WO2019004020A1 - 画像表示装置の製造方法、光硬化性樹脂組成物及び光透過性硬化樹脂層 - Google Patents

画像表示装置の製造方法、光硬化性樹脂組成物及び光透過性硬化樹脂層 Download PDF

Info

Publication number
WO2019004020A1
WO2019004020A1 PCT/JP2018/023440 JP2018023440W WO2019004020A1 WO 2019004020 A1 WO2019004020 A1 WO 2019004020A1 JP 2018023440 W JP2018023440 W JP 2018023440W WO 2019004020 A1 WO2019004020 A1 WO 2019004020A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
resin composition
light
mass
photocurable resin
Prior art date
Application number
PCT/JP2018/023440
Other languages
English (en)
French (fr)
Inventor
高橋 宏
林 直樹
菅原 直人
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63104383&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019004020(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201880055417.4A priority Critical patent/CN110945581B/zh
Priority to KR1020197038123A priority patent/KR20200011966A/ko
Priority to KR1020227002512A priority patent/KR102566223B1/ko
Priority to US16/627,581 priority patent/US20200148916A1/en
Priority to EP18824791.0A priority patent/EP3648084B1/en
Publication of WO2019004020A1 publication Critical patent/WO2019004020A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/305Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/306Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and polyethylene oxide chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to an image display device by bonding and laminating an image display member such as a liquid crystal display panel and a light transmissive optical member such as a transparent protective sheet disposed on the surface side thereof through a light transmissive cured resin layer. It relates to the method of manufacturing.
  • This application claims priority based on Japanese Patent Application No. 2017-225891 filed on Jun. 28, 2017 in Japan, and this application is incorporated herein by reference. It is incorporated.
  • an image display device such as a liquid crystal display panel used in an information terminal such as a smartphone
  • a photocurable resin composition is formed between an image display member such as a liquid crystal display panel or an organic EL panel and a light transmissive optical member.
  • the product is disposed to form a photocurable resin composition layer.
  • the photocurable resin composition layer is irradiated with light and cured to form a light transmissive cured resin layer.
  • the image display apparatus is manufactured by bonding and laminating the image display member and the light transmissive optical member.
  • a light shielding layer is usually provided on the peripheral portion of the surface of the light transmitting optical member on the image display unit side in order to improve the brightness and contrast of the display image. Therefore, the curing of the photocurable resin composition sandwiched between the light shielding layer and the image display member may not proceed sufficiently, so that sufficient adhesion may not be obtained. As a result, there is a concern that the image quality may be degraded due to peeling between the light transmissive optical member and the image display member, and moisture entering the gap.
  • a first irradiation step temporary curing step of irradiating light to an adhesive applied to at least one of the display panel and the substrate
  • a bonding step of bonding the display panel and the substrate after the first irradiation step
  • a method of manufacturing a display device which includes a second irradiation step (main curing step) of irradiating light to the adhesive after the bonding step (see Patent Document 1).
  • the surface layer portion of the temporarily cured adhesive may be as flat as possible with the member to be bonded. It is preferable from the viewpoint of more effectively developing the adhesive strength and securing the adhesive area. Further, in consideration of reduction in damage to the image display member as the adherend and the light transmission to the light transmitting optical member, it is preferable that bonding can be performed with a smaller bonding pressure. That is, it is preferable that the photocurable resin composition has lower elasticity.
  • the present technology has been proposed in view of such conventional circumstances, and provides a method of manufacturing an image display device capable of suppressing the lifting phenomenon. Moreover, a photocurable resin composition and a light transmissive cured resin layer are provided.
  • a method of manufacturing an image display device includes the following steps (A) to (D), and the photocurable resin composition is radically polymerizable containing an acrylic oligomer and an acrylic monomer.
  • the composition contains 31 to 55% by mass in total, 40 to 66% by mass of a plasticizer, 5 to 19% by mass of (meth) acrylate monomer having a ring structure as an acrylic monomer, and light transmissive curing
  • the resin layer has a shear storage modulus of 1000 to 320000 Pa.
  • the photocurable resin composition according to the present technology contains 31 to 55% by mass in total of a radically polymerizable component containing an acrylic oligomer and an acrylic monomer, and 40 to 66% by mass of a plasticizer,
  • the acrylic monomer contains 8 to 19% by mass of a (meth) acrylate monomer having a ring structure, and the shear storage modulus after curing is 1000 to 320000 Pa.
  • the light transmitting cured resin layer according to the present technology contains 31 to 55% by mass in total of a radically polymerizable component containing an acrylic oligomer and an acrylic monomer, and 40 to 66% by mass of a plasticizer,
  • a photocurable resin composition containing 8 to 19% by mass of a (meth) acrylate monomer having a ring structure as an acrylic monomer is cured to have a shear storage modulus of 1000 to 320000 Pa.
  • a photocurable resin composition is prepared at the time of temporary curing of the photocurable resin composition by incorporating a predetermined amount of (meth) acrylate monomer having a ring structure as an acrylic monomer in the photocurable resin composition.
  • the uncured component present in the insufficiently cured area of the product is less likely to penetrate into the cured resin by the (meth) acrylate monomer having a bulky skeleton ring structure, and therefore swelling of the resin can be suppressed. . That is, the lifting phenomenon can be suppressed.
  • FIG. 1A is an explanatory view showing an example of a step (A1) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 1B is an explanatory view of a step (A1) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 1C is an explanatory view of a step (B1) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 1D is an explanatory view of a step (B1) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 1E is an explanatory view of a step (C1) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 1F is an explanatory view of a step (D1) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 1G is an explanatory view of a step (D1) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 2A is an explanatory view of a step (A2) of the method for manufacturing an image display device according to the present embodiment.
  • FIG. 2B is an explanatory diagram of a process (B2) of the method for manufacturing an image display device according to the present embodiment.
  • FIG. 2C is an explanatory drawing of the step (B2) of the method for manufacturing an image display device according to the present embodiment.
  • FIG. 2D is an explanatory view of a step (C2) of the method for manufacturing an image display device according to the present embodiment.
  • FIG. 2E is an explanatory view of a step (D2) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 2F is an explanatory view of a step (D2) of a method of manufacturing an image display device according to the present embodiment.
  • FIG. 3 is a top view which shows an example of the external appearance of the temporarily cured resin layer in case evaluation of a lifting phenomenon is OK.
  • FIG. 4 is a top view which shows an example of the external appearance of the temporarily cured resin layer in case evaluation of a lifting phenomenon is NG.
  • Step (A1) The manufacturing method of an image display apparatus apply
  • FIG. 1A and FIG. 1B are explanatory drawings showing an example of the step (A1) of the method of manufacturing an image display device.
  • the transparent optical member 2 which has the light shielding layer 1 formed in the peripheral part of single side
  • a photocurable resin composition is formed on the surface 2 a of the light transmitting optical member 2 by the light shielding layer 1 and the light shielding layer forming side surface 2 a of the light transmitting optical member 2.
  • the light curable resin composition layer 3 is formed by applying a thicker layer than the thickness of the light shielding layer 1 so that the step 4 is cancelled.
  • the photocurable resin composition is coated on the entire surface 2a of the light-transmitting optical member 2 including the surface of the light-shielding layer 1 so as to be flat so that no level difference occurs. It is preferable to do.
  • the thickness of the photocurable resin composition layer 3 is preferably 1.2 to 50 times the thickness of the light shielding layer 1, and more preferably 2 to 30 times the thickness.
  • coating of a photocurable resin composition may be performed so that required thickness may be obtained, may be performed once, and may be performed in multiple times.
  • the light shielding layer 1 is provided, for example, to improve the contrast of the image.
  • the light shielding layer 1 is obtained by applying a paint colored in black or the like by a screen printing method or the like, and drying and curing it.
  • the thickness of the light shielding layer 1 is usually 5 to 100 ⁇ m.
  • the thickness of the light shielding layer 1 corresponds to the step 4.
  • the light transmitting optical member 2 may have any light transmitting property such that the image formed on the image display member can be viewed.
  • plate-like materials and sheet-like materials such as glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, and polycarbonate may be mentioned, and a structure in which sheet members such as a touch panel are laminated may be used. These materials may be subjected to hard coating treatment, anti-reflection treatment, etc. on one side or both sides. Physical properties such as thickness and elastic modulus of the light transmitting optical member 2 can be appropriately determined according to the purpose of use.
  • the photocurable resin composition is preferably liquid.
  • a liquid By using a liquid, it is possible to more reliably cancel the step 4 formed by the light shielding layer 1 and the light shielding layer forming side surface 2 a of the light transmitting optical member 2.
  • the viscosity at 25 ° C. measured with a B-type viscometer is preferably 0.01 to 100 Pa ⁇ s.
  • the photocurable resin composition preferably contains a radically polymerizable component containing an acrylic oligomer and an acrylic monomer, a photopolymerization initiator, and a plasticizer.
  • the total content of radically polymerizable components in the photocurable resin composition is 31 to 55% by mass, preferably 40 to 55% by mass.
  • the acrylic oligomer is a base material of the photocurable resin composition, and is preferably a (meth) acrylate oligomer having polyisoprene, polyurethane, polybutadiene or the like as a skeleton.
  • (meth) acrylate includes both acrylate and methacrylate.
  • Specific examples of the (meth) acrylate oligomer having a polyisoprene skeleton include esterified products of maleic anhydride adduct of polyisoprene polymer and 2-hydroxyethyl methacrylate (product name: UC102 (polystyrene conversion molecular weight 17000), (strain) ) Manufactured by Kuraray Co., Ltd., product name; UC203 (polystyrene conversion molecular weight: 35000), manufactured by Kuraray Co., Ltd., product name; UC-1 (molecular weight about 25000), manufactured by Kuraray Co., Ltd.
  • aliphatic urethane acrylate (EBECRYL 230 (molecular weight: 5000), manufactured by Daicel Ornex; UA-1, manufactured by Wright Chemical Co., Ltd.) can be mentioned.
  • (meth) acrylate oligomer having a polybutadiene backbone known ones can be adopted.
  • the content of the acrylic oligomer in the photocurable resin composition is preferably 5 to 30% by mass.
  • the total amount thereof preferably satisfies the above range.
  • the acrylic monomer is used as a reactive diluent for providing the photocurable resin composition with sufficient reactivity and coatability in the production process of the image display device.
  • the acrylic monomer contains at least a (meth) acrylate monomer having a ring structure, and may further contain another acrylic monomer.
  • the content of the (meth) acrylate monomer having a ring structure in the photocurable resin composition is 5 to 19% by mass, and may be 5 to 12% by mass, or 8 to 10% by mass. it can. By setting it as such a structure, the lifting phenomenon can be suppressed at the time of temporary hardening of a photocurable resin composition layer.
  • the (meth) acrylate monomer having a ring structure preferably has, as a ring structure, at least one of an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a heterocycle.
  • the (meth) acrylate monomer having a ring structure may be a monofunctional (meth) acrylate monomer or a multifunctional (meth) acrylate monomer.
  • the carbon number of the alicyclic hydrocarbon group is preferably 4 to 30, more preferably 4 to 20, and still more preferably 8 to 14.
  • the alicyclic hydrocarbon group may have a single ring structure or a multiple ring structure, but preferably has a multiple ring structure.
  • the alicyclic hydrocarbon group may be saturated or unsaturated.
  • the alicyclic hydrocarbon group may have a substituent.
  • the (meth) acrylate monomer having an alicyclic hydrocarbon group preferably has a bridged alicyclic hydrocarbon group from the viewpoint of suppressing the lifting phenomenon.
  • Specific examples include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, dicyclopentenyloxyethyl acrylate, adamantyl (meth) acrylate, Examples thereof include 2-alkyl-2-adamantyl (meth) acrylate, 3-hydroxy-1-adamantyl (meth) acrylate, and 1-perfluoroadamantyl (meth) acrylate.
  • dicyclopentenyl oxyethyl acrylate, dicyclopentenyl acrylate, dicyclopentanyl acrylate, and isobornyl acrylate are preferable from the viewpoint of suppressing the lifting phenomenon.
  • the aromatic hydrocarbon group may have a single ring structure or a multiple ring structure.
  • the aromatic hydrocarbon group may have a substituent.
  • the (meth) acrylate monomer having an aromatic hydrocarbon group examples include benzyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, nonyl phenoxy polyethylene glycol ( Monofunctional monomers such as meta) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2- (meth) acryloyloxyethyl 2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, polycarbonate diol di (meth) ) Acrylate, bisphenol A ethylene oxide adduct di (meth) acrylate, bisphenol A propylene oxide adduct di (meth) acrylate It includes polyfunctional monomer is. Among these, from the viewpoint of suppressing the lifting phenomenon, a monofunctional monomer is preferable, and benzyl (meth) acrylate,
  • the (meth) acrylate monomer having a heterocycle preferably has at least one of a nitrogen atom, an oxygen atom and a sulfur atom as a heteroatom of the heterocycle, and preferably has an oxygen atom.
  • the number of carbon atoms constituting the heterocyclic ring is preferably 3 to 10, and more preferably 3 to 8.
  • the heterocyclic ring may be a single ring structure or a multiple ring structure. When the heterocycle is a polycyclic structure, it may be fused.
  • the heterocycle may have a substituent.
  • the (meth) acrylate monomer having a heterocycle examples include tetrahydrofurfuryl (meth) acrylate, 4-tetrahydropyranyl acrylate, 2-tetrahydropyranyl methyl acrylate and the like, and tetrahydrofurfuryl (meth) acrylate is Preferably, tetrahydrofurfuryl (meth) acrylate is more preferable.
  • the (meth) acrylate monomer having a ring structure may be used alone or in combination of two or more.
  • acrylic monomer other than the (meth) acrylate monomer which has ring structure a linear or branched (meth) acrylate monomer is mentioned.
  • Specific examples thereof include 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, lauryl acrylate, n-octyl acrylate, isodecyl acrylate, isostearyl acrylate, octyl / decyl acrylate and the like.
  • the content of the other acrylic monomer in the photocurable resin composition is preferably 5 to 35% by mass.
  • the total amount thereof preferably satisfies the above range.
  • photopolymerization initiator known photo radical polymerization initiators can be used.
  • photopolymerization initiator 1-hydroxy-cyclohexyl phenyl ketone (IRGACURE 184, manufactured by BASF AG), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propyronyl) benzyl] phenyl ⁇ -2-) Methyl-1-propan-1-one (IRGACURE 127, manufactured by BASF AG), benzophenone, acetophenone and the like can be mentioned.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator is preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 3 parts by mass with respect to 100 parts by mass in total of the radically polymerizable components. By setting it in such a range, it is possible to prevent insufficient curing at the time of ultraviolet irradiation, and to prevent an increase in outgassing due to cleavage. When using 2 or more types of photoinitiators together, it is preferable that the total amount satisfy
  • a plasticizer is used to reduce the cure shrinkage of the photocurable resin composition as well as to provide cushioning to the cured resin layer. Further, the plasticizer does not substantially react with the acrylic oligomer and the acrylic monomer by the irradiation of the ultraviolet light.
  • the plasticizer includes a solid tackifier and a liquid oil component. The plasticizer may be used alone or in combination of two or more.
  • solid tackifiers include terpene resins such as terpene resins, terpene phenol resins, hydrogenated terpene resins, natural rosins, polymerized rosins, rosin esters, rosin resins such as hydrogenated rosins, and terpene hydrogenated resins.
  • terpene resins such as terpene resins, terpene phenol resins, hydrogenated terpene resins, natural rosins, polymerized rosins, rosin esters, rosin resins such as hydrogenated rosins, and terpene hydrogenated resins.
  • non-reactive oligomers obtained by low molecular weight polymerizing the above-mentioned acrylic monomers in advance can also be used. Specifically, copolymers of butyl acrylate, 2-hexyl acrylate and acrylic acid, and cyclohexyl acrylate Copolymers of methacrylic acid and the like can be mentioned
  • liquid oil component examples include polybutadiene type oils and polyisoprene type oils.
  • the content of the plasticizer in the photocurable resin composition is 40 to 66% by mass, and may be 40 to 60% by mass.
  • the total amount thereof preferably satisfies the above range.
  • the photocurable resin composition may further contain a chain transfer agent for molecular weight control.
  • chain transfer agents include 2-mercaptoethanol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethyl capto-1-propanol, ⁇ -methylstyrene dimer and the like.
  • the photocurable resin composition may further contain an adhesion improver such as a silane coupling agent and an additive such as an antioxidant as needed.
  • Step (B1) In the step (B1), the photocurable resin composition layer formed in the step (A1) is irradiated with light to perform temporary curing, thereby forming a temporarily cured resin layer.
  • FIG. 1C and FIG. 1D are explanatory drawings showing an example of process (B1) of the manufacturing method of an image display apparatus.
  • the light curing resin composition layer 3 formed in the step (A1) is irradiated with light (preferably ultraviolet light) to perform temporary curing, thereby forming a temporary curing resin layer 5.
  • the temporary curing of the photocurable resin composition layer 3 is carried out so that the photocurable resin composition does not significantly flow from the liquid state, and as shown in FIG.
  • the light transmitting cured resin layer 3 between the light shielding layer 1 and the image display member can be sufficiently photocured without being excluded from between, and the curing shrinkage can also be reduced. it can.
  • the temporary curing of the photocurable resin composition layer 3 is preferably performed so that the curing rate (gel fraction) of the temporary cured resin layer 5 is 10 to 90%, and is 40 to 90%. It is more preferable to carry out so as to be 70 to 90%.
  • the curing rate (gel fraction) is the ratio of the amount of (meth) acryloyl groups after ultraviolet irradiation to the amount of (meth) acryloyl groups in the photocurable resin composition layer before ultraviolet irradiation ( The consumption rate ratio is a numerical value defined, and the larger the numerical value, the more the curing progresses.
  • the curing rate (gel fraction) is the absorption peak height (X) from 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart of the photocurable resin composition layer before UV irradiation, and UV irradiation.
  • the type of light source, the output, the illuminance, the integrated light quantity, etc. are not particularly limited as long as the irradiation with ultraviolet light can be temporarily cured so that the curing rate (gel fraction) is preferably 10 to 90%.
  • Photoradical polymerization process conditions of (meth) acrylate by irradiation can be employed.
  • UV irradiation is preferably performed using a UV-LED under conditions of an illuminance of 100 to 300 mW / cm 2 and an integrated light amount of 100 to 300 mJ / cm 2 .
  • Step (C1) In the step (C1), the image display member and the light transmissive optical member are pasted together through the temporary curing resin layer.
  • FIG. 1E is an explanatory drawing showing an example of the step (C1) of the method for manufacturing an image display device.
  • the light transmitting optical member 2 is bonded to the image display member 6 from the side of the temporary curing resin layer 5. Bonding can be performed, for example, by applying pressure at 10 to 80 ° C. using a known pressure bonding apparatus.
  • Step (D1) In the step (D1), the temporary curing resin layer disposed between the image display member and the light transmitting optical member is irradiated with light for main curing, whereby the image display member and the light transmitting optical member are lighted.
  • the image display device is obtained by laminating through the transparent cured resin layer.
  • FIG. 1F and FIG. 1G are explanatory drawings showing an example of process (D1) of the manufacturing method of an image display apparatus.
  • the temporary curing resin layer 5 sandwiched between the image display member 6 and the light transmitting optical member 2 is irradiated with light (preferably ultraviolet light) to be main-cured.
  • the main curing of the temporary curing resin layer 5 is to sufficiently cure the temporary curing resin layer 5 to bond and laminate the image display member 6 and the light transmitting optical member 2.
  • the image display member 6 and the light transmitting optical member 2 are laminated via the light transmitting cured resin layer 7 to obtain the image display device 10 as shown in FIG. 1G.
  • the temporary curing resin layer 5 between the light shielding layer 1 of the light transmitting optical member 2 and the image display member 6 is irradiated with light to cause the temporary curing resin layer 5 to be fully cured. It is also good.
  • the main curing is preferably performed so that the curing rate (gel fraction) of the light transmitting cured resin layer 7 is 90% or more, and more preferably 95% or more.
  • the type of light source, output, illuminance, integrated light amount, etc. when performing main curing, and photo radical polymerization process conditions of (meth) acrylate by known ultraviolet irradiation can be adopted.
  • ultraviolet irradiation is preferably performed using an ultraviolet irradiator (metal halide lamp, high pressure mercury, UV-LED or the like) under the conditions of an illuminance of 50 to 300 mW / cm 2 and an integrated light amount of 1000 to 3000 mJ / cm 2 .
  • the image display member 6 examples include a liquid crystal display panel, an organic EL display panel, a plasma display panel, and a touch panel.
  • the touch panel means an image display / input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.
  • the shear storage modulus of the light transmitting cured resin layer 7 is preferably 2000 to 320000 Pa.
  • the shear storage elastic modulus of the light transmissive cured resin layer 7 says the value in 25 degreeC.
  • the shear storage elastic modulus of the light transmitting cured resin layer 7 is in the above range, the shear storage elastic modulus of the temporarily cured resin layer 5 before main curing is in a suitable range, that is, the temporary cured resin layer 5 has low elasticity. It can be in the state. Thereby, as shown in FIG. 1 (E), when the light transmitting optical member 2 is bonded to the image display member 6 from the side of the temporary curing resin layer 5, the bonding can be performed with a smaller bonding pressure. Damage caused by the pressure on the display member 6 and the light transmissive optical member 2 can be reduced.
  • the light transmitting cured resin layer 7 may have light transmitting properties such that the image formed on the image display member 6 can be viewed.
  • the 1st embodiment demonstrated the example which apply
  • a photocurable resin composition is applied to the surface of an image display member.
  • the same reference numerals denote the same components.
  • Step (A2) In the step (A2), the photocurable resin composition is applied to the surface of the image display member to form a photocurable resin composition layer.
  • FIG. 2A is an explanatory drawing showing an example of the step (A2) of the method for manufacturing an image display device.
  • coats so that a photocurable resin composition may become flat on the surface of the image display member 6, and the photocurable resin composition layer 3 is formed.
  • the thickness of the photocurable resin composition layer 3 is preferably such that the step formed between the light shielding layer and the surface on the light shielding layer formation side of the light transmitting optical member is cancelled.
  • the thickness of the photocurable resin composition layer 3 is preferably 2.5 to 40 times, more preferably 2.5 to 12.5 times, and still more preferably 2.5 to 4 times the thickness of the light shielding layer. preferable.
  • coating of a photocurable resin composition may be performed so that required thickness may be obtained, may be performed once, and may be performed in multiple times.
  • Step (B2) In the step (B2), the photocurable resin composition layer formed in the step (A2) is irradiated with light to perform temporary curing, thereby forming a temporarily cured resin layer.
  • FIG. 2B and FIG. 2C are explanatory drawings showing an example of process (B2) of the manufacturing method of an image display apparatus.
  • the temporary curing resin layer 5 is formed by irradiating the light curable resin composition layer 3 formed in the step (A2) with light (preferably ultraviolet light) to temporarily cure it ( Figure 2C).
  • the temporary curing of the photocurable resin composition layer 3 is preferably performed so that the curing rate (gel fraction) of the temporary cured resin layer 5 is 10 to 90%, and is 40 to 90%. It is more preferable to carry out so as to be 70 to 90%.
  • Step (C2) In the step (C2), the image display member and the light transmissive optical member are pasted together through the temporary curing resin layer.
  • FIG. 2D is an explanatory drawing showing an example of the step (C2) of the method for manufacturing an image display device.
  • the light transmissive optical member 2 is bonded to the temporary curing resin layer 5 of the image display member 6 from the light shielding layer 1 side. Bonding can be performed, for example, by applying pressure at 10 ° C. to 80 ° C. using a known pressure bonding apparatus.
  • Step (D2) In the step (D2), the temporary curing resin layer disposed between the image display member and the light transmitting optical member is irradiated with light for main curing, whereby the image display member and the light transmitting optical member are lighted.
  • the image display device is obtained by laminating through the transparent cured resin layer.
  • FIG. 2E and FIG. 2F are explanatory drawings showing an example of process (D2) of the manufacturing method of an image display apparatus.
  • the temporary curing resin layer 5 sandwiched between the image display member 6 and the light transmitting optical member 2 is irradiated with ultraviolet light to be fully cured.
  • the image display member 6 and the light transmissive optical member 2 are laminated via the light transmissive cured resin layer 7 to obtain the image display device 10 as shown in FIG. 2F.
  • the photocurable resin composition according to the present embodiment is a photocurable resin composition used in the method for manufacturing an image display device according to the above-described first embodiment or the second embodiment. is there.
  • the photocurable resin composition contains 31 to 55% by mass in total of a radically polymerizable component containing an acrylic oligomer and an acrylic monomer, and 40 to 66% by mass of a plasticizer as an acrylic monomer. And 8 to 19% by mass of a (meth) acrylate monomer having a ring structure, and the shear storage modulus after curing is 1000 to 320000 Pa. With such a configuration, the lifting phenomenon can be suppressed.
  • the light transmitting cured resin layer according to the present embodiment is the light transmitting cured resin layer used in the method of manufacturing the image display device according to the above-described first embodiment or the second embodiment. is there.
  • the light transmitting cured resin layer contains 31 to 55% by mass in total of a radically polymerizable component containing an acrylic oligomer and an acrylic monomer, and 40 to 66% by mass of a plasticizer as an acrylic monomer.
  • a photocurable resin composition containing 8 to 19% by mass of a (meth) acrylate monomer having a ring structure is cured, and has a shear storage modulus of 1000 to 320000 Pa. With such a configuration, the lifting phenomenon can be suppressed.
  • the image display device is manufactured by the method for manufacturing the image display device according to the above-described first embodiment. Then, the presence or absence of the lifting phenomenon of the temporarily cured resin layer and the shear storage elastic modulus of the light transmissive cured resin layer were evaluated.
  • the present technology is not limited to these examples.
  • Example 1 Step (A): Step of forming a photocurable resin composition layer
  • MRX ink manufactured by Teikoku Ink Mfg. Co., Ltd.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 10 parts by mass ⁇ (meth) acrylate monomer having a ring structure> Dicyclopentenyloxyethyl acrylate: 8.5 parts by mass ⁇ other acrylic monomers> 4-hydroxybutyl acrylate, lauryl acrylate, n-octyl acrylate, isodecyl acrylate: 27 parts by weight in total ⁇ plasticizer> Both terminal hydroxyl group hydrogenated polybutadiene (Product name: GI-1000, GI-3000, KRASOL LBH-P-3000), terpene resin: 51 mass parts in total ⁇ photopolymerization initiator> 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, 1-hydroxy-cyclohexyl-phenyl-ketone: 3 parts by mass in total ⁇ additives> 3-methacryloxypropy
  • the prepared photocurable resin composition was discharged onto the entire surface of the light shielding layer forming surface of the glass plate with a light shielding layer using a resin dispenser to form a photocurable resin composition layer having an average thickness of 150 ⁇ m.
  • a UV irradiation device UV-LED, product name H-16LH4-V1-SM1, HOYA CANDEO OPTRONICS
  • the integrated light quantity will be 280 mJ / cm 2
  • the photocurable resin composition layer was temporarily cured by irradiation with ultraviolet light of 170 mW / cm 2 intensity to form a temporarily cured resin layer.
  • the degree of cure of the temporarily cured resin layer was about 80 to 90% when it was determined using the height of the absorption peak from 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart as an index.
  • the glass plate obtained in the step (B) is placed on the surface of the liquid crystal display element having a size of 40 (W) ⁇ 70 (L) mm, laminated so that the temporarily cured resin layer side becomes the polarizing plate side.
  • the sheet was placed, and pressure was applied by a rubber roller from the side of the glass plate to adhere the glass plate.
  • a UV irradiation device metal halide lamp, manufactured by USHIO
  • UV light 200 mW
  • the temporary cured resin layer was completely cured by irradiation with / cm 2 ) to form a light transmitting cured resin layer.
  • the curing rate of the light transmitting cured resin layer was 97%.
  • Example 2 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition in the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 6 parts by mass ⁇ (meth) acrylate monomer having a ring structure>
  • Both terminal hydroxyl group hydrogenated polybutadiene Product name: GI-1000, GI-3000, KRASOL LBH-P-3000
  • terpene resin 54.6 mass parts in total ⁇ photoinitiator>
  • Example 3 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition in the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 19 parts by mass ⁇ (meth) acrylate monomer having a ring structure>
  • Benzyl acrylate 5 parts by mass
  • Both terminal hydroxyl group hydrogenated polybutadiene Product name: GI-1000, GI-3000, KRASOL LBH-P-3000
  • terpene resin 40.6 parts by mass in total ⁇ photoinitiator> 2,4,6-Trimethylbenzoyl-diphenyl-phosphin
  • Example 4 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition of the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 11 parts by mass ⁇ (meth) acrylate monomer having a ring structure>
  • Both terminal hydroxyl group hydrogenated polybutadiene Product name: GI-1000, GI-3000, KRASOL LBH-P-3000
  • terpene resin 52.85 mass parts in total ⁇ photopolymerization initiator> 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, 1-hydroxy-cyclohexyl-phenyl-
  • Example 5 A liquid crystal display device was produced in the same manner as in Example 4 except that in the composition of the photocurable resin composition in Example 4, dicyclopentenyl acrylate was changed to an equal amount of dicyclopentanyl acrylate.
  • Example 6 A liquid crystal display was produced in the same manner as in Example 4 except that in the composition of the photocurable resin composition in Example 4, dicyclopentenyl acrylate was changed to an equal amount of isobornyl acrylate.
  • Example 7 A liquid crystal display device was produced in the same manner as in Example 4 except that in the composition of the photocurable resin composition in Example 4, dicyclopentenyl acrylate was changed to an equal amount of tetrahydrofurfuryl acrylate.
  • Example 8 A liquid crystal display device was produced in the same manner as in Example 4 except that, in the composition of the photocurable resin composition in Example 4, dicyclopentenyl acrylate was changed to an equivalent amount of benzyl acrylate.
  • Example 9 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition of the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 10.85 parts by mass ⁇ (meth) acrylate monomer having a ring structure>
  • Example 10 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition of the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 14 parts by mass ⁇ (meth) acrylate monomer having a ring structure>
  • Both terminal hydroxyl group hydrogenated polybutadiene Product name: GI-1000, GI-3000, KRASOL LBH-P-3000
  • terpene resin 40 mass parts in total ⁇ photopolymerization initiator> 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, 1-hydroxy-cyclohexyl-phenyl-ketone: 2 mass parts in total ⁇ additive> 3-Met
  • Example 1 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition of the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 10.3 parts by mass
  • plasticizer Both terminal hydroxyl group hydrogenated polybutadiene (Product name: GI-1000, GI-3000, KRASOL LBH-P-3000), terpene resin: 51.4 mass parts in total ⁇ photoinitiator> 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, 1-hydroxy-cyclohexyl-phenyl-ketone: 2 mass parts in total ⁇ additive> 3-Methacryloxypropyltrimethoxysilane,
  • Example 2 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition of the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 10.1 parts by mass ⁇ (meth) acrylate monomer having a ring structure>
  • Both terminal hydroxyl group hydrogenated polybutadiene Product name: GI-1000, GI-3000, KRASOL LBH-P-3000
  • terpene resin 55.7 mass parts in total ⁇ photopolymerization initiator> 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide, 1-hydroxy-cyclohexyl
  • Comparative Example 3 A liquid crystal display device was produced in the same manner as in Example 4 except that dicyclopentenyl acrylate was changed to an equal amount of lauryl acrylate in the composition of the photocurable resin composition in Example 4.
  • Comparative Example 4 A liquid crystal display device was produced in the same manner as in Example 4 except that dicyclopentenyl acrylate was changed to an equal amount of n-octyl acrylate in the composition of the photocurable resin composition in Example 4.
  • Comparative Example 5 A liquid crystal display device was produced in the same manner as in Example 4 except that in the composition of the photocurable resin composition in Example 4, dicyclopentenyl acrylate was changed to an equivalent amount of octyl / decyl acrylate.
  • Comparative Example 6 A liquid crystal display device was produced in the same manner as in Example 4 except that dicyclopentenyl acrylate was changed to an equal amount of isostearyl acrylate in the composition of the photocurable resin composition in Example 4.
  • Comparative Example 7 A liquid crystal display device was produced in the same manner as in Example 4 except that dicyclopentenyl acrylate was changed to an equal amount of isodecyl acrylate in the composition of the photocurable resin composition in Example 4.
  • Comparative Example 8 A liquid crystal display device was produced in the same manner as in Example 1 except that the composition of the photocurable resin composition in Example 1 was changed as follows.
  • ⁇ Acrylic oligomer> Aliphatic urethane acrylate: 10.6 parts by mass
  • plasticizer> Terpene resin: 53 parts by mass
  • Comparative Example 9 In the step (B) of Comparative Example 7, the photocurable resin composition layer is temporarily cured by irradiating ultraviolet light of 344 mW / cm 2 intensity so that the integrated light amount is 290 mJ / cm 2, and the temporarily cured resin layer A liquid crystal display was produced in the same manner as in Comparative Example 7 except for forming.
  • Comparative Example 10 In Comparative Example 7 step (B), so that the accumulated light quantity is 297mJ / cm 2, thereby temporarily curing the photocurable resin composition layer by irradiation of ultraviolet light of 513mW / cm 2 intensity, temporarily cured resin layer A liquid crystal display was produced in the same manner as in Comparative Example 7 except for forming.
  • Comparative Example 11 In Comparative Example 7 step (B), so that the accumulated light quantity is 309mJ / cm 2, thereby temporarily curing the photocurable resin composition layer by irradiation of ultraviolet light of 852mW / cm 2 intensity, temporarily cured resin layer A liquid crystal display was produced in the same manner as in Comparative Example 7 except for forming.
  • Comparative Example 12 In Comparative Example 7 step (B), so that the accumulated light quantity is 3696mJ / cm 2, thereby temporarily curing the photocurable resin composition layer by irradiation of ultraviolet light of 852mW / cm 2 intensity, temporarily cured resin layer A liquid crystal display was produced in the same manner as in Comparative Example 7 except for forming.
  • Comparative Example 13 In the step (B) of Comparative Example 7, the photocurable resin composition layer is temporarily cured by irradiating 170 mW / cm 2 intensity ultraviolet light so that the integrated light amount is 1169 mJ / cm 2, and the temporarily cured resin layer A liquid crystal display was produced in the same manner as in Comparative Example 7 except for forming.
  • FIG. 3 is a top view which shows an example of the external appearance of the temporarily cured resin layer in case evaluation of a lifting phenomenon is OK.
  • FIG. 4 is a top view which shows an example of the external appearance of the temporarily cured resin layer in case evaluation of a lifting phenomenon is NG. The results are shown in the following table.
  • Shear storage modulus of light transmitting cured resin layer The shear storage elastic modulus of the light transmitting cured resin layer was calculated using a viscoelasticity measuring device. The measurement conditions were set to a measurement temperature range of 20 to 25 ° C., a frequency of 1 Hz and a strain of 0.1%. The results are shown in the following table.
  • the photocurable resin composition contains 31 to 55% by mass in total of radically polymerizable components containing an acrylic oligomer and an acrylic monomer, and 40 to 66% by mass of a plasticizer.
  • the acrylic monomer contains 5 to 19% by mass of a (meth) acrylate monomer having a cyclic hydrocarbon group, and the shear storage elastic modulus of the light transmitting cured resin layer is 1000 to 320000, It turned out that the lifting phenomenon can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

リフティング現象を抑制できる画像表示装置の製造方法を提供する。 画像表示装置の製造方法は、光硬化性樹脂組成物を、光透過性光学部材の表面又は画像表示部材の表面に塗布して、光硬化性樹脂組成物層を形成する工程(A)と、光硬化性樹脂組成物層に光照射して仮硬化を行うことにより、仮硬化樹脂層を形成する工程(B)と、画像表示部材と光透過性光学部材とを仮硬化樹脂層を介して貼合わせる工程(C)と、仮硬化樹脂層に光を照射して本硬化させることにより、画像表示部材と光透過性光学部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る工程(D)とを有する。光硬化性樹脂組成物は、ラジカル重合性成分を合計31~55質量%と、可塑剤を40~66質量%とを含有し、アクリル系モノマーとして環構造を有する(メタ)アクリレートモノマーを5~19質量%含有する。光透過性硬化樹脂層は、せん断貯蔵弾性率が1000~320000Paである。

Description

画像表示装置の製造方法、光硬化性樹脂組成物及び光透過性硬化樹脂層
 本発明は、液晶表示パネル等の画像表示部材とその表面側に配される透明保護シート等の光透過性光学部材とを、光透過性硬化樹脂層を介して接着・積層して画像表示装置を製造する方法に関する。本出願は、日本国において2017年6月28日に出願された日本特許出願番号特願2017-125891を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 スマートフォン等の情報端末に用いられている液晶表示パネル等の画像表示装置は、まず、液晶表示パネルや有機ELパネル等の画像表示部材と光透過性光学部材との間に、光硬化性樹脂組成物を配して、光硬化性樹脂組成物層を形成する。その後、光硬化性樹脂組成物層に光を照射して硬化させて光透過性硬化樹脂層とする。このように、画像表示装置は、画像表示部材と光透過性光学部材とを接着・積層することにより製造されている。
 ところで、光透過性光学部材の画像表示部側表面の周縁部には、表示画像の輝度やコントラスト向上のために遮光層が通常設けられている。そのため、遮光層と画像表示部材との間に挟まれた光硬化性樹脂組成物の硬化が十分に進行せず、そのため十分な接着力が得られないことがある。これにより、光透過性光学部材と画像表示部材との間の剥離や、その隙間への湿気の侵入により画像品質の低下等が生ずることが懸念されている。
 そこで、例えば、表示パネル及び基板の少なくとも一方に塗布された接着剤に光を照射する第一照射工程(仮硬化工程)と、第一照射工程の後に表示パネル及び基板を貼合わせる貼合わせ工程と、貼合わせ工程の後に更に接着剤に光を照射する第二照射工程(本硬化工程)とを含む表示装置の製造方法が提案されている(特許文献1参照)。
国際公開WO2009/054168号公報
 光硬化性樹脂組成物の仮硬化工程後、画像表示部材と光透過性光学部材とを貼合わせる際は、仮硬化した接着剤の表層部は、できるだけ平坦であることが、貼合わせる部材との接着力をより効果的に発現させることや、接着面積を確保する観点から好ましい。また、被着体である画像表示部材や光透過性光学部材への押圧によるダメージ低減を考慮すると、より小さな貼合せ圧力で貼合せできることが好ましい。すなわち、光硬化性樹脂組成物がより低弾性であることが好ましい。
 しかしながら、光硬化性樹脂組成物の低弾性化を実現しようとすると、光硬化性樹脂組成物の架橋密度が低下してしまう。また、仮硬化状態の光硬化性樹脂組成物層の最表面が硬化不十分な領域となると、いわゆるリフティング現象が起きてしまう。このリフティング現象は、硬化不十分な領域に存在する重合性モノマー等の未硬化成分が、硬化状態領域の樹脂に染み込んで膨潤する結果、シワが生じてしまうことに起因すると考えられる。
 本技術は、このような従来の実情に鑑みて提案されたものであり、リフティング現象を抑制できる画像表示装置の製造方法を提供する。また、光硬化性樹脂組成物及び光透過性硬化樹脂層を提供する。
 本願発明者らは、鋭意検討の結果、光硬化性樹脂組成物中にアクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを所定量含有させることにより、上記課題を解決できることを見出した。
 すなわち、本技術に係る画像表示装置の製造方法は、以下の工程(A)~(D)を有し、光硬化性樹脂組成物は、アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計31~55質量%と、可塑剤を40~66質量%とを含有し、アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを5~19質量%含有し、光透過性硬化樹脂層は、せん断貯蔵弾性率が1000~320000Paである。
<工程(A)>
 光硬化性樹脂組成物を、光透過性光学部材の表面又は画像表示部材の表面に塗布して、光硬化性樹脂組成物層を形成する工程。
<工程(B)>
 光硬化性樹脂組成物層に光照射して仮硬化を行うことにより、仮硬化樹脂層を形成する工程。
<工程(C)>
 画像表示部材と光透過性光学部材とを仮硬化樹脂層を介して貼合わせる工程。
<工程(D)>
 画像表示部材と光透過性光学部材との間に配置された仮硬化樹脂層に光を照射して本硬化させることにより、画像表示部材と光透過性光学部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る工程。
 本技術に係る光硬化性樹脂組成物は、アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計で31~55質量%と、可塑剤を40~66質量%とを含有し、アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを8~19質量%含有し、硬化後のせん断貯蔵弾性率が1000~320000Paである。
 本技術に係る光透過性硬化樹脂層は、アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計で31~55質量%と、可塑剤を40~66質量%とを含有し、アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを8~19質量%含有する光硬化性樹脂組成物を硬化してなり、せん断貯蔵弾性率が1000~320000Paである。
 本技術は、光硬化性樹脂組成物中にアクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを所定量含有させることにより、光硬化性樹脂組成物の仮硬化時に、光硬化性樹脂組成物の硬化不十分な領域に存在する未硬化成分が、嵩高い骨格である環構造を有する(メタ)アクリレートモノマーによって、硬化状態の樹脂に染み込みにくくなるため、樹脂の膨潤を抑制することができる。すなわち、リフティング現象を抑制することができる。
図1Aは、本実施の形態に係る画像表示装置の製造方法の工程(A1)の一例を示す説明図である。 図1Bは、本実施の形態に係る画像表示装置の製造方法の工程(A1)の説明図である。 図1Cは、本実施の形態に係る画像表示装置の製造方法の工程(B1)の説明図である。 図1Dは、本実施の形態に係る画像表示装置の製造方法の工程(B1)の説明図である。 図1Eは、本実施の形態に係る画像表示装置の製造方法の工程(C1)の説明図である。 図1Fは、本実施の形態に係る画像表示装置の製造方法の工程(D1)の説明図である。 図1Gは、本実施の形態に係る画像表示装置の製造方法の工程(D1)の説明図である。 図2Aは、本実施の形態に係る画像表示装置の製造方法の工程(A2)の説明図である。 図2Bは、本実施の形態に係る画像表示装置の製造方法の工程(B2)の説明図である。 図2Cは、本実施の形態に係る画像表示装置の製造方法の工程(B2)の説明図である。 図2Dは、本実施の形態に係る画像表示装置の製造方法の工程(C2)の説明図である。 図2Eは、本実施の形態に係る画像表示装置の製造方法の工程(D2)の説明図である。 図2Fは、本実施の形態に係る画像表示装置の製造方法の工程(D2)の説明図である。 図3は、リフティング現象の評価がOKの場合の仮硬化樹脂層の外観の一例を示す平面図である。 図4は、リフティング現象の評価がNGの場合の仮硬化樹脂層の外観の一例を示す平面図である。
 以下、本発明の実施の形態について詳細に説明する。まず、画像表示装置の製造方法について、第1の実施の形態、第2の実施の形態の順序で、図面を参照しながら工程毎に詳細に説明する。
 [第1の実施の形態]
 [工程(A1)]
 画像表示装置の製造方法は、工程(A1)において、光硬化性樹脂組成物を画像表示部材の表面に塗布して、光硬化性樹脂組成物層を形成する。
 図1A及び図1Bは、画像表示装置の製造方法の工程(A1)の一例を示す説明図である。まず、図1Aに示すように、片面の周縁部に形成された遮光層1を有する光透過性光学部材2を用意する。また、図1Bに示すように、光透過性光学部材2の表面2aに、光硬化性樹脂組成物を、遮光層1と光透過性光学部材2の遮光層形成側表面2aとで形成される段差4がキャンセルされるように、遮光層1の厚さより厚く塗布して光硬化性樹脂組成物層3を形成する。具体的には、遮光層1の表面も含め、光透過性光学部材2の遮光層形成側表面2aの全面に光硬化性樹脂組成物を平坦になるように塗布し、段差が生じないようにすることが好ましい。光硬化性樹脂組成物層3の厚さは、遮光層1の厚さの1.2~50倍の厚さが好ましく、2~30倍の厚さがより好ましい。
 なお、光硬化性樹脂組成物の塗布は、必要な厚みが得られるように行えばよく、1回で行ってもよいし、複数回行ってもよい。
 遮光層1は、例えば画像のコントラストを向上させるために設けられるものである。遮光層1は、黒色等に着色された塗料をスクリーン印刷法などで塗布し、乾燥・硬化させたものである。遮光層1の厚みは、通常5~100μmである。遮光層1の厚みが段差4に相当する。
 光透過性光学部材2は、画像表示部材に形成された画像が視認可能となるような光透過性を有するものであればよい。例えば、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の板状材料やシート状材料が挙げられ、またタッチパネルのようなシート部材が積層された構造でも良い。これらの材料には、片面又は両面にハードコート処理、反射防止処理などを施してもよい。光透過性光学部材2の厚さや弾性率などの物性は、使用目的に応じて適宜決定することができる。
 光硬化性樹脂組成物は液状であることが好ましい。液状のものを使用することにより、遮光層1と光透過性光学部材2の遮光層形成側表面2aとで形成される段差4をより確実にキャンセルすることができる。液状であるとは、B型粘度計で測定した25℃における粘度が0.01~100Pa・sを示すことが好ましい。
 光硬化性樹脂組成物は、アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分と、光重合開始剤と、可塑剤とを含有するものが好ましい。
 光硬化性樹脂組成物中のラジカル重合性成分の含有量の合計は、31~55質量%であり、40~55質量%が好ましい。
 アクリル系オリゴマーは、光硬化性樹脂組成物のベース材料であり、ポリイソプレン、ポリウレタン、ポリブタジエン等を骨格に有する(メタ)アクリレート系オリゴマーが好ましい。なお、本願明細書中、(メタ)アクリレートは、アクリレートとメタクリレートの両方を包含する。
 ポリイソプレン骨格を有する(メタ)アクリレートオリゴマーの具体例としては、ポリイソプレン重合体の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(製品名;UC102(ポリスチレン換算分子量17000)、(株)クラレ社製、製品名;UC203(ポリスチレン換算分子量35000)、(株)クラレ社製、製品名;UC-1(分子量約25000)、(株)クラレ社製)を挙げることができる。
 ポリウレタン骨格を有する(メタ)アクリル系オリゴマーの具体例としては、脂肪族ウレタンアクリレート(EBECRYL230(分子量5000)、ダイセル・オルネクス社製;UA-1、ライトケミカル社製)等を挙げることができる。
 ポリブタジエン骨格を有する(メタ)アクリレート系オリゴマーとしては、公知のものを採用することができる。
 光硬化性樹脂組成物中のアクリル系オリゴマーの含有量は、5~30質量%であることが好ましい。アクリル系オリゴマーを2種以上併用する場合、その合計量が上記範囲を満たすことが好ましい。
 アクリル系モノマーは、画像表示装置の製造工程において、光硬化性樹脂組成物に十分な反応性及び塗布性等を付与するための反応性希釈剤として使用される。アクリル系モノマーは、環構造を有する(メタ)アクリレートモノマーを少なくとも含有し、さらにその他のアクリル系モノマーを含有していてもよい。光硬化性樹脂組成物中の環構造を有する(メタ)アクリレートモノマーの含有量は、5~19質量%であり、5~12質量%とすることもでき、8~10質量%とすることもできる。このような構成とすることにより、光硬化性樹脂組成物層の仮硬化時に、リフティング現象を抑制することができる。
 環構造を有する(メタ)アクリレートモノマーは、環構造として、脂環式炭化水素基、芳香族炭化水素基、及び複素環の少なくとも1種を有することが好ましい。環構造を有する(メタ)アクリレートモノマーは、単官能(メタ)アクリレートモノマーであってもよいし、多官能(メタ)アクリレートモノマーであってもよい。
 脂環式炭化水素基を有する(メタ)アクリレートモノマーにおける、脂環式炭化水素基の炭素数は、4~30が好ましく、4~20がより好ましく、8~14がさらに好ましい。脂環式炭化水素基は、単環構造であってもよいし、多環構造であってもよいが、多環構造であることが好ましい。脂環式炭化水素基は、飽和であっても不飽和であってもよい。脂環式炭化水素基は、置換基を有していてもよい。
 脂環式炭化水素基を有する(メタ)アクリレートモノマーは、リフティング現象を抑制する観点から、有橋脂環式炭化水素基を有することが好ましい。具体例としては、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、ジシクロペンテニルオキシエチルアクリレート、アダマンチル(メタ)アクリレート、2-アルキル-2-アダマンチル(メタ)アクリレート、3-ヒドロキシ-1-アダマンチル(メタ)アクリレート、及び1-パーフルオロアダマンチル(メタ)アクリレート等が挙げられる。これらの中でも、リフティング現象を抑制する観点から、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンタニルアクリレート、及びイソボルニルアクリレートが好ましい。
 芳香族炭化水素基を有する(メタ)アクリレートモノマーにおける芳香族炭化水素基の炭素数は、6~30が好ましく、6~18がより好ましい。芳香族炭化水素基は、単環構造であってもよいし、多環構造であってもよい。芳香族炭化水素基は、置換基を有していてもよい。
 芳香族炭化水素基を有する(メタ)アクリレートモノマーの具体例としては、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の単官能モノマー、ポリカーボネートジオールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド付加物ジ(メタ)アクリレート等の多官能モノマーが挙げられる。これらの中でも、リフティング現象を抑制する観点から、単環能モノマーが好ましく、ベンジル(メタ)アクリレートが好ましい。
 複素環を有する(メタ)アクリレートモノマーは、複素環のヘテロ原子として窒素原子、酸素原子、硫黄原子の少なくとも1種を有することが好ましく、酸素原子を有することが好ましい。複素環を構成する炭素原子数は、3~10が好ましく、3~8がより好ましい。複素環は、単環構造であってもよいし、多環構造であってもよい。複素環が多環構造である場合、縮合していてもよい。複素環は、置換基を有していてもよい。
 複素環を有する(メタ)アクリレートモノマーの具体例としては、テトラヒドロフルフリル(メタ)アクリレート、4-テトラヒドロピラニルアクリレート、2-テトラヒドロピラニルメチルアクリレート等が挙げられ、テトラヒドロフルフリル(メタ)アクリレートが好ましく、テトラヒドロフルフリル(メタ)アクリレートがより好ましい。環構造を有する(メタ)アクリレートモノマーは、1種のみ用いてもよいし、2種以上を併用しても良い。
 環構造を有する(メタ)アクリレートモノマー以外の、他のアクリル系モノマーとしては、直鎖状又は分岐状の(メタ)アクリレートモノマーが挙げられる。具体例としては、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、イソデシルアクリレート、イソステアリルアクリレート、オクチル/デシルアクリレート等が挙げられる。
 光硬化性樹脂組成物中の他のアクリル系モノマーの含有量は、5~35質量%であることが好ましい。2種以上の他のアクリル系モノマーを併用する場合、その合計量が上記範囲を満たすことが好ましい。
 光重合開始剤は、公知の光ラジカル重合開始剤を使用することができる。例えば、1-ヒドロキシ-シクロへキシルフェニルケトン(イルガキュア184、BASF社製)、2-ヒドロキシ-1-{4-[4-(2一ヒドロキシ-2-メチル-プロピロニル)ベンジル]フェニル}-2-メチル-1-プロパン-1-オン(イルガキュア127、BASF社製)、ベンゾフェノン、アセトフェノン等を挙げることができる。光重合開始剤は、1種のみ用いてもよいし、2種以上を併用してもよい。
 光重合開始剤の含有量は、ラジカル重合性成分の合計100質量部に対し、0.1~5質量部が好ましく、0.2~3質量部がより好ましい。このような範囲にすることにより、紫外線照射時に硬化不足となるのを防ぐとともに、開裂によるアウトガスが増えるのを防ぐことができる。2種以上の光重合開始剤を併用する場合、その合計量が上記範囲を満たすことが好ましい。
 可塑剤は、硬化した樹脂層に緩衝性を付与するとともに、光硬化性樹脂組成物の硬化収縮率を低減させるために使用される。また、可塑剤は、紫外線の照射によりアクリル系オリゴマー及びアクリル系モノマーとは実質的に反応しないものである。可塑剤としては、固体の粘着付与剤、液状オイル成分が挙げられる。可塑剤は、1種のみ用いてもよいし、2種以上を併用してもよい。
 固体の粘着付与剤としては、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、テルペン系水素添加樹脂が挙げられる。また、上述のアクリル系モノマーを予め低分子ポリマー化した非反応性のオリゴマーも使用することができ、具体的には、ブチルアクリレートと2-ヘキシルアクリレートおよびアクリル酸の共重合体や、シクロヘキシルアクリレートとメタクリル酸の共重合体等が挙げられる。
 液状オイル成分としては、ポリブタジエン系オイル、ポリイソプレン系オイル等が挙げられる。
 光硬化性樹脂組成物中の可塑剤の含有量は、40~66質量%であり、40~60質量%とすることもできる。2種以上の可塑剤を併用する場合、その合計量が上記範囲を満たすことが好ましい。
 光硬化性樹脂組成物は、分子量の調整のために更に連鎖移動剤を含有していてもよい。連鎖移動剤としては、例えば、2-メルカプトエタノール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、チオグリコール酸2-エチルヘキシル、2,3-ジメチルカプト-1-プロパノール、α-メチルスチレンダイマーなどが挙げられる。
 また、光硬化性樹脂組成物は、必要に応じて、更にシランカップリング剤等の接着改善剤、酸化防止剤等の添加剤を含有してもよい。
 [工程(B1)]
 工程(B1)において、工程(A1)で形成された光硬化性樹脂組成物層に光照射して仮硬化を行うことにより、仮硬化樹脂層を形成する。
 図1C及び図1Dは、画像表示装置の製造方法の工程(B1)の一例を示す説明図である。図1Cに示すように、工程(A1)で形成された光硬化性樹脂組成物層3に光(好ましくは紫外線)を照射して仮硬化を行うことにより、仮硬化樹脂層5を形成する。光硬化性樹脂組成物層3の仮硬化を行うのは、光硬化性樹脂組成物を液状から著しく流動しない状態にし、図1Dに示すように、天地逆転させても流れ落ちないようにして取り扱い性を向上させるためである。また、仮硬化を行うことにより、遮光層1と画像表示部材との間の光透過性硬化樹脂層3を、その間から排除することなく十分に光硬化させることでき、硬化収縮も低減させることができる。
 光硬化性樹脂組成物層3の仮硬化は、仮硬化樹脂層5の硬化率(ゲル分率)が、10~90%となるように行うことが好ましく、40~90%となるように行うことがより好ましく、70~90%となるように行うことがさらに好ましい。ここで、硬化率(ゲル分率)とは、紫外線照射前の光硬化性樹脂組成物層中の(メタ)アクリロイル基の存在量に対する紫外線照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。
 なお、硬化率(ゲル分率)は、紫外線照射前の光硬化性樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(X)と、紫外線照射後の光硬化性樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(Y)とを、下記式に代入することにより算出することができる。
硬化率(%)=[(X-Y)/X]×100
 紫外線の照射は、硬化率(ゲル分率)が好ましくは10~90%となるように仮硬化させることができる限り、光源の種類、出力、照度、積算光量などは特に制限なく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。特に、紫外線照射は、UV-LEDを用いて、照度100~300mW/cm、積算光量100~300mJ/cmの条件で行うことが好ましい。
 また、紫外線照射は、上述の硬化率の範囲内において、後述する工程(C1)の貼合わせ操作の際、仮硬化樹脂層5の液だれや変形が生じないような条件を選択することが好ましい。例えば、粘度で表現すると、20Pa・S以上(コーンプレートレオメーター、25℃、コーン及びプレートC35/2、回転数10rpm)とすることが好ましい。
 [工程(C1)]
 工程(C1)において、画像表示部材と光透過性光学部材とを仮硬化樹脂層を介して貼合わせる。
 図1Eは、画像表示装置の製造方法の工程(C1)の一例を示す説明図である。図1Eに示すように、画像表示部材6に、光透過性光学部材2を仮硬化樹脂層5側から貼合わせる。貼合わせは、例えば、公知の圧着装置を用いて、10~80℃で加圧することにより行うことができる。
 [工程(D1)]
 工程(D1)において、画像表示部材と光透過性光学部材との間に配置された仮硬化樹脂層に光を照射して本硬化させることにより、画像表示部材と光透過性光学部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る。
 図1F及び図1Gは、画像表示装置の製造方法の工程(D1)の一例を示す説明図である。図1Fに示すように、画像表示部材6と光透過性光学部材2との間に挟持されている仮硬化樹脂層5に対し光(好ましくは紫外線)を照射して本硬化させる。仮硬化樹脂層5を本硬化させるのは、仮硬化樹脂層5を十分に硬化させて、画像表示部材6と光透過性光学部材2とを接着し積層するためである。これにより、画像表示部材6と光透過性光学部材2とを光透過性硬化樹脂層7を介して積層して、図1Gに示すような画像表示装置10が得られる。なお、必要に応じて、光透過性光学部材2の遮光層1と画像表示部材6との間の仮硬化樹脂層5に光を照射することにより、この仮硬化樹脂層5を本硬化させてもよい。
 本硬化は、光透過性硬化樹脂層7の硬化率(ゲル分率)が90%以上となるように行うことが好ましく、95%以上となるように行うことがより好ましい。本硬化を行う際の光源の種類、出力、照度、積算光量などは特に制限なく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。特に、紫外線照射は、紫外線照射機(メタルハライドランプ、高圧水銀、UV-LED等)を用いて、照度50~300mW/cm、積算光量1000~3000mJ/cmの条件で行うことが好ましい。
 画像表示部材6としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。
 光透過性硬化樹脂層7のせん断貯蔵弾性率は、2000~320000Paであることが好ましい。なお、光透過性硬化樹脂層7のせん断貯蔵弾性率は、25℃における値をいう。光透過性硬化樹脂層7のせん断貯蔵弾性率が上記範囲であることにより、本硬化前の仮硬化樹脂層5のせん断貯蔵弾性率が適切な範囲、すなわち、仮硬化樹脂層5を低弾性な状態にすることができる。これにより、図1(E)に示すように、画像表示部材6に、光透過性光学部材2を仮硬化樹脂層5側から貼合せる際に、より小さな貼合せ圧力で貼合せできるため、画像表示部材6や光透過性光学部材2への押圧によるダメージを低減することができる。
 光透過性硬化樹脂層7は、画像表示部材6に形成された画像が視認可能となるような光透過性を有していればよい。
 以上、第1の実施の形態では、光透過性光学部材の遮光層側形成表面に光硬化性樹脂組成物を塗布した例を説明した。以下の第2の実施の形態では、画像表示部材表面に光硬化性樹脂組成物を塗布した例を説明する。なお、図面において同じ図番は同一の構成要素を表しているものとする。
 [第2の実施の形態]
 以下、画像表示装置の製造方法の第2の実施の形態について、図面を参照しながら工程毎に詳細に説明する。
 [工程(A2)]
 工程(A2)において、光硬化性樹脂組成物を、画像表示部材の表面に塗布して、光硬化性樹脂組成物層を形成する。
 図2Aは、画像表示装置の製造方法の工程(A2)の一例を示す説明図である。図2Aに示すように、画像表示部材6の表面に光硬化性樹脂組成物が平坦になるように塗布して光硬化性樹脂組成物層3を形成する。光硬化性樹脂組成物層3の厚さは、遮光層と光透過性光学部材の遮光層形成側表面とで形成される段差がキャンセルされるような厚さにすることが好ましい。例えば、光硬化性樹脂組成物層3の厚さは、遮光層の厚さの2.5~40倍が好ましく、2.5~12.5倍がより好ましく、2.5~4倍が更に好ましい。
 なお、光硬化性樹脂組成物の塗布は、必要な厚みが得られるように行えばよく、1回で行ってもよいし、複数回行ってもよい。
 [工程(B2)]
 工程(B2)において、工程(A2)で形成された光硬化性樹脂組成物層に光照射して仮硬化を行うことにより、仮硬化樹脂層を形成する。
 図2B及び図2Cは、画像表示装置の製造方法の工程(B2)の一例を示す説明図である。図2Bに示すように、工程(A2)で形成された光硬化性樹脂組成物層3に対し光(好ましくは紫外線)を照射して仮硬化させることにより仮硬化樹脂層5を形成する(図2C)。光硬化性樹脂組成物層3の仮硬化は、仮硬化樹脂層5の硬化率(ゲル分率)が、10~90%となるように行うことが好ましく、40~90%となるように行うことがより好ましく、70~90%となるように行うことがさらに好ましい。
 [工程(C2)]
 工程(C2)において、画像表示部材と光透過性光学部材とを仮硬化樹脂層を介して貼合わせる。
 図2Dは、画像表示装置の製造方法の工程(C2)の一例を示す説明図である。図2Dに示すように、画像表示部材6の仮硬化樹脂層5に、光透過性光学部材2を遮光層1側から貼合わせる。貼合わせは、例えば、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができる。
 [工程(D2)]
 工程(D2)において、画像表示部材と光透過性光学部材との間に配置された仮硬化樹脂層に光を照射して本硬化させることにより、画像表示部材と光透過性光学部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る。
 図2E及び図2Fは、画像表示装置の製造方法の工程(D2)の一例を示す説明図である。図2Eに示すように、画像表示部材6と光透過性光学部材2との間に挟持されている仮硬化樹脂層5に対し紫外線を照射して本硬化させる。これにより、画像表示部材6と光透過性光学部材2とを光透過性硬化樹脂層7を介して積層して、図2Fに示すような画像表示装置10が得られる。
 以上のように、本技術によれば、光硬化性樹脂組成物中にアクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを所定量含有させることにより、リフティング現象を抑制することができる。
 また、本実施の形態に係る光硬化性樹脂組成物は、上述の第1の実施の形態、又は第2の実施の形態に係る画像表示装置の製造方法に用いられる光硬化性樹脂組成物である。光硬化性樹脂組成物は、アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計で31~55質量%と、可塑剤を40~66質量%とを含有し、アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを8~19質量%含有し、硬化後のせん断貯蔵弾性率が1000~320000Paである。このような構成とすることにより、リフティング現象を抑制することができる。
 また、本実施の形態に係る光透過性硬化樹脂層は、上述の第1の実施の形態、又は第2の実施の形態に係る画像表示装置の製造方法に用いられる光透過性硬化樹脂層である。光透過性硬化樹脂層は、アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計で31~55質量%と、可塑剤を40~66質量%とを含有し、アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを8~19質量%含有する光硬化性樹脂組成物を硬化してなり、せん断貯蔵弾性率が1000~320000Paである。このような構成とすることにより、リフティング現象を抑制することができる。
 以下、本技術の実施例について説明する。本技術では、上述した第1の実施の形態に係る画像表示装置の製造方法により、画像表示装置を作製した。そして、仮硬化樹脂層のリフティング現象の有無と、光透過性硬化樹脂層のせん断貯蔵弾性率について評価した。なお、本技術は、これらの実施例に限定されるものではない。
 本実施例では、以下の化合物を用いた。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート、製品名:EBECRYL230、ダイセル・オルネクス社製
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルオキシエチルアクリレート、製品名:FA-512AS、日立化成社製
ジシクロペンタニルアクリレート、製品名:FA-513AS、日立化成社製
ジシクロペンテニルアクリレート、製品名:FA-511AS、日立化成社製
イソボルニルアクリレート、製品名:IBXA、大阪有機化学社製
テトラヒドロフルフリルアクリレート、製品名:ビスコート#150、大阪有機化学工業(株)社製
ベンジルアクリレート、製品名:ビスコート#160、大阪有機化学社製
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、製品名:4-HBA、BASF社製
ラウリルアクリレート、製品名:LA、大阪有機化学社製
n-オクチルアクリレート、製品名:NOAA、大阪有機化学社製
イソデシルアクリレート、製品名:FA-111A、日立化成社製
メタクリル酸ヒドロキシプロピル、製品名:アクリエステルHP(HPMA)、三菱レイヨン社製
イソステアリルアクリレート、製品名:ISTA、大阪有機化学社製
オクチル/デシルアクリレート、製品名:ODA-N、ダイセル・オルネクス(株)社製
<可塑剤>
両末端水酸基水素化ポリブタジエン、製品名:GI‐1000、GI‐3000、日本曹達社製
両末端水酸基水素化ポリブタジエン、製品名:KRASOL LBH-P-3000、CRAY VALLEY社製
テルペン樹脂、製品名:クリアロンM105、ヤスハラケミカル社製
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、製品名:LUCIRIN TPO、BASF社製
1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、製品名:Irgacure184、BASF社製
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、製品名:KBM-503、信越シリコーン社製
3-メルカプトプロピルトリメトキシシラン、製品名:KBM-803、信越シリコーン社製
ヒンダードフェノール系酸化防止剤、製品名:IRGANOX1010、BASF社製
 [実施例1]
(工程(A):光硬化性樹脂組成物層を形成する工程)
 45(w)×80(l)×0.4(t)mmの大きさのガラス板を用意し、このガラス板の周縁部全域に、乾燥厚で40μmとなるように4mm幅の遮光層を、熱硬化タイプの黒色インク(MRXインキ、帝国インキ製造社製)を用いて、スクリーン印刷法により塗布し、乾燥させることにより、遮光層付きガラス板を用意した。
 以下の各成分を均一に混合して光硬化性樹脂組成物を調製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:10質量部
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルオキシエチルアクリレート:8.5質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、イソデシルアクリレート:合計で27質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で51質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で3質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.5質量部
 調製した光硬化性樹脂組成物を、樹脂用ディスペンサーを用いて遮光層付きガラス板の遮光層形成面の全面に吐出し、厚さ平均150μmの光硬化性樹脂組成物層を形成した。
(工程(B):仮硬化樹脂層を形成する工程)
 上記光硬化性樹脂組成物層に対して、紫外線照射装置(UV-LED、製品名H―16LH4-V1-SM1、HOYA CANDEO OPTRONICS社製)を用いて、積算光量が280mJ/cmとなるように、170mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物層を仮硬化させ、仮硬化樹脂層を形成した。
 仮硬化樹脂層の硬化率は、FT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さを指標として求めたところ、約80~90%であった。
(工程(C):貼合わせ工程)
 40(W)×70(L)mmのサイズの液晶表示素子の偏光板が積層された面に、工程(B)で得たガラス板を、その仮硬化樹脂層側が偏光板側となるように載置し、ガラス板側からゴムローラで加圧して、ガラス板を貼り付けた。
(工程(D):本硬化工程)
 工程(C)で得られた液晶表示素子に対し、ガラス板側から、紫外線照射装置(メタルハライドランプ、USHIO社製)を用いて、積算光量が1000mJ/cm以上となるように、紫外線(200mW/cm)を照射し仮硬化樹脂層を完全に硬化させ、光透過性硬化樹脂層を形成した。光透過性硬化樹脂層の硬化率は97%であった。これにより、液晶表示素子に、光透過性光学部材としてのガラス板が光透過性硬化樹脂層を介して積層された液晶表示装置が得られた。
 [実施例2]
 実施例1における光硬化性樹脂組成物中の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:6質量部
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルオキシエチルアクリレート:8質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、イソデシルアクリレート:合計で28質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で54.6質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で3質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.4質量部
 [実施例3]
 実施例1における光硬化性樹脂組成物中の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:19質量部
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルオキシエチルアクリレート:8質量部
イソボルニルアクリレート:6質量部
ベンジルアクリレート:5質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート、メタクリル酸ヒドロキシプロピル:合計で17質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で40.6質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で3.8質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.6質量部
 [実施例4]
 実施例1における光硬化性樹脂組成物の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:11質量部
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルアクリレート:8.8質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、イソデシルアクリレート:合計で25質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で52.85質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で2質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.35質量部
 [実施例5]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のジシクロペンタニルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [実施例6]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のイソボルニルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [実施例7]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のテトラヒドロフルフリルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [実施例8]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のベンジルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [実施例9]
 実施例1における光硬化性樹脂組成物の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:10.85質量部
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルアクリレート:8.8質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート:合計で12質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で66質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で2質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.35質量部
 [実施例10]
 実施例1における光硬化性樹脂組成物の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:14質量部
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルオキシエチルアクリレート:9質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート:合計で34.65質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で40質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で2質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.35質量部
 [比較例1]
 実施例1における光硬化性樹脂組成物の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:10.3質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、イソデシルアクリレート、イソステアリルアクリレート:合計で36質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で51.4質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で2質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.3質量部
 [比較例2]
 実施例1における光硬化性樹脂組成物の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:10.1質量部
<環構造を有する(メタ)アクリレートモノマー>
ジシクロペンテニルオキシエチルアクリレート:0.8質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、イソデシルアクリレート:合計で30質量部
<可塑剤>
両末端水酸基水素化ポリブタジエン(製品名:GI‐1000、GI‐3000、KRASOL LBH-P-3000)、テルペン樹脂:合計で55.7質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で3質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.4質量部
 [比較例3]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のラウリルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [比較例4]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のn-オクチルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [比較例5]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のオクチル/デシルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [比較例6]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のイソステアリルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [比較例7]
 実施例4における光硬化性樹脂組成物の組成中、ジシクロペンテニルアクリレートを、等量のイソデシルアクリレートに変更したこと以外は、実施例4と同様に液晶表示装置を作製した。
 [比較例8]
 実施例1における光硬化性樹脂組成物の組成を以下のように変更したこと以外は、実施例1と同様に液晶表示装置を作製した。
<アクリル系オリゴマー>
脂肪族ウレタンアクリレート:10.6質量部
<他のアクリル系モノマー>
4-ヒドロキシブチルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、イソデシルアクリレート:合計で34質量部
<可塑剤>
テルペン樹脂:53質量部
<光重合開始剤>
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン:合計で2.1質量部
<添加剤>
3-メタクリロキシプロピルトリメトキシシラン、ヒンダードフェノール系酸化防止剤:合計で0.3質量部
 [比較例9]
 比較例7の工程(B)において、積算光量が290mJ/cmとなるように、344mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物層を仮硬化させ、仮硬化樹脂層を形成したこと以外は、比較例7と同様に液晶表示装置を作製した。
 [比較例10]
 比較例7の工程(B)において、積算光量が297mJ/cmとなるように、513mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物層を仮硬化させ、仮硬化樹脂層を形成したこと以外は、比較例7と同様に液晶表示装置を作製した。
 [比較例11]
 比較例7の工程(B)において、積算光量が309mJ/cmとなるように、852mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物層を仮硬化させ、仮硬化樹脂層を形成したこと以外は、比較例7と同様に液晶表示装置を作製した。
 [比較例12]
 比較例7の工程(B)において、積算光量が3696mJ/cmとなるように、852mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物層を仮硬化させ、仮硬化樹脂層を形成したこと以外は、比較例7と同様に液晶表示装置を作製した。
 [比較例13]
 比較例7の工程(B)において、積算光量が1169mJ/cmとなるように、170mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物層を仮硬化させ、仮硬化樹脂層を形成したこと以外は、比較例7と同様に液晶表示装置を作製した。
 [仮硬化樹脂層のリフティング現象の有無]
 各実施例及び比較例の工程(B)において、仮硬化樹脂層の外観を観察し、リフティング現象の発生の有無を評価した。リフティング現象が発生しなかった場合をOKと評価し、リフティング現象が発生した場合をNGと評価した。図3は、リフティング現象の評価がOKの場合の仮硬化樹脂層の外観の一例を示す平面図である。図4は、リフティング現象の評価がNGの場合の仮硬化樹脂層の外観の一例を示す平面図である。結果を下記表に示す。
 [光透過性硬化樹脂層のせん断貯蔵弾性率]
 粘弾性測定装置を用いて、光透過性硬化樹脂層のせん断貯蔵弾性率を算出した。測定条件は、測定温度域20~25℃、振動数1Hz、歪み0.1%に設定した。結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~10のように、光硬化性樹脂組成物がアクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計で31~55質量%と、可塑剤を40~66質量%とを含有し、アクリル系モノマーが、環状の炭化水素基を有する(メタ)アクリレートモノマーを5~19質量%含有し、光透過性硬化樹脂層のせん断貯蔵弾性率が1000~320000であることにより、リフティング現象を抑制できることが分かった。
 比較例1、3~7のように、光硬化性樹脂組成物が環構造を有する(メタ)アクリレートモノマーを含有しない場合、リフティング現象が発生してしまうことが分かった。
 比較例2のように、光硬化性樹脂組成物中の環構造を有する(メタ)アクリレートモノマーの含有量が5質量%未満である場合、リフティング現象が発生してしまうことが分かった。
 比較例8のように、光硬化性樹脂組成物が環構造を有する(メタ)アクリレートモノマーを含有しない場合、本硬化後の光透過性硬化樹脂層のせん断貯蔵弾性率が大きくなるように光硬化性樹脂組成物を調製しても、リフティング現象が発生してしまうことが分かった。
 比較例9~12のように、光硬化性樹脂組成物が環構造を有する(メタ)アクリレートモノマーを含有しない場合、光硬化性樹脂組成物を仮硬化する際に用いる紫外線の照度及び積算光量を変更しても、リフティング現象が発生してしまうことが分かった。
1 遮光層、2 光透過性光学部材、2a 遮光層形成側表面、3 光硬化性樹脂組成物層、4 段差、5 仮硬化樹脂層、6 画像表示部材、7 光透過性硬化樹脂層、10 画像表示装置
 

Claims (10)

  1.  光硬化性樹脂組成物を、光透過性光学部材の表面又は画像表示部材の表面に塗布して、光硬化性樹脂組成物層を形成する工程(A)と、
     上記光硬化性樹脂組成物層に光照射して仮硬化を行うことにより、仮硬化樹脂層を形成する工程(B)と、
     画像表示部材と光透過性光学部材とを上記仮硬化樹脂層を介して貼合わせる工程(C)と、
     上記画像表示部材と上記光透過性光学部材との間に配置された上記仮硬化樹脂層に光を照射して本硬化させることにより、上記画像表示部材と上記光透過性光学部材とを光透過性硬化樹脂層を介して積層して画像表示装置を得る工程(D)とを有する、画像表示装置の製造方法であって、
     上記光硬化性樹脂組成物は、アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計31~55質量%と、可塑剤を40~66質量%とを含有し、上記アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを5~19質量%含有し、
     上記光透過性硬化樹脂層は、せん断貯蔵弾性率が1000~320000Paである、画像表示装置の製造方法。
  2.  上記環構造を有する(メタ)アクリレートモノマーは、環構造として、脂環式炭化水素基、芳香族炭化水素基、及び複素環の少なくとも1種を有する、請求項1記載の画像表示装置の製造方法。
  3.  上記光透過性硬化樹脂層のせん断貯蔵弾性率が2000~320000Paである、請求項1又は2記載の画像表示装置の製造方法。
  4.  上記光硬化性樹脂組成物は、上記環構造を有する(メタ)アクリレートモノマーを8~10質量%含有する、請求項1~3のいずれか1項に記載の画像表示装置の製造方法。
  5.  上記工程(B)において、上記仮硬化樹脂層の硬化率が70~90%となるように、上記光硬化性樹脂組成物層に紫外線を照射して仮硬化させる、請求項1~4のいずれか1項に記載の画像表示装置の製造方法。
  6.  上記工程(B)において、UV-LEDを用いて、照度100~300mW/cm、積算光量100~300mJ/cmの条件で光照射を行う、請求項1~5のいずれか1項に記載の画像表示装置の製造方法。
  7.  上記工程(D)において、上記光透過性硬化樹脂層の硬化率が90%以上となるように、上記仮硬化樹脂層に紫外線を照射して本硬化させる、請求項1~6のいずれか1項に記載の画像表示装置の製造方法。
  8.  上記画像表示部材が、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル又はタッチパネルである、請求項1~7のいずれか1項に記載の画像表示装置の製造方法。
  9.  アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計で31~55質量%と、可塑剤を40~66質量%とを含有し、
     上記アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを8~19質量%含有し、
     硬化後のせん断貯蔵弾性率が1000~320000Paである、光硬化性樹脂組成物。
  10.  アクリル系オリゴマーとアクリル系モノマーとを含有するラジカル重合性成分を合計で31~55質量%と、可塑剤を40~66質量%とを含有し、上記アクリル系モノマーとして、環構造を有する(メタ)アクリレートモノマーを8~19質量%含有する光硬化性樹脂組成物を硬化してなり、せん断貯蔵弾性率が1000~320000Paである、光透過性硬化樹脂層。
     
PCT/JP2018/023440 2017-06-28 2018-06-20 画像表示装置の製造方法、光硬化性樹脂組成物及び光透過性硬化樹脂層 WO2019004020A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880055417.4A CN110945581B (zh) 2017-06-28 2018-06-20 图像显示装置的制造方法、光固化性树脂组合物和透光性固化树脂层
KR1020197038123A KR20200011966A (ko) 2017-06-28 2018-06-20 화상 표시 장치의 제조 방법, 광경화성 수지 조성물 및 광투과성 경화 수지층
KR1020227002512A KR102566223B1 (ko) 2017-06-28 2018-06-20 화상 표시 장치의 제조 방법, 광경화성 수지 조성물 및 광투과성 경화 수지층
US16/627,581 US20200148916A1 (en) 2017-06-28 2018-06-20 Method for manufacturing image display device, photocurable resin composition, and light transmitting cured resin layer
EP18824791.0A EP3648084B1 (en) 2017-06-28 2018-06-20 Method for producing image display device, photocurable resin composition and light-transmitting cured resin layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125891A JP6370967B1 (ja) 2017-06-28 2017-06-28 画像表示装置の製造方法、光硬化性樹脂組成物及び光透過性硬化樹脂層
JP2017-125891 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004020A1 true WO2019004020A1 (ja) 2019-01-03

Family

ID=63104383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023440 WO2019004020A1 (ja) 2017-06-28 2018-06-20 画像表示装置の製造方法、光硬化性樹脂組成物及び光透過性硬化樹脂層

Country Status (7)

Country Link
US (1) US20200148916A1 (ja)
EP (1) EP3648084B1 (ja)
JP (1) JP6370967B1 (ja)
KR (2) KR20200011966A (ja)
CN (1) CN110945581B (ja)
TW (1) TWI791544B (ja)
WO (1) WO2019004020A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080144B2 (ja) * 2018-09-19 2022-06-03 アイカ工業株式会社 光硬化性粘着樹脂組成物
CN209590464U (zh) * 2019-02-02 2019-11-05 合肥京东方显示技术有限公司 一种彩膜基板及显示装置
KR102473023B1 (ko) * 2019-11-01 2022-12-01 코제노벨머티얼리스코리아 주식회사 점착 필름
KR20220087073A (ko) 2020-12-17 2022-06-24 송혜진 조립형 다용도 걸이

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054168A1 (ja) 2007-10-22 2009-04-30 Sharp Kabushiki Kaisha 表示装置及びその製造方法
JP2013237797A (ja) * 2012-05-16 2013-11-28 Arakawa Chem Ind Co Ltd 活性エネルギー線硬化型樹脂、活性エネルギー線硬化型ハードコート剤、それらを用いた硬化膜、硬化膜が積層されたプラスチックフィルム、及びプラスチックフィルムを用いた加工製品。
WO2013191254A1 (ja) * 2012-06-22 2013-12-27 ソマール株式会社 エネルギー線硬化型樹脂組成物、硬化物及び積層体
JP2014202996A (ja) * 2013-04-08 2014-10-27 株式会社カネカ 画像表示装置の製造方法および画像表示装置
JP2016210638A (ja) * 2015-04-30 2016-12-15 旭硝子株式会社 ディスプレイ付き複層ガラス
US20170015880A1 (en) * 2015-07-16 2017-01-19 Samsung Sdi Co., Ltd. Adhesive film, optical member including the same, and optical display including the same
WO2017022285A1 (ja) * 2015-08-04 2017-02-09 デクセリアルズ株式会社 光学部材の製造方法
JP2017048358A (ja) * 2015-09-01 2017-03-09 デクセリアルズ株式会社 光硬化性樹脂組成物、及び画像表示装置の製造方法
JP2017125891A (ja) 2016-01-12 2017-07-20 キヤノン株式会社 投写型表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042383A1 (en) * 2000-11-22 2002-05-30 Dsm N.V. Radiation curable compositions
JP2011224853A (ja) * 2010-04-19 2011-11-10 Nitto Denko Corp フィルム及び粘接着シート
JP5304922B1 (ja) * 2012-05-09 2013-10-02 デクセリアルズ株式会社 画像表示装置の製造方法
JP6127745B2 (ja) * 2013-06-06 2017-05-17 デクセリアルズ株式会社 光硬化性樹脂組成物、及び画像表示装置の製造方法
CN105579482A (zh) * 2013-09-30 2016-05-11 日立化成株式会社 光固化性树脂组合物、图像显示用装置及图像显示用装置的制造方法
JP5901808B2 (ja) * 2014-08-05 2016-04-13 古河電気工業株式会社 電子デバイス封止用硬化性吸湿性樹脂組成物、封止樹脂および電子デバイス
CN107709493B (zh) * 2015-06-02 2022-08-09 三菱化学株式会社 光固化型粘合片、粘合片及图像显示装置
JP6479589B2 (ja) * 2015-06-22 2019-03-06 デクセリアルズ株式会社 画像表示装置の製造方法
WO2017038845A1 (ja) * 2015-09-01 2017-03-09 デクセリアルズ株式会社 光硬化性樹脂組成物、及び画像表示装置の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054168A1 (ja) 2007-10-22 2009-04-30 Sharp Kabushiki Kaisha 表示装置及びその製造方法
JP2013237797A (ja) * 2012-05-16 2013-11-28 Arakawa Chem Ind Co Ltd 活性エネルギー線硬化型樹脂、活性エネルギー線硬化型ハードコート剤、それらを用いた硬化膜、硬化膜が積層されたプラスチックフィルム、及びプラスチックフィルムを用いた加工製品。
WO2013191254A1 (ja) * 2012-06-22 2013-12-27 ソマール株式会社 エネルギー線硬化型樹脂組成物、硬化物及び積層体
JP2014202996A (ja) * 2013-04-08 2014-10-27 株式会社カネカ 画像表示装置の製造方法および画像表示装置
JP2016210638A (ja) * 2015-04-30 2016-12-15 旭硝子株式会社 ディスプレイ付き複層ガラス
US20170015880A1 (en) * 2015-07-16 2017-01-19 Samsung Sdi Co., Ltd. Adhesive film, optical member including the same, and optical display including the same
WO2017022285A1 (ja) * 2015-08-04 2017-02-09 デクセリアルズ株式会社 光学部材の製造方法
JP2017048358A (ja) * 2015-09-01 2017-03-09 デクセリアルズ株式会社 光硬化性樹脂組成物、及び画像表示装置の製造方法
JP2017125891A (ja) 2016-01-12 2017-07-20 キヤノン株式会社 投写型表示装置

Also Published As

Publication number Publication date
JP2019008231A (ja) 2019-01-17
CN110945581A (zh) 2020-03-31
EP3648084A1 (en) 2020-05-06
US20200148916A1 (en) 2020-05-14
CN110945581B (zh) 2022-01-14
KR102566223B1 (ko) 2023-08-11
KR20200011966A (ko) 2020-02-04
TW201906970A (zh) 2019-02-16
EP3648084A4 (en) 2021-03-17
TWI791544B (zh) 2023-02-11
EP3648084B1 (en) 2023-12-20
JP6370967B1 (ja) 2018-08-08
KR20220018609A (ko) 2022-02-15

Similar Documents

Publication Publication Date Title
KR102277736B1 (ko) 화상 표시 장치의 제조 방법
JP5370706B1 (ja) 画像表示装置の製造方法
JP5138820B1 (ja) 画像表示装置の製造方法
JP6220123B2 (ja) 画像表示装置の製造方法
JP5218802B1 (ja) 画像表示装置の製造方法
US11124676B2 (en) Method for manufacturing optical member
WO2019004020A1 (ja) 画像表示装置の製造方法、光硬化性樹脂組成物及び光透過性硬化樹脂層
JP6689051B2 (ja) 光硬化性樹脂組成物、及び画像表示装置の製造方法
WO2013168629A1 (ja) 画像表示装置の製造方法
JP2014081642A (ja) 画像表示装置の製造方法
JP6495965B2 (ja) 画像表示装置の製造方法
JP5440725B2 (ja) 画像表示装置の製造方法
JP2020128546A (ja) 光学部材の製造方法
JP6786647B2 (ja) 画像表示装置の製造方法
JP6975834B2 (ja) 画像表示装置の製造方法
WO2019102928A1 (ja) 光硬化性樹脂組成物、及び画像表示装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038123

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824791

Country of ref document: EP

Effective date: 20200128