WO2019029191A1 - 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法 - Google Patents

一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法 Download PDF

Info

Publication number
WO2019029191A1
WO2019029191A1 PCT/CN2018/084334 CN2018084334W WO2019029191A1 WO 2019029191 A1 WO2019029191 A1 WO 2019029191A1 CN 2018084334 W CN2018084334 W CN 2018084334W WO 2019029191 A1 WO2019029191 A1 WO 2019029191A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene fiber
fiber
nonwoven fabric
pleated
Prior art date
Application number
PCT/CN2018/084334
Other languages
English (en)
French (fr)
Inventor
高超
李拯
Original Assignee
杭州高烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州高烯科技有限公司 filed Critical 杭州高烯科技有限公司
Publication of WO2019029191A1 publication Critical patent/WO2019029191A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods

Definitions

  • the present invention relates to graphene fibers and fabrics, and more particularly to a graphene fiber and a graphene fiber nonwoven fabric which are formed by stacking pleated graphene sheets and a preparation method thereof.
  • Graphene fiber nonwoven fabric is a new type of non-woven fabric composed of graphene fibers (Nature Communications, 2016, 13684). This kind of non-woven fabric is realized by the mutual fusion of graphene fibers at the joints.
  • the material has excellent electrical and thermal conductivity properties, which fully reflects the excellent properties of graphene on a macroscopic scale (Science, 2004, 306: 666-669). Thanks to the highly conductive network structure exhibited by the graphene fiber nonwoven fabric, it has great potential as a flexible fabric electrode in the field of energy storage devices such as capacitors and batteries.
  • the existing graphene fiber nonwoven fabric has better flexibility and high electrical conductivity.
  • the graphene fiber constituting the non-woven fabric has a small surface microstructure, and is extremely limited when used as an electrode material of a supercapacitor due to a small active surface area.
  • the specific capacitance value of the capacitor If a large number of microstructures can be constructed on the surface of the graphene fiber by special means to significantly increase the specific surface area of the fiber, the electric double layer capacitance of the graphene fiber non-woven electrode can be greatly improved, and a higher performance energy storage device can be obtained. .
  • graphene fiber nonwoven fabrics having a multistage structure have not been reported.
  • the object of the present invention is to provide a pleated graphene fiber and a graphene fiber nonwoven fabric and a preparation method thereof, in view of the deficiencies of the prior art.
  • a pleated graphene fiber which is formed by stacking pleated graphene sheets, and the pleated structure of the graphene sheet is formed by a capillary sheet having defects under capillary force.
  • a method for preparing graphene fibers comprising the steps of:
  • the spinning solution is an aqueous solution of graphene oxide or a solution of N,N-dimethylformamide.
  • the coagulation bath used in the spinning process is a calcium chloride/water/ethanol mixture or ethyl acetate.
  • a high-performance graphene fiber non-woven fabric in which a graphene fiber is overlapped to form a network, and graphene fibers at a mesh node are fused to each other.
  • a method for preparing a high-performance graphene fiber nonwoven fabric wherein the graphene fiber after hydrothermal treatment in the step 3 of claim 2 is pulverized in an aqueous solution into short fibers having a length of 1-7 mm, using a high-speed shear mixer, and then The screen is deposited and dried in air to obtain a graphene fiber nonwoven fabric.
  • the high speed shear agitation speed is 3000-8000 rpm.
  • the method further comprises further reducing the dried graphene fiber nonwoven fabric.
  • the reduction method is reduction using a chemical reducing agent such as hydriodic acid, hydrazine hydrate, vitamin C or sodium borohydride or thermal reduction at 100-3000 °C.
  • the invention has the following beneficial effects:
  • Graphene fibers are stacked from pleated graphene sheets, which significantly increase the specific surface area and have a larger active surface, which is advantageous for their application in fabric electrodes.
  • the preparation method is simple, and the microstructure of the fiber surface can be controlled and controlled by the change of the fiber pre-drying temperature and the hydrothermal treatment temperature.
  • Figure 1 is a scanning electron micrograph of pleated graphene fibers at different magnifications.
  • Figure 2 is a schematic view of the forming process of the pleated graphene fibers (a) and scanning electron micrographs (b ⁇ e) of each stage;
  • Figure 3 is a schematic view (a) of a pleated graphene fiber nonwoven fabric and a schematic view (b) of the fusion zone.
  • the invention fully utilizes the hydrophilicity of the graphene oxide, so that the graphene oxide is immersed in water, and the graphene sheet layer is given a certain degree of freedom by the water swelling action, which is favorable for the formation of the pleat structure and the lower temperature water is used.
  • the heat treatment of the microstructure of the graphene fiber is low, and the method is simple.
  • a defect is introduced into the graphene sheet layer by reduction of the graphene oxide sheet layer (removal of the oxidized functional group), thereby providing a stress concentration point formed by the wrinkle structure.
  • the graphene fiber After hydrothermal treatment, the graphene fiber is naturally dried in the air, and the solvent water contained in the fiber volatilizes to form a huge capillary force, causing the graphene sheet to spontaneously produce wrinkles, forming a microstructure on the surface and inside of the graphene fiber, and significantly increasing The specific surface area of the graphene fiber.
  • the specific process is shown in Figure 2.
  • the fibers are fused together into a network structure to form a pure graphene nonwoven fabric.
  • the specific surface area of the graphene fiber nonwoven fabric is remarkably improved while ensuring high electrical conductivity of the nonwoven fabric.
  • the multi-stage pleated structure graphene fiber and the graphene fiber nonwoven fabric of the present invention can provide an energy storage device with high flexibility while obtaining excellent electrochemical performance when used as a fabric electrode, and is promising in wearable electrons.
  • the device field has been applied.
  • the obtained graphene fiber has a distinct wrinkle structure, the fiber strength is about 90 MPa, and the electrical conductivity is 102 S/m.
  • a graphene oxide/N,N-dimethylformamide solution having a concentration of 5 mg/mL was used as a spinning solution, and ethyl acetate was used as a coagulation bath for continuous wet spinning.
  • the hydrothermally treated graphene fibers were pulverized into short fibers having a length of 4 mm at a rotation speed of 3000 rpm using a high-speed shear mixer, and deposited on a sieve, and dried in air to obtain a graphene fiber nonwoven fabric.
  • the obtained graphene fiber nonwoven fabric has a multi-stage structure, the surface of the graphene fiber is rough, and contains a large number of microstructures of wrinkles and protrusions, the specific surface area is 190 m 2 /g, the electrical conductivity is 80 S/m, and the absence
  • the woven material is flexible and resistant to multiple bends to maintain structural stability.
  • the aqueous solution of graphene oxide having a concentration of 15 mg/mL is used as a dispersion, and the calcium chloride/water/ethanol mixture is continuously wet-spun as a coagulation bath.
  • the hydrothermally treated graphene fibers were pulverized into short fibers at a speed of 5000 rpm using a high-speed shear mixer, and deposited on a sieve, and dried in air to obtain a multi-stage graphene fiber nonwoven fabric.
  • the obtained graphene fiber non-woven fabric has a multi-stage pleated structure, but due to the preheating drying temperature in step 2, the hydrophilicity of the graphene fiber is lowered, so that the surface of the graphene fiber is not high in wrinkles.
  • the surface microstructure of the fiber is mostly a loose strip-shaped ridge.
  • the nonwoven fabric had a specific surface area of 63 m 2 /g and a conductivity of 88 S/m.
  • Steps 1-4 were the same as in Example 1, and no further reduction of Step 5 was carried out.
  • the obtained graphene fiber nonwoven fabric had a multi-stage pleated structure and a conductivity of 1.2 S/m.
  • Step 1 is: continuous wet spinning of a graphene oxide/N,N-dimethylformamide solution having a concentration of 5 mg/mL as a spinning solution and ethyl acetate as a coagulation bath.
  • Step 2-5 is the same as in Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种具有褶皱结构的石墨烯纤维和石墨烯纤维无纺布及其制备方法,该石墨烯纤维表面含有大量褶皱的微结构,且可用于构成多褶皱结构石墨烯纤维无纺布,使得无纺布的比表面积得到显著增加,而石墨烯纤维及由纤维构成的连通网络结构同时具有较高的导电性能和柔韧性,因此可作为柔性电极材料在可穿戴储能器件中得到应用。

Description

一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法 技术领域
本发明涉及石墨烯纤维及织物,尤其涉及一种由褶皱的石墨烯片堆积而成的石墨烯纤维和石墨烯纤维无纺布及其制备方法。
背景技术
石墨烯纤维无纺布是一种新型的由石墨烯纤维构成的无纺布织物(Nature Communications,2016,13684),由于实现了石墨烯纤维在搭接处的互相融合,使得这种无纺布材料具有优异的导电、导热等性能,从而在宏观尺度上充分体现了石墨烯的优良特性(Science,2004,306:666-669)。得益于石墨烯纤维无纺布所呈现的高度导电网络结构,将其作为柔性的织物电极在电容器及电池等储能器件领域具有极大的应用潜力。
现有的石墨烯纤维无纺布柔性较好,导电性能高,然而组成无纺布的石墨烯纤维表面微结构较少,在用作超级电容器的电极材料时由于活性表面积较小,极大地限制了电容器的比电容值。如果能通过特殊的手段在石墨烯纤维表面构筑大量的微结构,以显著增加纤维的比表面积,就能大大提升石墨烯纤维无纺布电极的双电层电容,获得更高性能的储能器件。目前,具有多级结构的石墨烯纤维无纺布并未见诸报道。
发明内容
本发明的目的在于针对现有技术的不足,提供一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法。
本发明通过以下技术方案实现:一种褶皱的石墨烯纤维,由褶皱的石墨烯片堆积而成,所述石墨烯片的褶皱结构是具有缺陷的石墨烯片在毛细作用力下形成的。
一种石墨烯纤维的制备方法,包括以下步骤:
(1)以氧化石墨烯分散液为纺丝液进行连续湿法纺丝。
(2)将得到的氧化石墨烯纤维在室温放置12h以上,然后在不高于80℃的温度下真空干燥3h。
(3)将充分干燥的氧化石墨烯纤维浸泡在装有水的水热釜中进行水热处理,水热处理的温度区间为80-200℃。
(4)空气中干燥后得到由褶皱的氧化石墨烯片堆积而成的石墨烯纤维。
进一步地,纺丝液为氧化石墨烯的水溶液或N,N-二甲基甲酰胺溶液。相对应的, 纺丝过程采用的凝固浴为氯化钙/水/乙醇混合液或乙酸乙酯。
一种高性能石墨烯纤维无纺布,由石墨烯纤维相互搭接形成网络,网格节点处的石墨烯纤维相互融合。
一种高性能石墨烯纤维无纺布的制备方法,使用高速剪切搅拌机将权利要求2步骤3中水热处理后的石墨烯纤维在水溶液中搅碎成长度为1-7mm的短纤维,然后在滤网上沉积,空气中干燥后得到石墨烯纤维无纺布。
进一步地,高速剪切搅拌的转速为3000-8000rpm。
进一步地,该方法还包括将干燥后的石墨烯纤维无纺布进行进一步还原。还原方法为使用氢碘酸、水合肼、维他命C、硼氢化钠等化学还原剂进行还原或100-3000℃热还原。
本发明与现有技术相比,具有以下有益效果:
(1)石墨烯纤维由褶皱的石墨烯片堆积而成,显著增加了比表面积,具有更大的活性表面,有利于其在织物电极中的应用。
(2)获得纤维表面多级结构的同时保持了石墨烯纤维无纺布的柔性,在柔性可穿戴储能器件领域具有广泛的应用前景。
(3)制备方法简单,纤维表面的微结构可通过纤维预干燥温度及水热处理温度的变化实现可控调节。
附图说明
图1是褶皱石墨烯纤维在不同放大倍数下的扫描电子显微镜照片。
图2是褶皱石墨烯纤维的成型过程示意图(a)及各个阶段的扫描电镜图(b~e);
图3是褶皱石墨烯纤维无纺布的示意图(a)及融合处示意图(b)。
具体实施方式
本发明充分利用了氧化石墨烯的亲水性,使氧化石墨烯浸泡在水中后通过吸水溶胀作用赋予石墨烯片层以一定的自由度,有利于褶皱结构的形成,并且采用温度较低的水热处理对石墨烯纤维进行微结构的构建,能耗低,方法简单。在水热处理时通过对氧化石墨烯片层的还原作用(氧化官能团的脱除)在石墨烯片层中引入缺陷,提供褶皱结构形成的应力集中点。水热处理后石墨烯纤维在空气中自然干燥,纤维中含有的溶剂水的挥发形成巨大的毛细作用力,使得石墨烯片层自发地产生褶皱,在石墨烯纤维表面及内部形成微结构,显著增加石墨烯纤维的比表面积。具体过程如图2所示。
上述纤维相互融合成网络结构,构成纯石墨烯无纺布,如图3所示,在保证无纺布高导电性的同时显著提升了石墨烯纤维无纺布的比表面积。基于以上特征,本发明的多 级褶皱结构石墨烯纤维及石墨烯纤维无纺布在用作织物电极时可令储能器件具有高柔性的同时获得优异的电化学性能,有希望在可穿戴电子器件领域得到应用。
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容做出一些非本质的改变和调整,均属于本发明的保护范围。
实施例1:
(1)以浓度为5mg/mL的氧化石墨烯/水溶液为纺丝液,氯化钙/水/乙醇混合液(质量比20:300:100)为凝固浴进行连续湿法纺丝。
(2)将得到的氧化石墨烯纤维在室温放置12h,然后在80℃的温度下真空干燥3h。
(3)将充分干燥的氧化石墨烯纤维浸泡在装有水的水热釜中进行水热处理,处理条件为200℃,12h。
(4)空气中干燥后得到多褶皱石墨烯纤维。
经过以上步骤,得到的石墨烯纤维具有明显的褶皱结构,纤维强度约90MPa,导电率为102S/m。
实施例2:
(1)以浓度为5mg/mL的氧化石墨烯/N,N-二甲基甲酰胺溶液为纺丝液,乙酸乙酯为凝固浴进行连续湿法纺丝。
(2)将得到的氧化石墨烯纤维室温放置14h,60℃真空干燥3h。
(3)将充分干燥的氧化石墨烯纤维浸泡在装有水的水热釜中进行水热处理,处理条件为150℃,12h。
(4)使用高速剪切搅拌机以3000rpm的转速将水热处理后的石墨烯纤维搅碎成长度为4mm的短纤维,并在滤网上沉积,空气中干燥后得到石墨烯纤维无纺布。
经过以上步骤,得到的石墨烯纤维无纺布具有多级结构,石墨烯纤维表面粗糙,含有大量的褶皱和突起的微结构,比表面积达到190m 2/g,导电率80S/m,且该无纺布材料柔性较好,耐受多次弯折而保持结构稳定。
实施例3:
(1)以浓度为15mg/mL的氧化石墨烯水溶液为分散液,氯化钙/水/乙醇混合液为凝固浴进行连续湿法纺丝。
(2)将得到的氧化石墨烯纤维室温放置15h,100℃真空干燥3h。
(3)将充分干燥的氧化石墨烯纤维浸泡在装有水的水热釜中进行水热处理,处理条 件为80℃,12h。
(4)使用高速剪切搅拌机以5000rpm的转速将水热处理后的石墨烯纤维搅碎成短纤维,并在滤网上沉积,空气中干燥后得到多级结构的石墨烯纤维无纺布。
(5)对干燥后的石墨烯纤维无纺布采用水合肼进行进一步的化学还原。
经过以上步骤,得到的石墨烯纤维无纺布具有多级褶皱结构,但由于步骤2中预热干燥温度过高,降低了石墨烯纤维的亲水性,使得最终石墨烯纤维表面褶皱程度不高,纤维表面微结构多为分布松散的长条形脊状突起。无纺布的比表面积为63m 2/g,导电率88S/m。
实施例4:
步骤1-4同实施例1,不进行步骤5的进一步还原。所得石墨烯纤维无纺布具有多级褶皱结构,导电率为1.2S/m。
实施例5:
步骤1为:以浓度为5mg/mL的氧化石墨烯/N,N-二甲基甲酰胺溶液为纺丝液,乙酸乙酯为凝固浴进行连续湿法纺丝。
步骤2-5同实施例2。
得到多褶皱石墨烯无纺布后取两块相等面积(~0.8cm 2)的无纺布作为超级电容器的正负电极,两级间以滤纸作为隔膜,1M H 2SO 4溶液作为电解液组装成超级电容器。经测试,基于多褶皱石墨烯无纺布的超级电容器质量比电容最高达到244F/g(电流密度1A/g),面积比电容最高达到1060mF/cm 2(电流密度1mA/cm 2),显示出较高的电化学活性。

Claims (7)

  1. 一种褶皱的石墨烯纤维,其特征在于,由褶皱的石墨烯片堆积而成,所述石墨烯片的褶皱结构是具有缺陷的石墨烯片在毛细作用力下形成的。
  2. 一种石墨烯纤维的制备方法,其特征在于,包括以下步骤:
    (1)以氧化石墨烯分散液为纺丝液进行连续湿法纺丝。
    (2)将得到的氧化石墨烯纤维在室温放置12h以上,然后在不高于80℃的温度下真空干燥3h。
    (3)将充分干燥的氧化石墨烯纤维浸泡在装有水的水热釜中进行水热处理,水热处理的温度区间为80-200℃。
    (4)空气中干燥后得到由褶皱的氧化石墨烯片堆积而成的石墨烯纤维。
  3. 根据权利要求2所述的方法,其特征在于,纺丝液为氧化石墨烯的水溶液或N,N-二甲基甲酰胺溶液。相对应的,纺丝过程采用的凝固浴为氯化钙/水/乙醇混合液或乙酸乙酯。
  4. 一种高性能石墨烯纤维无纺布,其特征在于,由权利要求1所述的石墨烯纤维相互搭接形成网络,网格节点处的石墨烯纤维相互融合。
  5. 一种高性能石墨烯纤维无纺布的制备方法,其特征在于,使用高速剪切搅拌机将权利要求2步骤3中水热处理后的石墨烯纤维在水溶液中搅碎成长度为1-7mm的短纤维,然后在滤网上沉积,空气中干燥后得到石墨烯纤维无纺布。
  6. 根据权利要求5所述的方法,其特征在于,高速剪切搅拌的转速为3000-8000rpm。
  7. 根据权利要求5所述的方法,其特征在于,该方法还包括将干燥后的石墨烯纤维无纺布进行进一步还原。还原方法为使用氢碘酸、水合肼、维他命C、硼氢化钠等化学还原剂进行还原或100-3000℃热还原。
PCT/CN2018/084334 2017-08-08 2018-04-25 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法 WO2019029191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710670077.3A CN107502995B (zh) 2017-08-08 2017-08-08 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN201710670077.3 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019029191A1 true WO2019029191A1 (zh) 2019-02-14

Family

ID=60689740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084334 WO2019029191A1 (zh) 2017-08-08 2018-04-25 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法

Country Status (2)

Country Link
CN (1) CN107502995B (zh)
WO (1) WO2019029191A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107502995B (zh) * 2017-08-08 2019-08-16 杭州高烯科技有限公司 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN108708076A (zh) * 2018-04-09 2018-10-26 南京捷纳思新材料有限公司 湿纺制备核壳结构聚氨酯-碳纳米管导电无纺布的方法
CN108707998A (zh) * 2018-04-11 2018-10-26 杭州牛墨科技有限公司 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN108914251B (zh) * 2018-07-09 2020-10-30 杭州高烯科技有限公司 一种氮杂石墨纤维及其制备方法
CN109267416A (zh) * 2018-09-21 2019-01-25 杭州高烯科技有限公司 一种自融合的还原石墨烯纤维纸及其制备方法
CN109281224A (zh) * 2018-09-21 2019-01-29 杭州高烯科技有限公司 一种多孔石墨烯纤维无纺布及其制备方法
CN109295796A (zh) * 2018-09-21 2019-02-01 杭州高烯科技有限公司 一种自融合的氧化石墨烯纤维纸及其制备方法
CN110512311B (zh) * 2019-09-09 2022-12-30 苏州大学 一种利用微流控技术可控制备石墨烯纤维的方法
CN112647159B (zh) * 2019-10-10 2022-04-19 中国科学技术大学 一种多囊孔结构石墨烯基微米棒及其制备方法
CN110699779B (zh) * 2019-11-01 2022-05-13 常州富烯科技股份有限公司 氧化石墨烯纤维布及其制备方法、石墨烯气体扩散膜及其制备方法
CN111214962B (zh) * 2019-12-10 2021-04-13 中国科学院过程工程研究所 一种褶皱氧化石墨烯/纳米纤维复合膜及其制备方法和应用
CN112760813B (zh) * 2021-01-28 2022-01-07 广东春夏新材料科技股份有限公司 一种尿不湿用热风布及其制备方法
CN112941894A (zh) * 2021-02-01 2021-06-11 河北工业大学 一种微波诱导石墨烯纤维无纺布负载铋纳米颗粒的制备方法
CN113388905B (zh) * 2021-06-15 2022-07-05 广西大学 一种中空石墨烯纤维的自卷曲制备方法及其应用
CN113896186A (zh) * 2021-09-10 2022-01-07 山东建筑大学 一种缺陷化石墨烯的制备方法
CN115000355B (zh) * 2022-06-06 2024-01-30 中汽创智科技有限公司 一种三维金属锂-氧化物复合负极、其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583334A (zh) * 2012-01-19 2012-07-18 北京理工大学 一种石墨烯纤维的制备方法
US20140011027A1 (en) * 2011-03-15 2014-01-09 Iucf-Hyu (Industry-University Corperation Foundati On Hanyang University) Graphene conjugate fiber and method for manufacturing same
CN103726133A (zh) * 2014-01-02 2014-04-16 东华大学 高强度、紧凑有序多孔石墨烯纤维及其连续制备方法
WO2014078423A1 (en) * 2012-11-13 2014-05-22 Ndsu Research Foundation Nanostructured materials
CN104451959A (zh) * 2014-11-28 2015-03-25 华南理工大学 一种表面多孔高比表面积的石墨烯纤维及其制备方法
CN106120025A (zh) * 2016-07-02 2016-11-16 苏州大学 一种石墨烯纤维及其制备方法
CN106192201A (zh) * 2016-07-18 2016-12-07 浙江大学 一种石墨烯纤维无纺布及其制备方法
CN106948165A (zh) * 2017-04-28 2017-07-14 浙江大学 一种自融合石墨烯纤维及其制备方法
CN107151835A (zh) * 2017-05-19 2017-09-12 杭州高烯科技有限公司 一种柔性石墨烯纤维及其连续化制备方法
CN107502995A (zh) * 2017-08-08 2017-12-22 杭州高烯科技有限公司 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140011027A1 (en) * 2011-03-15 2014-01-09 Iucf-Hyu (Industry-University Corperation Foundati On Hanyang University) Graphene conjugate fiber and method for manufacturing same
CN102583334A (zh) * 2012-01-19 2012-07-18 北京理工大学 一种石墨烯纤维的制备方法
WO2014078423A1 (en) * 2012-11-13 2014-05-22 Ndsu Research Foundation Nanostructured materials
CN103726133A (zh) * 2014-01-02 2014-04-16 东华大学 高强度、紧凑有序多孔石墨烯纤维及其连续制备方法
CN104451959A (zh) * 2014-11-28 2015-03-25 华南理工大学 一种表面多孔高比表面积的石墨烯纤维及其制备方法
CN106120025A (zh) * 2016-07-02 2016-11-16 苏州大学 一种石墨烯纤维及其制备方法
CN106192201A (zh) * 2016-07-18 2016-12-07 浙江大学 一种石墨烯纤维无纺布及其制备方法
CN106948165A (zh) * 2017-04-28 2017-07-14 浙江大学 一种自融合石墨烯纤维及其制备方法
CN107151835A (zh) * 2017-05-19 2017-09-12 杭州高烯科技有限公司 一种柔性石墨烯纤维及其连续化制备方法
CN107502995A (zh) * 2017-08-08 2017-12-22 杭州高烯科技有限公司 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法

Also Published As

Publication number Publication date
CN107502995A (zh) 2017-12-22
CN107502995B (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2019029191A1 (zh) 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
JP6483275B2 (ja) グラフェン繊維不織布の製造方法
CN108315834B (zh) 一种阵列式磁性还原氧化石墨烯-炭纳米纤维的制备方法
Chhetri et al. A review on nanofiber reinforced aerogels for energy storage and conversion applications
CN104157815B (zh) 一种细菌纤维素多孔薄膜及其制备方法
Chen et al. Construction of sugarcane bagasse-derived porous and flexible carbon nanofibers by electrospinning for supercapacitors
CN104192836B (zh) 自支撑多孔石墨烯基薄膜的溶液热制备方法
CN102757040B (zh) 石墨烯基水凝胶的制备方法
CN103762091A (zh) 一种蜂窝状多孔二氧化锰纳米纤维的制备方法及其超级电容器应用
CN106012107B (zh) 一种碳气凝胶纤维的制备方法
CN108630453A (zh) 一步法制备类石墨烯碳纳米片材料的方法及其用途
Li et al. Growth of carbon nanotubes on electrospun cellulose fibers for high performance supercapacitors
CN106145085A (zh) 一种抗压性高导低密度的石墨烯气凝胶及掺杂碳纳米管复合材料的制备方法
CN106098413A (zh) 一种柔性超级电容器电极材料的制备方法
CN101728504B (zh) 一种湿法抄造的锂离子电池隔膜柔性基材及其制造方法
CN109281224A (zh) 一种多孔石墨烯纤维无纺布及其制备方法
CN111453732B (zh) 一种三维多孔MXene/rGO复合材料及其制备方法
CN108046254A (zh) 一种玉米芯衍生活性炭电极材料及其制备方法
CN109355799A (zh) 一种氮掺杂的石墨烯纤维无纺布及其制备方法
CN108962630A (zh) 一种蛋壳膜/石墨烯/聚合物复合柔性超级电容器的制备方法
CN108707998A (zh) 一种褶皱的石墨烯纤维和石墨烯纤维无纺布及其制备方法
CN105869923A (zh) 一种用于超级电容器电极的碳布表面修饰改性方法
Zhao et al. A novel cellulose membrane from cattail fibers as separator for Li-ion batteries
CN111092186B (zh) 一种基于自组装技术制备pe基锂离子电池隔膜的方法和应用
CN109360739B (zh) 负载镍/氧化镍的碳纳米纤维电极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843377

Country of ref document: EP

Kind code of ref document: A1