WO2019003900A1 - バルブ装置 - Google Patents

バルブ装置 Download PDF

Info

Publication number
WO2019003900A1
WO2019003900A1 PCT/JP2018/022440 JP2018022440W WO2019003900A1 WO 2019003900 A1 WO2019003900 A1 WO 2019003900A1 JP 2018022440 W JP2018022440 W JP 2018022440W WO 2019003900 A1 WO2019003900 A1 WO 2019003900A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
power generation
valve device
actuator
valve
Prior art date
Application number
PCT/JP2018/022440
Other languages
English (en)
French (fr)
Inventor
献治 相川
篠原 努
隆博 松田
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US16/625,875 priority Critical patent/US20200149639A1/en
Priority to JP2019526775A priority patent/JP7157459B2/ja
Priority to CN201880044044.0A priority patent/CN110832236B/zh
Priority to KR1020197036477A priority patent/KR102284443B1/ko
Publication of WO2019003900A1 publication Critical patent/WO2019003900A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/005Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion using electro- or magnetostrictive actuation means
    • F16F15/007Piezoelectric elements being placed under pre-constraint, e.g. placed under compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/067Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/073Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits

Definitions

  • the present invention relates to a valve device.
  • Patent Documents 1, 2 and 3 disclose a method of driving various sensors using a button battery.
  • Patent Document 3 discloses a system in which a high frequency is superimposed on a control input transmitted from a controller to a solenoid valve and power is received by extracting a high frequency component on the valve side.
  • JP 2011-513832 gazette Japanese Patent Application Publication No. 2016-513228 JP 2017-020530 A
  • the high-frequency superimposed power transmission to the solenoid valve of Patent Document 3 can not be applied to an air-driven valve device.
  • the valve device used in the semiconductor manufacturing apparatus is installed near a vibration source such as a vacuum pump, for example. Therefore, while the semiconductor manufacturing apparatus is in operation, the valve device always receives environmental vibration from the outside. When the valve device receives environmental vibration, the valve body also receives vibration, so environmental vibration may affect the flow rate. In order to enable more precise flow control, the effects of environmental vibration can not be ignored.
  • One object of the present invention is to provide a valve device capable of mounting various electronic devices and solving the problems of wiring and battery replacement, having a power generation function and capable of suppressing the influence of environmental vibration.
  • a valve device comprises: a housing portion; and an actuator having a movable portion housed in the housing portion which is driven by a drive fluid to move a valve body in a closing direction or an opening direction.
  • a spring member biasing the movable portion in a direction that opposes the driving force of the drive fluid;
  • a power generation and vibration control unit having a power generation function and a vibration control function for suppressing the vibration applied to the device by converting the vibration of the vibration system generated by the operation of the actuator using the piezoelectric effect of the piezoelectric element into electric power.
  • a configuration further including an adjustment circuit configured to control the dynamic characteristic of the vibration system in accordance with the vibration applied from the outside of the device.
  • the power generation and damping unit can generate electric power by converting the vibration of the vibration system into electric power, it is possible to obtain a valve device in which the problem of wiring and battery replacement is solved.
  • the power generation and damping unit can suppress the vibration such as environmental vibration applied from the outside of the valve device by the damping function.
  • FIG. 2 is a perspective view including a longitudinal cross section of the valve device of FIG. 1A.
  • FIG. 1B is a longitudinal sectional view of the valve device of FIG. 1A.
  • FIG. 2 is a functional block diagram schematically showing an example of a load circuit.
  • the functional block diagram which shows schematically the other example of a load circuit.
  • FIG. 1A to 1C are views showing the configuration of a valve device according to an embodiment of the present invention
  • FIG. 1A is an external perspective view
  • FIG. 1B is a perspective view including a longitudinal cross section
  • FIG. 1C is a longitudinal cross section is there.
  • arrows A1 and A2 indicate the vertical direction
  • A1 indicates the upward direction
  • A2 indicates the downward direction.
  • the valve device 1 has an actuator unit 7 and a valve body 20.
  • the pipe 5 connected to the pipe joint 3 at one end is introduced into the inside of the actuator unit 7.
  • the driving fluid is supplied to the inside of the actuator unit 7 through the pipe 5 or the air released from the actuator unit 7 is released to the outside.
  • the drive fluid for example, compressed air is used.
  • the actuator unit 7 has a cylindrical actuator cap 10 whose upper end is closed, a cylindrical actuator case 11, an actuator body 12, a piston member 13, a diaphragm presser 15, a coil spring 30 and a power generation damping unit 100.
  • the actuator cap 10 is fixed to a spring receiving member 8 whose lower end portion is formed in an annular shape, and a circuit accommodating portion 40 is provided in the internal space.
  • a circuit accommodating portion 40 is provided in the internal space.
  • FIGS. 1B and 1C the cross section of the circuit housing portion 40 is hatched, but in fact, the circuit housing portion 40 is a cavity for housing an electrical circuit such as an electric circuit or a secondary battery. .
  • the pipe 5 is introduced into the inside of the actuator unit 7 through the actuator cap 10.
  • the actuator case 11 supports the spring support member 8 on the upper end side, and the lower end side is screwed and fixed to the actuator body 12.
  • the actuator body 12 has a guide hole 12a for guiding the diaphragm presser 15 in the vertical directions A1 and A2 on its lower side, and a through hole 12b is formed in communication with the upper side of the guide hole 12a.
  • a cylinder chamber 12c is formed which slidably guides the flange portion 13b of the piston member 13 in the vertical directions A1 and A2 via an O-ring OR.
  • the piston member 13 has a flow passage 13a communicating with the cylinder chamber 12c at the center.
  • the flow passage 13 a is in communication with the pipe 5 a of the pipe 5.
  • the flange portion 13b and the tip end shaft portion 13c can move the cylinder chamber 12c and the through hole 12b in the vertical directions A1 and A2 via the O ring OR.
  • the cylindrical member 9 is provided at the upper end portion of the piston member 13 and restricts the movement of the O-ring OR that seals between the pipe 5 and the conduit 5 a.
  • the diaphragm presser 15 is movable in the vertical directions A1 and A2 by the guide holes 12a of the actuator body 12.
  • the upper side of the valve body 20 is screwed with the lower side of the actuator body 12, and the flow paths 21 and 22 of gas or the like having openings 21a and 22a are defined on the bottom surface thereof.
  • the flow paths 21 and 22 are connected to other flow path members via seal members (not shown).
  • the valve seat 16 is provided around the flow passage 21 of the valve body 20.
  • the valve seat 16 is made of a resin such as PFA or PTFE so as to be elastically deformable.
  • the diaphragm 17 functions as a valve body, has a diameter larger than that of the valve seat 16, and is formed so as to be elastically deformable in a spherical shell shape from a metal such as stainless steel or NiCo alloy or a fluorine resin.
  • the diaphragm 17 is supported by the valve body 20 so as to be able to abut and be separated from the valve seat 16 by being pressed toward the valve body 20 by the lower end surface of the actuator body 12 via the pressing adapter 18.
  • the diaphragm 17 is pressed by the diaphragm holder 15 to be elastically deformed and pressed against the valve seat 16.
  • the coil spring 30 is provided around the cylindrical portion 8 a provided at the center of the spring receiving member 8, and is interposed between the spring receiving portion 8 b of the spring receiving member 8 and the flange portion 13 b of the piston member 13. 13 is always urged downward by the restoring force A2. As a result, the upper end surface of the diaphragm presser 15 is urged downward by the piston member 13 in the downward direction A2, and presses the diaphragm 17 toward the valve seat 16.
  • the power generation and damping unit 100 is fixed to the inner circumferential surface of the actuator case 11 via the support member 110.
  • FIGS. 2, 3A and 3B show the structure of the power generation and damping unit 100.
  • FIG. The power generation and damping unit 100 has a piezoelectric bimorph 102 formed in an arc shape so as to be accommodated in the space between the outer periphery of the coil spring 30 and the inner circumferential surface of the actuator case 11 and a base end 102 b of the piezoelectric bimorph 102 It has a support member 110 supported on the portion 13 b and a mass portion 120 provided at the tip portion 102 a of the piezoelectric bimorph 102.
  • the base end portion 102b of the piezoelectric bimorph 102 is provided with a mounting hole 102h and is fixed to the upper surface of the support member 110 by a screw member.
  • the tip end portion 102a of the piezoelectric bimorph 102 is a free end, and the piezoelectric bimorph 102 is It constitutes a cantilever-shaped elastically deformable portion.
  • the piezoelectric bimorph 102 has a thin metal plate 104 for maintaining mechanical strength, and sheet-like piezoelectric elements 103A and 103B provided on the front and back of the metal plate 104.
  • the piezoelectric elements 103A and 103B are electrically connected to a load circuit 600 described later.
  • the bending of the piezoelectric bimorph 102 causes the piezoelectric elements 103A and 103B to be compressed or expanded to generate an electromotive force according to the amount of deformation thereof. Electric power can be differentially extracted from the piezoelectric elements 103A and 103B by a load circuit 600 described later.
  • the power generation and damping unit 100 forms a vibration system in which damping vibration continues when impact is applied by the vertical movement of the piston member 13 and power generation continues for a while. Specifically, the piston member 13 ascends in the upward direction A1 by the supply of the compressed air which is the driving fluid, and an impact occurs when the movement is restricted at a predetermined position.
  • the restoring force of the coil spring 30 causes an impact when the diaphragm press 15 collides with the valve seat 16 via the diaphragm 17.
  • an impact is generated although small. These impacts generate vibrations in the power generation and damping unit 100.
  • the surface of the piezoelectric bimorph 102 is attached substantially perpendicular to the axis of the piston member 13.
  • the power generation and damping unit 100 is formed in an arc shape, and is accommodated in the space between the outer periphery of the coil spring 30 and the inner peripheral surface of the actuator case 11 to obtain an area while incorporating in the valve device 1 It is possible to arrange for the displacement of the center of gravity of the piston member 13 to be reduced as much as possible.
  • the shape of the power generation damping unit 100 is not limited to the arc shape, and can be formed, for example, in an annular shape, and any one of the annular shapes is used as the one end portion on the support member 110.
  • Fixing and having a mass portion 120 on the opposite side of the annular ring results in a similar cantilevered beam structure. Further, the rigidity of the piezoelectric bimorph 102 and the size of the mass portion 120 can be set in accordance with a desired natural frequency.
  • FIG. 4 shows an example of the load circuit 600 as a functional block diagram.
  • the load circuit 600 can transmit data detected by the rectifying circuit 601, the power supply IC 602, the microcontroller 603, various sensors 604 such as a pressure sensor, a temperature sensor, an acceleration sensor, and the various sensors 604 to the outside. It has a secondary battery 606, a circuit control unit 607, and an adjustment unit 608 controlled by the circuit control unit 607.
  • the rectifier circuit 601 converts the alternating current generated in the power generation and damping unit 100 into a direct current through the adjustment unit 608.
  • the power supply IC 602 converts the voltage of the power from the power generation and damping unit 100 and stores it in the secondary battery 606 while managing the power to be sent to the power supply destinations such as the microcontroller 603, various sensors 604, and the wireless unit 605. It also doubles as an IC.
  • the secondary battery 606 stores DC power supplied from the power supply IC 602. It is also possible to substitute a capacitor of relatively large capacity.
  • the circuit control unit 607 outputs a control signal for controlling the adjustment unit 608.
  • the adjustment unit 608 selectively switches between the power generation function and the vibration suppression function of the power generation and damping unit 100 according to a control signal from the circuit control unit 607. Apart from the various sensors, they are housed in the circuit housing portion 40, and the various sensors are disposed near the flow path of the valve device 1 etc. to detect pressure, temperature and vibration, and electrically connected by the power IC 602 and microcontroller 603 and wiring. Connected
  • the power generation and damping unit 100 can generate a voltage by deformation of the piezoelectric elements 103A and 103B and can differentially take out the voltage. That is, it has a power generation function.
  • the power generation and damping unit 100 can apply a bending force to the piezoelectric bimorph 102 when a voltage is appropriately applied to the piezoelectric elements 103A and 103B. That is, the piezoelectric elements 103A and 103B are actuators, and a voltage can be applied to the piezoelectric elements 103A and 103B through the adjusting unit 608 to control the vibration of the piezoelectric bimorph 102.
  • FIG. 5 shows an example of another load circuit 600A as a functional block diagram.
  • symbol is used for the structural part of FIG. 4 and the same hot water.
  • the DC voltage adjustment unit 105 changes the DC voltage applied to the piezoelectric element 103B to generate power by the piezoelectric element 103A. It is possible to hold the DC voltage at which the AC power becomes the largest. Efficiency of power generation and vibration suppression can be enhanced by resonating the power generation damping unit 100 with a frequency having a large influence among environmental vibrations and converting the energy of the vibration into electric power.
  • the acceleration sensor in the sensor 604 detects the environmental vibration and removes the piezoelectric elements 103A and 103B so as to erase the environmental vibration.
  • Feedback control active damping
  • the power generation and damping unit 100 By causing the power generation and damping unit 100 to exhibit a damping function, a necessary low vibration environment can be formed.
  • the valve device 1 By incorporating the power generation damping unit 100 having such power generation function and damping function into the valve device 1, the valve device 1 can be enhanced in function.
  • it is arbitrary at which timing to exhibit a damping function and it is not necessarily limited at the time of the application of the above environmental vibrations.
  • the present invention is not limited to this, and the present invention is also applicable to a so-called normally open valve.
  • valve apparatus 1 was driven by compressed air
  • gas other than air it is also possible to use gas other than air.
  • the present invention is not limited to this, and it is applicable also to other type valves.
  • the present invention is not limited to this but a monomorph type can also be adopted. Moreover, it is also possible to constitute a power generation and damping unit by combining a stacked piezoelectric element in which a large number is stacked, a spring and a mass.
  • piezoelectric bimorph Although the case where only one piezoelectric bimorph is illustrated as the power generation and damping unit is illustrated in the above embodiment, a plurality of piezoelectric bimorphs may be attached to different places.
  • Valve device Piping 7 Actuator section (actuator) 10 Actuator cap (housing part) 11 Actuator case (chassis) 12 Actuator body (chassis) 13 Piston member (movable part) 15 diaphragm holder 16 valve seat 17 diaphragm (valve body) 18 Presser adapter 20 Valve body (housing part) 30 coil spring (spring member) 100 Power generation and damping unit 102 Piezoelectric bimorph (elastic deformation part) 102a tip portion 102b base end portion 102h mounting hole 103A, 103B piezoelectric element 104 metal plate 105 DC voltage adjusting portion 110 supporting member 120 mass portion 600, 600A load circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

【課題】各種電子機器を搭載可能で、配線や電池交換の問題が解消された発電機能を有するガス駆動式のバルブ装置を提供する。 【解決手段】筐体部10,11と、駆動流体により駆動されて弁体を閉方向又は開方向に移動させる筐体部10,11に収容された可動部13とを有するアクチュエータ7と、可動部13を駆動流体の駆動力に抗する方向に付勢するばね部材30と、圧電素子の圧電効果を利用した、アクチュエータ7の作動により生じる振動系の振動を電力に変換する発電機能と装置に加わる振動を抑制する制振機能とを備える発電制振ユニット100とを有する。

Description

バルブ装置
 本発明は、バルブ装置に関する。
 バルブ装置の分野においても、圧力センサや無線モジュール等の電子機器を搭載して装置の高機能化が図られようとしている(特許文献1、2、3を参照)。それらの電子機器に用いる電力を供給する手段として、特許文献2ではボタン電池を用いて各種センサを駆動させる方法を開示している。また、特許文献3では、コントローラから電磁弁へと送信される制御入力に高周波を重畳させておき、バルブ側で高周波成分を取り出すことで受電するシステムを開示している。
特表2011-513832号公報 特表2016-513228号公報 特開2017-020530号公報
 半導体製造装置に用いられる、空圧を用いたエア駆動式のバルブ装置においても、各種電子機器を動作させるための電源を確保したい需要がある。
 一つの手段として、電源のための配線を外部からバルブ装置に導き入れることが考えられるが、多数のバルブが設置される流体制御装置において配線が煩雑になるのみならず、防爆性の問題で配線の設計と配設に細心の注意を払う必要がある。
 また、一つの手段として、電源として電池を用いれば、配線の問題は解消されるが、バルブ装置の寿命に見合うだけの大容量の一次電池を用いたり、定期的な電池交換作業が必要となったりする。
 特許文献3の電磁弁に対する高周波重畳送電は、エア駆動式のバルブ装置においては適用しえない。
 半導体製造装置に用いられるバルブ装置は、たとえば、真空ポンプ等の振動源の近くに設置される。このため、半導体製造装置が稼働中には、バルブ装置は常時外部からの環境振動を受ける。バルブ装置が環境振動を受けると、弁体も振動を受けるため、環境振動が流量に影響を与える可能性がある。より高精密な流量制御を可能にするためには、環境振動の影響を無視できない。
 本発明の一の目的は、各種電子機器を搭載可能で配線や電池交換の問題が解消された、発電機能を有しかつ環境振動の影響も抑制できるバルブ装置を提供することにある。
 本発明に係るバルブ装置は、筐体部と、駆動流体により駆動されて弁体を閉方向又は開方向に移動させる前記筐体部に収容された可動部とを有するアクチュエータと、
 前記可動部を前記駆動流体の駆動力に抗する方向に付勢するばね部材と、
 圧電素子の圧電効果を利用した、前記アクチュエータの作動により生じる振動系の振動を電力に変換し発電機能と装置に加わる振動を抑制する制振機能とを有する発電制振ユニットと、を有する。
 好適には、装置の外部から印可される振動に応じて前記振動系の動特性を制御可能に形成されている調整回路をさらに有する、構成を採用できる。
 本発明によれば、発電制振ユニットが振動系の振動を電力に変換することで発電できるので、配線や電池交換の問題が解消されたバルブ装置が得られる。加えて、発電制振ユニットは制振機能によりバルブ装置の外部から印可される環境振動等の振動を抑制することができる。
本発明の一実施形態に係るバルブ装置の外観斜視図。 図1Aのバルブ装置の縦断面を含む斜視図。 図1Aのバルブ装置の縦断面図。 発電制振ユニットの拡大斜視図。 発電制振ユニットの側面図。 図3Aの発電制振ユニットの斜視図。 負荷回路の一例を概略的に示す機能ブロック図。 負荷回路の他の例を概略的に示す機能ブロック図。
 以下、本発明の実施形態について図面を参照して説明する。なお、本明細書および図面においては、機能が実質的に同様の構成要素には、同じ符号を使用することにより重複した説明を省略する。
 図1A~図1Cは、本発明の一実施形態に係るバルブ装置の構成を示す図であって、図1Aは外観斜視図、図1Bは縦断面を含む斜視図、図1Cは縦断面図である。なお、図中において、矢印A1,A2は上下方向を示しており、A1が上方向、A2が下方向を示している。
 バルブ装置1は、アクチュエータ部7とバルブボディ20とを有する。一端部に管継手3が接続された配管5は、アクチュエータ部7の内部へ導入されている。配管5を通じて、アクチュエータ部7の内部へ駆動流体が供給され、又は、アクチュエータ部7から解放されたエアが外部に放出される。駆動流体としては、例えば、圧縮エアが使用される。
 アクチュエータ部7は、上端部が閉塞した円筒状のアクチュエータキャップ10、円筒状のアクチュエータケース11、アクチュエータボディ12、ピストン部材13、ダイヤフラム押え15、コイルばね30および発電制振ユニット100を有する。
 アクチュエータキャップ10は、下端部が円環状に形成されたばね受け部材8に固定されており、内部空間に回路収容部40が設けられている。図1B,1Cにおいて、回路収容部40の断面にはハッチングが施されているが、実際には、回路収容部40は電気回路や二次電池等の電気的要素を収容する空洞となっている。配管5は、アクチュエータキャップ10を通じてアクチュエータ部7の内部に導入される。
 アクチュエータケース11は、上端側でばね受け部材8を支持しており、下端側がアクチュエータボディ12にねじ込み固定されている。
 アクチュエータボディ12は、図1Cに示すように、その下側にダイヤフラム押え15を上下方向A1,A2にガイドするガイド孔12aを有し、ガイド孔12aの上側に連通して貫通孔12bが形成されている。アクチュエータボディ12の上側には、OリングORを介してピストン部材13のフランジ部13bを摺動自在に上下方向A1,A2に案内するシリンダ室12cが形成されている。
 ピストン部材13は、中心部にシリンダ室12cに連通する流通路13aを有する。流通路13aは、配管5の管路5aと連通している。ピストン部材13は、フランジ部13bおよび先端軸部13cがOリングORを介してシリンダ室12cおよび貫通孔12bを上下方向A1,A2に移動自在となっている。円筒状の部材9は、ピストン部材13の上端部に設けられ、配管5の管路5aとの間をシールするOリングORの移動を規制する。
 ダイヤフラム押え15はアクチュエータボディ12のガイド孔12aにより上下方向A1,A2に可動となっている。
 バルブボディ20は、上側がアクチュエータボディ12の下側と螺合され、その底面に開口部21a,22aを有するガス等の流路21,22を画定している。流路21,22は他の流路部材と図示しないシール部材を介して接続される。
 バルブシート16は、バルブボディ20の流路21の周囲に設けられている。バルブシート16は、PFA、PTFE等の樹脂で弾性変形可能に形成されている。
 ダイヤフラム17は、弁体として機能し、バルブシート16よりも大きな直径を有し、ステンレス、NiCo系合金などの金属やフッ素系樹脂で球殻状に弾性変形可能に形成されている。ダイヤフラム17は、押えアダプタ18を介してアクチュエータボディ12の下端面によりバルブボディ20に向けて押し付けられることによりバルブシート16に対して当接離隔可能にバルブボディ20に支持されている。図1Cにおいて、ダイヤフラム17はダイヤフラム押え15により押圧されて弾性変形し、バルブシート16に押し付けられている状態にある。ダイヤフラム押え15による押圧を開放すると、球殻状に復元する。ダイヤフラム17がバルブシート16に押し付けられている状態では流路21が閉鎖され、ダイヤフラム17がバルブシート16から離れると、流路21は開放されて流路22と連通する。
 コイルばね30は、ばね受け部材8の中心に設けられた円筒部8aの周囲に設けられ、ばね受け部材8のばね受け部8bとピストン部材13のフランジ部13bとの間に介在し、ピストン部材13を常に下方向A2に向けて復元力により付勢している。これにより、ダイヤフラム押え15の上端面がピストン部材13により下方向A2に付勢され、ダイヤフラム17をバルブシート16に向けて押圧する。
 発電制振ユニット100は、支持部材110を介してアクチュエータケース11の内周面に固定されている。
 ここで、図2、図3Aおよび図3Bに発電制振ユニット100の構造を示す。
 発電制振ユニット100は、コイルばね30の外周とアクチュエータケース11の内周面との間の空間に収まるように円弧状に形成された圧電バイモルフ102と、圧電バイモルフ102の基端部102bをフランジ部13b上で支持する支持部材110と、圧電バイモルフ102の先端部102aに設けられた質量部120とを有する。圧電バイモルフ102の基端部102bは、取付孔102hが形成され、ねじ部材により支持部材110の上面に固定されており、圧電バイモルフ102の先端部102aは自由端となっており、圧電バイモルフ102は片持ち梁状の弾性変形部を構成している。
 圧電バイモルフ102は、機械強度を保つための薄い金属板104と、金属板104の表裏に設けられたシート状の圧電素子103A,103Bとを有する。圧電素子103A,103Bは、後述する負荷回路600に電気的に接続される。圧電バイモルフ102がたわむことにより圧電素子103A,103Bが圧縮又は伸長しその変形量に応じた起電力が生じる。後述する負荷回路600により圧電素子103A,103Bから差動的に電力を取り出すことができる。
 発電制振ユニット100は、上記のような構造により、ピストン部材13の上下動作により衝撃が加わると減衰振動を続けてしばらく発電が続く振動系を成している。具体的には、駆動流体である圧縮エアの供給によりピストン部材13が上方向A1に上昇し、所定の位置で移動が規制される際に衝撃が発生する。また、圧縮エアを解放すると、コイルばね30の復元力により、ダイヤフラム押え15がダイヤフラム17を介してバルブシート16に衝突する際に衝撃が発生する。また、中間開状態で使用するためにピストン部材13が全開と全閉の間で停止する際や、開閉動作のためにピストン部材13が動き始める時にも小さいながら衝撃が発生する。これらの衝撃により、発電制振ユニット100に振動が生じる。このように、ピストン部材13の動作方向の振動を吸収するために、圧電バイモルフ102の面がピストン部材13の軸に対して略垂直になるように取り付けられている。
 発電量を確保するためには、発電制振ユニット100の面積は可能な限り広くとるのが好ましい。本実施形態では、発電制振ユニット100を円弧状に形成し、コイルばね30の外周とアクチュエータケース11の内周面との間の空間に収めることでバルブ装置1に内蔵しつつ面積を稼ぎ、ピストン部材13の重心のずれを極力減らす配置を可能とした。なお、発電制振ユニット100の形状は円弧状に限定されるわけではなく、例えば、円環状に形成することも可能であり、円環状の形状のうち任意の点を一端部として支持部材110に固定し、円環の反対側に質量部120を有することで同様の片持ち梁構造となる。また、圧電バイモルフ102の剛性や質量部120の大きさは、所望の固有振動数に応じて設定できる。
 図4に負荷回路600の一例を機能ブロック図として示す。
 負荷回路600は、整流回路601、電源IC602、マイクロコントローラ603、圧力センサ、温度センサ、加速度センサなどの各種センサ604や、各種センサ604で検出したデータを外部に送信することができる無線部605、二次電池606、回路制御部607およびこの回路制御部607により制御される調整部608を有する。
 整流回路601は、調整部608を通じて発電制振ユニット100で生じる交流電流を直流化する。
 電源IC602は、発電制振ユニット100からの電力の電圧を変換して二次電池606に蓄えつつ、マイクロコントローラ603、各種センサ604、無線部605等の電力供給先へ送る電力を調節する電力管理ICとしての機能を兼ねている。電源IC602として、例えば、エナジーハーベスティング用として一般的に流通しているものを採用できる。
 二次電池606は、電源IC602から供給される直流電力を蓄える。容量の比較的大きいキャパシタを代用することも可能である。
 回路制御部607は、調整部608を制御する制御信号を出力する。
 調整部608は、回路制御部607からの制御信号に応じて、発電制振ユニット100の発電機能と制振機能とを選択的に切り換える。
 各種センサ以外は、回路収容部40に収容され、各種センサは圧力や温度や振動を検出すべく、バルブ装置1の流路近辺等に配置され、電源IC602やマイクロコントローラ603と配線によって電気的に接続される。
 制振機能
 上述したように、発電制振ユニット100は、圧電素子103A,103Bの変形により電圧を生じさせて差動的に電圧を取り出すことができる。すなわち、発電機能を有する。
 これに加えて、発電制振ユニット100は、圧電素子103A,103Bに適宜電圧を印可すると、圧電バイモルフ102に曲げ力を作用させることができる。すなわち、圧電素子103A,103Bは、アクチュエータであり、調整部608を通じて電圧を圧電素子103A,103Bに印可して圧電バイモルフ102の振動をコントロールすることができる。
 図5に他の負荷回路600Aの例を機能ブロック図として示す。なお、図5において、図4と同湯の構成部分には同様の符号を使用している。
 図5に示すように、発電制振ユニット100により発電される交流電力を電源IC602で測定しながら、直流電圧調整部105により圧電素子103Bに印加する直流電圧を変化させて、圧電素子103Aにより発電される交流電力の最も大きくなる直流電圧に保持することができる。環境振動のうち影響の大きな周波数に対し発電制振ユニット100を共振させて、振動のエネルギーを電力に変換することにより、発電および制振の効率を高めることができる。
 また、例えば、バルブ装置1に外部からの環境振動が印可されている場合に、センサ604の中の加速度センサでこの環境振動を検出し、この環境振動を消去するように圧電素子103A,103Bをフィードバック制御(アクティブダンピング)することができる。発電制振ユニット100に制振機能を発揮させれば、必要な低振動環境を形成することができる。
 このような発電機能と制振機能をもつ発電制振ユニット100をバルブ装置1に内蔵させることで、バルブ装置1の高機能化ができる。なお、制振機能をどのタイミングで発揮させるかは任意であり、上記のような環境振動の印可時に限定されるわけではない。ピストン作動時に制振制御を作動させて衝撃を大幅に緩和し、バルブ解放時に印可される外部からの環境振動を用いて発電することも可能である。また、制振制御の具体的方法は、公知のものを適宜採用できることは言うまでもない。さらに、発電制振ユニット100の発電機能のみ、又は、制振機能のみを使用する構成でもよい。
 上記実施形態では、いわゆるノーマリークローズのバルブを例示したが、これに限定されるわけではなく、いわゆるノーマリーオープンのバルブにも適用可能である。
 上記実施形態では、バルブ装置1を圧縮エアで駆動する場合を例示したが、空気以外の他のガスを用いることも可能である。
 上記実施形態では、ダイヤフラム式のバルブについて例示したが、本発明はこれに限定されるわけではなく、他の方式のバルブにも適用可能である。
 上記実施形態では、バイモルフ式の発電制振ユニットを使用した場合について説明したが、本発明はこれに限定されず、モノモルフ式も採用できる。また、多数を重ねた積層型の圧電素子とばねおよび質量を組み合わせることで、発電制振ユニットを構成することも可能である。
 上記実施形態では、発電制振ユニットとして圧電バイモルフが一枚のみの場合を例示したが、複数枚の圧電バイモルフを別々の場所に取り付けた構成とすることも可能である。
1 バルブ装置
5 配管
7 アクチュエータ部(アクチュエータ)
10 アクチュエータキャップ(筐体部)
11 アクチュエータケース(筐体部)
12 アクチュエータボディ(筐体部)
13 ピストン部材(可動部)
15 ダイヤフラム押え
16 バルブシート
17 ダイヤフラム(弁体)
18 押えアダプタ
20 バルブボディ(筐体部)
30 コイルばね(ばね部材)
100 発電制振ユニット
102 圧電バイモルフ(弾性変形部)
102a 先端部
102b 基端部
102h 取付け孔
103A,103B 圧電素子
104 金属板
105 直流電圧調整部
110 支持部材
120 質量部
600,600A 負荷回路
 

Claims (5)

  1.  筐体部と、駆動流体により駆動されて弁体を閉方向又は開方向に移動させる前記筐体部に収容された可動部とを有するアクチュエータと、
     前記可動部を前記駆動流体の駆動力に抗する方向に付勢するばね部材と、
     圧電素子の圧電効果を利用した、前記アクチュエータの作動により生じる振動系の振動を電力に変換する発電機能と装置に加わる振動を抑制する制振機能とを備える発電制振ユニットと、
    を有するバルブ装置。
  2.  装置の外部から印可される振動に応じて前記振動系の動特性を制御可能に形成されている調整回路をさらに有する、請求項1に記載のバルブ装置。
  3.  前記調整回路は、前記圧電素子に印加する直流電圧を調整する直流電圧調整部を持つ、請求項2に記載のバルブ装置。
  4.  前記発電制振ユニットの振動系は、
     一端側が前記筐体部に固定され他端側が自由端となった片持ち梁状の弾性変形部と、
     前記変形部の他端側に設けられた質量部と、
    を有し、
     前記弾性変形部はその変形量と電力を相互に変換する圧電素子を有する、請求項1又は2に記載のバルブ装置。
  5.  前記発電ユニットは前記アクチュエータの内部にあって、
     前記弾性変形部は、前記可動部の外輪郭に沿って円環状又は円弧状に形成されている、請求項4に記載のバルブ装置。
     
PCT/JP2018/022440 2017-06-30 2018-06-12 バルブ装置 WO2019003900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/625,875 US20200149639A1 (en) 2017-06-30 2018-06-12 Valve device
JP2019526775A JP7157459B2 (ja) 2017-06-30 2018-06-12 バルブ装置
CN201880044044.0A CN110832236B (zh) 2017-06-30 2018-06-12 阀装置
KR1020197036477A KR102284443B1 (ko) 2017-06-30 2018-06-12 밸브장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017129016 2017-06-30
JP2017-129016 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019003900A1 true WO2019003900A1 (ja) 2019-01-03

Family

ID=64742929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022440 WO2019003900A1 (ja) 2017-06-30 2018-06-12 バルブ装置

Country Status (6)

Country Link
US (1) US20200149639A1 (ja)
JP (1) JP7157459B2 (ja)
KR (1) KR102284443B1 (ja)
CN (1) CN110832236B (ja)
TW (1) TWI734012B (ja)
WO (1) WO2019003900A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322415A (zh) * 2020-02-28 2020-06-23 山东大学 一种能够自供电的控制阀***及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185788B (zh) * 2019-07-04 2023-09-29 中微半导体设备(上海)股份有限公司 一种等离子处理装置及其方法
CN110578769B (zh) * 2019-09-04 2023-08-25 中国海洋大学 一种在极端海洋环境中波能发电装置的自保***及自保方法
DE102020007279B4 (de) * 2020-11-28 2022-10-06 Netzsch - Gerätebau Gesellschaft mit beschränkter Haftung Messgerät mit Vibrationsdämpfer und Verfahren zum Abschirmen eines Messgeräts gegenüber Vibrationen
CN117588385A (zh) * 2023-11-21 2024-02-23 中国人民解放军海军工程大学 一种基于能量收集的空气压缩机智能气阀

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157433A (ja) * 1999-11-26 2001-06-08 Fujitsu Ltd 流体による振動発電装置
JP3177094U (ja) * 2012-05-08 2012-07-19 イハラサイエンス株式会社 ダイヤフラム弁
JP2016011744A (ja) * 2014-06-30 2016-01-21 株式会社フジキン ダイヤフラム弁、流体制御装置、半導体製造装置および半導体製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202014A (zh) * 1997-06-10 1998-12-16 大宇电子株式会社 具有连到振动源的压电元件的压电发生器及其制造方法
CN1328836C (zh) * 2004-11-22 2007-07-25 西安交通大学 轨道车辆振动能量压电发电方法及其***
CN100336281C (zh) * 2004-11-22 2007-09-05 西安交通大学 车辆轨道振动能量压电发电方法及其***
US8036837B2 (en) 2008-02-29 2011-10-11 Fisher Controls International Llc Diagnostic method for detecting control valve component failure
US8653718B2 (en) * 2011-05-06 2014-02-18 Seiko Epson Corporation Power generation unit, electronic apparatus, transportation unit, battery, method of controlling power generation unit
EP2959197B8 (en) 2013-02-25 2022-02-09 Bruker Nano, Inc. Smart valve
GB2516806A (en) * 2013-04-29 2015-02-11 F X K Patents Ltd An electro-pneumatic generator
JP6588207B2 (ja) * 2014-12-26 2019-10-09 株式会社フジキン バルブ
JP2017020530A (ja) 2015-07-08 2017-01-26 東京パーツ工業株式会社 比例電磁弁

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157433A (ja) * 1999-11-26 2001-06-08 Fujitsu Ltd 流体による振動発電装置
JP3177094U (ja) * 2012-05-08 2012-07-19 イハラサイエンス株式会社 ダイヤフラム弁
JP2016011744A (ja) * 2014-06-30 2016-01-21 株式会社フジキン ダイヤフラム弁、流体制御装置、半導体製造装置および半導体製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111322415A (zh) * 2020-02-28 2020-06-23 山东大学 一种能够自供电的控制阀***及方法
CN111322415B (zh) * 2020-02-28 2021-02-09 山东大学 一种能够自供电的控制阀***及方法

Also Published As

Publication number Publication date
JP7157459B2 (ja) 2022-10-20
TWI734012B (zh) 2021-07-21
CN110832236B (zh) 2021-10-01
US20200149639A1 (en) 2020-05-14
TW201905369A (zh) 2019-02-01
KR20200006105A (ko) 2020-01-17
JPWO2019003900A1 (ja) 2020-05-21
KR102284443B1 (ko) 2021-08-02
CN110832236A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
JP7157459B2 (ja) バルブ装置
JP5941471B2 (ja) 流体移動装置のための力均等化固定コイルアクチュエータ
US20080304979A1 (en) Reaction Drive Energy Transfer Device
US10215300B2 (en) Bending frame for extending travel of an actuator for a mechanically actuated component
US8282087B2 (en) Oscillation decoupling device
JP2008506064A (ja) エネルギー回収デバイス
JP2011528185A (ja) 電圧を発生するための自律型圧電デバイス
JP6310274B2 (ja) 冷却用デバイスのためのシステム
CN101960186B (zh) 具有球密封元件的电动阀
EP2102508B1 (en) Ejector device
JP2018201318A (ja) バルブ装置
WO2018180587A1 (ja) バルブ装置
WO2018180481A1 (ja) バルブ装置
US8525361B1 (en) Pneumatic energy harvesting devices, methods and systems
JP2008033658A (ja) 発電機能を備えた圧力調整器
US11187346B2 (en) Valve device, its control device, control methods using the same, fluid control device and semiconductor manufacturing apparatus
JP4890196B2 (ja) 振動除去装置
JP6325361B2 (ja) プロセスシステム構成機器振動検出装置
JP2012041980A (ja) 直付け型ソレノイドバルブ
JP7161157B2 (ja) アクチュエータ、流体制御弁及び弁監視装置
WO2020153179A1 (ja) 往復運動機関
JP2005268293A (ja) 微小移動機構
JP2019080598A (ja) 機械電気変換装置、及び椅子
JP2007198412A (ja) 圧力増幅装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526775

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197036477

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824711

Country of ref document: EP

Kind code of ref document: A1