WO2019019905A1 - 轮滑装置及电动平衡车 - Google Patents

轮滑装置及电动平衡车 Download PDF

Info

Publication number
WO2019019905A1
WO2019019905A1 PCT/CN2018/094983 CN2018094983W WO2019019905A1 WO 2019019905 A1 WO2019019905 A1 WO 2019019905A1 CN 2018094983 W CN2018094983 W CN 2018094983W WO 2019019905 A1 WO2019019905 A1 WO 2019019905A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
grounding
roller
driving
skating
Prior art date
Application number
PCT/CN2018/094983
Other languages
English (en)
French (fr)
Inventor
陈中元
嵇鑫健
涂斌
伊布拉欣
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710625533.2A external-priority patent/CN107512348B/zh
Priority claimed from CN201710626491.4A external-priority patent/CN107281740B/zh
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Priority to KR1020207004614A priority Critical patent/KR102115844B1/ko
Priority to KR1020207004613A priority patent/KR102115845B1/ko
Priority to RU2019104532A priority patent/RU2703783C1/ru
Priority to KR1020187029985A priority patent/KR102080687B1/ko
Priority to EP18769578.8A priority patent/EP3459604A4/en
Priority to JP2018553902A priority patent/JP6709292B2/ja
Priority to US16/096,061 priority patent/US20190256163A1/en
Publication of WO2019019905A1 publication Critical patent/WO2019019905A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/0093Mechanisms transforming leaning into steering through an inclined geometrical axis, e.g. truck
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/004Roller skates; Skate-boards with auxiliary wheels not contacting the riding surface during steady riding
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/02Roller skates; Skate-boards with wheels arranged in two pairs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/04Roller skates; Skate-boards with wheels arranged otherwise than in two pairs
    • A63C17/06Roller skates; Skate-boards with wheels arranged otherwise than in two pairs single-track type
    • A63C17/08Roller skates; Skate-boards with wheels arranged otherwise than in two pairs single-track type single-wheel type with single axis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/12Roller skates; Skate-boards with driving mechanisms
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/22Wheels for roller skates
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/26Roller skates; Skate-boards with special auxiliary arrangements, e.g. illuminating, marking, or push-off devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/12Electrically powered or heated
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/18Measuring a physical parameter, e.g. speed, distance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/24Processing or storing data, e.g. with electronic chip
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/40Runner or deck of boards articulated between both feet
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C2203/00Special features of skates, skis, roller-skates, snowboards and courts
    • A63C2203/42Details of chassis of ice or roller skates, of decks of skateboards

Definitions

  • the embodiments of the present application relate to the technical field of roller skating or travel tools, and in particular, to a roller skating device and an electric balance car.
  • roller skates can be mainly divided into speed type and control type.
  • the structure of these two types of roller shoes is basically the same, including the shoe body and the wheel frame mounted on the sole and several rollers.
  • the difference is that the number, size and arrangement of the rollers may vary depending on the purpose of use. In the process of use, it is driven by the operator's manpower, such as sliding through the pedaling action, so that there are certain limitations. It is easy to cause fatigue when used for a long time.
  • standing on the roller skates should be maintained. Balanced, the operator's requirements are higher, which ultimately leads to a poor user experience for the roller skates.
  • one of the technical problems solved by the embodiments of the present application is to provide a roller skating device and an electric balance car to overcome or alleviate the above technical defects in the prior art.
  • An embodiment of the present application provides a roller skating device including: a pedal, a grounding element, a first sensor, a driving component, and a first controller, the pedal being coupled to the first sensor and the grounding component, the grounding component Coupled to the driving component, the first controller is coupled to the first sensor and the driving component; wherein: the pedal is adapted to be used for single point standing, and is used for standing at a single point Tilting forward or backward; the grounding element is for acting under the driving of the driving element; the first sensor is for sensing a posture of a driver on the pedal; the driving element is for generating a control station The grounding element operates and outputs an output signal that maintains the overall condition of the skating device in an equilibrium state; the first controller is configured to control the generation of the output signal according to the attitude.
  • An electric balance vehicle includes at least a roller bearing device in any one of the embodiments of the present application.
  • a connecting member is disposed between adjacent two roller bearing devices for assembling the two roller bearing devices into an integrated grounding component grounding component. Grounding element grounding element.
  • the pedal is coupled to the first sensor and the grounding component
  • the grounding component is coupled to the driving component
  • the first controller is coupled to The first sensor and the drive element; wherein: the pedal is adapted for single point standing and for tilting forward or backward when standing at a single point; the grounding element is for the drive Acting under the driving of the component; the first sensor is for sensing the attitude of the driver on the pedal; the driving component is configured to generate an output signal for controlling the action of the grounding element and maintaining the overall state of the rollerating device in a balanced state
  • the first controller is configured to control the generation of the output signal according to the attitude.
  • roller skating devices form an electric balance car through the connecting member, and the application avoids the human body to achieve the physical fatigue caused by the sliding, and in addition, during the sliding process, since the device can maintain the balance state, the operation is performed.
  • the user's operational skill requirements are lower, thereby improving the user experience, in other words, providing a better user-friendly skating device and electric balance car as a whole.
  • FIG. 1 is a schematic structural view showing the structure of a roller skating device according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural view showing the structure of a roller skating device according to Embodiment 2 of the present application;
  • 3a and 3b are schematic diagrams and a second schematic structural diagram of a structure of a roller skating device according to Embodiment 3 of the present application;
  • 3c is a schematic view of a fixed base in the third embodiment of the present application.
  • FIG. 4 is a schematic structural view of a roller skating device in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a specific implementation of a roller skating device according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural diagram of a specific implementation of a roller skating device according to Embodiment 6 of the present application.
  • 7a and 7b are schematic structural diagrams and 2 of the structure of the roller skating device in the seventh embodiment of the present application.
  • Embodiment 8 is a partial schematic view of a roller skating device according to Embodiment 8 of the present application.
  • Embodiment 9 is a schematic diagram of a control principle of a roller skating device in Embodiment 9 of the present application.
  • FIG. 10 is a schematic structural view of an auxiliary grounding component provided in Embodiment 10 of the present application.
  • FIG. 11 is a schematic flowchart of a steering control method according to Embodiment 11 of the present application.
  • 12-16 are schematic structural views of an electric balance vehicle according to an embodiment 12-16 of the present application.
  • Figure 17 is a schematic view showing the details of the two ends of the connecting member in the seventeenth embodiment of the present application.
  • Embodiment 18 is a schematic structural view of an electric balance vehicle according to Embodiment 18 of the present application.
  • Figure 19 is a schematic view showing the details of the two ends of the connector in the nineteenth embodiment of the present application.
  • the pedal is coupled to the first sensor and the grounding component
  • the grounding component is coupled to the driving component
  • the first controller is coupled to The first sensor and the drive element; wherein: the pedal is adapted for single point standing and for tilting forward or backward when standing at a single point; the grounding element is for the drive Acting under the driving of the component; the first sensor is for sensing the attitude of the driver on the pedal; the driving component is configured to generate an output signal for controlling the action of the grounding element and maintaining the overall state of the rollerating device in a balanced state
  • the first controller is configured to control the generation of the output signal according to the attitude.
  • roller skating devices form an electric balance car through the connecting members, thereby avoiding the human body driving to achieve physical fatigue caused by the sliding, and in addition, during the sliding process, since the device can maintain the balance state, the operator
  • the lower skill requirements which improves the user experience, in other words, provides a better user-friendly skating device and electric balance car.
  • the first sensor is specifically configured to sense a posture of a driver on the pedal and generate pitch sensing data
  • the first controller is specifically configured to determine, according to the pitch sensing data.
  • the first controller when controlling an output signal of the drive element, specifically controls an output signal of the drive element by a desired pitch angle of the pedal and the current pitch angle, such as by a desired pitch angle of the pedal And an angular difference between the current pitch angles.
  • roller skating device is exemplified in the following in the form of a specific roller shoe.
  • the roller skating shoe is not the only implementation form of the roller skating device, and the above-mentioned roller skating device can also be made suitable for roller skating on the hand.
  • the grounding element is illustratively a wheel that is rolled under the drive of the drive element.
  • the rotational speed of the wheels is controlled to generate a rotational speed difference for controlling the steering.
  • the grounding element may also be a flat-like structural member that slides under the driving of the driving element.
  • the wheel is not necessarily circular. When the wheel is not round, the contact surface can be adapted to make the wheel and the contact surface form a reasonable physical contact.
  • the first sensor may specifically be a gyroscope, but is not limited to a gyroscope as long as the driver's attitude on the pedal can be sensed and pitch sensing data is generated. In the following embodiments, the first sensor is not illustrated.
  • the driving component is specifically a motor, but is not limited to a motor. As long as the grounding component can be driven to perform a specific application scenario.
  • the output signal of the drive element is the output torque of the drive element.
  • Embodiment 1 (a single grounding element):
  • FIG. 1 is a schematic structural diagram of a structure of a roller skating device according to Embodiment 1 of the present application; as shown in FIG. 1 , when the roller skating device is implemented in the specific product form of the roller skate, the roller skating shoe specifically includes the pedal 101, the grounding component 102, and the motor. (not shown in FIG. 1), a first controller (not shown in FIG. 1), the pedal 101 is configured to be suitable for standing on one foot, and the number of the grounding elements 102 is specifically one, that is, the driver passes through The skates have only one point of contact with the ground. Correspondingly, the number of the drive elements is one.
  • the drive element can be directly embedded in the hub of the grounding element 102, so that the overall structure of the roller skate is relatively compact.
  • the driving element may also be disposed in the hub of the grounding element 102 without being embedded, such as by a fixing seat or the like.
  • a similar structure is directly provided at a position below the pedal 101.
  • Embodiment 2 (two grounding elements 102a and 102b disposed at close distances)
  • FIG. 2 is a schematic structural diagram of a structure of a roller skating device according to Embodiment 2 of the present application; as shown in FIG. 2, in this embodiment, different from the first embodiment, the number of the grounding components is two, respectively grounded.
  • the lateral spacing between the elements 102a, 102b, the ground elements 102a, 102b is small, thereby achieving a position to be placed near the center of the pedal 101 such that the driver forms two points of contact with the ground through the roller skates, Thereby reducing the difficulty of using the roller skates.
  • the driving shaft of the driving element is disposed laterally, that is, perpendicular to the direction in which the roller shoes travel, and the grounding members 102a and 102b are respectively disposed at two ends of the driving shaft, and the driving component is embedded in the grounding.
  • the hub of the component 102 is directly coupled to the grounding element 102a via a drive shaft and coupled to a grounding component 102b that is not embedded with the drive component.
  • the grounding element 102a in which the driving element is embedded acts as a driving wheel during the traveling of the roller skate
  • the grounding element 102b in which the driving element is not embedded as a driven wheel, the driven wheel is in the driving wheel Driven under the rotation.
  • a motor may be separately disposed on the grounding elements 102a, 102b, so that the action of each grounding element can be separately controlled.
  • Embodiment 3 (two grounding elements 102a and 102b disposed at a long distance)
  • 3a and 3b are schematic diagrams and schematic diagrams showing a schematic structure of a structure of a roller skating device according to Embodiment 3 of the present application; as shown in FIG. 3a and FIG. 3b, in this embodiment, a grounding component is different from the above embodiment.
  • 102a, 102b are respectively disposed at positions close to the left and right side edges of the pedal 101, that is, the lateral distances between the two contact points formed on the ground are large, thereby further reducing the difficulty of using the roller shoes.
  • the grounding elements 102a, 102b share a motor, specifically, the driving shaft of the driving element is disposed laterally, that is, perpendicular to the direction in which the roller shoes travel, and the grounding member 102a is respectively disposed at two ends of the driving shaft.
  • the driving component is embedded in a hub of one of the grounding elements 102a, and is directly connected to the grounding component 102a through a transmission shaft, and is coupled to the grounding component 102b in which the driving component is not embedded.
  • the grounding element 102a in which the driving element is embedded acts as a driving wheel during the traveling of the roller skate
  • the grounding element 102b in which the driving element is not embedded as a driven wheel, the driven wheel is in the driving wheel Driven under the rotation.
  • the number of the driving elements is two, and the grounding elements 102a, 102b are respectively configured with one of the driving elements, thereby achieving separate control of the rotational speed of the grounding elements 102a, 102b during normal travel.
  • the grounding elements 102a, 102b have the same rotational speed.
  • the axis of the grounding element is located below the pedal 101, and the grounding element as a whole is also located below the pedal 101.
  • a fixed base 100a As shown in FIG. 3b, further comprising: a fixed base 100a, the grounding elements 102a, 102b are coupled to the fixed base 100a, and the fixed base 100a is fixed to a lower surface of the pedal 101.
  • the grounding member 102a, 102b may be integrated with the fixed base 100a, and the fixed base 100a may be fixed to the lower surface of the pedal 101.
  • the fixed base 100a is fixed to the lower surface of the pedal in the horizontal direction.
  • the fixed base may also be fixed to the lower surface of the pedal in a vertical direction, and the fixed base is provided with a hole structure, and the drive shaft of the motor passes through the hole structure while One or a group of the grounding units are respectively coupled to both ends of the transmission shaft, so that the grounding element is integrally disposed under the pedal.
  • FIG. 3c is a schematic view of an alternative base in the third embodiment of the present application; as shown in Figure 3c, the ground points 102a, 102b are coupled to the lower surface of the pedal by a quick release structure 100b.
  • Embodiment 4 (two grounding elements 102a and 102b disposed at a long distance)
  • the axial center of the grounding elements 102a, 102b is located below the pedal 101. But partially protrudes upward from the pedal 101.
  • the pedal 101 in the above-described third embodiment is entirely moved downward, and a schematic structural view of the roller skating device in the fourth embodiment shown in FIG. 4 is obtained.
  • the number of the driving elements is two, and the grounding elements 102a, 102b are respectively configured with one of the driving elements, thereby achieving separate control of the rotational speed of the grounding elements 102a, 102b during normal travel.
  • the grounding elements 102a, 102b have the same rotational speed.
  • a roller skate as a roller skating device includes a grounding member 102, and the grounding member 102 is located at a center of the pedal 101, and A motor is disposed in the hub of the grounding element 102.
  • the drive shaft of the motor is threaded into the hub, and the drive shaft 103 is disposed at the intermediate portion with a first bearing structure 104 that is coupled to the ground element 102 to drive the ground element 102 to rotate.
  • a second bearing structure 105 may be respectively disposed at both ends of the transmission shaft, and the bearing structure at each end of the transmission shaft is coupled with the pedal 101, thereby integrally setting the motor and the transmission shaft under the pedal 101. position.
  • FIG. 6 is a schematic structural diagram of a specific implementation of a roller skating device according to Embodiment 6 of the present application; as shown in FIG. 6, the roller skate as a roller skating device includes two grounding members, namely, grounding members 102a and 102b, and the grounding members 102a and 102b are respectively disposed close to each other. The position of the left and right side edges of the pedal 101.
  • the grounding elements 102a, 102b are each provided with a motor.
  • the arrangement of the motor and the drive shaft can be referred to the embodiment shown in FIG.
  • the pedal 101 is not rectangular but has arcs at both ends.
  • FIG. 7a and 7b are schematic diagrams and 2 of the structure of the roller skating device in the seventh embodiment of the present application; referring to FIG. 7a and FIG. 7b, on the basis of the above embodiment of FIG. 1, a binding unit 108 is added, and the binding unit is added.
  • the binding unit is a structure having a fastening button or a locking buckle, and the driver's foot position or the foot rest is fixed by the buckle or the locking buckle. Position to prevent the driver from falling off the roller skates.
  • the position of the foot is, for example, the position of the foot, and the position of the foot is, for example, an ankle or a calf.
  • the skating device further includes: a protective cover 109 for contacting the heel of the one foot standing on the pedal 101 to stabilize the one foot on the pedal during the skating process 101.
  • the specific shape of the protective cover may be curved to closely fit the heel of the foot to provide a stable support.
  • the restraint unit and the protective cover provide a firming action for the driver's foot in the rear position and the front position, thereby effectively preventing the driver from falling from the roller skate during the skating process.
  • a battery compartment 106 is further disposed, and the battery compartment 106 is provided with a battery pack 107, and the battery pack 107 is used for Drive components and other structures or circuits that require electrical power.
  • the pedal 101 has a hollow inner cavity in which the battery compartment 106 is disposed.
  • a battery pack 107 is disposed at a rear portion of a skating device as a roller skate, and specifically, for example, a battery compartment is disposed in a hollow of the protective cover 109. In the cavity, a battery pack 107 is disposed in the battery compartment.
  • the driver sets the battery pack 107 on the body, and then passes the external power cord and the electric circuit or component in the roller skate.
  • the motor is connected.
  • FIG. 9 is a schematic diagram of a control principle of a roller skating device according to Embodiment 9 of the present application; as shown in FIG. 9, when the pedal is tilted forward or backward, the first controller is configured according to a desired pitch angle of the pedal.
  • the angular difference between ⁇ * and the current pitch angle ⁇ generates a drive electrical signal to control the magnitude of the output torque of the drive element.
  • a drive electric signal is generated to control the output torque magnitude of the drive element based on the current pitch angular velocity ⁇ of the pedal and the angular difference ⁇ error between the desired pitch angle ⁇ * and the current pitch angle ⁇ .
  • the driving electrical signal is, for example, a driving voltage.
  • the first controller (also referred to as a balance controller) is, for example, a PID controller.
  • the skating device may further include a second controller (also referred to as a speed controller) configured to determine the current speed V of the driving component and the set maximum rotational speed V * The desired pitch angle ⁇ * is described.
  • the second controller is also a PID controller, for example.
  • the traveling speed of the skating device is not limited to exceed the upper limit of the traveling speed.
  • the pitch angle ⁇ * is expected to be 0, and according to the angle difference ⁇ error , the first controller generates a driving electric signal according to the angle difference ⁇ error to control the output torque of the driving element and finally causes the The pedal is dynamically level.
  • the roller slide device may further comprise a second sensor for sensing the current rotational speed of the drive element.
  • the current pitch angular velocity may also be disregarded when generating the driving electrical signal.
  • the second controller may not be configured when determining the desired pitch angle, but the first controller is multiplexed.
  • a first controller may be configured according to the present rotation speed V of the driven element and the maximum speed V * set by determining the desired pitch angle ⁇ *, it may also be configured according to the desired pitch angle ⁇ * and the pedal
  • the angular difference between the current pitch angles ⁇ generates a drive electrical signal to control the magnitude of the output torque of the drive element.
  • the output signal of the driving component may also be in other forms, and the output torque is only illustrated in the embodiment, and the different driving components have different types of output signals.
  • the second controller may also be multiplexed into the first controller.
  • the second controller may be configured according to the present rotation speed V of the driven element and the maximum speed V * set by determining the desired pitch angle ⁇ *, it may also be configured according to the desired pitch angle ⁇ * and the pedal
  • the angular difference between the current pitch angles ⁇ generates a drive electrical signal to control the magnitude of the output torque of the drive element.
  • FIG. 10 is a schematic structural view of an auxiliary grounding component provided in Embodiment 10 of the present application; as shown in FIG. 10, an auxiliary grounding component 110a, 110b is respectively disposed on the front and rear of the pedal 101 on the basis of the above-mentioned FIG. The maximum angle of the back tilt is limited.
  • a fixing block 111 may be disposed under the pedal 101, and the auxiliary grounding member 110a or 110b is fixed to the fixing block 111.
  • FIG. 10 to add an auxiliary grounding element to the other embodiments of the roller rolling apparatus shown in FIG.
  • auxiliary grounding elements is not limited.
  • only an auxiliary grounding element is disposed in front of the pedal, or an auxiliary grounding element is disposed only behind the pedal.
  • the number of auxiliary grounding elements disposed at the front or the rear is not limited, and a plurality of sets may be provided.
  • the grounding component in the previous embodiment is also referred to as a main grounding component, and the rolling circumferential length of the primary grounding component is greater than the rolling circumference of the auxiliary grounding component.
  • the main grounding element and the auxiliary grounding element are merely examples on the name, and technically, as long as they can be in contact with a running surface such as the ground.
  • the auxiliary grounding element is disposed in front of the main grounding element for contacting the ground when the pedal is tilted forward, and limiting a maximum angle of the pedal forward tilting to control the output signal. The value does not exceed the set first threshold.
  • the auxiliary grounding element is located entirely below the pedal. Specifically, the lower surface of the pedal is provided with a front fork structure, and the auxiliary main grounding unit is disposed under the pedal through the front fork structure.
  • the auxiliary grounding element is disposed behind the main grounding element for contacting the ground when the pedal is tilted backward, and limiting a maximum angle of the pedal backward tilting to control the output signal. The value does not exceed the set second threshold.
  • the auxiliary grounding element is located entirely below the pedal. Specifically, the lower surface of the pedal is provided with a rear fork structure, and the auxiliary main grounding unit is disposed under the pedal through the rear fork structure.
  • auxiliary grounding element can function as a speed limit in addition to the maximum angle at which the pedal tilt can be displayed, and can also function as an auxiliary coasting.
  • the roller skating device can operate in the electric driving state of the motor or in the manual driving state.
  • the steering sensor is configured to sense a driver's foot posture on the pedal; each of the third controllers is configured to correspond to a corresponding driving element according to a step posture of the driver on the corresponding pedal
  • the output signal is controlled such that a speed difference (such as a first speed difference, a second speed difference described below) for steering of the single rolling device is formed between the corresponding two of the grounding elements, and the two roller skating devices are caused
  • a speed difference (such as the third speed difference described below) for the overall steering of the two roller skating devices is formed therebetween.
  • the steering sensor senses a driver's foot posture corresponding to the pedal and generates first steering sensing data and second steering sensing data, respectively
  • the third controller is configured to: according to each The driver sensed by the steering sensor generates first steering sensing data and second steering sensing data respectively on the foot posture corresponding to the pedal; generates a first steering control command according to the first steering sensing data, and according to the second Steering the sensing data to generate a second steering control command; performing motion control on the two corresponding grounding elements corresponding to the first steering control command and the second steering control command to respectively make each of the two main grounds
  • a first speed difference for controlling steering, a second speed difference, and a third speed difference for controlling steering between the two of the roller skating devices are formed between the elements.
  • FIG. 11 is a schematic flowchart of a steering control method according to Embodiment 11 of the present application; as shown in FIG. 11 , the present invention includes: in this embodiment, two pressure sensors are disposed on each roller sliding device as an example, and are also configured. a third controller configured to perform a technique related to direct or indirect steering, in particular, two of the roller skating devices are assembled together by a connector, and the steering control method includes:
  • the first pressure sensing data and the second pressure sensing data are respectively generated by the driver in the foot posture corresponding to the pedal according to each of the two pressure sensors;
  • the step posture may be a horizontal sway of the driver on the pedal.
  • S1102 Generate a first steering control command according to the first steering sensing data: generate a first steering control command according to the first pressure sensing data;
  • Generating a second steering control command according to the second steering sensing data includes: generating a second steering control command according to the second pressure sensing data.
  • each of the roller skating devices is provided with two pressure sensors, one pressure sensor generates one sensing data, and generates a first steering control command according to the first steering sensing data, according to the two first steering sensing data.
  • the difference generates a first steering control command, and similarly, generates a second steering control command based on the difference between the two second steering sensing data.
  • S1104 Perform operation control on two corresponding grounding elements corresponding to the first steering control command and the second steering control command, so as to respectively form a control for steering between each of the two grounding components.
  • a first speed difference, a second speed difference, and a third speed difference for controlling steering are formed between the two of the roller skating devices as a whole.
  • each of the roller skating devices since each of the roller skating devices includes at least two wheels, each of the roller skating devices needs to rotate when steered, and in addition, relative rotation between the two rotator devices is required. Therefore, in order to realize the respective rotation of the two roller skating devices, there is a difference in rotational speed between the two wheels of each skating device, that is, a first rotational speed difference and a second rotational speed difference; when two roller skating devices need to perform relative rotation, then two skating There is a third difference in rotational speed between the devices as a whole.
  • the rotational speed of the wheel is increased from left to right. If turning to the right, from left to right, the rotational speed of the wheel is decreased, thereby forming the first rotational speed difference and the second rotational speed difference.
  • the third speed difference if turning to the left, the rotational speed of the wheel is increased from left to right. If turning to the right, from left to right, the rotational speed of the wheel is decreased, thereby forming the first rotational speed difference and the second rotational speed difference. The third speed difference.
  • the forming principle of the first rotational speed difference and the second rotational speed difference in this embodiment is similar to the rotational speed difference of the steering control of the single skating device.
  • the steering sensors included in each of the roller skating devices may also be of different types.
  • the steering sensor is a steering shaft for sensing a driver's foot posture on the pedal to generate a first steering induction torque and/or a second steering Inductive torque; correspondingly, generating a first steering control command according to the first steering induction data: generating a first steering control command according to the first steering induction torque; and/or generating a second steering control command according to the second steering sensing data
  • the method includes: generating a second steering control command according to the second steering induction torque.
  • the steering shaft is configured to be perpendicular to a direction in which the roller skate travels.
  • the steering sensor is a gyroscope for sensing a driver's foot posture on the pedal to generate first angular motion sensing data and/or second Correspondingly, generating a first steering control command according to the first steering sensing data: generating a first steering control command according to the first angular motion sensing data; and/or generating a second according to the second steering sensing data
  • the steering control command includes: generating a second steering control command based on the second angular motion sensing data.
  • a first steering control command and/or a second steering control command are generated based on a foot posture sensed by the steering sensor that the driver is horizontally swaying on the pedal.
  • a spring is disposed on the left and right sides of the pedal of the roller skating device such that the pedal can be tilted left and right
  • the steering sensor is a photoelectric sensor
  • the photoelectric sensor is used to sense the driver a foot posture on the pedal such that the pedal can be tilted left and right to generate first photoelectric sensing data and/or second photoelectric sensing data; correspondingly, generating a first steering control command according to the first steering sensing data:
  • the first photoelectric sensing data generates a first steering control command; and/or, generating the second steering control command according to the second steering sensing data includes: generating a second steering control command according to the second photoelectric sensing data.
  • the principle of generating the difference in rotational speed is as follows: generating steering sensing data according to the foot posture of the driver on the pedal sensed by the steering sensor; The sensing data generates a steering control command; controlling the two grounding elements according to the steering control command such that a speed difference for controlling steering is formed between the two grounding elements.
  • the steering sensor may be the above-described photoelectric sensor, steering shaft, or the like.
  • At least one manned sensor disposed on the skating device senses whether there is a driver standing on the skating device at a single point; if so, the configured steering sensor senses that the driver is corresponding to the pedal The upper foot gesture to generate the first steering sensing data and/or the second steering sensing data.
  • data communication can be performed between the two roller skating devices.
  • one of the skating devices generates the first steering sensing data
  • another roller skating device is triggered to generate the second steering sensing data. Therefore, the other roller skating device can The steering sensor is not configured.
  • the first controller is multiplexed into a third controller.
  • the third controller may multiplex the first controller, or may multiplex the second controller, or if the third controller is separately added.
  • the third controller may be multiplexed into the first controller or the second controller.
  • the motor is specifically a hub motor, but in other embodiments, the motor may also be a high speed motor. In the above embodiment, it is also possible to arrange the wheel cover for the wheel.
  • each of the skating devices includes a steering sensor
  • each of the skating devices includes a steering sensor, a pedal, a third controller, and a main grounding element
  • the steering sensor is used for Sensing a driver's foot posture on the pedal
  • each of the third controllers is configured to control an output signal of a corresponding driving component according to a driver's step posture on the corresponding pedal, such that two A speed difference between the two roller skating devices for overall steering is formed between the roller skating devices.
  • each of the steering sensors senses a driver's foot posture on the pedal to generate first steering sensing data and second steering sensing data, respectively, the third controller configuration a first steering control command is generated according to the first steering sensing data, and a second steering control command is generated according to the second steering sensing data; and corresponding to the first steering control command and the second steering control command according to the first steering control command
  • the two grounding elements are motion controlled to form a third speed difference for controlling steering between the two of the primary grounding elements, respectively.
  • the steering control is similar to the case where one of the main grounding elements included in one of the rolling devices is two, and the two main grounding elements are controlled by controlling the output torque of the respective motors.
  • the rotational speed eventually forms a rotational speed difference for controlling the steering.
  • FIG. 12 is a schematic structural view of an electric balance vehicle according to Embodiment 12 of the present application; as shown in FIG. 12, the structure of a single roller skating device is as shown in FIG. 1, and the connecting member 300 connects the two roller skating devices along the longitudinal direction. The way they are connected together.
  • a first fixing block 101a is disposed at a tail portion of the pedal 101 of one of the roller skating devices
  • a second fixing block 101b is disposed at a head portion of the pedal 101 of another one of the roller skating devices, the connecting member 200
  • One end is fixed to the first fixing block 101a, and the other end is fixed to the second fixing block 101b.
  • FIG. 13 is a schematic structural view of an electric balance vehicle according to Embodiment 13 of the present application; as shown in FIG. 13, two ends of the connecting member 200 are respectively fixed on two opposite sides of the roller sliding device shown in FIG.
  • the two skating devices are assembled together, in particular, the connecting members are used to assemble the two skating devices in a lateral direction.
  • FIG. 14 is a schematic structural view of an electric balance vehicle according to Embodiment 14 of the present application; as shown in FIG. 14, two ends of the connecting member 200 are respectively fixed on two opposite sides of the roller sliding device shown in FIG.
  • the two skating devices are assembled together, in particular, the connecting members are used to assemble the two skating devices in a lateral direction.
  • FIG. 15 is a schematic structural view of an electric balance vehicle according to Embodiment 15 of the present application; as shown in FIG. 15, an auxiliary main grounding unit 110a, 110b is added on the basis of FIG. 1, and the fixed base 100 in FIG. 3b is modified to And disposed on a lower surface of the pedal along a vertical direction, the fixed base is provided with a hole structure, the transmission shaft of the motor passes through the hole structure, and is coupled at both ends of the transmission shaft One of the main main grounding units 102 is connected so that the main grounding element 102 is entirely disposed below the pedals 102.
  • one end of the connecting member is coupled to the drive shaft of one of the skating devices, and the other end is coupled to the drive shaft of the other of the skating devices.
  • the connector is configured to be adjustable in length to adjust the spacing between adjacent two roller skating devices.
  • a rotating mechanism is further provided at an intermediate position of the connecting member, so that the partial connecting members on the left and right sides of the rotating mechanism can be freely rotated by the rotating mechanism.
  • the two skating mounted pedals can be tilted forward or backward individually, and the electric balance of the assembly can be formed by the driver's foot posture operation.
  • the car moves forward or backwards as a whole.
  • first controller, the second controller, and the third controller may be disposed on the fixed base to adjust the relative position of the main grounding element and the pedal in a horizontal plane.
  • the first controller, the second controller, and the third controller may be disposed in the pedal.
  • FIG. 16 is a schematic structural view of an electric balance vehicle according to Embodiment 16 of the present application
  • FIG. 17 is a schematic view showing details of both ends of the connecting member in Embodiment 17 of the present application; for the sake of clarity, only the grounding member 102 is illustrated in FIG.
  • the connecting member 200 as shown in FIGS. 16 and 17, is further configured to cause the left and right two of the skating devices to move relative to each other in a vertical direction.
  • a fixing base 301 and a rotating shaft 302 are respectively disposed at two ends of the connecting member, and the fixing base 301 is disposed on the corresponding roller bearing device, and the rotating shaft 302 is disposed in the On the fixing base 301, the two ends of the connecting member are respectively sleeved on the corresponding rotating shaft 302 so that the two rolling devices move in the vertical direction.
  • the connecting member 200 specifically includes two connecting rods 201 arranged in parallel in the upper and lower directions.
  • Each connecting rod 201 corresponds to a fixing base and a rotating shaft 302, thereby ensuring that the two roller sliding devices can mutually move in a vertical direction, such as In particular, when obstacles are encountered, mutual interaction between the two skating devices can occur in the vertical direction, thereby ensuring that the skating device passes over the obstacle.
  • the two connecting rods 201 are vertically arranged in parallel, and may be actually arranged in parallel in the front and rear.
  • FIG. 18 is a schematic structural view of an electric balance vehicle according to Embodiment 18 of the present application
  • FIG. 19 is a schematic view showing details of both ends of the connecting member in Embodiment 19 of the present application; similarly, for the sake of clarity, FIG. 18 only shows
  • the grounding member 102 and the connecting member 200 are respectively provided with omnidirectional motion joints 400 at both ends of the connecting member 200, and the omnidirectional motion joints 400 are disposed on the corresponding roller skating devices. In order to move the two of the roller skating devices in any direction.
  • the omnidirectional exercise joint 400 includes a first motion joint 401 and a second motion joint 402, and the first motion joint 401 and the second motion joint 402 disposed at both ends of the connector cooperate to make two The skating devices move in any direction along each other.
  • the first motion joint 401 includes a fixing fork 411 and a first rotating fork 421 disposed on the corresponding roller bearing device, and the first rotating fork 421 is configured by the first rotating shaft 431 On the fixed fork 412; the second moving joint 402 includes a second rotating fork 422, the second rotating fork 422 is coupled to the first rotating fork 421, and the second rotating fork 422 is passed through the second A rotating shaft 432 is disposed on the end of the connecting member 200.
  • first rotating fork 421 and the second rotating fork 422 are integrally formed to form an integral rotating fork.
  • it can also be separated, as long as omnidirectional rotation can be achieved, and omnidirectional rotation is also referred to as 360 degree free rotation.
  • a third joint joint 403 is disposed at an intermediate portion of the connecting member 200 such that the two of the rolling devices move in any direction, and the structure of the third moving joint 403 can be combined with the first moving joint. Or the second motor joint is similar. In the presence of an omnidirectional joint, the third joint 403 can assist the two of the skating devices to move in any direction.
  • roller skating devices there may be four roller skating devices to form a balance car.
  • the two roller skating devices in the front and rear direction are connected by a connecting member, and the two skating devices in the left and right direction are also connected by a connecting member. It can be operated by two drivers before and after.
  • the expression “include” or “may include” refers to the existence of the corresponding function, operation or element, and does not limit one or more additional functions, operations or elements.
  • terms such as “include” and / or “have” are understood to mean certain features, numbers, steps, operations, components, elements or combinations thereof, and are not to be construed as being excluded. The existence or additional possibility of one or more other characteristics, numbers, steps, operations, constituent elements, elements or combinations thereof.
  • the expression “A or B”, “at least one of A or / and B” or “one or more of A or / and B” may include all possible combinations of the listed items.
  • the expression “A or B”, “at least one of A and B” or “at least one of A or B” may include: (1) at least one A, (2) at least one B, or (3) at least One A and at least one B.
  • first, second, the first or “the second” as used in the various embodiments of the present disclosure may modify various components regardless of order and/or importance. , but these statements do not limit the corresponding components. The above statements are only used for the purpose of distinguishing components from other components.
  • the first user device and the second user device represent different user devices, although both are user devices.
  • a first element could be termed a second element, and a second element could be termed a first element, without departing from the scope of the disclosure.
  • an element eg., a first element
  • another element e.g., a second element
  • An element e.g., a second element or “connected to” another element (e.g., a second element) is understood to mean that the one element is directly connected to the other element or the one element is via the other element (e.g., The third component is indirectly connected to the other component. Rather, it will be understood that when an element (e.g., a first element) is referred to as “directly connected” or “directly connected” to another element (the second element), then no element (e.g., the third element) is inserted in either Between the people.
  • a processor adapted to (or configured to) perform A, B, and C may mean a dedicated processor (eg, an embedded processor) for performing only the corresponding operations or may be stored in the storage device by execution
  • a general purpose processor eg, a central processing unit (CPU) or an application processor (AP) in which one or more software programs perform corresponding operations.
  • the device embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, ie may be located A place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Toys (AREA)

Abstract

一种轮滑装置及电动平衡车,包括踏板(101)、接地元件(102)、第一传感器、驱动元件、第一控制器,所述踏板耦合于所述第一传感器和所述接地元件(102),所述接地元件(102)耦接于所述驱动元件,所述第一控制器耦接于所述第一传感器和所述驱动元件;其中:所述踏板(101)用于适用于单点站立,且用于在单点站立时可向前或者向后倾斜;所述接地元件(102)用于在所述驱动元件的驱动下动作;所述第一传感器用于感应驾驶者在所述踏板(101)上的姿态;所述驱动元件用于生成控制所述接地元件(102)动作以及维持所述轮滑装置整体处于平衡状态的输出信号;所述第一控制器用于根据所述姿态控制所述输出信号的生成,提高了电动平衡车的用户体验。

Description

轮滑装置及电动平衡车
本申请要求申请日为2017年7月27日、申请号为“201710626491.4”、发明名称为“轮滑装置”的中国专利申请的优先权,以及本申请要求要求申请日为2017年7月27日、申请号为“201710625533.2”、发明名称为“电动平衡车”的中国专利申请的优先权,在此全部引入本申请中。
技术领域
本申请实施例涉及轮滑或者代步工具技术领域,尤其涉及一种轮滑装置及电动平衡车。
背景技术
轮滑鞋作为一种娱乐工具或者代步工具,主要可分为速度型、操控型,但是,这两类轮滑鞋的结构形式基本一致,包括鞋体和安装在鞋底的轮架以及若干个滚轮,所不同的是根据使用目的的不同,滚轮的数量、大小和排布会有一定的差异。使用过程中,均是靠操作者的人力驱动比如通过蹬踏动作实现滑行,从而存在一定的局限性长时间使用还是容易造成身体疲劳,另外,在滑行的过程中,站在轮滑鞋上要保持平衡,对操作者的要求较高,从而最终导致轮滑鞋的用户体验较差。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种轮滑装置及电动平衡车,用以克服或者缓解现有技术中上述技术缺陷。
本申请实施例提供一种轮滑装置,其包括:踏板、接地元件、第一传感器、驱动元件、第一控制器,所述踏板耦合于所述第一传感器和所述接地元件,所述接地元件耦接于所述驱动元件,所述第一控制器耦接于所述第一传感器和所述驱动元件;其中:所述踏板用于适用于单点站立,且用于在单点站立时可向前或者向后倾斜;所述接地元件用于在所述驱动元件的驱动下动作;所述第一传感器用于感应驾驶者在所述踏板上的姿态;所述驱动元件用于生成控制所述接地元件动作以及维持所述轮滑装置整体处于平衡状态的输出信号;所述第一控制器用于根据所述姿态控制所述输出信号的生成。
本申请实施例一种电动平衡车,其包括至少本申请任一实施例中的轮滑装置相邻两个轮滑装置之间设置有连接件,用于将两个轮滑装置组装成一体接地元件接地元件接地元件接地元件。
由以上技术方案可见,本申请实施例中,由于所述踏板耦合于所述第一传感器和所述接地元件,所述接地元件耦接于所述驱动元件,所述第一控制器耦接于所述第一传感器和所述驱动元件;其中:所述踏板用于适用于单点站立,且用于在单点站立时可向前或者向后倾斜;所述接地元件用于在所述驱动元件的驱动下动作;所述第一传感器用于感应驾驶者在所述踏 板上的姿态;所述驱动元件用于生成控制所述接地元件动作以及维持所述轮滑装置整体处于平衡状态的输出信号;所述第一控制器用于根据所述姿态控制所述输出信号的生成。另外,至少两个轮滑装置通过连接件组成一个电动平衡车,本申请避免了人力驱动作实现滑行导致的身体疲劳,另外,在滑行的过程中,由于具有可以装置本省可以维持平衡状态,对操作者的操作技巧要求较低,从而提高了用户体验,换言之,整体上提供了一种用户体验更好的轮滑装置和电动平衡车。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例一中轮滑装置的结构简要结构示意图;
图2为本申请实施例二中轮滑装置的结构简要结构示意图;
图3a、图3b为本申请实施例三中轮滑装置的结构简要结构示意图之一和之二;
图3c为可替代本申请实施例三中固定基座的示意图;
图4为本申请实施例四中的轮滑装置简要结构示意图;
图5为本申请实施例五中轮滑装置的具体实现结构示意图;
图6为本申请实施例六中轮滑装置的具体实现结构示意图;
图7a、图7b为本申请实施例七中轮滑装置的结构示意图之一和之二;
图8为本申请实施例八中轮滑装置的局部示意图;
图9为本申请实施例九中轮滑装置的控制原理示意图;
图10为本申请实施例十中设置辅助接地元件的结构示意图;
图11为本申请实施例十一中转向控制方法流程示意图;
图12-16分别为本申请实施例十二-十六中电动平衡车的结构示意图;
图17为本申请实施例十七中连接件两端的细节示意图;
图18为本申请实施例十八中电动平衡车的结构示意图;
图19为本申请实施例十九中连接件两端的细节示意图。
具体实施方式
当然,实施本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
由以上技术方案可见,本申请实施例中,由于所述踏板耦合于所述第一传感器和所述接地元件,所述接地元件耦接于所述驱动元件,所述第一控制器耦接于所述第一传感器和所述驱动元件;其中:所述踏板用于适用于单点站立,且用于在单点站立时可向前或者向后倾斜;所述接地元件用于在所述驱动元件的驱动下动作;所述第一传感器用于感应驾驶者在所述踏板上的姿态;所述驱动元件用于生成控制所述接地元件动作以及维持所述轮滑装置整体处于 平衡状态的输出信号;所述第一控制器用于根据所述姿态控制所述输出信号的生成。另外,至少两个轮滑装置通过连接件组成一个电动平衡车,避免了人力驱动作实现滑行导致的身体疲劳,另外,在滑行的过程中,由于具有可以装置本省可以维持平衡状态,对操作者的操作技巧要求较低,从而提高了用户体验,换言之,整体上提供了一种用户体验更好的轮滑装置和电动平衡车。
本申请实施例下述实施例中,所述第一传感器具体用于感应驾驶者在所述踏板上的姿态并生成俯仰感应数据,所述第一控制器具体用于根据所述俯仰感应数据确定所述踏板的当前俯仰角。所述第一控制器在控制所述驱动元件的输出信号时,具体通过所述踏板的期望俯仰角以及所述当前俯仰角控制所述驱动元件的输出信号,比如通过所述踏板的期望俯仰角以及所述当前俯仰角之间的角度差。
下述以具体的轮滑鞋形态实现上述轮滑装置进行示例性说明,但是,需要说明的是,轮滑鞋并不是轮滑装置的唯一实现形式,也可以将上述轮滑装置制成适用于在手上进行轮滑的产品形态,或者,适用于残疾人进行轮滑的任意产品形态。
进一步地,下述实施例中,所述接地元件示例性地为轮子,所述接地元件在所述驱动元件的驱动下进行滚动。在后续控制转向时,控制轮子的转速以生成用于控制转向的转速差。
但是,在其他实施例中,并不局限为轮子,也可以是其他任意可与地面形成实际物理接触的结构形式。比如如果应用于滑冰或者滑雪等场景,所述接地元件还可以为类似平板状的结构件,所述接地元件在所述驱动元件的驱动下进行滑动。另外,轮子并非一定是圆形,当轮子不为圆形时,可以适应性地改造接触面即可,以使得轮子和接触面形成合理的物理接触。
进一步地,下述实施例中,所述第一传感器具体可以为陀螺仪,但是,并不局限为陀螺仪,只要可以感应驾驶者在所述踏板上的姿态并生成俯仰感应数据即可。下述实施例中,未示意出第一传感器。
进一步地,下述实施例中,所述驱动元件具体为电机,但是,并不部局限为电机,只要可以驱动所述接地元件进行动作,可以实现具体的应用场景即可。当所述驱动元件为电机时,所述驱动元件的输出信号为所述驱动元件的输出扭矩。
实施例一(一个单独接地元件):
图1为本申请实施例一中轮滑装置的结构简要结构示意图;如图1所示,在以轮滑鞋这一具体产品形态实现轮滑装置时,轮滑鞋具体包括上述踏板101、接地元件102、电机(图1中未示出)、第一控制器(图1中未示出),所述踏板101配置为适用于单脚站立,所述接地元件102的数量具体为一个,即驾驶者通过所述轮滑鞋与地面仅有一个接触点。对应地,所述驱动元件的数量为一个。
具体地,所述驱动元件可以直接内嵌在所述接地元件102的轮毂内,从而使得轮滑鞋整体结构上较为紧凑。
但是,需要说明的是,若不考虑或者不重点考虑轮滑鞋整体结构的紧凑性,所述驱动元件也可以不用内嵌的方式设置在所述接地元件102的轮毂内,比如通过固定座或者其他类似结构直接设置在踏板101的下方位置即可。
实施例二(近距离设置的两个接地元件102a和102b)
图2为本申请实施例二中轮滑装置的结构简要结构示意图;如图2所示,本实施例中,与上述实施例一不同的是,所述接地元件的数量为两个,分别为接地元件102a、102b,接地元件102a、102b之间的横向间距较小,从而实现将设置在靠近所述踏板101中心的位置处,从而使得驾驶者通过所述轮滑鞋与地面形成两个接触点,从而降低轮滑鞋使用的难度。
本实施例中,所述驱动元件的传动轴横向设置即与轮滑鞋行进的方向垂直,所述传动轴的两端分别设置所述接地元件102a和102b,所述驱动元件内嵌在所述接地元件102的轮毂内,并通过传动轴与所述接地元件102a直接连接,同时与未内嵌有所述驱动元件的接地元件102b耦接。换言之,内嵌有所述驱动元件的接地元件102a在轮滑鞋行进的过程中作为主动轮,而未内嵌有所述驱动元件的接地元件102b作为从动轮,所述从动轮在所述主动轮的带动下旋转。
需要说明的是,在其他实施例中,也可以给所述接地元件102a、102b分别配置一个电机,从而使得每个接地元件的动作可以单独进行控制。
实施例三(远距离设置的两个接地元件102a和102b)
图3a、图3b为本申请实施例三中轮滑装置的结构简要结构示意图之一和之二;如图3a、图3b所示,本实施例中,与上述实施例而不同的是,接地元件102a、102b分别设置在靠近所述踏板101左右两侧边缘的位置处,即与地面形成的两个接触点横向距离较大,从而进一步降低轮滑鞋使用的难度。
类似上述实施例二,接地元件102a、102b共用一个电机,具体将所述驱动元件的传动轴横向设置即与轮滑鞋行进的方向垂直,所述传动轴的两端分别设置所述接地元件102a、102b,所述驱动元件内嵌在其中一所述接地元件102a的轮毂内,并通过传动轴与所述接地元件102a直接连接,同时与未内嵌有所述驱动元件的接地元件102b耦接。换言之,内嵌有所述驱动元件的接地元件102a在轮滑鞋行进的过程中作为主动轮,而未内嵌有所述驱动元件的接地元件102b作为从动轮,所述从动轮在所述主动轮的带动下旋转。
可替代地,在另外一实施例中,所述驱动元件的数量为两个,接地元件102a、102b分别配置一个所述驱动元件,从而实现接地元件102a、102b转速的单独控制,在正常行进过程中,接地元件102a、102b的转速相同。
上述实施例一至三中,所述接地元件的轴心位于所述踏板101下方位置,且所述接地元件整体也位于所述踏板101下方位置。
如图图3b所示,还包括:固定基座100a,所述接地元件102a、102b耦合在所述固定基座100a上,所述固定基座100a固定在所述踏板101的下表面。在一具体应用场景中,可以将接地元件将102a、102b与固定基座100a集成为一体,再将固定基座100a固定在踏板101的下表面。固定基座100a沿着水平方向固定在所述踏板的下表面。
在其他实施例中,所述固定基座也可以沿着竖直方向固定在所述踏板的下表面,所述固定基座上设置有孔结构,所述电机的传动轴穿过孔结构,同时,在所述传动轴的两端分别耦接一个或者一组所述接地单元,从而将接地元件整体设置在所述踏板的下方。
需要说明的是,在他实施例中,也可以用其他任意结构将所述接地元件102a、102b最终耦合到所述踏板101上。图3c为可替代本申请实施例三中固定基座的示意图;如图3c所示,通过快拆结构100b将所述接地点102a、102b耦合到踏板的下表面。
实施例四(远距离设置的两个接地元件102a和102b)
与上述实施例三不同的是,下述图4实施例中,当包括接地元件102a、102b时且相互之间的横向距离较大,接地元件102a、102b的轴心位于所述踏板101下方位置,但部分向上突出于所述踏板101。
将上述实施例三中的踏板101整体下移,得到如图4所示的实施例四中的轮滑装置简要结构示意图。
可替代地,在另外一实施例中,所述驱动元件的数量为两个,接地元件102a、102b分 别配置一个所述驱动元件,从而实现接地元件102a、102b转速的单独控制,在正常行进过程中,接地元件102a、102b的转速相同。
图5为本申请实施例五中轮滑装置的具体实现结构示意图;如图5所示,作为轮滑装置的轮滑鞋包括一个接地元件102,该接地元件102位于所述踏板101中心的位置处,且该接地元件102的轮毂内设置有电机。电机的传动轴穿设在轮毂内,同时传动轴103靠中间部位配置有第一轴承结构104,该轴承结构与接地元件102耦接,从而驱动接地元件102旋转。
另外,在图5中,可以在传动轴的两端分别设置一个第二轴承结构105,传动轴每一端的轴承结构与踏板101耦接,从而实现将电机、传动轴整体设置在踏板101的下方位置。
图6为本申请实施例六中轮滑装置的具体实现结构示意图;如图6所示,作为轮滑装置的轮滑鞋包括两个接地元件即接地元件102a、102b,接地元件102a、102b分别设置在靠近所述踏板101左右两侧边缘的位置处。接地元件102a、102b均配置一个电机,电机以及传动轴的设置方式可以参照上述图5所示实施例。
与上述图1-图4实施例不同的是,图5、图6实施例中,踏板101并非为长方形,而是其两端具有圆弧。
图7a、图7b为本申请实施例七中轮滑装置的结构示意图之一和之二;参见图7a、图7b,在上述图1实施例的基础上,增加了束缚单元108,所述束缚单元设置在所述踏板上,用于固定使用所述轮滑装置的个体的脚部位置或者脚部靠上位置。可选地,所述束缚单元为具有粘扣或者锁紧卡扣的结构,通过所述粘扣或者所述锁紧卡扣固定使用所述轮滑装置的驾驶者的脚部位置或者脚部靠上位置,防止驾驶者从轮滑鞋上跌落。脚部位置比如为脚面位置,脚部靠上位置比如为脚踝或者小腿。
进一步地,本实施例中,轮滑装置还包括:保护罩109,所述保护罩用于与站立在所述踏板101上的单脚的脚后跟接触以在轮滑过程中使单脚稳固在所述踏板101上。保护罩的具体形状可以为弧形,从而与脚后跟紧密贴合,提供稳定的支撑作用。
本实施例中,通过束缚单元和保护罩给驾驶者的脚在后方位置以及前方位置提供稳固作用,从而有效防止了驾驶者在轮滑的过程中从轮滑鞋上跌落导致的摔伤危险。
进一步地,本实施例中,可选地,在本申请的任一实施例中,还包括:电池仓106,所述电池仓106内设置有电池组107,所述电池组107用于向所述驱动元件以及其他需要用电的结构或电路供电。具体地,所述踏板101具有中空内腔,所述中空内腔中设置所述电池仓106。
图8为本申请实施例八中轮滑装置的局部示意图;本实施例中,在作为轮滑鞋的轮滑装置的后方部位设置有电池组107,具体地,比如电池仓设置在保护罩109的中空内腔中,电池组107设置在该电池仓内。
需要说明的是,在另外一实施例中,与上述图8不同的是,而是通过驾驶者将电池组107背在身上,再通过外置的电源线与轮滑鞋中的用电电路或者元件如第一控制器、电机连接。
图9为本申请实施例九中轮滑装置的控制原理示意图;如图9所示,当所述踏板向前或者向后倾斜时,所述第一控制器配置为根据所述踏板的期望俯仰角θ*与当前俯仰角θ之间的角度差生成驱动电信号以控制所述驱动元件的输出扭矩大小。具体地,根据所述踏板的当前俯仰角速度ω以及期望俯仰角θ*与当前俯仰角θ之间的角度差θ error生成驱动电信号以控制所述驱动元件的输出扭矩大小。本实施例中,驱动电信号比如为驱动电压。第一控制器(又称之为平衡控制器)比如为PID控制器。
具体地,轮滑装置还可以包括第二控制器(又称之为速度控制器),所述第二控制器配 置为:根据所述驱动元件的当前转速V以及设定的最大转速V *确定所述期望俯仰角θ*。本实施例中,第二控制器比如也为PID控制器。
进一步地,判断所述驱动元件的当前转速V是否超过设定的最大转速V *,如果超过,表明轮滑装置即将进入超速状态,为此输出一个设定非零大小的期望俯仰角θ*,与当前俯仰角θ计算得到上述角度差θ error,第一控制器根据该角度差θ error生成驱动电信号以控制所述驱动元件的输出扭矩并最终使得所述踏板朝着相反于行进方向的方向倾斜,从而限制所述轮滑装置的行驶速度不会超过行驶速度的上限。如果未超过,则期望俯仰角θ*为0,再根据所述角度差θ error,第一控制器根据该角度差θ error生成驱动电信号以控制所述驱动元件的输出扭矩并最终使得所述踏板动态处于水平状态。
具体地,轮滑装置还可以包括第二传感器,所述第二传感器用于感应所述驱动元件的当前转速。
另外,需要说明的是,在一些具体应用场景中,在生成驱动电信号时也可以不考虑当前俯仰角速度。
另外,需要说明的是,在一些具体应用场景中,在确定所述期望俯仰角时也可以不配置第二控制器,而是复用第一控制器。即第一控制器可以配置为根据所述驱动元件的当前转速V以及设定的最大转速V *确定所述期望俯仰角θ*,还可以配置为根据所述踏板的期望俯仰角θ*与所述当前俯仰角θ之间的角度差生成驱动电信号以控制所述驱动元件的输出扭矩大小。
另外,需要说明的是,驱动元件的输出信号也可以其他形式,输出扭矩在本实施例中只是示意,不同驱动元件具有不同类型的输出信号。
在另外一具体应用场景中,若配置了第二控制器,所述第二控制器也可以复用为第一控制器。即第二控制器可以配置为根据所述驱动元件的当前转速V以及设定的最大转速V *确定所述期望俯仰角θ*,还可以配置为根据所述踏板的期望俯仰角θ*与所述当前俯仰角θ之间的角度差生成驱动电信号以控制所述驱动元件的输出扭矩大小。
图10为本申请实施例十中设置辅助接地元件的结构示意图;如图10所示,在上述图1的基础上踏板101的前后方分别设置一个辅助接地元件110a、110b,分别对前倾和后倾的最大角度进行限制。
本实施例中,具体地,可以在踏板101下方设置固定块111,辅助接地元件110a或者110b固定在固定块111上。
需要说明的是,也可以参照图10,在除了图1所示的其他轮滑装置实施例基础上增加辅助接地元件。
另外,辅助接地元件的数量并不做限定,比如在一些应用场景中只在踏板前方设置辅助接地元件,或者,只在踏板后方设置辅助接地元件。设置在前方或者后方的辅助接地元件数量也不做限定,可以设置多个为一组。
在有辅助接地元件时,为了便于区分,之前实施例中的接地元件又称为主接地元件,所述主接地元件的滚动周长大于所述辅助接地元件的滚动周长,需要说明的是,主接地元件和辅助接地元件仅为名称上的示例,在技术作用上,只要可以与行驶面(比如地面)有接触点即可。
本实施例中,所述辅助接地元件设置在所述主接地元件的前方,用于当所述踏板向前倾斜时与地面接触,限制所述踏板前倾的最大角度,以控制所述输出信号的数值不超过设定的第一门限。所述辅助接地元件整***于所述踏板下方。具体地,所述踏板下表面设置有前叉结构,所述辅助主接地单元通过所述前叉结构设置在所述踏板下方。
本实施例中,所述辅助接地元件设置在所述主接地元件的后方,用于当所述踏板向后倾斜时与地面接触,限制所述踏板后倾的最大角度,以控制所述输出信号的数值不超过设定的第二门限。所述辅助接地元件整***于所述踏板下方。具体地,所述踏板下表面设置有后叉结构,所述辅助主接地单元通过所述后叉结构设置在所述踏板下方。
另外,需要说明的是,辅助接地元件除了可以显示踏板倾斜的最大角度起到限速作用,还可以起到辅助滑行的作用。
需要说明的是,上述实施例中,轮滑装置可以工作于电机的电力驱动状态,也可以工作于人力驱动状态。
为了转向,所述转向传感器用于感应驾驶者在所述踏板上的脚部姿态;每个所述第三控制器用于根据驾驶者在其对应的所述踏板上的脚步姿态对对应的驱动元件的输出信号进行控制,使得其对应的两个所述接地元件之间形成用于单个所述轮滑装置转向的速度差(如下述第一速度差、第二速度差),以及使得两个轮滑装置之间形成用于两个轮滑装置整体转向的速度差(如下述第三速度差)。
在一具体应用场景中,所述转向传感器感应到驾驶者在对应所述踏板上的脚部姿态并分别生成第一转向感应数据、第二转向感应数据,第三控制器配置为:根据每个所述转向传感器感应到的驾驶者在对应所述踏板上的脚部姿态分别生成第一转向感应数据、第二转向感应数据;根据第一转向感应数据生成第一转向控制指令,以及根据第二转向感应数据生成第二转向控制指令;根据所述第一转向控制指令、所述第二转向控制指令对其各自所对应的两个接地元件进行动作控制,以分别使得每两个所述主接地元件之间形成用于控制转向的第一速度差、第二速度差以及两个所述轮滑装置整体之间形成用于控制转向的第三速度差。
图11为本申请实施例十一中转向控制方法流程示意图;如图11所示,其包括:本实施例中,以在每个轮滑装置上配置两个压力传感器为例进行说明,同时还配置第三控制器,所述第三控制器配置为执行与直接或者间接转向有关的技术,具体地,两个所述轮滑装置通过连接件组装在一起,其转向控制方法包括:
S1101、根据每两个压力传感器感应到驾驶者在对应所述踏板上的脚部姿态分别生成第一压力感应数据、第二压力感应数据;
本实施例中,所述脚步姿态可以为驾驶者在所述踏板上的水平搓动。
S1102、根据第一转向感应数据生成第一转向控制指令:根据所述第一压力感应数据生成第一转向控制指令;
S1103、根据第二转向感应数据生成第二转向控制指令包括:根据所述第二压力感应数据生成第二转向控制指令。
如前所述,由于每个轮滑装置配置有两个压力传感器,则一个压力传感器生成一个感应数据,则在根据第一转向感应数据生成第一转向控制指令,根据两个第一转向感应数据之差生成第一转向控制指令,类似地,根据两个第二转向感应数据之差生成第二转向控制指令。
S1104、根据所述第一转向控制指令、所述第二转向控制指令对其各自所对应的两个接地元件进行动作控制,以分别使得每两个所述接地元件之间形成用于控制转向的第一速度差、第二速度差以及两个所述轮滑装置整体之间形成用于控制转向的第三速度差。
本实施例中,由于每个轮滑装置包括至少两个轮子,在转向时,每个轮滑装置自身需要转动,另外,两个轮转装置之间要进行相对转动。因此,为了实现两个轮滑装置各自转动,每个轮滑装置的两个轮子之间存在转速差即第一转速差、第二转速差;两个轮滑装置之间需要进行相对转动,则两个轮滑装置整体之间存在第三转速差。
比如在一具体实现时,如果向左转,则从左到右,轮子的转速递增,如果向右转,从左到右,轮子的转速递减,从而形成上述第一转速差、第二转速差、第三转速差。
本实施例中所述第一转速差、第二转速差的形成原理类似上述单个轮滑装置转向控制的转速差。
可替代地,在另一实施例中,每个轮滑装置包括的转向传感器还可以为不同类型。
可替代地,在另外一实施例中,所述转向传感器为转向轴,所述转向轴用于感应驾驶者在所述踏板上的脚部姿态以生成第一转向感应力矩和/或第二转向感应力矩;对应地,根据第一转向感应数据生成第一转向控制指令:根据所述第一转向感应力矩生成第一转向控制指令;和/或,根据第二转向感应数据生成第二转向控制指令包括:根据所述第二转向感应力矩生成第二转向控制指令。所述转向轴配置为与所述轮滑装置行进方向垂直。
可替代地,在再一实施例中,所述转向传感器为陀螺仪,所述陀螺仪用于感应驾驶者在所述踏板上的脚部姿态以生成第一角运动感应数据和/或第二角运动感应数据;对应地,根据第一转向感应数据生成第一转向控制指令:根据所述第一角运动感应数据生成第一转向控制指令;和/或,根据第二转向感应数据生成第二转向控制指令包括:根据所述第二角运动感应数据生成第二转向控制指令。
根据所述转向传感器感应到的驾驶者在所述踏板上进行水平搓动的脚部姿态生成第一转向控制指令和/或第二转向控制指令。
可替代地,在还一实施例中,所述轮滑装置的踏板左右两侧配置有弹簧以使得所述踏板可左右倾斜,所述转向传感器为光电传感器,所述光电传感器用于感应驾驶者在所述踏板上的脚部姿态使得所述踏板可左右倾斜以生成第一光电感应数据和/或第二光电感应数据;对应地,根据第一转向感应数据生成第一转向控制指令:根据所述第一光电感应数据生成第一转向控制指令;和/或,根据第二转向感应数据生成第二转向控制指令包括:根据所述第二光电感应数据生成第二转向控制指令。
对于包括两个主接地元件的单个轮滑装置来说,其转速差的生成原理如下:根据所述转向传感器感应到的驾驶者在所述踏板上的脚部姿态生成转向感应数据;根据所述转向感应数据生成转向控制指令;根据所述转向控制指令对两个所述接地元件进行控制使得所述两个接地元件之间形成用于控制转向的速度差。所述转向传感器可以为上述光电传感器、转向轴等等。
在上述实施例基础上,至少一个所述轮滑装置上配置的载人传感器感应所述轮滑装置上是否单点站立有驾驶者;若有,配置的所述转向传感器感应驾驶者在对应所述踏板上的脚部姿态以生成所述第一转向感应数据和/或所述第二转向感应数据。
需要说明的是,上述两个轮滑装置之间可以进行数据通讯,当其中一个轮滑装置生成第一转向感应数据时,触发另外一个轮滑装置生成第二转向感应数据,因此,该另外一个轮滑装置可以不配置转向传感器。
本实施例中,第一控制器复用为第三控制器。但是,需要说明的是,若不单独增加第三控制器,则第三控制器除了可以复用上述第一控制器,或者,还可以复用第二控制器,或者,若单独增加第三控制器,第三控制器可以复用为上述第一控制器、或者第二控制器。
在上述实施例中,电机具体为轮毂电机,但是,在其他实施例中,电机也可以为高速电机。在上述实施例中,还可以给轮子配置轮罩。
另外,在另外一实施例中,若每个所述轮滑装置包括转向传感器,每个所述轮滑装置包括转向传感器、踏板、第三控制器以及一个主接地元件,则,所述转向传感器用于感应驾驶 者在所述踏板上的脚部姿态;每个所述第三控制器用于根据驾驶者在其对应的所述踏板上的脚步姿态对对应的驱动元件的输出信号进行控制,使得两个轮滑装置之间形成用于两个轮滑装置整体转向的速度差。
具体地,在一应用场景中,每个所述转向传感器感应驾驶者在对应所述踏板上的脚部姿态以分别生成第一转向感应数据、第二转向感应数据,所述第三控制器配置为:根据第一转向感应数据生成第一转向控制指令,以及根据第二转向感应数据生成第二转向控制指令;根据所述第一转向控制指令、所述第二转向控制指令对其各自所对应的两个接地元件进行动作控制,以分别使得两个所述主接地元件之间形成用于控制转向的第三速度差。
在每个轮滑装置包括的主接地元件只有一个时,其转向控制类似一个轮滑装置包括的主接地元件为两个时的情形,通过控制各自电机的输出扭矩大小,从而控制两个主接地元件的转速最终形成用于控制转向的转速差即可。
图12为本申请实施例十二中电动平衡车的结构示意图;如图12所示,单个轮滑装置的结构如图1所示,所述连接件300将两个轮滑装置沿着纵向方向首尾相接的方式组装在一起。
本实施例中,具体地,在其中一个所述轮滑装置的踏板101的尾部设置第一固定块101a,在另外一个所述轮滑装置的踏板101首部设置第二固定块101b,所述连接件200一端固定在所述第一固定块101a上,另外一端固定在所述第二固定块101b上。
图13为本申请实施例十三中电动平衡车的结构示意图;如图13所示,所述连接件200的两端分别固定在两个如图10所示轮滑装置相向的一侧,以将两个轮滑装置组装在一起,具体地,所述连接件用于将两个轮滑装置按照横向方向左右相接的方式组装在一起。
图14为本申请实施例十四中电动平衡车的结构示意图;如图14所示,所述连接件200的两端分别固定在两个如图1所示轮滑装置相向的一侧,以将两个轮滑装置组装在一起,具体地,所述连接件用于将两个轮滑装置按照横向方向左右相接的方式组装在一起。
图15为本申请实施例十五中电动平衡车的结构示意图;如图15所示,在图1的基础上增加辅助主接地单元110a、110b,同时将图3b中的固定基座100修改为沿着竖直方向设置并固定在所述踏板的下表面,所述固定基座上设置有孔结构,所述电机的传动轴穿过孔结构,同时,在所述传动轴的两端分别耦接一个所述主主接地单元102,从而将主接地元件102整体设置在所述踏板102的下方。
在上述实施例中,所述连接件的一端连接在其中一个所述轮滑装置的传动轴上,另外一端连接在另外一个所述轮滑装置的传动轴上。
在上述实施例中,可选地,所述连接件配置为长度可调节,以调整相邻两个轮滑装置之间的间距。
在上述实施例中,可选地,在连接件的中间位置处还设置转动机构,以在转动机构的作用下,转动机构左右两侧的部分连接件可以自由转动。
另外,当通过所述连接件将两个轮滑装置组装到一起的时候,两个轮滑装的踏板可以单独前倾或者后倾,通过驾驶者的脚部姿势操作,可使得组装的形成的电动平衡车整体向前运动或者向后运动。
另外,上述第一控制器、第二控制器、第三控制器可以设置在固定基座上,以适用主接地元件和踏板的相对位置在水平面进行调整。
当然,在另外一实施例中,如果不对主接地元件和踏板的相对位置在水平面进行调整,则上述第一控制器、第二控制器、第三控制器可以设置在踏板中。
图16为本申请实施例十六中电动平衡车的结构示意图;图17为本申请实施例十七中连 接件两端的细节示意图;为了便于清楚的说明,图16中只示意出了接地元件102、连接件200,如图16、17所示,所述连接件进一步用于使得左右两个所述轮滑装置之间沿着垂直方向相互动作。本实施例中,具体地,在所述连接件的两端分别配置固定座301和转动轴302,所述固定座301配置在对应的所述轮滑装置上,所述转动轴302配置在所述固定座301上,所述连接件的两端分别套设在对应的所述转动轴302上,以使两个所述轮滑装置之间沿着垂直方向相互动作。
本实施例中,连接件200具体包括上下平行设置的两个连接杆201,每一个连接杆201对应一个固定座和一个转动轴302,从而保证两个轮滑装置可沿着垂直方向相互动作,比如尤其遇到障碍物时,使得两个轮滑装置之间沿着垂直方向可发生相互动作,从而保证轮滑装置越过障碍物。
在图16、17中,两个连接杆201是上下平行设置的,实际也可以前后平行设置。
需要说明的是,这里通过固定座和转动轴配合的方式实现两个轮滑装置的上下运动,但是,在本申请的启发下,本领域普通技术人员也可以使用其他替代方式,比如轴承的方式。
图18为本申请实施例十八中电动平衡车的结构示意图;图19为本申请实施例十九中连接件两端的细节示意图;同样地,为了便于清楚的说明,图18中只示意出了接地元件102、连接件200,如图18、19所示,在所述连接件200的两端分别配置有全向运动关节400,所述全向运动关节400配置在对应的所述轮滑装置上,以使得两个所述轮滑装置之间沿着任意方向相互动作。
所述全向运动关节400包括第一运动关节401和第二运动关节402,所述连接件的两端配置的所述第一运动关节401和所述第二运动关节402配合以使得两个所述轮滑装置之间沿着任意方向相互动作。
具体地,所述第一运动关节401包括固定叉411以及第一转动叉421,所述固定叉411配置在对应的所述轮滑装置上,所述第一转动叉421通过第一转动轴431配置在所述固定叉412上;所述第二运动关节402包括第二转动叉422,所述第二转动叉422与所述第一转动叉421连接,且所述第二转动叉422通过第二转动轴432配置在所述连接件200的端头上。
需要说明的是,本实施例中,所述第一转动叉421与所述第二转动叉422制成了一体形成了一个整体的转动叉。当然,在其他实施例中,也可以分体,只要可实现全向转动即可,全向转动比如又称之为360度自由转动。
进一步地,在所述连接件200的中间部分配置有第三运动关节403,以使得两个所述轮滑装置之间沿着任意方向相互动作,第三运动关节403的结构可以与第一运动关节或者第二运动关节类似。在存在全向运动关节的前提下,第三运动关节403可以辅助两个所述轮滑装置之间沿着任意方向相互动作。
但是,需要说明的是,在其他实施例中,也可以通过只配置第三运动关节403实现两个所述轮滑装置之间沿着任意方向相互动作。
在上述实施例的启发下,也可以有四个轮滑装置组成一个平衡车,前后方向上的两个轮滑装置通过连接件连接,左右方向的两个轮滑装置同样通过连接件连接,此时,也可以由前后两个驾驶者进行操作驾驶。在本公开中,表述“包括(include)”或“可包括(may include)”指代相应功能、操作或元件的存在,而不限制一个或多个附加功能、操作或元件。在本公开中,诸如“包括(include)”和/或“具有(have)”的用语可理解为表示某些特性、数字、步骤、操作、组成元件、元件或其组合,而不可理解为排除一个或多个其它特性、数字、步骤、操作、组成元件、元件或其组合的存在或附加的可能性。
在本公开中,表述“A或B”、“A或/和B中的至少一个”或者“A或/和B的一个或多个”可包括所列项目所有可能的组合。例如,表述“A或B”、“A和B中的至少一个”或者“A或B中的至少一个”可包括:(1)至少一个A,(2)至少一个B,或者(3)至少一个A和至少一个B。
在本公开的各种实施方式中所使用的表述“第一”、“第二”、“所述第一”或“所述第二”可修饰各种部件而与顺序和/或重要性无关,但是这些表述不限制相应部件。以上表述仅用于将元件与其它元件区分开的目的。例如,第一用户设备和第二用户设备表示不同的用户设备,虽然两者均是用户设备。例如,在不背离本公开的范围的前提下,第一元件可称作第二元件,类似地,第二元件可称作第一元件。
当一个元件(例如,第一元件)称为与另一元件(例如,第二元件)“(可操作地或可通信地)联接”或“(可操作地或可通信地)联接至”另一元件(例如,第二元件)或“连接至”另一元件(例如,第二元件)时,应理解为该一个元件直接连接至该另一元件或者该一个元件经由又一个元件(例如,第三元件)间接连接至该另一个元件。相反,可理解,当元件(例如,第一元件)称为“直接连接”或“直接联接”至另一元件(第二元件)时,则没有元件(例如,第三元件)***在这两者之间。
如本文中使用的表述“配置为”可与以下表述可替换地使用:“适合于”、“具有...的能力”、“设计为”、“适于”、“制造为”或“能够”。用语“配置为”可不必意为在硬件上“专门设计为”。可替代地,在一些情况下,表述“配置为…的设备”可意为该设备与其它设备或部件一起“能够…”。例如,短语“适于(或配置为)执行A、B和C的处理器”可意为仅用于执行相应操作的专用处理器(例如,嵌入式处理器)或可通过执行存储在存储设备中的一个或多个软件程序执行相应操作的通用处理器(例如,中央处理器(CPU)或应用处理器(AP))。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。

Claims (27)

  1. 一种轮滑装置,其特征在于,包括:踏板、接地元件、第一传感器、驱动元件、第一控制器,所述踏板耦合于所述第一传感器和所述接地元件,所述接地元件耦接于所述驱动元件,所述第一控制器耦接于所述第一传感器和所述驱动元件;其中:
    所述踏板用于适用于单点站立,且用于在单点站立时可向前或者向后倾斜;
    所述接地元件用于在所述驱动元件的驱动下动作;
    所述第一传感器用于感应驾驶者在所述踏板上的姿态;
    所述驱动元件用于生成控制所述接地元件动作以及维持所述轮滑装置整体处于平衡状态的输出信号;
    所述第一控制器用于根据所述姿态控制所述输出信号的生成。
  2. 根据权利要求1所述的轮滑装置,其特征在于,所述接地元件的数量为一个,对应地,所述驱动元件的数量为一个;或者,所述接地元件的数量为两个,且所述驱动元件的数量为一个,所述驱动元件与两个所述接地元件耦接;或者,所述接地元件的数量为两个,且所述驱动元件的数量为两个,每个所述接地元件配置一个所述驱动元件。
  3. 根据权利要求1所述的轮滑装置,其特征在于,所述接地元件的轴心位于所述踏板下方位置且所述接地元件整***于所述踏板下方位置;或者,所述接地元件的轴心位于所述踏板下方位置且所述接地元件部分向上突出于所述踏板。
  4. 根据权利要求1所述的轮滑装置,其特征在于,所述接地元件为轮子,所述驱动元件的传动轴横向设置,所述传动轴的两端分别设置一个所述轮子,所述驱动元件内嵌在其中一所述轮子的轮毂内,并通过传动轴与内嵌有所述驱动元件的轮子直接连接,同时与未内嵌有所述驱动元件的轮子耦接。
  5. 根据权利要求1所述的轮滑装置,其特征在于,两个所述接地元件分别设置在靠近所述踏板左右两侧边缘的位置处,或者设置在靠近所述踏板中心的位置处。
  6. 根据权利要求1所述的轮滑装置,其特征在于,还包括:电池仓,所述电池仓内设置有电池组,所述电池组用于向所述驱动元件供电。
  7. 根据权利要求6所述的轮滑装置,其特征在于,所述电池仓设置在所述踏板的下方。
  8. 根据权利要求1所述的轮滑装置,其特征在于,还包括:固定基座,所述接地元件耦合在所述固定基座上,所述固定基座固定在所述踏板的下表面。
  9. 根据权利要求1所述的轮滑装置,其特征在于,还包括:第二控制器,所述第二控制器用于根据所述驱动元件的当前转速以及设定的最大转速确定所述踏板的期望俯仰角。
  10. 根据权利要求9所述的轮滑装置,其特征在于,所述第一控制器进一步用于当所述踏板向前或者向后倾斜时,根据所述踏板的当前俯仰角速度以及所述踏板的期望俯仰角与所述当前俯仰角之间的角度差生成驱动电信号以控制所述驱动元件的输出信号。
  11. 根据权利要求1所述的轮滑装置,其特征在于,还包括:第二传感器,所述第二传感器用于感应所述驱动元件的当前转速。
  12. 根据权利要求1所述的轮滑装置,其特征在于,所述接地元件为轮子且数量为两个,所述轮滑装置还包括转向传感器以及第三控制器,所述转向传感器用于感应驾驶者在所述踏板上的脚步姿态,所述第三控制器用于根据所述脚步姿态对两个所述接地元件的动作进行控制以生成用于控制转向的速度差。
  13. 根据权利要求12所述的轮滑装置,其特征在于,所述转向传感器为压力传感器, 所述压力传感器用于感应驾驶者在所述踏板上的脚步姿态;或者,所述转向传感器为转向轴,所述转向轴用于感应驾驶者在所述轮滑装置的脚部姿态;或者,所述转向传感器为:陀螺仪,所述陀螺仪用于感应驾驶者在所述轮滑装置的脚部姿态。
  14. 一种电动平衡车,其特征在于,包括至少两个如权利要求1所述的轮滑装置相邻两个轮滑装置之间设置有连接件,用于将两个轮滑装置组装成一体接地元件接地元件接地元件接地元件。
  15. 根据权利要求14所述的电动平衡车,其特征在于,所述连接件配置为长度可调节,以调整相邻两个轮滑装置之间的间距。
  16. 根据权利要求14所述的电动平衡车,其特征在于,所述连接件为连接杆件,所述连接杆件的两端分别固定在两个轮滑装置相向的一侧,以将两个轮滑装置组装在一起。
  17. 根据权利要求14所述的电动平衡车,其特征在于,所述连接件用于将两个轮滑装置沿着纵向方向首尾相接的方式组装在一起。
  18. 根据权利要求14所述的电动平衡车,其特征在于,在其中一个所述轮滑装置的踏板的尾部设置第一固定块,在另外一个所述轮滑装置的踏板首部设置第二固定块,所述连接件一端固定在所述第一固定块上,另外一端固定在所述第二固定块上。
  19. 根据权利要求14所述的电动平衡车,其特征在于,所述连接件用于将两个轮滑装置按照横向方向左右相接的方式组装在一起。
  20. 根据权利要求14所述的电动平衡车,其特征在于,所述连接件的一端连接在其中一个所述轮滑装置的传动轴上,另外一端连接在另外一个所述轮滑装置的传动轴上。
  21. 根据权利要求14所述的电动平衡车,其特征在于,每个所述轮滑装置包括一个接地元件、转向传感器以及第三控制器,所述转向传感器用于感应驾驶者在所述踏板上的脚部姿态;每个所述第三控制器用于根据驾驶者在其对应的所述踏板上的脚步姿态对对应的驱动元件的输出信号进行控制,使得两个轮滑装置之间形成用于两个轮滑装置整体转向的速度差。
  22. 根据权利要求14所述的电动平衡车,其特征在于,所述连接件进一步用于使得两个所述轮滑装置之间沿着垂直方向相互动作。
  23. 根据权利要求22所述的电动平衡车,其特征在于,在所述连接件的两端分别配置固定座和转动轴,所述固定座配置在对应的所述轮滑装置上,所述转动轴配置在所述固定座上,所述连接件的两端分别套设在对应的所述转动轴上,以使两个所述轮滑装置之间沿着垂直方向相互动作。
  24. 根据权利要求23所述的电动平衡车,其特征在于,在所述连接件的两端分别配置有全向运动关节,所述全向运动关节配置在对应的所述轮滑装置上,以使得两个所述轮滑装置之间沿着任意方向相互动作。
  25. 根据权利要求24所述的电动平衡车,其特征在于,所述全向运动关节包括第一运动关节和第二运动关节,所述连接件的两端配置的所述第一运动关节和所述第二运动关节配合以使得两个所述轮滑装置之间沿着任意方向相互动作。
  26. 根据权利要求25所述的电动平衡车,其特征在于,所述第一运动关节包括固定叉以及第一转动叉,所述固定叉配置在对应的所述轮滑装置上,所述第一转动叉通过第一转动轴配置在所述固定叉上;所述第二运动关节包括第二转动叉,所述第二转动叉与所述第一转动叉连接,且所述第二转动叉通过第二转动轴配置在所述连接件上。
  27. 根据权利要求1-26任一项所述的电动平衡车,其特征在于,在所述连接件的中间部分配置有第三运动关节,以使得两个所述轮滑装置之间沿着任意方向相互动作。
PCT/CN2018/094983 2017-07-27 2018-07-09 轮滑装置及电动平衡车 WO2019019905A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207004614A KR102115844B1 (ko) 2017-07-27 2018-07-09 롤러 스케이팅 장치 및 전동 균형차
KR1020207004613A KR102115845B1 (ko) 2017-07-27 2018-07-09 롤러 스케이팅 장치 및 전동 균형차
RU2019104532A RU2703783C1 (ru) 2017-07-27 2018-07-09 Электрическое устройство для катания на роликах и электрическое балансирное средство передвижения
KR1020187029985A KR102080687B1 (ko) 2017-07-27 2018-07-09 롤러 스케이팅 장치 및 전동 균형차
EP18769578.8A EP3459604A4 (en) 2017-07-27 2018-07-09 DEVICE FOR ROLLING ON WHEELS AND ELECTRIC BALANCE VEHICLE
JP2018553902A JP6709292B2 (ja) 2017-07-27 2018-07-09 ローラースケート装置及び電動バランス車
US16/096,061 US20190256163A1 (en) 2017-07-27 2018-07-09 Roller-skating device and electric balance vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710625533.2A CN107512348B (zh) 2017-07-27 2017-07-27 电动平衡车
CN201710626491.4A CN107281740B (zh) 2017-07-27 2017-07-27 轮滑装置
CN201710626491.4 2017-07-27
CN201710625533.2 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019019905A1 true WO2019019905A1 (zh) 2019-01-31

Family

ID=64661265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094983 WO2019019905A1 (zh) 2017-07-27 2018-07-09 轮滑装置及电动平衡车

Country Status (6)

Country Link
US (1) US20190256163A1 (zh)
EP (1) EP3459604A4 (zh)
JP (1) JP6709292B2 (zh)
KR (3) KR102115844B1 (zh)
RU (2) RU2703783C1 (zh)
WO (1) WO2019019905A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071303B2 (en) * 2015-08-26 2018-09-11 Malibu Innovations, LLC Mobilized cooler device with fork hanger assembly
US10807659B2 (en) * 2016-05-27 2020-10-20 Joseph L. Pikulski Motorized platforms
CN110435799B (zh) * 2019-03-08 2024-03-05 杭州速控软件有限公司 扭扭车
US11787508B2 (en) * 2020-04-23 2023-10-17 Keith Maximilian Rudofsky Powered boots
WO2022079598A1 (en) * 2020-10-12 2022-04-21 Barenghi Matteo Modular electric vehicle
RU205167U1 (ru) * 2020-12-24 2021-06-29 Сергей Славич Добровольский Роликовые коньки-тренажер
CN113212622A (zh) * 2021-06-24 2021-08-06 深圳百客电子商务有限公司 一种平衡车及其控制方法和以平衡车为动力的卡丁车
US11654345B2 (en) * 2021-06-25 2023-05-23 Zhenkun Wang Portable energy-saving and environment-friendly electric vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242538A1 (en) * 2004-04-28 2005-11-03 Yuji Hiramatsu Vehicle, vehicle control device and vehicle control method
CN201399219Y (zh) * 2009-03-18 2010-02-10 美国锐哲有限公司 一种可拆卸式滑板车
CN202070119U (zh) * 2011-04-21 2011-12-14 路海燕 电动双轮陀螺仪滑板车
CN205417931U (zh) * 2016-01-27 2016-08-03 陈云飞 两用两轮电动平衡车
CN205460889U (zh) * 2016-02-03 2016-08-17 小刀科技股份有限公司 单排单轮电动轮滑车
CN205737881U (zh) * 2016-01-19 2016-11-30 亘冠智能技术(杭州)有限公司 两轮可拆卸可组装电动平衡车
CN107281740A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置
CN107512348A (zh) * 2017-07-27 2017-12-26 纳恩博(北京)科技有限公司 电动平衡车
CN207450113U (zh) * 2017-07-27 2018-06-05 纳恩博(北京)科技有限公司 电动平衡车

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675243A (en) * 1951-08-20 1954-04-13 Mike J King Monowheel roller skate
US2931012A (en) * 1957-12-16 1960-03-29 John J Kosach Single wheel skate
US2980436A (en) * 1960-06-06 1961-04-18 John J Kosach Single wheel skate
US3330571A (en) * 1965-06-01 1967-07-11 Robert E Pierce One wheeled skate
US3374002A (en) * 1966-06-03 1968-03-19 Lewis Samuel One-wheeled roller skate
US3663031A (en) * 1970-02-25 1972-05-16 William E L Young Sporting apparatus
US4108451A (en) * 1975-08-14 1978-08-22 Scheck Sr Wilson Roller skates with hand brakes
US3997179A (en) * 1975-10-08 1976-12-14 Blois Joffre De One-wheel skates
US4310168A (en) * 1980-02-08 1982-01-12 Macaluso Mary H Pneumatic wheel skate device
US4363493A (en) * 1980-08-29 1982-12-14 Veneklasen Paul S Uni-wheel skate
US5106110A (en) * 1991-03-04 1992-04-21 Williamson Lawrence J Unicycle roller skate
USD347044S (en) * 1992-06-26 1994-05-17 Walter Slack Single wheel skate
US7370713B1 (en) * 1993-02-24 2008-05-13 Deka Products Limited Partnership Personal mobility vehicles and methods
US6868931B2 (en) * 1994-05-27 2005-03-22 Deka Products Limited Partnership Speed limiting for a balancing transporter accounting for variations in system capability
US6059062A (en) * 1995-05-31 2000-05-09 Empower Corporation Powered roller skates
US5779247A (en) * 1996-05-03 1998-07-14 Anselmo; Anthony Gray Wheeled all terrain recreational device
US7275607B2 (en) * 1999-06-04 2007-10-02 Deka Products Limited Partnership Control of a personal transporter based on user position
US6302230B1 (en) * 1999-06-04 2001-10-16 Deka Products Limited Partnership Personal mobility vehicles and methods
US7083178B2 (en) * 2001-04-11 2006-08-01 Steven Dickinson Potter Balancing skateboard
US7293622B1 (en) * 2003-01-25 2007-11-13 Wade Spital Foot-controlled motorized vehicle
JP4411867B2 (ja) * 2003-06-04 2010-02-10 トヨタ自動車株式会社 重心移動により操舵可能な車両
US7363993B2 (en) * 2003-11-04 2008-04-29 Toyota Jidosha Kabushiki Kaisha Traveling apparatus and method for controlling thereof
JP4290021B2 (ja) * 2004-01-23 2009-07-01 ヤマハ株式会社 移動装置および移動装置システム
KR200378760Y1 (ko) * 2004-12-03 2005-03-17 최운옥 인라인 롤러 스케이트 보드
US20100109266A1 (en) * 2005-05-24 2010-05-06 Michael Eric Jenkins Recreational and sporting device for movement over ground
JP4760162B2 (ja) * 2005-06-29 2011-08-31 トヨタ自動車株式会社 移動台車の制御方法及び移動台車
RU2303474C1 (ru) * 2005-11-21 2007-07-27 Владислав Юрьевич Луначев Устройство для катания на роликовых коньках в зимних условиях
JP4974305B2 (ja) * 2006-10-04 2012-07-11 美徹 佐野 ローラスケート
US7980568B2 (en) * 2007-04-30 2011-07-19 Shane Chen Wheel skate device
FR2927000A1 (fr) * 2008-01-31 2009-08-07 Thierry Poichot Patin en ligne polyvalent tous-terrains equipe d'une roue unique a deformation elastique controlee grace a un guidage orbital par roulement
US8513917B2 (en) * 2009-09-18 2013-08-20 Honda Motor Co., Ltd. Recharging system for a rechargeable battery of an inverted pendulum type vehicle
US8567537B2 (en) * 2009-09-18 2013-10-29 Honda Motor Co., Ltd Inverted pendulum type vehicle
US8353378B2 (en) * 2009-09-18 2013-01-15 Honda Motor Co., Ltd. Frictional drive device and inverted pendulum type vehicle using the same
US8807250B2 (en) * 2010-03-09 2014-08-19 Shane Chen Powered single-wheeled self-balancing vehicle for standing user
TW201132545A (en) * 2010-03-24 2011-10-01 Nat Univ Tsing Hua Individual green-energy carrying device with single wheel and self-balancing function
US20120313336A1 (en) * 2011-06-09 2012-12-13 Hsiao-Tsun Chen Unicycle roller skate
US8684123B2 (en) * 2011-08-02 2014-04-01 Shane Chen Low-profile two-wheeled self-balancing vehicle with exterior foot platforms
US9045190B2 (en) * 2011-08-02 2015-06-02 Shane Chen Two-wheeled self-balancing motorized personal vehicle with tilting wheels
US8738278B2 (en) * 2012-02-12 2014-05-27 Shane Chen Two-wheel, self-balancing vehicle with independently movable foot placement sections
US9387363B1 (en) * 2012-07-29 2016-07-12 Nautilus, Inc. Ball and board balance training device
US8985596B2 (en) * 2012-08-08 2015-03-24 Katherine Wu Stepping cycle for accelerated walking
DE202014010649U1 (de) * 2013-05-06 2016-02-26 Future Motion, Inc. Selbststabilisierendes Skateboard
CN104787183A (zh) * 2014-01-16 2015-07-22 阿克顿公司 机动运输设备
GB2525677C (en) * 2014-05-02 2017-03-29 Artemev Timur Powered unicycle device
WO2015191753A1 (en) * 2014-06-10 2015-12-17 Acton, Inc. Wearable personal transportation system
CN104071275B (zh) * 2014-07-14 2016-03-09 张军凯 自平衡电动双轮车及其组装车架
CN203975082U (zh) * 2014-07-17 2014-12-03 上海普若迪智能科技有限公司 多联体平衡车
USD746928S1 (en) * 2014-10-20 2016-01-05 Future Motion, Inc. Skateboard
WO2016073786A1 (en) * 2014-11-05 2016-05-12 Future Motion, Inc. Rider detection system
CN105857468A (zh) * 2014-12-25 2016-08-17 李陈 一种电动自平衡式双轮车
CN106627895B (zh) * 2016-11-25 2020-01-07 杭州骑客智能科技有限公司 一种人机互动体感车及其控制方法与装置
WO2017077362A1 (en) * 2015-11-03 2017-05-11 Koofy Development Limited Self balancing single wheel board with shock absorber
WO2017081523A1 (en) * 2015-11-15 2017-05-18 Koofy Development Limited Self-balancing single wheel board with anti-fall and brake safety systems
USD797875S1 (en) * 2016-01-19 2017-09-19 Koofy Development Limited Skateboard
CN205469572U (zh) * 2016-02-03 2016-08-17 小刀科技股份有限公司 双排双轮电动轮滑车
US9598141B1 (en) * 2016-03-07 2017-03-21 Future Motion, Inc. Thermally enhanced hub motor
US10112680B2 (en) * 2016-03-07 2018-10-30 Future Motion, Inc. Thermally enhanced hub motor
USD827747S1 (en) * 2016-03-14 2018-09-04 Koofy Innovation Limited Skateboard
CN106039688B (zh) * 2016-05-12 2019-02-05 秦波 一种步行提速器暴走轮靴
US10807659B2 (en) * 2016-05-27 2020-10-20 Joseph L. Pikulski Motorized platforms
WO2017210549A1 (en) * 2016-06-02 2017-12-07 Future Motion, Inc. Vehicle rider detection using strain gauges
CN105879365B (zh) * 2016-06-10 2018-01-05 兰卡科技(天津)有限公司 两用电动滑板平衡车
WO2018071552A1 (en) * 2016-10-11 2018-04-19 Future Motion, Inc. Suspension system for one-wheeled vehicle
US9999827B2 (en) * 2016-10-25 2018-06-19 Future Motion, Inc. Self-balancing skateboard with strain-based controls and suspensions
USD821517S1 (en) * 2017-01-03 2018-06-26 Future Motion, Inc. Skateboard
US10010784B1 (en) * 2017-12-05 2018-07-03 Future Motion, Inc. Suspension systems for one-wheeled vehicles
US10399457B2 (en) * 2017-12-07 2019-09-03 Future Motion, Inc. Dismount controls for one-wheeled vehicle
USD865891S1 (en) * 2018-02-07 2019-11-05 Ninebot (Beijing) Tech. Co., Ltd Balance roller skate
USD843532S1 (en) * 2018-02-23 2019-03-19 Future Motion, Inc. Skateboard
USD850552S1 (en) * 2018-02-23 2019-06-04 Future Motion, Inc. Skateboard
US10456658B1 (en) * 2019-02-11 2019-10-29 Future Motion, Inc. Self-stabilizing skateboard

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050242538A1 (en) * 2004-04-28 2005-11-03 Yuji Hiramatsu Vehicle, vehicle control device and vehicle control method
CN201399219Y (zh) * 2009-03-18 2010-02-10 美国锐哲有限公司 一种可拆卸式滑板车
CN202070119U (zh) * 2011-04-21 2011-12-14 路海燕 电动双轮陀螺仪滑板车
CN205737881U (zh) * 2016-01-19 2016-11-30 亘冠智能技术(杭州)有限公司 两轮可拆卸可组装电动平衡车
CN205417931U (zh) * 2016-01-27 2016-08-03 陈云飞 两用两轮电动平衡车
CN205460889U (zh) * 2016-02-03 2016-08-17 小刀科技股份有限公司 单排单轮电动轮滑车
CN107281740A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置
CN107512348A (zh) * 2017-07-27 2017-12-26 纳恩博(北京)科技有限公司 电动平衡车
CN207450113U (zh) * 2017-07-27 2018-06-05 纳恩博(北京)科技有限公司 电动平衡车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3459604A4 *

Also Published As

Publication number Publication date
JP6709292B2 (ja) 2020-06-10
US20190256163A1 (en) 2019-08-22
EP3459604A1 (en) 2019-03-27
KR20190013708A (ko) 2019-02-11
KR20200020975A (ko) 2020-02-26
KR20200020976A (ko) 2020-02-26
RU2722466C1 (ru) 2020-06-02
KR102115845B1 (ko) 2020-05-28
KR102080687B1 (ko) 2020-02-24
EP3459604A4 (en) 2019-05-22
RU2703783C1 (ru) 2019-10-22
KR102115844B1 (ko) 2020-05-28
JP2019527565A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
WO2019019905A1 (zh) 轮滑装置及电动平衡车
US9499228B2 (en) Self-balancing vehicle frame
US20170190335A1 (en) Vehicle Comprising Autonomous Steering Column System
JP7111684B2 (ja) 回転接続部を備えたスクーター
US9919762B2 (en) Backpack type self balancing scooter having foot-driven steering apparatus mounted thereon
US10035557B2 (en) Self-balancing vehicle frame
CN107512348B (zh) 电动平衡车
CN107281740B (zh) 轮滑装置
US8725355B2 (en) Self-balancing vehicle with swivel seat steering
KR20170033780A (ko) 자전거 시뮬레이터
US20170217532A1 (en) Pedal connection mechanism and electric balancing vehicle using the same
JP2017509519A (ja) 地表面上を任意方向に転動するボールを備える操縦者の移動のための車両
US20170217524A1 (en) Pedal connection mechanism and electric balancing vehicle using the same
CN107261473B (zh) 轮滑装置、轮滑***及转向控制方法
WO2019019207A1 (zh) 轮滑装置
US11198052B2 (en) Cross skate system and method of operation thereof
KR20170033361A (ko) 구형 바퀴를 구비한 차량
CN108725648B (zh) 人机互动运动设备及其控制方法与装置
CN207450113U (zh) 电动平衡车
WO2019019209A1 (zh) 轮滑装置
CN205801340U (zh) 一种滑板车
KR20120013809A (ko) 인라인 보드식 롤키
CN207445545U (zh) 轮滑装置
KR101374188B1 (ko) 보행보조 장치
CN109927830A (zh) 一种改进型结构的滑板车

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018769578

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018553902

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187029985

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018769578

Country of ref document: EP

Effective date: 20181001

NENP Non-entry into the national phase

Ref country code: DE