zh) * 2006-01-18 2009-02-18 Lg化学株式会社 具有堆叠式有机发光单元的oled
CN102077385A (zh) * 2008-06-30 2011-05-25 佳能株式会社 发光装置
CN102655219A (zh) * 2012-02-23 2012-09-05 京东方科技集团股份有限公司 多色oled、多色oled单元及显示器件

Also Published As

Publication number Publication date
CN102655219A (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2013123779A1 (zh) 多色oled、多色oled单元及显示器件
US10418577B2 (en) White organic light emitting device
US9640591B2 (en) Method of manufacturing organic light emitting display device
US20210399075A1 (en) Organic light emitting display device
US9425422B2 (en) Organic light emitting display device
TWI682538B (zh) 有機電致發光器件和有機電致發光裝置
US9331131B2 (en) Organic light emitting diode display and manufacturing method thereof
US20130207085A1 (en) Organic light emitting diode display and method for manufacturing the same
US9099416B2 (en) Organic light-emitting device
US9949336B2 (en) Organic light emitting diode device having electrode with Ag—Mg alloy
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2015149465A1 (zh) 一种woled背板及其制作方法
WO2020015443A1 (zh) 透明显示面板及显示装置
TW201603261A (zh) 有機發光元件及像素陣列
US20160365388A1 (en) Top-emitting oled substrate and fabrication method thereof, and display apparatus
Liu et al. P‐168: Top Emission WOLED for High Resolution OLED TV
KR20130046640A (ko) 유기전계발광다이오드 및 그 제조방법
US8847210B2 (en) Organic light emitting diode display
US11315984B2 (en) Color filter substrate, manufacturing method thereof, and OLED display device
JP2019153710A (ja) 有機電界発光パネルおよび電子機器
CN104752463B (zh) 一种有机发光显示装置及其制备方法
CN106057862B (zh) 一种高亮度oled显示器
WO2021007948A1 (zh) 有机发光二极管显示面板及其制作方法和显示装置
US20110084288A1 (en) Organic light emitting diode display and method of manufacturing the same
KR20150047035A (ko) 유기발광표시장치 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12869318

Country of ref document: EP

Kind code of ref document: A1