WO2019003385A1 - 室外ユニットおよび冷凍サイクル装置 - Google Patents

室外ユニットおよび冷凍サイクル装置 Download PDF

Info

Publication number
WO2019003385A1
WO2019003385A1 PCT/JP2017/023950 JP2017023950W WO2019003385A1 WO 2019003385 A1 WO2019003385 A1 WO 2019003385A1 JP 2017023950 W JP2017023950 W JP 2017023950W WO 2019003385 A1 WO2019003385 A1 WO 2019003385A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchange
auxiliary
heat exchanger
refrigerant path
Prior art date
Application number
PCT/JP2017/023950
Other languages
English (en)
French (fr)
Inventor
中村 伸
前田 剛志
石橋 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019526066A priority Critical patent/JP6910436B2/ja
Priority to PCT/JP2017/023950 priority patent/WO2019003385A1/ja
Publication of WO2019003385A1 publication Critical patent/WO2019003385A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers

Definitions

  • the present invention relates to an outdoor unit and a refrigeration cycle apparatus including the same, and more particularly to an outdoor unit including an outdoor heat exchanger including a main heat exchange unit and an auxiliary heat exchange unit, and a refrigeration cycle apparatus including the outdoor unit. It is a thing.
  • An air conditioner as a refrigeration cycle apparatus includes a refrigerant circuit including an indoor unit and an outdoor unit.
  • a refrigerant circuit including an indoor unit and an outdoor unit.
  • the indoor unit is provided with an indoor heat exchanger.
  • heat exchange is performed between the refrigerant flowing through the refrigerant circuit and the indoor air fed by the indoor fan.
  • An outdoor heat exchanger is provided in the outdoor unit. In the outdoor heat exchanger, heat exchange is performed between the refrigerant flowing through the refrigerant circuit and the outside air fed by the outdoor fan.
  • An outdoor heat exchanger used in an air conditioner includes an outdoor heat exchanger in which a heat transfer pipe is disposed so as to penetrate a plurality of plate-like fins.
  • Such an outdoor heat exchanger is called a fin and tube type heat exchanger.
  • a heat transfer tube with a reduced diameter may be used.
  • this type of outdoor heat exchanger is of a type provided with a main heat exchange unit for condensation and an auxiliary heat exchanger for subcooling.
  • the main heat exchange section is disposed above the auxiliary heat exchange section.
  • the outdoor heat exchanger functions as a condenser.
  • the refrigerant sent to the outdoor heat exchanger exchanges heat with air while flowing through the main heat exchange section, condenses, and becomes liquid refrigerant. After flowing through the main heat exchange section, the liquid refrigerant is further cooled by flowing through the auxiliary heat exchange section.
  • the outdoor heat exchanger when heating the air conditioning apparatus, the outdoor heat exchanger functions as an evaporator.
  • the refrigerant sent to the outdoor heat exchanger exchanges heat with air while flowing from the auxiliary heat exchange unit to the main heat exchange unit, and evaporates to become a gas refrigerant.
  • patent document 1 as an example of the patent document which disclosed the air conditioning apparatus provided with this kind of outdoor heat exchanger.
  • the heat exchanger performance may be reduced due to the distribution of the wind speed of the outside air passing through the outdoor heat exchanger. For this reason, the outdoor unit with high heat exchanger performance is calculated
  • the present invention has been made in view of the above problems, and one object is to provide an outdoor unit capable of improving heat exchanger performance, and another object is to provide such an outdoor unit. It is providing a refrigerating cycle device.
  • the outdoor unit comprises a heat exchanger and a blower for feeding a fluid to the heat exchanger.
  • the heat exchanger includes a first heat exchange unit and a second heat exchange unit.
  • the first heat exchange unit includes a first heat exchange area having a plurality of first refrigerant paths and a second heat exchange area having a plurality of second refrigerant paths.
  • the second heat exchange unit includes a third heat exchange region having at least one third refrigerant path connected to the plurality of first refrigerant paths, and at least one fourth refrigerant path connected to the plurality of second refrigerant paths And a fourth heat exchange area having The flow rate of fluid passing through the first heat exchange area is greater than the flow rate of fluid flowing through the second heat exchange area.
  • the length of the third refrigerant path of the third heat exchange area is shorter than the length of the fourth refrigerant path of the fourth heat exchange area.
  • a refrigeration cycle apparatus is a refrigeration cycle apparatus provided with the above outdoor unit.
  • the heat exchange amount of the first heat exchange region is the second heat It becomes larger than the heat exchange amount of the exchange area.
  • the total length of the third refrigerant path is shorter than the total length of the fourth refrigerant path, when the heat exchanger operates as a condenser, the pressure loss in the third refrigerant path is different from the pressure loss in the fourth refrigerant path Become smaller. Therefore, a relatively large amount of refrigerant circulation flows in the third refrigerant path relative to the fourth refrigerant path.
  • the third refrigerant path is connected to the first refrigerant path and the fourth refrigerant path is connected to the second refrigerant path, a relatively large refrigerant circulation amount flows in the first refrigerant path with respect to the second refrigerant path . Thereby, the heat exchanger performance of the heat exchanger of an outdoor unit can be improved.
  • the heat exchanger performance of the refrigeration cycle apparatus can be improved by providing the outdoor unit described above.
  • FIG. 2 is a perspective view showing an outdoor heat exchanger according to Embodiment 1;
  • FIG. 2 is a schematic view showing an outdoor heat exchanger according to Embodiment 1;
  • it is sectional drawing which shows an example of the refrigerant path of a heat exchanger tube.
  • FIG. 21 is a cross-sectional view showing another example of the refrigerant passage of the heat transfer pipe in the embodiment.
  • it is a schematic side view showing a first main heat exchange area.
  • it is a general
  • FIG. 8 is a diagram showing the flow of the refrigerant in the refrigerant circuit for describing the operation of the air conditioning apparatus in the embodiment.
  • it is a perspective view showing the flow of the refrigerant in the outdoor heat exchanger when the outdoor heat exchanger is operated as a condenser.
  • FIG. 7 is a schematic front view showing the flow of the refrigerant in the main heat exchange section when the outdoor heat exchanger is operated as a condenser in the same embodiment.
  • FIG. 7 is a schematic side view showing the flow of the refrigerant in the auxiliary heat exchange section when the outdoor heat exchanger is operated as a condenser.
  • it is a schematic front view showing the flow of the refrigerant in the auxiliary heat exchange portion when the outdoor heat exchanger is operated as a condenser.
  • it is a graph which shows the relationship between the heat transfer pipe condensation heat transfer coefficient and dryness, and the relationship between heat exchanger condensation performance and dryness, respectively.
  • it is a graph showing the relationship between the friction pressure loss ratio of the two-phase refrigerant to the liquid refrigerant and the dryness.
  • it is a graph which shows the relationship between the ratio of the amount of refrigerant
  • it is a perspective view showing the flow of the refrigerant in the outdoor heat exchanger when the outdoor heat exchanger is operated as an evaporator.
  • it is a figure which shows the flow of the refrigerant
  • it is a schematic side view showing the flow of the refrigerant in the auxiliary heat exchange portion when the outdoor heat exchanger is operated as an evaporator.
  • it is a schematic front view showing the flow of the refrigerant in the auxiliary heat exchange portion when the outdoor heat exchanger is operated as an evaporator.
  • it is a schematic side view showing the flow of the refrigerant in the main heat exchange portion when the outdoor heat exchanger is operated as an evaporator.
  • it is a schematic front view showing the flow of the refrigerant in the main heat exchange portion when the outdoor heat exchanger is operated as an evaporator.
  • it is a graph which respectively shows the relationship between the heat transfer pipe evaporation heat transfer rate and dryness, and the relationship between heat exchanger evaporation performance and dryness.
  • it is a figure which shows the flow of the refrigerant
  • FIG. 14 is a schematic side view showing an auxiliary heat exchange unit of the outdoor heat exchanger according to Embodiment 2. It is a general
  • the air conditioner 1 includes a compressor 3, an indoor heat exchanger 5, an indoor fan 7, an expansion device 9, an outdoor heat exchanger (heat exchanger) 11, and an outdoor fan (air blower) 21,
  • the four-way valve 23 and the control unit 51 are provided.
  • the compressor 3, the indoor heat exchanger 5, the expansion device 9, the outdoor heat exchanger 11, and the four-way valve 23 are connected by a refrigerant pipe.
  • the indoor heat exchanger 5 and the indoor fan 7 are disposed in the indoor unit 4.
  • the outdoor heat exchanger 11 and the outdoor fan 21 are disposed in the outdoor unit 10.
  • a series of operations of the air conditioning apparatus 1 are controlled by the control unit 51.
  • the outdoor heat exchanger 11 includes a main heat exchange unit (first heat exchange unit) 101 and an auxiliary heat exchange unit (second heat exchange unit) 201.
  • the main heat exchange unit 101 is disposed on the auxiliary heat exchange unit 201.
  • the auxiliary heat exchange unit 201 is disposed below the main heat exchange unit 101.
  • the main heat exchange unit 101 the main heat exchange unit 101a is disposed in the first column, and the main heat exchange unit 101b is disposed in the second column.
  • the auxiliary heat exchange unit 201a is disposed in the first column, and the auxiliary heat exchange unit 201b is disposed in the second column.
  • a plurality of heat transfer pipes 33 are disposed so as to penetrate through the plurality of plate-like fins 31.
  • the heat transfer tube 33 for example, a flat tube having a flat cross sectional shape having a major axis and a minor axis is used.
  • FIG. 4 shows a flat tube in which one refrigerant passage 34 is formed.
  • FIG. 5 shows a flat tube in which a plurality of refrigerant passages 34 are formed.
  • the heat transfer tube 33 is not limited to a flat tube, but may be, for example, a heat transfer tube having a circular or elliptical cross-sectional shape.
  • the main heat exchange section 101 is further divided into a first main heat exchange area (first heat exchange area) 111 and a second main heat exchange area (second heat exchange area) 121.
  • 6 and 7 show the detailed configuration of the first main heat exchange region 111
  • FIGS. 8 and 9 show the detailed configuration of the second main heat exchange region 121, respectively.
  • the heat transfer pipe 33 forms a refrigerant path.
  • a first main refrigerant path (first refrigerant path) 113 located in the first main heat exchange area 111 and a second main refrigerant path (second refrigerant path located in the second main heat exchange area 121) ) 123 is formed.
  • first main refrigerant path 113 a plurality of refrigerant paths including one refrigerant path formed by the first main heat transfer pipe 119 are formed.
  • second main refrigerant path 123 a plurality of refrigerant paths including one refrigerant path formed by the second main heat transfer pipe 129 are formed.
  • each of the first main refrigerant path 113 and the second main refrigerant path 123 eight refrigerant paths are formed, and each refrigerant path is configured by four heat transfer pipes. There is. Therefore, each of the first main heat exchange area 111 and the second main heat exchange area 121 is composed of 32 heat transfer pipes.
  • the auxiliary heat exchange unit 201 is further divided into a first auxiliary heat exchange area (third heat exchange area) 211 and a second auxiliary heat exchange area (fourth heat exchange area) 221.
  • FIG. 10 and FIG. 11 show the detailed configuration of the auxiliary heat exchange unit 201, respectively.
  • the heat transfer pipe 33 forms a refrigerant path.
  • the first auxiliary refrigerant path (third refrigerant path) 213 located in the first auxiliary heat exchange area 211 and the second auxiliary refrigerant path (fourth refrigerant path located in the second auxiliary heat exchange area 221 ) 223 is formed.
  • the first auxiliary refrigerant path 213 has at least one refrigerant path formed by the first auxiliary heat transfer pipe 219.
  • the second auxiliary refrigerant path 223 has at least one refrigerant path formed by the second auxiliary heat transfer pipe 229.
  • the total length of the first auxiliary refrigerant path 213 is shorter than the total length of the second auxiliary refrigerant path 223. That is, the total length of the heat transfer tube of the first auxiliary heat transfer tube 219 is shorter than that of the second auxiliary heat transfer tube 229.
  • the fact that the total length of the heat transfer tubes is short is synonymous with the fact that the number of heat transfer tubes is small.
  • the number of heat transfer pipes of the first auxiliary refrigerant path 213 is smaller than the number of heat transfer pipes of the second auxiliary refrigerant path 223.
  • the first auxiliary refrigerant path 213 is configured of four heat transfer pipes.
  • the second auxiliary refrigerant path 223 is composed of 12 heat transfer pipes.
  • the distributor 112 and the second distributor 122 are connected by the connection pipe 35. More specifically, the first main refrigerant path 113 is connected to the first auxiliary refrigerant path 213 via the first distributor 112.
  • the second main refrigerant path 123 is connected to the second auxiliary refrigerant path 223 via the second distributor 122.
  • the other ends of the first main refrigerant path 113 and the second main refrigerant path 123 of the main heat exchange unit 101 are connected to the header 27.
  • the other ends of the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 of the auxiliary heat exchange unit 201 are connected to the distributor 25 by the connection pipe 36.
  • the outdoor heat exchanger 11 is configured as described above.
  • the refrigerant in a gas state at high temperature and high pressure is discharged from the compressor 3.
  • the refrigerant flows according to the dotted arrow.
  • the discharged high temperature / high pressure gas refrigerant (single phase) flows into the outdoor heat exchanger 11 of the outdoor unit 10 through the four-way valve 23.
  • the outdoor heat exchanger 11 heat exchange is performed between the refrigerant flowing in and the outside air (air) as a fluid supplied by the outdoor fan 21.
  • the high temperature / high pressure gas refrigerant condenses to a high pressure liquid refrigerant (single phase).
  • the high-pressure liquid refrigerant sent from the outdoor heat exchanger 11 is converted by the expansion device 9 into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant.
  • the two-phase refrigerant flows into the indoor heat exchanger 5 of the indoor unit 4.
  • heat exchange is performed between the inflowing two-phase refrigerant and the air supplied by the indoor fan 7.
  • the liquid refrigerant evaporates to become a low-pressure gas refrigerant (single phase).
  • the room is cooled by this heat exchange.
  • the low-pressure gas refrigerant sent from the indoor heat exchanger 5 flows into the compressor 3 through the four-way valve 23, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 3 again. Hereinafter, this cycle is repeated.
  • the outdoor heat exchanger 11 When performing the cooling operation, the outdoor heat exchanger 11 operates as a condenser. As shown in FIGS. 13 and 14, in the outdoor heat exchanger 11, the refrigerant sent from the compressor 3 flows through the main heat exchange unit 101 and then flows through the auxiliary heat exchange unit 201. The air sent by the outdoor fan 21 to the main heat exchange unit 101 and the auxiliary heat exchange unit 201 is secondly transmitted from the main heat exchange unit 101a and the auxiliary heat exchange unit 201a in the first row (windward). It flows toward the main heat exchange part 101b and the auxiliary heat exchange part 201b of the row (wind-down row).
  • the flow of the refrigerant in the main heat exchange unit 101 will be described in detail with reference to FIGS. 15 and 16.
  • the high-temperature and high-pressure gas refrigerant sent from the compressor 3 flows into the header 27 first.
  • the refrigerant flowing into the header 27 is gas-distributed in the header 27 and flows through the first main refrigerant path 113 and the second main refrigerant path 123 in the direction indicated by the arrows.
  • the refrigerant having flowed through the first main refrigerant path 113 of the first main heat exchange area 111 flows into the first distributor 112 and merges in the distributor.
  • the refrigerant that has flowed through the second main refrigerant path 123 of the second main heat exchange area 121 flows into the second distributor 122 and merges in the distributor.
  • the joined refrigerant flows from the first distributor 112 and the second distributor 122 into the auxiliary heat exchange unit 201 through the connection pipe 35.
  • the refrigerant flowing into the auxiliary heat exchange unit 201 flows through the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 in the direction indicated by the arrows.
  • the refrigerant sent from the first distributor 112 flows through the first auxiliary refrigerant path 213.
  • the refrigerant sent from the second distributor 122 flows through the second auxiliary refrigerant path 223.
  • the refrigerant having flowed through each of the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 flows into the distributor 25 through the connection pipe 36.
  • the inflowing refrigerant joins, flows through the connection pipe 37, and is sent out of the outdoor heat exchanger 11.
  • the refrigerant flows into the outdoor heat exchanger 11 as a gas refrigerant (single phase) with a degree of superheat.
  • the refrigerant exchanges heat with the outside air (air) under the two-phase state of the liquid refrigerant and the gas refrigerant which are considered to have good heat transfer characteristics.
  • the heat-exchanged refrigerant is sent out from the outdoor heat exchanger 11 as a liquid refrigerant (single phase) having a degree of subcooling.
  • the outdoor heat exchanger 11 when the outdoor heat exchanger 11 is made to function as a condenser, the refrigerant flowing in the two-phase state of the liquid refrigerant and the gas refrigerant condenses into the liquid refrigerant while flowing through the outdoor heat exchanger 11 .
  • the relationship between the dryness x of the refrigerant in the two phase state and the condensation heat transfer coefficient ⁇ i in the heat transfer pipe (relation A), the dryness x of the refrigerant in the two phase state and the heat exchanger performance AK as a condenser The relationship (relationship B) with.
  • FIG. 19 shows a graph of relationship A (dotted line graph) and a relationship B graph (solid line graph), respectively.
  • the dryness means the ratio (ratio) of the mass of the gas refrigerant to the mass of the wet vapor (liquid refrigerant + gas refrigerant).
  • the AK value is expressed by the following equation.
  • the AK value increases and the heat exchanger performance improves.
  • the thermal resistance Ro outside the heat transfer tube the heat transfer area outside the heat transfer tube is increased, the flow velocity of the fluid outside the heat transfer tube is increased, or the heat transfer coefficient outside the heat transfer tube is improved. It is necessary to have a mechanism.
  • the liquid refrigerant and the gas refrigerant are mixed.
  • the liquid refrigerant is present as a thin liquid film attached to the inner wall surface of the heat transfer tube 33. Therefore, when the refrigerant in the two-phase state in the heat transfer pipe 33 condenses, the heat transfer coefficient of condensation in the heat transfer pipe is higher than in the case of a single-phase refrigerant (liquid refrigerant or gas refrigerant).
  • the performance AK value also shows a high value.
  • the heat transfer performance gradually decreases, and the liquid refrigerant (single phase) state Transition.
  • the heat transfer coefficient in the heat transfer pipe is smaller than that in the two phase state refrigerant.
  • the degree of subcooling of the refrigerant increases, so the temperature difference between the temperature of the refrigerant and the temperature outside the heat transfer pipe decreases. For this reason, the performance as an outdoor heat exchanger will fall large.
  • the heat transfer coefficient in the heat transfer tube in the liquid refrigerant (single phase) state becomes smaller than in the two phase state.
  • the influence is likely to be remarkable, and the heat exchanger performance in the region of the liquid refrigerant (single phase) state is lowered.
  • the proportion of liquid refrigerant that occupies the entire heat exchanger also increases, so the amount of refrigerant internally contained in the air conditioner 1 increases.
  • the number of refrigerant paths in the auxiliary heat exchange unit 201 is smaller than the number of refrigerant paths in the main heat exchange unit 101. That is, the number of first auxiliary refrigerant paths 213 is smaller than the number of first main refrigerant paths 113, and the number of second auxiliary refrigerant paths 223 is smaller than the number of second main refrigerant paths 123. Thereby, the flow velocity of the refrigerant in the heat transfer tube 33 in the auxiliary heat exchange unit 201 can be increased, and the heat transfer coefficient in the heat transfer tube 33 can be improved.
  • FIG. 20 shows the relationship between the frictional pressure loss ratio of the two-phase refrigerant to the liquid refrigerant (single phase) and the dryness at a certain heat transfer pipe inner diameter and heat transfer pipe length.
  • the two-phase refrigerant has a pressure loss of about 2 to 15 times that of the liquid refrigerant (single phase), and is about 11 times on average in average, and the dryness factor of about 0.35 is an average value.
  • FIG. 21 shows the relationship between the ratio of the refrigerant circulation amount and the frictional pressure loss ratio in a certain heat transfer tube inner diameter and heat transfer tube length. In the two-phase refrigerant and the liquid refrigerant (single phase), the frictional pressure loss is proportional to the 1.75 power of the refrigerant circulation amount ((mass velocity).
  • the two-phase refrigerant flows in the heat transfer pipe 33 in the auxiliary heat exchange unit 201 without the phase change of the two-phase refrigerant to the liquid refrigerant (single phase) state in the main heat exchange unit 101. Since the flow velocity of the refrigerant flowing through the heat transfer tube 33 in the auxiliary heat exchange unit 201 is increasing and is in the two-phase refrigerant state, it is assumed that the pressure loss is significantly increased compared to the case of flowing through the main heat exchange unit 101. .
  • the temperature of the two-phase refrigerant is determined depending on the pressure of the refrigerant as the saturation temperature, the temperature drops sharply inside the auxiliary heat exchange section, and the dryness also increases.
  • the influence that the temperature difference with the temperature outside the heat transfer tube becomes smaller becomes dominant over the improvement of the heat exchanger performance, and the performance as the outdoor heat exchanger is lowered. Therefore, in the case where the liquid refrigerant (single phase) flows as the refrigerant at the outlet of the main heat exchange unit 101, in other words, the inlet of the auxiliary heat exchange unit 201, a pressure loss in the heat transfer tube 33 causes the refrigerant to flow. Since the temperature does not change, the effect of promoting the heat transfer of the liquid refrigerant in the heat transfer pipe is greatly exhibited without adversely affecting the performance of the outdoor heat exchanger 11, and the performance of the outdoor heat exchanger is improved. be able to.
  • the refrigerant in a gas state at high temperature and high pressure is discharged from the compressor 3.
  • the refrigerant flows according to the solid arrow.
  • the discharged high temperature / high pressure gas refrigerant (single phase) flows into the indoor heat exchanger 5 through the four-way valve 23.
  • the indoor heat exchanger 5 heat exchange is performed between the inflowing gas refrigerant and the air supplied by the indoor fan 7, and the high temperature / high pressure gas refrigerant is condensed to be a high pressure liquid refrigerant (single phase) become.
  • This heat exchange heats the room.
  • the high-pressure liquid refrigerant delivered from the indoor heat exchanger 5 is converted by the expansion device 9 into a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant.
  • the refrigerant in the two-phase state flows into the outdoor heat exchanger 11.
  • the outdoor heat exchanger 11 heat exchange is performed between the inflowing two-phase refrigerant and the outside air (air) as a fluid supplied by the outdoor fan 21, and the two-phase refrigerant is a liquid refrigerant. Evaporates to form a low pressure gas refrigerant (single phase).
  • the low-pressure gas refrigerant sent from the outdoor heat exchanger 11 flows into the compressor 3 through the four-way valve 23, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged again from the compressor 3.
  • this cycle is repeated.
  • the sent refrigerant flows through the auxiliary heat exchange unit 201, and then flows through the main heat exchange unit 101.
  • the air sent by the outdoor fan 21 to the main heat exchange unit 101 and the auxiliary heat exchange unit 201 is secondly transmitted from the main heat exchange unit 101a and the auxiliary heat exchange unit 201a in the first row (windward). It flows toward the main heat exchange part 101b and the auxiliary heat exchange part 201b of the row (wind-down row).
  • the flow of the refrigerant in the auxiliary heat exchange unit 201 will be described in detail with reference to FIGS. 24 and 25.
  • the refrigerant in the two-phase state sent from the indoor heat exchanger 5 through the expansion device 9 first flows into the distributor 25.
  • the refrigerant flowing into the distributor 25 flows through the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 of the auxiliary heat exchange unit 201 in the direction indicated by the arrows.
  • the refrigerant having flowed through the first auxiliary refrigerant path 213 flows into the first distributor 112 through the connection pipe 35.
  • the refrigerant having flowed through the second auxiliary refrigerant path 223 flows into the second distributor 122 through the connection pipe 35.
  • the refrigerant flowing into each of the first distributor 112 and the second distributor 122 is distributed more finely in each of the distributors, and the direction in which the first main refrigerant path 113 and the second main refrigerant path 123 are indicated by arrows.
  • Flow to The refrigerant flowing into the first distributor 112 is further finely distributed and flows through the first main refrigerant path 113.
  • the refrigerant flowing into the second distributor 122 is further finely distributed and flows through the second main refrigerant path 123.
  • the refrigerant that has flowed through the first main refrigerant path 113 and the second main refrigerant path 123 flows into the header 27.
  • the refrigerant flowing into the header 27 is sent out of the outdoor heat exchanger 11.
  • the refrigerant having flowed through the outdoor heat exchanger 11 is sent to the compressor 3. At this time, if the refrigerant flows into the compressor 3 in the state of liquid refrigerant, liquid compression may occur to cause failure of the compressor 3. Therefore, in the heating operation in which the outdoor heat exchanger 11 functions as an evaporator, it is preferable that the refrigerant delivered from the outdoor heat exchanger 11 be a gas refrigerant (single phase).
  • heat exchange is performed between the outside air fed into the outdoor unit 10 by the outdoor fan 21 and the refrigerant fed into the outdoor heat exchanger 11.
  • the moisture in the outside air (air) condenses, and water droplets grow on the surface of the outdoor heat exchanger 11.
  • the grown water droplets flow downward through the drainage passage of the outdoor heat exchanger 11 constituted by the fins 31 and the heat transfer tubes 33, and are discharged as drain water.
  • the moisture in the condensed air may adhere to the outdoor heat exchanger 11 as frost.
  • a predetermined temperature for example, 0 ° C. (solidification point)
  • a high-temperature high-pressure gas refrigerant (hot gas) is sent from the compressor 3 to the outdoor heat exchanger 11 It is.
  • the defrosting operation may be performed when the duration time of the heating operation reaches a predetermined value (for example, 30 minutes). Further, the defrosting operation may be performed before the heating operation when the refrigerant temperature is equal to or lower than a predetermined temperature (for example, minus 6 ° C.). The frost (and ice) adhering to the outdoor heat exchanger 11 is melted by the high-temperature and high-pressure refrigerant sent to the outdoor heat exchanger 11.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 3 can be sent to the outdoor heat exchanger 11 via the four-way valve 23.
  • a refrigerant pipe (not shown) for bypass may be provided between the compressor 3 and the outdoor heat exchanger 11.
  • the refrigerant flowing in the two-phase state of the liquid refrigerant and the gas refrigerant evaporates and becomes the gas refrigerant while flowing through the outdoor heat exchanger 11 .
  • the relationship between the dryness x of the refrigerant in the two-phase state and the evaporation heat transfer coefficient ⁇ i in the heat transfer pipe (relation A), the dryness x of the refrigerant in the two-phase state and the heat exchanger performance AU value as an evaporator The relationship (relationship B) with.
  • FIG. 28 shows a graph of relationship A (dotted line graph) and a relationship B graph (solid line graph), respectively.
  • the AU value is expressed by the following equation.
  • the AU value increases and the heat exchanger performance improves.
  • the thermal resistance Ro outside the heat transfer tube the heat transfer area outside the heat transfer tube is increased, the flow velocity of the fluid outside the heat transfer tube is increased, or the heat transfer coefficient outside the heat transfer tube is improved. It is necessary to have a mechanism.
  • the liquid refrigerant and the gas refrigerant are mixed.
  • the liquid refrigerant is present as a thin liquid film attached to the inner wall surface of the heat transfer tube 33. Therefore, when the refrigerant in the two-phase state in the heat transfer pipe 33 evaporates, the heat transfer coefficient in the heat transfer pipe is higher than in the case of the single-phase refrigerant (liquid refrigerant or gas refrigerant), and the heat exchanger
  • the performance AU value also shows a high value.
  • the dryness of the refrigerant is high.
  • a phenomenon called dry out occurs in which the liquid refrigerant (liquid film) formed on the inner wall surface of the heat transfer tube 33 is dried.
  • the evaporative heat transfer coefficient ⁇ i in the heat transfer tube 33 is rapidly reduced.
  • the heat exchanger performance AU value also becomes a rapidly low value.
  • the outdoor unit 10 (see FIG. 1) accommodating the outdoor heat exchanger 11 is, for example, a horizontal blowout outdoor unit.
  • the outdoor fan 21 is disposed to face the outdoor heat exchanger 11.
  • outside air is sent into the outdoor unit from one side portion of the outdoor unit (not shown).
  • the sent outside air passes through the outdoor heat exchanger 11, and is then sent out from the other side portion of the outdoor unit to the outside of the outdoor unit.
  • the velocity of the outside air passing through the outdoor heat exchanger 11 has a distribution due to the positional relationship with the outdoor fan 21.
  • the wind speed of the outside air passing through the portion of the outdoor heat exchanger 11 increases as the portion of the outdoor heat exchanger 11 is located closer to the outdoor fan 21.
  • the wind speed of the outside air passing through the portion of the outdoor heat exchanger 11 decreases as the portion of the outdoor heat exchanger 11 is located farther from the outdoor fan 21.
  • the wind speed of the outside air passing through the portion of the outdoor heat exchanger 11 facing the outdoor fan 21 is the speed of the outside air passing through the portion of the outdoor heat exchanger 11 not facing the outdoor fan 21. It becomes larger than the wind speed. That is, the wind speed of the outside air passing through the portion of the outdoor heat exchanger 11 located inside the projection surface (the area of the two-dot chain line) of the outdoor fan is larger than the wind speed of the outside air passing through the portion located outside the projection surface.
  • the projected area where the outdoor fan 21 and the main heat exchange section 101 overlap in the first main heat exchange area 111 is the second main heat exchange area 121 when the outdoor heat exchanger 11 is viewed from the outdoor fan 21. Is larger than the projected area where the outdoor fan 21 and the main heat exchange unit 101 overlap. Thereby, the wind speed of the outside air passing through the first main heat exchange area 111 can be made larger than the wind speed of the outside air passing through the second main heat exchange area 121.
  • the proportion of each portion of the outdoor heat exchanger 11 to the heat exchange with respect to the total amount of heat exchange varies depending on the portion of the outdoor heat exchanger 11.
  • the proportion contributing to the heat exchange is relatively high in the portion of the outdoor heat exchanger 11 located near the outdoor fan 21 and relatively in the portion of the outdoor heat exchanger 11 located away from the outdoor fan 21. It gets lower.
  • the flow velocity (air velocity) of the fluid passing through the first main heat exchange region 111 is larger than the flow velocity (air velocity) of the fluid passing through the second main heat exchange region 121. Therefore, the wind speed (average value) of the outside air passing through the first main refrigerant path 113 is larger than the wind speed (average value) of the outside air passing through the second main refrigerant path 123. For this reason, the rate at which the first main refrigerant path 113 contributes to heat exchange is higher than the rate at which the second main refrigerant path 123 contributes to heat exchange. Thus, the amount of heat exchange in each refrigerant path (group) changes with the wind speed distribution.
  • the refrigerant flowing through the refrigerant path in the outdoor heat exchanger 11 during the cooling operation, and the heat exchanger performance of the refrigerant and the outside air will be described.
  • FIG. 30 as a comparative example, the case where the refrigerant in the two-phase state of the liquid refrigerant and the gas refrigerant flows uniformly into the first main refrigerant path 113 and the second main refrigerant path 123 will be described.
  • the refrigerant (gas refrigerant) that has flowed uniformly into the first main refrigerant path 113 and the second main refrigerant path 123 passes with the outside air while flowing through the first main refrigerant path 113 and the second main refrigerant path 123. Heat exchange takes place between them to become liquid refrigerant.
  • the refrigerant flowing in the first main refrigerant path 113 flows into the auxiliary heat exchange unit 201 in the boundary state between the two-phase refrigerant and the liquid refrigerant (single phase) capable of exhibiting the most heat exchanger performance.
  • the second main heat exchange area 121 has a relatively smaller wind velocity than the first main heat exchange area 111.
  • the heat exchange amount of the refrigerant flowing through the second main refrigerant path 123 is smaller than the heat exchange amount of the refrigerant flowing through the first main refrigerant path 113. Therefore, the refrigerant can not flow into the auxiliary heat exchange unit 201 in an ideal refrigerant state, so the heat exchanger performance in the second auxiliary heat exchange region 221 is degraded. Therefore, the heat exchanger performance when viewed as one outdoor heat exchanger 11 is degraded.
  • the refrigerant distribution is adjusted according to the wind speed distribution.
  • the main heat exchange portion 101 and the auxiliary heat exchange portion 201 are arranged such that the refrigerant containing a larger amount of liquid refrigerant flows into the first main refrigerant path 113 having a relatively high wind velocity.
  • the flow velocity of the fluid passing through the first main heat exchange region 111 is larger than the flow velocity of the fluid passing through the second main heat exchange region 121.
  • the total length of the first auxiliary refrigerant path 213 is shorter than the total length of the second auxiliary refrigerant path 223.
  • the refrigerant flowing into the main heat exchange unit 101 is distributed in the header 27, and then the first main refrigerant path 113, the second main refrigerant path 123, the first distributor 112, the second distributor 122, the first It flows through the (1) auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223, and the distributor 25 is completely merged.
  • the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 of the auxiliary heat exchange unit 201 when the frictional pressure loss of the refrigerant changes, the first main refrigerant path 113 and the second main refrigerant path 123 and the second main refrigerant path 123 The flow ratio of the refrigerant flowing through the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 changes.
  • the first auxiliary refrigerant path 213 has a smaller number of heat transfer pipes than the second auxiliary refrigerant path 223 (four first auxiliary refrigerant paths, second auxiliary refrigerant path). 12), assuming that the refrigerant flows with the same circulation amount, the pressure loss of the first auxiliary refrigerant path 213 is reduced. Therefore, as shown in FIGS.
  • the first main refrigerant path 113 connected to the first auxiliary refrigerant path 213 is Since a relatively large amount of refrigerant flows to the second main refrigerant path 123 connected to the second auxiliary refrigerant path 223, the flow rate ratio of the refrigerant conforms to the wind speed distribution, and it can be seen as one outdoor heat exchanger 11 Heat exchanger performance will improve. Furthermore, since the ratio of the liquid refrigerant occupying the entire heat exchanger also decreases, it is possible to reduce the amount of refrigerant internally contained in the air conditioner 1.
  • the frictional pressure loss in the two-phase state is about 2 to 15 times the pressure loss of the liquid refrigerant, and is about 11 times on average in average, and the dryness factor of about 0.35 is approximately Therefore, hereinafter, the pressure loss at a dryness of 0.35 is compared as a two-phase state, that is, a representative value of the frictional pressure loss in the main heat exchange section 101.
  • the frictional pressure loss in the auxiliary heat exchange unit 201 is assumed to be in the liquid refrigerant (single phase) state.
  • the frictional pressure loss is proportional to the 1.75 power of the circulating amount of refrigerant ((mass velocity).
  • the ordinate represents the ratio of the frictional pressure loss in the auxiliary heat exchange unit 201 to the representative value of the frictional pressure loss in the main heat exchange unit 101
  • the abscissa represents the refrigerant path of the main heat exchange unit 101.
  • the ratio of the mass velocity of the refrigerant flowing in the refrigerant path of the auxiliary heat exchange unit 201 to the mass velocity of the flowing refrigerant is shown.
  • the average mass velocity of the refrigerant flowing through auxiliary heat exchange unit 201 is equal to that of main heat exchange unit 101. Since the refrigerant flowing through the main heat exchange unit 101 is in a two-phase state and the refrigerant flowing through the auxiliary heat exchange unit 201 is in a liquid refrigerant (single phase) state, the auxiliary heat exchange unit is eight times the average mass velocity of the refrigerant flowing through It can be said that the frictional pressure loss of the refrigerant flowing through 201 is dominant.
  • the pressure loss increases in proportion to the flow path (total heat transfer pipe) length
  • the relationship between the total heat transfer pipe length of the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 in the auxiliary heat exchange unit 201 is The total heat transfer pipe length of the first auxiliary refrigerant path 213 ⁇ the total heat transfer pipe length of the second auxiliary refrigerant path 223. Therefore, as described above, the frictional pressure loss of the refrigerant of the auxiliary heat exchange unit 201 is considered to be sufficiently dominant even when the main heat exchange unit 101 is included, so the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223
  • the mass velocity changes so that the pressure loss at the same balances.
  • the relationship of the mass velocity is such that the mass velocity of the first auxiliary refrigerant path 213> the mass velocity of the second auxiliary refrigerant path 223.
  • the refrigerant circulation amount of the first auxiliary refrigerant path 213 and the first main refrigerant path 113 becomes larger than the refrigerant circulation amount of the second auxiliary refrigerant path 223 and the second main refrigerant path 123, and the wind speed is relatively large.
  • a relatively large amount of refrigerant can be circulated through one main refrigerant path 113. Therefore, it is possible to bring the outlet sides of the first main heat exchange area 111 and the second main heat exchange area 121 close to an ideal refrigerant state (boundary state between two-phase refrigerant and liquid refrigerant (single phase)) Become. As a result, the performance of the outdoor heat exchanger 11 can be improved.
  • the second auxiliary refrigerant path 223 is disposed at the lowermost stage of the auxiliary heat exchange unit 201.
  • the first auxiliary refrigerant path 213 is disposed at the lowermost stage of the auxiliary heat exchange unit 201.
  • the outdoor heat exchanger 11 In the outdoor heat exchanger 11 during the heating operation, moisture in the condensed air may adhere to the outdoor heat exchanger 11 as frost. For this reason, in the air conditioning apparatus 1, when the refrigerant temperature of the outdoor heat exchanger 11 becomes lower than a predetermined temperature (for example, 0 ° C. (solidification point)), the defrosting operation for removing the frost is performed. Note that the defrosting operation often performs the same operation as the cooling operation, that is, the outdoor heat exchanger 11 functions as a condenser.
  • a predetermined temperature for example, 0 ° C. (solidification point)
  • the moisture melted by the defrosting tends to stay in the lowermost stage of the outdoor heat exchanger under the influence of surface tension. Therefore, in the frost formation operation, the moisture at the lowermost stage of the outdoor heat exchanger may also be solidified, and it is necessary to melt not only the frost but also the stagnant water (temperature increase).
  • the refrigerant path located at the lowermost stage of the outdoor heat exchanger requires a large amount of heat necessary for melting.
  • the first auxiliary heat exchange region 211 including the first auxiliary refrigerant path 213 is subjected to outdoor heat.
  • a large amount of heat is supplied to the lowermost stage of the outdoor heat exchanger 11 as compared to the case where the second auxiliary heat exchange area 221 is arranged at the lowermost stage of the outdoor heat exchanger 11. It becomes possible to reduce the time required for defrosting by charging the amount of heat necessary for defrosting according to the load.
  • FIGS. 34 and 35 show the detailed configuration of the auxiliary heat exchange unit 201 of the outdoor heat exchanger 11.
  • FIG. 34 and 35 show the detailed configuration of the auxiliary heat exchange unit 201 of the outdoor heat exchanger 11.
  • the arrangement relationship of the heat transfer tubes constituting the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 corresponds to the first embodiment. It differs from the arrangement relation of the outdoor heat exchanger 11 which concerns.
  • the other configuration is the same as the configuration of the outdoor heat exchanger 11 shown in FIGS. 2 and 3, the same members are denoted by the same reference numerals, and the description thereof will not be repeated unless necessary. Do.
  • the number of heat transfer pipes occupying the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 is four heat transfer pipes 33 of the first auxiliary refrigerant path 213. It is all made up of the first auxiliary heat transfer pipe 219 on the downwind side.
  • the second auxiliary heat transfer pipes 229 of the second auxiliary refrigerant path 223 are constituted by twelve, of which eight second auxiliary heat transfer pipes 229 on the windward side and four second auxiliary heat transfer pipes 229 on the windward side It consists of
  • the fluid (air) passing through the outdoor heat exchanger 11 is similar to the outside air temperature in the windward direction, but in the windward direction, it is used as a condenser to exchange heat with the refrigerant in the windward heat exchange region. If so, the temperature will rise above ambient temperature. Therefore, when viewed from the refrigerant, the heat exchange on the windward side can ensure a large temperature difference, so a large amount of heat exchange can be ensured even in the same heat exchange area.
  • the refrigerant circulation amount of the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 will be described here.
  • the first auxiliary heat transfer pipe 219 of the first auxiliary refrigerant path 213 is configured by four lines
  • the second auxiliary heat transfer pipe 229 of the second auxiliary refrigerant path 223 is configured by 12 lines.
  • the refrigerant circulation amount of the first auxiliary refrigerant path 213 flows more than that of the second auxiliary refrigerant path 223. Therefore, even if the heat exchange amount of the first auxiliary refrigerant path 213 is the same, the temperature change of the refrigerant is relatively small. On the other hand, even if the second auxiliary refrigerant path 223 has the same amount of heat exchange, the temperature change of the refrigerant is relatively large.
  • the heat exchange area is also smaller. Therefore, the temperature change of the refrigerant is further reduced.
  • the heat exchange area of the second auxiliary refrigerant path 223 is larger than that of the first auxiliary refrigerant path 213, the temperature change of the refrigerant becomes larger, and the outlet of the first auxiliary refrigerant path 213 and the second auxiliary refrigerant path 223 There is a big difference in the refrigerant temperature state.
  • the heat exchanger As the heat exchanger, the smaller the temperature difference, the more the heat exchange area is required to secure the same amount of heat exchange. Therefore, when the refrigerant temperature state at the outlet of each refrigerant path varies, heat exchange occurs in a region where the temperature difference is small, and a large heat exchange area is required. As a result, the heat exchanger performance as the auxiliary heat exchange unit 201 is reduced. That is, in order to exhibit the heat exchanger performance, it is necessary to make the refrigerant temperature at the outlet of each refrigerant path uniform in the liquid refrigerant (single phase) region.
  • the auxiliary heat exchange unit 201 of the second embodiment shown in FIGS. 34 and 35 is arranged side by side along the flow of the fluid sent by the outdoor fan 21. It has the part (1st row part) 201a and the auxiliary heat exchange part (2nd row part) 201b.
  • the auxiliary heat exchange unit 201a is disposed upstream of the fluid flow than the auxiliary heat exchange unit 201b.
  • the first auxiliary refrigerant paths 213 are all arranged in the auxiliary heat exchange unit 201a.
  • the first auxiliary refrigerant path 213 having a large refrigerant circulation amount and requiring a large heat exchange amount is configured only by the first auxiliary heat transfer pipe 219 on the windward side.
  • the amount of heat exchange is larger than that of the first auxiliary refrigerant path 213 of Comparative Example 2, and the temperature change of the refrigerant is large.
  • the second auxiliary refrigerant path 223 which has a small refrigerant circulation amount and does not require a large amount of heat exchange relative to the first auxiliary refrigerant path 213 has four second auxiliary heat transfer pipes 229 on the windward side.
  • the second auxiliary heat transfer pipe 229 on the downwind side is configured by eight. Therefore, the amount of heat exchange is smaller than that of the second auxiliary refrigerant path 223 of Comparative Example 2, and the temperature change of the refrigerant is small.
  • the refrigerator oil used for the air conditioning apparatus 1 which has compatibility considering the mutual solubility with the refrigerant
  • a fluorocarbon-based refrigerant such as the refrigerant R410A
  • an alkylbenzene oil-based, ester oil-based or ether oil-based refrigerator oil is used.
  • refrigeration oil such as mineral oil type or fluorine oil type may be used.
  • the present invention is effectively utilized in an air conditioner having an outdoor heat exchanger provided with a main heat exchange unit and an auxiliary heat exchange unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

室外ユニット(10)は、室外熱交換器と、室外ファンとを備える。室外熱交換器(11)は、主熱交換部(101)と、補助熱交換部(201)とを含む。主熱交換部(101)は、第1主冷媒パス(113)を有する第1主熱交換領域(111)と、第2主冷媒パス(123)を有する第2主熱交換領域(121)とを含む。補助熱交換部(201)は、第1主冷媒パス(113)に接続された第1補助冷媒パス(213)を有する第1補助熱交換領域(211)と、第2主冷媒パスに接続された第2補助冷媒パス(223)を有する第2補助熱交換領域(221)とを含む。第1主熱交換領域(111)を通り抜ける流体の流速は、第2主熱交換領域(121)を通り抜ける流体の流速よりも大きい。第1補助冷媒パス(213)の全長は、第2補助冷媒パス(223)の全長よりも短い。

Description

室外ユニットおよび冷凍サイクル装置
 本発明は室外ユニットおよびそれを備えた冷凍サイクル装置に関し、特に、主熱交換部および補助熱交換部を備えた室外熱交換器を含む室外ユニットと、その室外ユニットを備えた冷凍サイクル装置とに関するものである。
 冷凍サイクル装置としての空気調和装置は、室内ユニットと室外ユニットとを含む冷媒回路を備えている。このような空気調和装置では、四方弁等を用いて冷媒回路の流路を切り換えることによって、冷房運転と暖房運転とを行うことが可能とされる。
 室内ユニットには、室内熱交換器が設けられている。室内熱交換器では、冷媒回路を流れる冷媒と、室内ファンによって送り込まれる室内の空気との間で熱交換が行われる。室外ユニットには、室外熱交換器が設けられている。室外熱交換器では、冷媒回路を流れる冷媒と、室外ファンによって送り込まれる外気との間で熱交換が行われる。
 空気調和装置において使用されている室外熱交換器には、板状の複数のフィンを貫通するように伝熱管を配置させた室外熱交換器がある。このような室外熱交換器は、フィンアンドチューブ型熱交換器と呼ばれている。このフィンアンドチューブ型熱交換器では、熱交換を効率的に行うために、細径化された伝熱管を使用する場合がある。
 また、この種の室外熱交換器には、凝縮用の主熱交換部と過冷却用の補助熱交換器とを備えたタイプがある。一般に、主熱交換部は、補助熱交換部の上に配置されている。空気調和装置を冷房運転させる場合には、室外熱交換器は凝縮器として機能する。室外熱交換器に送り込まれた冷媒は、主熱交換部を流れる間に、空気との間で熱交換が行われて凝縮し、液冷媒になる。主熱交換部を流れた後、液冷媒は補助熱交換部を流れることで、さらに冷却されることになる。
 一方、空気調和装置を暖房運転させる場合は、室外熱交換器は蒸発器として機能する。室外熱交換器に送り込まれた冷媒は、補助熱交換部から主熱交換部を流れる間に、空気との間で熱交換が行われて蒸発し、ガス冷媒になる。なお、この種の室外熱交換器を備えた空気調和装置を開示した特許文献の一例として、特許文献1がある。
特開2013-83419号公報
 空気調和装置を暖房運転または冷房運転させる際には、室外熱交換器には、室外ファンによって送り込まれた外気が通過することになる。このとき、室外熱交換器と室外ファンとの配置関係等によっては、室外熱交換器を通過する外気の風速が大きい領域と、外気の風速が小さい領域とが生じる。このため、室外熱交換器では、冷媒と外気との熱交換にばらつきが生じ、熱交換が効率的に行われないことがある。
 このように、室外ユニットでは、室外熱交換器を通過する外気の風速の分布に起因して熱交換器性能が低下することがある。このため、より熱交換器性能の高い室外ユニットが求められている。
 本発明は、上記課題を鑑みてなされたものであり、一つの目的は熱交換器性能の向上が図られる室外ユニットを提供することであり、他の目的は、そのような室外ユニットを備えた冷凍サイクル装置を提供することである。
 本発明に係る室外ユニットは、熱交換器と、熱交換器へ流体を送り込む送風部とを備える。熱交換器は、第1熱交換部と、第2熱交換部とを含む。第1熱交換部は、複数の第1冷媒パスを有する第1熱交換領域と、複数の第2冷媒パスを有する第2熱交換領域とを含む。第2熱交換部は、複数の第1冷媒パスに接続された少なくとも1つの第3冷媒パスを有する第3熱交換領域と、複数の第2冷媒パスに接続された少なくとも1つの第4冷媒パスを有する第4熱交換領域とを含む。第1熱交換領域を通り抜ける流体の流速は、第2熱交換領域を通り抜ける流体の流速よりも大きい。第3熱交換領域の第3冷媒パスの長さは、第4熱交換領域の第4冷媒パスの長さよりも短い。
 本発明に係る冷凍サイクル装置は、上記の室外ユニットを備えた冷凍サイクル装置である。
 本発明に係る室外ユニットによれば、第1熱交換領域を通り抜ける流体の流速は、第2熱交換領域を通り抜ける流体の流速よりも大きいため、第1熱交換領域の熱交換量は第2熱交換領域の熱交換量よりも大きくなる。また第3冷媒パスの全長は第4冷媒パスの全長よりも短いため、熱交換器が凝縮器として動作する場合に、第3冷媒パスでの圧力損失が第4冷媒パスでの圧力損失に対して小さくなる。したがって、第3冷媒パスに第4冷媒パスに対して相対的に大きな冷媒循環量が流れる。第3冷媒パスは第1冷媒パスに接続され、第4冷媒パスは第2冷媒パスに接続されているため、第1冷媒パスに第2冷媒パスに対して相対的に大きな冷媒循環量が流れる。これにより、室外ユニットの熱交換器の熱交換器性能を向上させることができる。
 本発明に係る冷凍サイクル装置によれば、上記の室外ユニットを備えていることで、冷凍サイクル装置の熱交換器性能を向上させることができる。
各実施の形態に係る空気調和装置の冷媒回路の一例を示す図である。 実施の形態1に係る室外熱交換器を示す斜視図である。 実施の形態1に係る室外熱交換器を示す概要図である。 同実施の形態において、伝熱管の冷媒通路の一例を示す断面図である。 同実施の形態において、伝熱管の冷媒通路の他の例を示す断面図である。 同実施の形態において、第1主熱交換領域を示す概要側面図である。 同実施の形態において、第1主熱交換領域を示す概要正面図である。 同実施の形態において、第2主熱交換領域を示す概要側面図である。 同実施の形態において、第2主熱交換領域を示す概要正面図である。 同実施の形態において、補助熱交換部を示す概要側面図である。 同実施の形態において、補助熱交換部を示す概要正面図である。 同実施の形態において、空気調和装置の動作を説明するための冷媒回路における冷媒の流れを示す図である。 同実施の形態において、室外熱交換器を凝縮器として運転させている場合の、室外熱交換器における冷媒の流れを示す斜視図である。 同実施の形態において、室外熱交換器における冷媒の流れおよび室外熱交換器を通り抜ける外気の風速分布を示す図である。 同実施の形態において、室外熱交換器を凝縮器として運転させている場合の、主熱交換部における冷媒の流れを示す概要側面図である。 同実施の形態において、室外熱交換器を凝縮器として運転させている場合の、主熱交換部における冷媒の流れを示す概要正面図である。 同実施の形態において、室外熱交換器を凝縮器として運転させている場合の、補助熱交換部における冷媒の流れを示す概要側面図である。 同実施の形態において、室外熱交換器を凝縮器として運転させている場合の、補助熱交換部における冷媒の流れを示す概要正面図である。 同実施の形態において、伝熱管内凝縮熱伝達率と乾き度との関係と、熱交換器凝縮性能と乾き度のとの関係とをそれぞれ示すグラフである。 同実施の形態において、液冷媒に対する二相冷媒の摩擦圧力損失比と乾き度との関係を示すグラフである。 同実施の形態において、同様の冷媒状態における冷媒循環量の比率と冷媒の摩擦圧力損失比との関係を示すグラフである。 同実施の形態において、室外熱交換器を蒸発器として運転させている場合の、室外熱交換器における冷媒の流れを示す斜視図である。 同実施の形態において、室外熱交換器における冷媒の流れおよび室外熱交換器を通り抜ける外気の風速分布を示す図である。 同実施の形態において、室外熱交換器を蒸発器として運転させている場合の、補助熱交換部における冷媒の流れを示す概要側面図である。 同実施の形態において、室外熱交換器を蒸発器として運転させている場合の、補助熱交換部における冷媒の流れを示す概要正面図である。 同実施の形態において、室外熱交換器を蒸発器として運転させている場合の、主熱交換部における冷媒の流れを示す概要側面図である。 同実施の形態において、室外熱交換器を蒸発器として運転させている場合の、主熱交換部における冷媒の流れを示す概要正面図である。 同実施の形態において、伝熱管内蒸発熱伝達率と乾き度との関係と、熱交換器蒸発性能と乾き度のとの関係とをそれぞれ示すグラフである。 同実施の形態において、室外熱交換器における冷媒の流れおよび室外熱交換器を通り抜ける外気の風速分布を示す図である。 同実施の形態の比較例に係る室外熱交換器における冷媒の分布と風速の分布とを模式的に示す図である。 同実施の形態において、室外熱交換器における冷媒の分布と風速の分布とを模式的に示す図である。 同実施の形態において、主熱交換部における摩擦圧力損失の代表値に対する補助熱交換部における摩擦圧力損失の比と、主熱交換部の冷媒パスを流れる冷媒の質量速度に対する、補助熱交換部の冷媒パスを流れる冷媒の質量速度の比との関係を示すグラフである。 同実施の形態の変形例に係る室外熱交換器を示す概要図である。 実施の形態2に係る室外熱交換器の補助熱交換部を示す概要側面図である。 同実施の形態に係る室外熱交換器の補助熱交換部を示す概要正面図である。 同実施の形態の比較例に係る室外熱交換器の補助熱交換部を示す概要側面図である。 同実施の形態の比較例に係る室外熱交換器の補助熱交換部を示す概要正面図である。
 実施の形態1.
 はじめに、冷凍サイクル装置としての空気調和装置の全体の構成(冷媒回路)について説明する。図1に示すように、空気調和装置1は、圧縮機3、室内熱交換器5、室内ファン7、絞り装置9、室外熱交換器(熱交換器)11、室外ファン(送風部)21、四方弁23および制御部51を備えている。圧縮機3、室内熱交換器5、絞り装置9、室外熱交換器11および四方弁23が、冷媒配管によって繋がっている。
 室内熱交換器5および室内ファン7は、室内ユニット4内に配置されている。室外熱交換器11および室外ファン21は、室外ユニット10内に配置されている。空気調和装置1の一連の動作は、制御部51によって制御される。
 次に、その室外熱交換器11について説明する。図2および図3に示すように、室外熱交換器11は、主熱交換部(第1熱交換部)101および補助熱交換部(第2熱交換部)201を備えている。補助熱交換部201の上に主熱交換部101が配置されている。補助熱交換部201は主熱交換部101の下方に配置されている。主熱交換部101では、第1列目に主熱交換部101aが配置され、第2列目に主熱交換部101bが配置されている。補助熱交換部201では、第1列目に補助熱交換部201aが配置され、第2列目に補助熱交換部201bが配置されている。
 主熱交換部101および補助熱交換部201では、板状の複数のフィン31を貫通するように、複数の伝熱管33が配置されている。
 その伝熱管33として、たとえば、長径と短径を有する扁平断面形状の扁平管が使用されている。その扁平管の一例として、図4に、一つの冷媒通路34が形成された扁平管を示す。扁平管の他の例として、図5に、複数の冷媒通路34が形成された扁平管を示す。なお、伝熱管33としては、扁平管に限られず、たとえば、断面形状が円形または楕円形等の伝熱管であってもよい。
 主熱交換部101は、さらに第1主熱交換領域(第1熱交換領域)111、第2主熱交換領域(第2熱交換領域)121に区分される。ここで図6および図7に第1主熱交換領域111の詳細構成を、図8および図9に第2主熱交換領域121の詳細構成をそれぞれ示す。室外熱交換器11では、伝熱管33によって冷媒パスが形成される。主熱交換部101では、第1主熱交換領域111に位置する第1主冷媒パス(第1冷媒パス)113、第2主熱交換領域121に位置する第2主冷媒パス(第2冷媒パス)123が形成されている。第1主冷媒パス113では、第1主伝熱管119によって形成された一の冷媒パスを含む複数の冷媒パスが形成されている。第2主冷媒パス123では、第2主伝熱管129によって形成された一の冷媒パスを含む複数の冷媒パスが形成されている。
 本実施の形態1においては、例えば、第1主冷媒パス113、第2主冷媒パス123ともに、冷媒パスは8パス形成されており、それぞれの冷媒パスにおいて、4本の伝熱管で構成されている。故に第1主熱交換領域111、第2主熱交換領域121は、ともに32本の伝熱管で構成されている。
 補助熱交換部201は、さらに第1補助熱交換領域(第3熱交換領域)211、第2補助熱交換領域(第4熱交換領域)221に区分される。ここで図10および図11に補助熱交換部201の詳細構成をそれぞれ示す。補助熱交換部201では、伝熱管33によって冷媒パスが形成される。補助熱交換部201では、第1補助熱交換領域211に位置する第1補助冷媒パス(第3冷媒パス)213、第2補助熱交換領域221に位置する第2補助冷媒パス(第4冷媒パス)223が形成されている。第1補助冷媒パス213は第1補助伝熱管219によって形成された少なくとも1つの冷媒パスを有している。第2補助冷媒パス223は第2補助伝熱管229によって形成された少なくとも1つの冷媒パスを有している。また、第1補助冷媒パス213の全長は、第2補助冷媒パス223の全長よりも短い。つまり、第1補助伝熱管219は第2補助伝熱管229よりも伝熱管の全長が短い。本実施の形態1においては、各伝熱管の長さは同様とするため、伝熱管の全長が短いということは、伝熱管の本数が少ないということと同義である。本実施の形態1においては、第1補助冷媒パス213の伝熱管の数は第2補助冷媒パス223の伝熱管の数よりも少ない。具体的には、第1補助冷媒パス213は伝熱管4本で構成されている。第2補助冷媒パス223は伝熱管12本で構成されている。
 主熱交換部101の第1主冷媒パス113、第2主冷媒パス123の一端側と補助熱交換部201の第1補助冷媒パス213、第2補助冷媒パス223の一端側とが、第1分配器112、第2分配器122を介して接続配管35によって接続されている。より具体的には、第1主冷媒パス113は第1分配器112を介して第1補助冷媒パス213と接続されている。第2主冷媒パス123は第2分配器122を介して第2補助冷媒パス223と接続されている。
 主熱交換部101の第1主冷媒パス113、第2主冷媒パス123の他端側は、ヘッダ27に接続されている。補助熱交換部201の第1補助冷媒パス213、第2補助冷媒パス223の他端側は、接続配管36によって分配器25に接続されている。室外熱交換器11は、上記のように構成される。
 次に、上述した室外熱交換器11を有する室外ユニット10(図1参照)を備えた空気調和装置の動作として、まず、冷房運転の場合について説明する。
 図12に示すように、圧縮機3を駆動させることによって、圧縮機3から高温高圧のガス状態の冷媒が吐出する。以下、点線矢印にしたがって冷媒が流れる。吐出した高温高圧のガス冷媒(単相)は、四方弁23を介して室外ユニット10の室外熱交換器11に流れ込む。室外熱交換器11では、流れ込んだ冷媒と、室外ファン21によって供給される流体としての外気(空気)との間で熱交換が行われる。高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。
 室外熱交換器11から送り出された高圧の液冷媒は、絞り装置9によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、室内ユニット4の室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだ二相状態の冷媒と、室内ファン7によって供給される空気との間で熱交換が行われる。二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、室内が冷却されることになる。室内熱交換器5から送り出された低圧のガス冷媒は、四方弁23を介して圧縮機3に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機3から吐出する。以下、このサイクルが繰り返される。
 次に、冷房運転時の室外熱交換器11における冷媒の流れについて詳しく説明する。冷房運転させる場合には、室外熱交換器11は凝縮器として動作する。図13および図14に示すように、室外熱交換器11では、圧縮機3から送られてきた冷媒は、主熱交換部101を流れ、次に、補助熱交換部201を流れる。その主熱交換部101および補助熱交換部201に対して、室外ファン21によって送り込まれた空気は、第1列目(風上側)の主熱交換部101aおよび補助熱交換部201aから、第2列目(風下列)の主熱交換部101bおよび補助熱交換部201bへ向かって流れる。
 図15および図16に主熱交換部101における冷媒の流れについて詳しく説明する。圧縮機3から送られた高温高圧のガス冷媒は、まず、ヘッダ27に流れ込む。ヘッダ27に流れ込んだ冷媒は、ヘッダ27内でガス分配され、第1主冷媒パス113と第2主冷媒パス123を、矢印に示す向きに流れる。第1主熱交換領域111の第1主冷媒パス113を流れた冷媒は、第1分配器112に流れ込み、分配器内において合流する。第2主熱交換領域121の第2主冷媒パス123を流れた冷媒は、第2分配器122に流れ込み、分配器内において合流する。
 次に、図17および図18に補助熱交換部201における冷媒の流れについて詳しく説明する。合流した冷媒は、第1分配器112、第2分配器122のそれぞれから、接続配管35を経て補助熱交換部201に流れ込む。補助熱交換部201に流れ込んだ冷媒は、第1補助冷媒パス213と第2補助冷媒パス223を、矢印に示す向きに流れる。第1分配器112から送られた冷媒が第1補助冷媒パス213を流れる。第2分配器122から送られた冷媒が第2補助冷媒パス223を流れる。
 第1補助冷媒パス213および第2補助冷媒パス223のそれぞれを流れた冷媒は、接続配管36を経て分配器25に流れ込む。分配器25内では、流れ込んだ冷媒が合流し、接続配管37を流れて室外熱交換器11の外へ送り出される。
 室外熱交換器11が凝縮器として動作する場合、一般に、冷媒は、ガス冷媒(単相)として、過熱度を有した状態で室外熱交換器11に流れ込む。室外熱交換器11では、冷媒は、伝熱特性がよいとされる液冷媒とガス冷媒との二相状態のもとで、外気(空気)と熱交換される。熱交換された冷媒は、過冷却度を有する液冷媒(単相)となって室外熱交換器11から送り出される。
 上述したように、室外熱交換器11を凝縮器として機能させる場合、室外熱交換器11を流れる間に、液冷媒とガス冷媒との二相状態で流れ込んだ冷媒が凝縮して液冷媒になる。ここで、二相状態の冷媒の乾き度xと伝熱管内の凝縮熱伝達率αiの関係(関係A)と、二相状態の冷媒の乾き度xと凝縮器としての熱交換器性能AK値との関係(関係B)について説明する。図19に、関係Aのグラフ(点線のグラフ)と関係Bのグラフ(実線のグラフ)とをそれぞれ示す。なお乾き度とは、湿り蒸気(液冷媒+ガス冷媒)の質量に対するガス冷媒の質量の割合(比)をいう。
 また、伝熱管外の熱抵抗をRo、伝熱管内の熱抵抗をRi、伝熱管壁内での熱抵抗をRdとすると、AK値は、次の式によって表される。
 AK値=1/(Ro+Ri+Rd)
 熱抵抗の値が小さくなることでAK値は高くなり、熱交換器性能は向上する。たとえば、伝熱管外の熱抵抗Roを小さくするには、伝熱管外の伝熱面積を増加するか、伝熱管外の流体の流速を上げるか、または、伝熱管外の熱伝達率を向上させる機構を備えている必要がある。また、伝熱管内の熱抵抗Riを小さくするには、伝熱管内の凝縮熱伝達率αiを上げるか、または、伝熱管内の伝熱面積を大きくする必要がある。
 一般に、二相状態の冷媒が流れ込んだ室外熱交換器11の伝熱管33内では、液冷媒とガス冷媒とが混在している。液冷媒は、伝熱管33の内壁面に付着した薄い液膜として存在する。このため、伝熱管33内の二相状態の冷媒が凝縮するときは、単相の冷媒(液冷媒またはガス冷媒)の場合と比べて、伝熱管内の凝縮熱伝達率が高く、熱交換器性能AK値も高い値を示す。
 但し液冷媒の凝縮量が増える、すなわち乾き度が低くなると、液膜が厚くなるため、伝熱促進の効果を得にくくなり、伝熱性能が徐々に低下し、液冷媒(単相)状態に遷移する。液冷媒(単相)では、二相状態の冷媒に比べて、伝熱管内の熱伝達率が小さい。また、伝熱管内では、冷媒の過冷却度が大きくなるため、冷媒の温度と伝熱管外の温度との温度差が小さくなる。このため、室外熱交換器としての性能が大きく低下することになる。
 特に伝熱管内径の小さい細径管熱交換器や扁平多穴管熱交換器においては、二相状態に対して液冷媒(単相)状態における伝熱管内の熱伝達率が小さくなるため、その影響が顕著となりやすく、液冷媒(単相)状態の領域の熱交換器性能が低下する。さらに熱交換器全体を占める液冷媒の割合も増加するため、空気調和装置1に内有される冷媒量が増加してしまう。
 そのため、この室外熱交換器11の補助熱交換部201では、補助熱交換部201の冷媒パスの数が、主熱交換部101の冷媒パスの数よりも少なく配置される。つまり、第1補助冷媒パス213の数は第1主冷媒パス113の数はよりも少なく、第2補助冷媒パス223の数は第2主冷媒パス123の数よりも少ない。これにより、補助熱交換部201における伝熱管33内の冷媒の流速を上げることができ、伝熱管33内の熱伝達率を向上させることができる。
 ここで、図20に、ある伝熱管内径、伝熱管長さにおける、液冷媒(単相)に対する二相冷媒の摩擦圧力損失比と乾き度の関係を示す。二相冷媒は液冷媒(単相)に対して、およそ2~15倍程度の圧力損失となり、およそ平均で11倍程度となり、乾き度0.35程度が大凡平均値となる。また、図21に、ある伝熱管内径、伝熱管長さにおける、冷媒循環量の比率と、摩擦圧力損失比の関係を示す。二相冷媒および液冷媒(単相)において、摩擦圧力損失は冷媒循環量(≒質量速度)の1.75乗に比例する。
 ここで、主熱交換部101において、二相冷媒を液冷媒(単相)状態まで相変化させられずに、補助熱交換部201における伝熱管33に、二相冷媒が流れる場合を想定する。補助熱交換部201における伝熱管33を流れる冷媒の流速が増加しており、かつ二相冷媒状態であるため、主熱交換部101を流れる場合に比べ、圧力損失が格段に増加すると想定される。
 また、二相冷媒の温度は、飽和温度として冷媒の圧力に依存して決まるため、補助熱交換部内部で急激に温度が低下し、かつ乾き度も増加してしまうことで、冷媒の温度と伝熱管の外の温度との温度差が小さくなる影響が、熱交換器性能が向上する以上に支配的となり、室外熱交換器としての性能が低下することとなる。そのため、主熱交換部101の出口、換言すると補助熱交換部201の入口において冷媒として液冷媒(単相)と二相冷媒の境界状態で流れる場合が、伝熱管33内の圧力損失により、冷媒温度が変化することもないため、室外熱交換器11の性能に悪影響を及ぼさずに、伝熱管内の液冷媒の伝熱を促進させる効果を大いに発揮させ、室外熱交換器の性能を向上させることができる。
 次に、暖房運転の場合について説明する。図12に示すように、圧縮機3を駆動させることによって、圧縮機3から高温高圧のガス状態の冷媒が吐出する。以下、実線矢印にしたがって冷媒が流れる。吐出した高温高圧のガス冷媒(単相)は、四方弁23を介して室内熱交換器5に流れ込む。室内熱交換器5では、流れ込んだガス冷媒と、室内ファン7によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。この熱交換によって、室内が暖房されることになる。室内熱交換器5から送り出された高圧の液冷媒は、絞り装置9によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。
 二相状態の冷媒は、室外熱交換器11に流れ込む。室外熱交換器11では、流れ込んだ二相状態の冷媒と、室外ファン21によって供給される流体としての外気(空気)との間で熱交換が行われて、二相状態の冷媒は、液冷媒が蒸発して低圧のガス冷媒(単相)になる。室外熱交換器11から送り出された低圧のガス冷媒は、四方弁23を介して圧縮機3に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機3から吐出する。以下、このサイクルが繰り返される。
 次に、暖房運転時の室外熱交換器11における冷媒の流れについて詳しく説明する。図22および図23に示すように、室外熱交換器11では、送られてきた冷媒は、補助熱交換部201を流れ、次に、主熱交換部101を流れる。その主熱交換部101および補助熱交換部201に対して、室外ファン21によって送り込まれた空気は、第1列目(風上側)の主熱交換部101aおよび補助熱交換部201aから、第2列目(風下列)の主熱交換部101bおよび補助熱交換部201bへ向かって流れる。
 図24および図25に補助熱交換部201における冷媒の流れについて詳しく説明する。室内熱交換器5から絞り装置9を経て送られてきた二相状態の冷媒は、まず、分配器25に流れ込む。分配器25に流れ込んだ冷媒は、補助熱交換部201の第1補助冷媒パス213と第2補助冷媒パス223を、矢印に示す向きに流れる。第1補助冷媒パス213を流れた冷媒は、接続配管35を経て第1分配器112に流れ込む。第2補助冷媒パス223を流れた冷媒は、接続配管35を経て第2分配器122に流れ込む。
 次に、図26および図27に主熱交換部101における冷媒の流れについて詳しく説明する。第1分配器112および第2分配器122のそれぞれに流れ込んだ冷媒は、それぞれの分配器の中で更に細かく分配され、第1主冷媒パス113と第2主冷媒パス123を、矢印に示す向きに流れる。第1分配器112に流れ込んだ冷媒は、更に細かく分配され第1主冷媒パス113を流れる。第2分配器122に流れ込んだ冷媒は、更に細かく分配され第2主冷媒パス123を流れる。第1主冷媒パス113と第2主冷媒パス123をそれぞれ流れた冷媒は、ヘッダ27に流れ込む。ヘッダ27に流れ込んだ冷媒は、室外熱交換器11の外へ送り出される。
 室外熱交換器11を流れた冷媒は、圧縮機3へ送られる。このとき、冷媒が液冷媒の状態で圧縮機3に流れ込むと、液圧縮を起こして圧縮機3の故障の原因となることがある。このため、室外熱交換器11が蒸発器として機能する暖房運転では、室外熱交換器11から送り出される冷媒は、ガス冷媒(単相)になっていることが望ましい。
 このように、暖房運転時では、室外ファン21によって室外ユニット10内に送り込まれる外気と、室外熱交換器11に送り込まれる冷媒との間で熱交換が行われる。この熱交換が行われる際に、外気(空気)中の水分が凝縮し、室外熱交換器11の表面に水滴が成長する。成長した水滴は、フィン31と伝熱管33とによって構成された室外熱交換器11の排水路を通じて下方へ流れ、ドレン水として排出される。
 また、暖房運転の場合、凝縮した空気中の水分が、霜として室外熱交換器11に付着することがある。このため、空気調和装置1では、室外熱交換器11の冷媒温度が一定の温度(たとえば、0℃(凝固点))以下となったときに、霜を除去するための除霜運転が行われる。
 除霜運転とは、蒸発器として機能する室外熱交換器11に霜が付着するのを防ぐために、圧縮機3から室外熱交換器11に、高温高圧のガス冷媒(ホットガス)を送り込む運転のことである。除霜運転は、暖房運転の継続時間が所定値(例えば、30分)に達した場合に行われるようにしてもよい。また、除霜運転は、冷媒温度が一定温度(たとえば、マイナス6℃)以下の場合に、暖房運転を行う前に実施するようにしてもよい。室外熱交換器11に付着した霜(および氷)は、室外熱交換器11に送り込まれた高温高圧の冷媒によって融解される。
 この空気調和装置1では、圧縮機3から吐出する高温高圧のガス冷媒は、四方弁23を介して室外熱交換器11へ送り込むことができる。この他に、たとえば、圧縮機3と室外熱交換器11との間に、バイパス用の冷媒配管(図示せず)を設けてもよい。
 上述したように、室外熱交換器11を蒸発器として機能させる場合、室外熱交換器11を流れる間に、液冷媒とガス冷媒との二相状態で流れ込んだ冷媒が蒸発してガス冷媒になる。ここで、二相状態の冷媒の乾き度xと伝熱管内の蒸発熱伝達率αiの関係(関係A)と、二相状態の冷媒の乾き度xと蒸発器としての熱交換器性能AU値との関係(関係B)について説明する。図28に、関係Aのグラフ(点線のグラフ)と関係Bのグラフ(実線のグラフ)とをそれぞれ示す。
 また、伝熱管外の熱抵抗をRo、伝熱管内の熱抵抗をRi、伝熱管壁内での熱抵抗をRdとすると、AU値は、次の式によって表される。
 AU値=1/(Ro+Ri+Rd)
 熱抵抗の値が小さくなることでAU値は高くなり、熱交換器性能は向上する。たとえば、伝熱管外の熱抵抗Roを小さくするには、伝熱管外の伝熱面積を増加するか、伝熱管外の流体の流速を上げるか、または、伝熱管外の熱伝達率を向上させる機構を備えている必要がある。また、伝熱管内の熱抵抗Riを小さくするには、伝熱管内の蒸発熱伝達率αiを上げるか、または、伝熱管内の伝熱面積を大きくする必要がある。
 一般に、二相状態の冷媒が流れ込んだ室外熱交換器11の伝熱管33内では、液冷媒とガス冷媒とが混在している。液冷媒は、伝熱管33の内壁面に付着した薄い液膜として存在する。このため、伝熱管33内の二相状態の冷媒が蒸発するときは、単相の冷媒(液冷媒またはガス冷媒)の場合と比べて、伝熱管内の蒸発熱伝達率が高く、熱交換器性能AU値も高い値を示す。
 二相状態の冷媒では、液冷媒が蒸発するにしたがい、ガス冷媒の割合が増えて、単相のガス冷媒だけの状態に近づく。すなわち、冷媒の乾き度が高い状態になる。乾き度が高い状態になると、伝熱管33内の内壁面に形成されている液冷媒(液膜)が乾いてしまうドライアウトという現象が起きる。このため、図28に示すように、伝熱管33内の蒸発熱伝達率αiは急激に低下することになる。また、熱交換器性能AU値も、急激に低い値になる。
 次に、室外熱交換器11を通り抜ける外気(空気)の風速(流速)分布について説明する。ここで、室外熱交換器11を収容した室外ユニット10(図1参照)が、たとえば、横吹き室外ユニットである場合を想定する。横吹き室外ユニットでは、図29に示すように、室外熱交換器11と対向するように室外ファン21が配置される。室外ファン21が回転することによって、室外ユニット(図示せず)の一の側面部分から外気が室外ユニット内に送り込まれる。送り込まれた外気は、室外熱交換器11を通り抜けた後、室外ユニットの他の側面部分から室外ユニットの外へ送り出される。
 ここで、室外熱交換器11を通り抜ける外気の風速には、室外ファン21との位置関係によって分布が生じる。室外ファン21から近い位置にある室外熱交換器11の部分ほど、その室外熱交換器11の部分を通り抜ける外気の風速は大きくなる。一方、室外ファン21から離れた位置にある室外熱交換器11の部分ほど、その室外熱交換器11の部分を通り抜ける外気の風速は小さくなる。
 特に、図2に示すように、室外ファン21と対向している室外熱交換器11の部分を通り抜ける外気の風速は、室外ファン21と対向していない室外熱交換器11の部分を通り抜ける外気の風速よりも大きくなる。すなわち室外熱交換器11における、室外ファンの投影面(二点鎖線の領域)の内側に位置する部分を通り抜ける外気の風速は、投影面の外側に位置する部分を通り抜ける外気の風速よりも大きい。
 本実施の形態では、室外ファン21から室外熱交換器11を見て、第1主熱交換領域111において室外ファン21と主熱交換部101とが重なる投影面積は、第2主熱交換領域121において室外ファン21と主熱交換部101とが重なる投影面積よりも大きい。これにより、第1主熱交換領域111を通り抜ける外気の風速を第2主熱交換領域121を通り抜ける外気の風速よりも大きくすることができる。
 このような風速分布が生じることによって、全体の熱交換量に対して室外熱交換器11の各部分が熱交換に寄与する割合が、室外熱交換器11の部分によって変わってくる。その熱交換に寄与する割合は、室外ファン21から近い位置にある室外熱交換器11の部分では相対的に高く、室外ファン21から離れた位置にある室外熱交換器11の部分では相対的に低くなる。
 この室外ユニット10では、第1主熱交換領域111を通り抜ける流体の流速(風速)は、第2主熱交換領域121を通り抜ける流体の流速(風速)よりも大きくなる。したがって、第1主冷媒パス113を通り抜ける外気の風速(平均値)は、第2主冷媒パス123を通り抜ける外気の風速(平均値)よりも大きくなる。このため、第1主冷媒パス113が熱交換に寄与する割合は、第2主冷媒パス123が熱交換に寄与する割合よりも高くなる。このように、各冷媒パス(群)における熱交換量が、風速分布によって変わってくる。
 ここで、冷房運転時の室外熱交換器11内の冷媒パスを流れる冷媒と、その冷媒と外気との熱交換器性能とについて説明する。まず、図30に示すように、比較例として、第1主冷媒パス113および第2主冷媒パス123に、液冷媒とガス冷媒との二相状態の冷媒が均等に流れ込んだ場合について説明する。
 この場合には、第1主冷媒パス113および第2主冷媒パス123に均等に流れ込んだ冷媒(ガス冷媒)は、第1主冷媒パス113および第2主冷媒パス123を流れる間に外気との間で熱交換が行われて液冷媒になる。ここで、第1主冷媒パス113を流れる冷媒が最も熱交換器性能を発揮できる二相冷媒と液冷媒(単相)の境界状態で補助熱交換部201に流入する場合を想定する。第2主熱交換領域121は第1主熱交換領域111に対して風速が相対的に小さい。そのため、第2主冷媒パス123を流れる冷媒の熱交換量は、第1主冷媒パス113を流れる冷媒の熱交換量よりも小さい。このため、理想的な冷媒状態で冷媒を補助熱交換部201に流入させることができなくなるので、第2補助熱交換領域221での熱交換器性能が低下する。したがって、一つの室外熱交換器11として見た場合の熱交換器性能は低下する。また、第2主冷媒パス123を流れる冷媒が最も熱交換器性能を発揮できる二相冷媒と液冷媒(単相)の境界状態で補助熱交換部201に流入する場合を想定しても、第1主熱交換領域111での熱交換器性能が低下する。したがって、一つの室外熱交換器11として見た場合の熱交換器性能は低下する。さらに熱交換器全体を占める液冷媒の割合も増加するため、空気調和装置1に内有される冷媒量が増加してしまう。
 比較例に対して、実施の形態1では、図31に示すように、風速分布に応じて冷媒分布が調整される。この場合、後述するように、風速の相対的に大きい第1主冷媒パス113へ、液冷媒をより多く含む冷媒が流れ込むように、主熱交換部101と補助熱交換部201とが配置されている。つまり、第1主熱交換領域111を通り抜ける流体の流速は、第2主熱交換領域121を通り抜ける流体の流速よりも大きい。そして、第1補助冷媒パス213の全長は、第2補助冷媒パス223の全長よりも短い。
 冷房運転時に、主熱交換部101に流れ込んだ冷媒は、ヘッダ27において分配された後、第1主冷媒パス113、第2主冷媒パス123、第1分配器112、第2分配器122、第1補助冷媒パス213、第2補助冷媒パス223を流れ、分配器25において完全に合流することになる。そのため、補助熱交換部201の第1補助冷媒パス213および第2補助冷媒パス223において、冷媒の摩擦圧力損失に変動が生じる場合には、第1主冷媒パス113および第2主冷媒パス123ならびに第1補助冷媒パス213および第2補助冷媒パス223を流れる冷媒の流量比が変化する。
 ここで第1補助冷媒パス213は、図11に示すように、第2補助冷媒パス223に比べ、伝熱管本数が少なく配置されているため(第1補助冷媒パス4本、第2補助冷媒パス12本)、同循環量にて冷媒が流れると仮定すると、第1補助冷媒パス213の圧力損失は小さくなる。そのため、図7および図9に示すように、第1主冷媒パス113と第2主冷媒パス123は同様の構成のため、第1補助冷媒パス213と接続される第1主冷媒パス113は、第2補助冷媒パス223と接続される第2主冷媒パス123に対して、相対的に多くの冷媒が流れるため、風速分布に即した冷媒の流量比となり、一つの室外熱交換器11として見た場合の熱交換器性能は向上することになる。さらに熱交換器全体を占める液冷媒の割合も減少するため、空気調和装置1に内有される冷媒量を削減することが可能となる。
 ここで、主熱交換部101と補助熱交換部201における摩擦圧力損失の比を比較するため、主熱交換部101の摩擦圧力損失の代表値を検討する。図20に示すように、二相状態における摩擦圧力損失は液冷媒に対しておよそ2~15倍程度の圧力損失となり、およそ平均で11倍程度となり、乾き度0.35程度が大凡平均値となるため、以降は乾き度0.35における圧力損失を二相状態、すなわち主熱交換部101における摩擦圧力損失の代表値として比較する。なお、補助熱交換部201における摩擦圧力損失は液冷媒(単相)状態と仮定する。
 補助熱交換部201は冷媒パスが集約されているため、冷媒循環量(∝質量速度)が増加する。図21に示すように、摩擦圧力損失は冷媒循環量(≒質量速度)の1.75乗に比例する。ここで、図32に、縦軸に、主熱交換部101における摩擦圧力損失の代表値に対する補助熱交換部201における摩擦圧力損失の比を、横軸に、主熱交換部101の冷媒パスを流れる冷媒の質量速度に対する、補助熱交換部201の冷媒パスを流れる冷媒の質量速度の比を示す。なお、各冷媒パスの伝熱管径および伝熱管本数(≒総伝熱管長さ)は同様であると仮定する。伝熱管の仕様が前記仕様においては、主熱交換部101の冷媒パスの4倍の質量速度となる場合に、補助熱交換部201の冷媒パスの摩擦圧力損失が主熱交換部101を上回るため、補助熱交換部201を流れる冷媒の摩擦圧力損失が、冷媒の循環量比に対して支配的となる。
 本実施の形態1においては、主熱交換部101のパス数は補助熱交換部201のパス数の8倍のため、補助熱交換部201を流れる冷媒の平均質量速度は、主熱交換部101を流れる冷媒の平均質量速度の8倍となるため、主熱交換部101を流れる冷媒が二相状態で、補助熱交換部201を流れる冷媒が液冷媒(単相)状態において、補助熱交換部201を流れる冷媒の摩擦圧力損失が支配的であると言える。
 また、圧力損失は流路(総伝熱管)長さに比例して増大するが、補助熱交換部201における第1補助冷媒パス213と第2補助冷媒パス223の総伝熱管長さの関係が、第1補助冷媒パス213の総伝熱管長さ<第2補助冷媒パス223の総伝熱管長さとなっている。そのため前述より、補助熱交換部201の冷媒の摩擦圧力損失が、主熱交換部101を含めた場合でも十分支配的であると考えられるため、第1補助冷媒パス213と第2補助冷媒パス223における圧力損失が釣り合うように質量速度が変化する。その質量速度の関係は、第1補助冷媒パス213の質量速度>第2補助冷媒パス223の質量速度となる。
 これにより、第1補助冷媒パス213および第1主冷媒パス113の冷媒循環量が、第2補助冷媒パス223および第2主冷媒パス123の冷媒循環量より大きくなり、風速が相対的に大きい第1主冷媒パス113に相対的に多くの冷媒循環量を流すことができる。そのため、第1主熱交換領域111および第2主熱交換領域121の出口側を理想的な冷媒状態(二相冷媒と液冷媒(単相)の境界状態)に近い状態にすることが可能となる。その結果、室外熱交換器11の性能を向上させることができる。
 続いて、図33を参照して、本実施の形態の変形例について説明する。上記の本実施の形態では、第2補助冷媒パス223は補助熱交換部201の最下段に配置されている。これに対して、本実施の形態の変形例では、第1補助冷媒パス213は補助熱交換部201の最下段に配置されている。
 暖房運転時の室外熱交換器11は、凝縮した空気中の水分が、霜として室外熱交換器11に付着することがある。このため、空気調和装置1では、室外熱交換器11の冷媒温度が一定の温度(たとえば、0℃(凝固点))以下となったときに、霜を除去するための除霜運転が行われる。なお、除霜運転は、冷房運転と同様の動作をすることが多く、すなわち室外熱交換器11は凝縮器として機能する。
 ここで、除霜により融解した水分は、表面張力の影響で室外熱交換器の最下段に滞留し易い。そのため、着霜運転において、室外熱交換器の最下段の水分も凝固する可能性が有り、霜を融解するだけでなく、滞留した水分をも融解(昇温)する必要がある。
 そのため、室外熱交換器の最下段に位置する冷媒パスは、融解に必要な熱量が多く必要となる。ここで、第1補助冷媒パス213は、第2補助冷媒パス223より、相対的に多くの冷媒循環量が流れるため、第1補助冷媒パス213を含む、第1補助熱交換領域211を室外熱交換器11の最下段に配置することで、第2補助熱交換領域221を室外熱交換器11の最下段に配置する場合に比べ、室外熱交換器11の最下段に、多くの熱量を投入することが可能となり、除霜に必要な熱量を負荷に応じて投入することで、除霜に必要な時間を低減させることが可能となる。
 実施の形態2.
 実施の形態2に係る室外ユニットの室外熱交換器について説明する。図34および図35に室外熱交換器11の補助熱交換部201の詳細構成を示す。図34および図35に示すように実施の形態2に係る室外熱交換器11では、第1補助冷媒パス213および第2補助冷媒パス223を構成する伝熱管の配置関係が、実施の形態1に係る室外熱交換器11の配置関係と異なる。また、これ以外の構成については、図2および図3に示す室外熱交換器11の構成と同様なので、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。
 ここで、室外熱交換器11の補助熱交換部201における第1補助冷媒パス213および第2補助冷媒パス223について、第1補助冷媒パス213および第2補助冷媒パス223を流れる冷媒と、その冷媒と外気との熱交換器性能とについて説明する。まず、比較例として、図36および図37に示す構成の補助熱交換部201について説明する。
 図36および図37に示す補助熱交換部201は、第1補助冷媒パス213および第2補助冷媒パス223を占める伝熱管の本数について、第1補助冷媒パス213の伝熱管33は4本で構成されており、全て風下側の第1補助伝熱管219で構成されている。第2補助冷媒パス223の第2補助伝熱管229は12本で構成されており、その中で風上側の第2補助伝熱管229が8本、風下側の第2補助伝熱管229が4本で構成されている。
 ここで、外気温度と風上、風下の関係について説明する。室外熱交換器11を通過する流体(空気)は、風上においては、外気温度と同様であるが、風下においては、風上の熱交換領域において冷媒と熱交換をするため、凝縮器として使用する場合は、温度が外気温度以上に上昇する。そのため、冷媒から見ると、風上側で熱交換する方が、温度差を大きく確保することが可能となるため、同じ熱交換面積においても、多くの熱交換量を確保することができる。
 また、ここで、第1補助冷媒パス213と第2補助冷媒パス223の冷媒循環量について説明する。第1補助冷媒パス213の第1補助伝熱管219は、4本により構成されており、第2補助冷媒パス223の第2補助伝熱管229は、12本により構成されているため、摩擦圧力損失が釣り合うように、第1補助冷媒パス213の冷媒循環量は、第2補助冷媒パス223よりも多く流れることとなる。そのため、第1補助冷媒パス213は同じ熱交換量でも、冷媒の温度変化は相対的に小さい。一方で第2補助冷媒パス223は同じ熱交換量でも、冷媒の温度変化は相対的に大きい。
 さらに、第1補助冷媒パス213は、第2補助冷媒パス223に比べ伝熱管本数が少ないため、熱交換面積も小さい。そのため、さらに冷媒の温度変化は小さくなる。一方で第2補助冷媒パス223は、熱交換面積が第1補助冷媒パス213に比べ大きいため、さらに冷媒の温度変化が大きくなり、第1補助冷媒パス213および第2補助冷媒パス223の出口の冷媒温度状態に大きく差異が出る。
 熱交換器としては、温度差が小さくなればなるほど、同じ熱交換量を確保するためにより多くの熱交換面積を必要とする。そのため、各冷媒パスの出口の冷媒温度状態にバラつきが出ると、温度差の小さい領域において熱交換することとなり、熱交換面積を多く必要とする。結果として補助熱交換部201としての熱交換器性能を低下させる要因となる。すなわち熱交換器性能を発揮させるためには、液冷媒(単相)領域において、各冷媒パスの出口の冷媒温度を均一とすることが必要である。
 ここで、図36および図37に示す比較例2の冷媒循環量が大きく、熱交換量を多く必要とする第1補助冷媒パス213について、風下側の第1補助伝熱管219のみで構成されているため、熱交換量が小さく、冷媒の温度変化が小さい。一方で冷媒循環量が小さく、第1補助冷媒パス213に対して相対的に熱交換量を多く必要としない第2補助冷媒パス223について、風上側の第2補助伝熱管229が8本と、補助熱交換部201の全ての風上側の伝熱管33により構成されており、加えて、風下側の第2補助伝熱管229が4本で構成されているため、熱交換量が大きく、冷媒の温度変化が大きい。そのため前述したように各々の第1補助冷媒パス213および第2補助冷媒パス223の出口の冷媒温度状態に大きく差異が出るため、補助熱交換部201としての熱交換器性能が低下してしまう。
 それに対して、図34および図35に示す本実施の形態2の補助熱交換部201では、補助熱交換部201は、室外ファン21が送り込む流体の流れに沿って並んで配置された補助熱交換部(第1列部)201aおよび補助熱交換部(第2列部)201bを有する。補助熱交換部201aは補助熱交換部201bよりも流体の流れの上流に配置されている。第1補助冷媒パス213は全て補助熱交換部201aに配置されている。冷媒循環量が大きく、熱交換量を多く必要とする第1補助冷媒パス213は、風上側の第1補助伝熱管219のみで構成されている。このため、比較例2の第1補助冷媒パス213に対して、熱交換量が大きく、冷媒の温度変化が大きい。一方で冷媒循環量が小さく、第1補助冷媒パス213に対して相対的に熱交換量を多く必要としない第2補助冷媒パス223は、風上側の第2補助伝熱管229が4本で、加えて、風下側の第2補助伝熱管229が8本で構成されている。このため、比較例2の第2補助冷媒パス223に対して、熱交換量が小さく、冷媒の温度変化が小さい。そのため前述したように、比較例2の第1補助冷媒パス213および第2補助冷媒パス223の出口の冷媒温度状態に対して、その差異(ばらつき)を小さくすることが可能となる。つまり、液相状態の冷媒温度状態を均一化することが可能となる。ゆえに、補助熱交換部201としての熱交換器性能が向上する。その結果、室外熱交換器11の熱交換器性能を向上させることができる。
 上述した各実施の形態において説明した空気調和装置1に用いる冷媒としては、冷媒R410A、冷媒R407C、冷媒R32、冷媒R507A、冷媒HFO1234yf等、どのような冷媒を用いても、凝縮器として運転させる際の熱交換器性能を向上させることが可能となる。
 また、空気調和装置1に用いる冷凍機油としては、適用される冷媒との相互溶解性を考慮して適合性を有する冷凍機油が使用される。たとえば、冷媒R410A等のフルオロカーボン系冷媒では、アルキルベンゼン油系、エステル油系またはエーテル油系の冷凍機油が使用される。これらの他に、鉱油系またはフッ素油系等の冷凍機油を用いてもよい。
 なお、各実施の形態において説明した室外熱交換器を備えた空気調和装置については、必要に応じて種々組み合わせることが可能である。
 今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
 本発明は、主熱交換部および補助熱交換部を備えた室外熱交換器を有する空気調和装置に有効に利用される。
 1 空気調和装置、3 圧縮機、4 室内ユニット、5 室内熱交換器、7 室内ファン、9 絞り装置、10 室外ユニット、11 室外熱交換器、21 室外ファン、23 四方弁、25 分配器、27 ヘッダ、31 フィン、33 伝熱管、34 冷媒通路、35、36、37 接続配管、51 制御部、101、101a、101b 主熱交換部、111 第1主熱交換領域、112 第1分配器、113 第1主冷媒パス、119 第1主伝熱管、121 第2主熱交換領域、122 第2分配器、123 第2主冷媒パス、129 第2主伝熱管、201、201a、201b 補助熱交換部、211 第1補助熱交換領域、213 第1補助冷媒パス、219 第1補助伝熱管、221 第2補助熱交換領域、223 第2補助冷媒パス、229 第2補助伝熱管。

Claims (8)

  1.  熱交換器と、
     前記熱交換器へ流体を送り込む送風部とを備え、
     前記熱交換器は、第1熱交換部と、第2熱交換部とを含み、
     前記第1熱交換部は、複数の第1冷媒パスを有する第1熱交換領域と、複数の第2冷媒パスを有する第2熱交換領域とを含み、
     前記第2熱交換部は、前記複数の第1冷媒パスに接続された少なくとも1つの第3冷媒パスを有する第3熱交換領域と、前記複数の第2冷媒パスに接続された少なくとも1つの第4冷媒パスを有する第4熱交換領域とを含み、
     前記第1熱交換領域を通り抜ける前記流体の流速は、前記第2熱交換領域を通り抜ける前記流体の流速よりも大きく、
     前記第3熱交換領域の前記第3冷媒パスの全長は、前記第4熱交換領域の前記第4冷媒パスの全長よりも短い、室外ユニット。
  2.  前記第3冷媒パスおよび前記第4冷媒パスはそれぞれ伝熱管を含み、
     前記第3冷媒パスの前記伝熱管の数は、前記第4冷媒パスの前記伝熱管の数よりも少ない、請求項1に記載の室外ユニット。
  3.  前記送風部から前記熱交換器を見て、前記第1熱交換部において前記送風部と前記第1熱交換部とが重なる投影面積は、前記第2熱交換領域において前記送風部と前記第1熱交換部とが重なる投影面積よりも大きい、請求項1または2に記載の室外ユニット。
  4.  前記熱交換器は第1分配器および第2分配器を含み、
     前記第1冷媒パスは前記第1分配器を介して前記第3冷媒パスに接続され、
     前記第2冷媒パスは前記第2分配器を介して前記第4冷媒パスに接続された、請求項1~3のいずれか1項に記載の室外ユニット。
  5.  前記第3冷媒パスの数は前記第1冷媒パスの数よりも少なく、
     前記第4冷媒パスの数は前記第2冷媒パスの数よりも少ない、請求項1~4のいずれか1項に記載の室外ユニット。
  6.  前記熱交換器は、前記送風部が送り込む前記流体の流れに沿って並んで配置された第1列部および第2列部を含み、
     前記第1列部は前記第2列部よりも前記流体の流れの上流に配置され、
     前記第3冷媒パスは全て前記第1列部に配置された、請求項1~5のいずれか1項に記載の室外ユニット。
  7.  前記第2熱交換部は前記第1熱交換部の下方に配置され、
     前記第3冷媒パスは前記第2熱交換部の最下段に配置された、請求項1~6のいずれか1項に記載の室外ユニット。
  8.  請求項1~7のいずれか1項に記載の室外ユニットを備え、
     前記熱交換器が凝縮器として動作するときに前記第1熱交換部から前記第2熱交換部に冷媒が流れる、冷凍サイクル装置。
PCT/JP2017/023950 2017-06-29 2017-06-29 室外ユニットおよび冷凍サイクル装置 WO2019003385A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019526066A JP6910436B2 (ja) 2017-06-29 2017-06-29 室外ユニットおよび冷凍サイクル装置
PCT/JP2017/023950 WO2019003385A1 (ja) 2017-06-29 2017-06-29 室外ユニットおよび冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023950 WO2019003385A1 (ja) 2017-06-29 2017-06-29 室外ユニットおよび冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2019003385A1 true WO2019003385A1 (ja) 2019-01-03

Family

ID=64740450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023950 WO2019003385A1 (ja) 2017-06-29 2017-06-29 室外ユニットおよび冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP6910436B2 (ja)
WO (1) WO2019003385A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224436A1 (ja) * 2021-04-23 2022-10-27 三菱電機株式会社 空気調和機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288062U (ja) * 1975-12-26 1977-07-01
JPS62145073U (ja) * 1986-03-10 1987-09-12
JPH11108569A (ja) * 1997-10-09 1999-04-23 Daikin Ind Ltd 蛇行管の複数パスをもつ熱交換器
JP2001336786A (ja) * 2000-05-26 2001-12-07 Hitachi Ltd 空気調和機用室外機
JP2012163319A (ja) * 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機
WO2014199501A1 (ja) * 2013-06-13 2014-12-18 三菱電機株式会社 空気調和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219493A (ja) * 1995-02-09 1996-08-30 Daikin Ind Ltd 空気調和機
JP2015052439A (ja) * 2013-09-09 2015-03-19 ダイキン工業株式会社 熱交換器
WO2015132963A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 熱交換器及び空気調和機
JP6553981B2 (ja) * 2015-08-18 2019-07-31 日立グローバルライフソリューションズ株式会社 ヒートポンプ応用機器の熱交換装置
CN109073290B (zh) * 2016-05-19 2020-10-30 三菱电机株式会社 室外单元及具备该室外单元的制冷循环装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288062U (ja) * 1975-12-26 1977-07-01
JPS62145073U (ja) * 1986-03-10 1987-09-12
JPH11108569A (ja) * 1997-10-09 1999-04-23 Daikin Ind Ltd 蛇行管の複数パスをもつ熱交換器
JP2001336786A (ja) * 2000-05-26 2001-12-07 Hitachi Ltd 空気調和機用室外機
JP2012163319A (ja) * 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機
WO2014199501A1 (ja) * 2013-06-13 2014-12-18 三菱電機株式会社 空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224436A1 (ja) * 2021-04-23 2022-10-27 三菱電機株式会社 空気調和機

Also Published As

Publication number Publication date
JPWO2019003385A1 (ja) 2019-11-07
JP6910436B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
US10386081B2 (en) Air-conditioning device
WO2019239446A1 (ja) 空気調和装置の室外機及び空気調和装置
US10591192B2 (en) Heat exchange apparatus and air conditioner using same
WO2018047416A1 (ja) 空気調和装置
JP4922669B2 (ja) 空気調和機及び空気調和機の熱交換器
CN109312971B (zh) 制冷循环装置
WO2015063853A1 (ja) 冷凍サイクルおよび空気調和機
US10914499B2 (en) Outdoor unit and refrigeration cycle apparatus including the same
JPWO2018078800A1 (ja) 熱交換器及び冷凍サイクル装置
WO2016001957A1 (ja) 空気調和機
JP6045204B2 (ja) 熱交換システム
JP6910436B2 (ja) 室外ユニットおよび冷凍サイクル装置
JP2013253726A5 (ja)
JP2019215161A (ja) 空気調和装置の室外機及び空気調和装置
WO2019130394A1 (ja) 熱交換器および冷凍サイクル装置
JP7123238B2 (ja) 冷凍サイクル装置
JP6420166B2 (ja) 空気調和機
WO2021131038A1 (ja) 熱交換器および冷凍サイクル装置
WO2011111602A1 (ja) 空気調和機
JP7114011B1 (ja) 空気調和機
CN117355721A (zh) 热交换器、具备热交换器的空调装置的室外机、以及具备空调装置的室外机的空调装置
WO2019142296A1 (ja) 熱交換器、室外ユニットおよび冷凍サイクル装置
JP2010266110A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915433

Country of ref document: EP

Kind code of ref document: A1