WO2018220853A1 - 自動運転車の制御のための車両制御装置及び方法 - Google Patents

自動運転車の制御のための車両制御装置及び方法 Download PDF

Info

Publication number
WO2018220853A1
WO2018220853A1 PCT/JP2017/020698 JP2017020698W WO2018220853A1 WO 2018220853 A1 WO2018220853 A1 WO 2018220853A1 JP 2017020698 W JP2017020698 W JP 2017020698W WO 2018220853 A1 WO2018220853 A1 WO 2018220853A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
value
model
distribution
control device
Prior art date
Application number
PCT/JP2017/020698
Other languages
English (en)
French (fr)
Inventor
祐紀 喜住
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2019521928A priority Critical patent/JP6901555B2/ja
Priority to CN201780091031.4A priority patent/CN110692094B/zh
Priority to PCT/JP2017/020698 priority patent/WO2018220853A1/ja
Publication of WO2018220853A1 publication Critical patent/WO2018220853A1/ja
Priority to US16/685,024 priority patent/US11275379B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control apparatus and method for control of an autonomous vehicle, and more particularly to control technology of the vehicle.
  • the automatic driving of the vehicle is realized by the steering control that recognizes the environment around the vehicle, determines the traveling path of the vehicle based on the recognition result, and actually advances the vehicle to its activation.
  • the positions of moving objects and stationary objects on or around the road are specified, and the expected positions of the moving objects at one or more future points in time are estimated.
  • determine where the vehicle should be at each future time For example, at each time point, the position where the vehicle should exist is determined such that the vehicle exists in an area where no object exists.
  • the expected positions of the object at a certain point in time are widely distributed, and as a result there is no position where the vehicle can be present at that point. It can not be established.
  • the present invention solves at least this problem, and it is an object of the present invention to make it possible to determine an appropriate trajectory according to the situation in an autonomous driving vehicle.
  • a vehicle control device is a vehicle control device that controls automatic driving of a vehicle, acquires information related to the situation around the vehicle, and acquires the information on a plurality of positions in the future. Based on the information, a first value relating to the probability that an object present in the vicinity exists and a second value based on travel data of a predetermined driver are obtained, wherein the second value is the vehicle It is specified using a model defined for a part of the traveling area, and in the case where the vehicle travels in an area where the model is not defined, the position where the vehicle is traveling is sandwiched 2
  • the second value is identified by combining two values obtained respectively using two models defined in one region, and based on a combination of the first value and the second value , Multiple generals The position at the time of the presence of the vehicle by selecting from the plurality of locations, determining a trajectory for moving the vehicle, and is possible, characterized in configured.
  • FIG. 2 is a block diagram of a vehicle control device.
  • the flowchart which shows the example of the flow of processing.
  • FIG. 1 shows a block diagram of a vehicle control device according to the present embodiment for controlling a vehicle 1.
  • the vehicle 1 is schematically shown in a plan view and a side view.
  • the vehicle 1 is a sedan-type four-wheeled passenger car as an example.
  • the control device of FIG. 1 includes a control unit 2.
  • the control unit 2 includes a plurality of ECUs 20 to 29 communicably connected by an in-vehicle network.
  • Each ECU Electronic Control Unit
  • Each ECU includes a processor represented by a CPU (Central Processing Unit), a storage device such as a semiconductor memory, an interface with an external device, and the like.
  • the storage device stores programs executed by the processor, data used by the processor for processing, and the like.
  • Each ECU may include a plurality of processors, storage devices, interfaces, and the like.
  • each of the ECUs 20 to 29 takes charge of will be described below.
  • the number of ECUs and the functions to be in charge can be appropriately designed for the vehicle 1, and can be subdivided or integrated as compared with the present embodiment.
  • the ECU 20 executes control related to automatic driving of the vehicle 1.
  • automatic driving at least one of steering of the vehicle 1 and acceleration / deceleration is automatically controlled.
  • the ECU 21 controls the electric power steering device 3.
  • the electric power steering apparatus 3 includes a mechanism for steering the front wheels in response to a driver's driving operation (steering operation) on the steering wheel 31. Further, the electric power steering device 3 includes a motor for assisting a steering operation or a driving force for automatically steering the front wheels, a sensor for detecting a steering angle, and the like.
  • the ECU 21 automatically controls the electric power steering device 3 in response to an instruction from the ECU 20 to control the traveling direction of the vehicle 1.
  • the ECUs 22 and 23 perform control of detection units 41 to 43 for detecting the surrounding situation of the vehicle and perform information processing of detection results.
  • the detection unit 41 is a camera for capturing an image in front of the vehicle 1 (hereinafter, may be referred to as a camera 41), and in the case of the present embodiment, two are provided on the roof front of the vehicle 1. By analyzing the image captured by the camera 41, it is possible to extract the contour of the target and extract the lane line (white line etc.) on the road.
  • the detection unit 42 is a lidar (laser radar) (hereinafter, may be referred to as a lidar 42), detects a target around the vehicle 1, or measures the distance to the target.
  • a lidar 42 laser radar
  • the detection unit 43 is a millimeter wave radar (hereinafter, may be referred to as a radar 43), detects a target around the vehicle 1, and measures the distance to the target.
  • five radars 43 are provided, one at the center of the front of the vehicle 1 and one at each of the front corners, and one at each of the rear corners.
  • the ECU 22 performs control of one camera 41 and each lidar 42 and information processing of detection results.
  • the ECU 23 controls the other camera 42 and each radar 43 and performs information processing of detection results.
  • the reliability of the detection results can be improved by providing two sets of devices for detecting the surrounding environment of the vehicle, and by providing different types of detection units such as cameras, lidars and radars, analysis of the environment around the vehicle Can be done in many ways.
  • the ECU 24 controls the gyro sensor 5, the GPS sensor 24b, and the communication device 24c, and performs information processing of a detection result or a communication result.
  • the gyro sensor 5 detects the rotational movement of the vehicle 1.
  • the course of the vehicle 1 can be determined from the detection result of the gyro sensor 5, the wheel speed, and the like.
  • the GPS sensor 24 b detects the current position of the vehicle 1.
  • the communication device 24 c performs wireless communication with a server that provides map information and traffic information, and acquires such information.
  • the ECU 24 can access a database 24a of map information built in a storage device, and the ECU 24 performs a route search from a current location to a destination.
  • the ECU 25 includes a communication device 25a for inter-vehicle communication.
  • the communication device 25a performs wireless communication with other vehicles in the vicinity to exchange information between the vehicles.
  • the ECU 26 controls the power plant 6.
  • the power plant 6 is a mechanism that outputs a driving force for rotating the drive wheels of the vehicle 1 and includes, for example, an engine and a transmission.
  • the ECU 26 controls, for example, the output of the engine in response to the driver's driving operation (acceleration operation or acceleration operation) detected by the operation detection sensor 7a provided on the accelerator pedal 7A, the vehicle speed detected by the vehicle speed sensor 7c, etc.
  • the gear position of the transmission is switched based on the information of.
  • the ECU 26 automatically controls the power plant 6 in response to an instruction from the ECU 20 to control acceleration / deceleration of the vehicle 1.
  • the ECU 27 controls a lamp (headlight, taillight, etc.) including the direction indicator 8.
  • the turn indicator 8 is provided at the front, the door mirror and the rear of the vehicle 1.
  • the ECU 28 controls the input / output device 9.
  • the input / output device 9 outputs information to the driver and accepts input of information from the driver.
  • the voice output device 91 reports information to the driver by voice.
  • the display device 92 notifies the driver of the information by displaying an image.
  • the display device 92 is disposed, for example, on the surface of the driver's seat, and constitutes an instrument panel or the like.
  • voice and a display were illustrated here, you may alert
  • the input device 93 is arranged at a position where the driver can operate, and is a group of switches for giving an instruction to the vehicle 1. However, a voice input device may also be included.
  • the ECU 29 controls the brake device 10 and a parking brake (not shown).
  • the brake device 10 is, for example, a disc brake device, and is provided on each wheel of the vehicle 1 and decelerates or stops the vehicle 1 by adding resistance to the rotation of the wheel.
  • the ECU 29 controls the operation of the brake device 10 in response to the driver's driving operation (brake operation) detected by the operation detection sensor 7b provided on the brake pedal 7B, for example.
  • the ECU 29 automatically controls the brake device 10 in response to an instruction from the ECU 20 to control the deceleration and stop of the vehicle 1.
  • the brake device 10 and the parking brake can also be operated to maintain the vehicle 1 in the stopped state.
  • the transmission of the power plant 6 is provided with a parking lock mechanism, it can be operated to maintain the vehicle 1 in the stopped state.
  • the ECU 20 executes control related to automatic driving of the vehicle 1.
  • the ECU 20 automatically controls the traveling of the vehicle 1 toward the destination according to the guidance route searched by the ECU 24.
  • the ECU 20 acquires information on the surrounding condition of the vehicle 1 from the ECUs 22 and 23 and specifies a track on which the vehicle 1 should travel in a short period (for example, 5 seconds) based on the acquired information.
  • the identification of the trajectory is performed by determining the position of the vehicle 1 in predetermined time intervals (for example, 0.1 seconds).
  • the positions of the vehicle 1 at 50 time points from 0.1 second to 5.0 seconds are respectively determined, and the 50 points are determined.
  • the trajectory of the vehicle 1 is determined as the trajectory of the vehicle 1 to travel.
  • the “short period” is a period significantly shorter than the entire travel of the vehicle 1, for example, a range in which the detection unit can detect the surrounding environment, or the braking necessary for the vehicle 1. It is determined based on time etc.
  • “predetermined time” is set to a short length such that the vehicle 1 can adapt to changes in the surrounding environment.
  • the ECU 20 controls the steering, driving, and braking of the vehicle 1 by instructing the ECU 21 and the ECUs 26 and 29 in accordance with the track thus specified.
  • FIG. 2 is a diagram showing the state of the road on which the vehicle 1 is traveling and its surroundings at a certain moment, and the range in which an object is expected to exist in the future, which is used to predict the future state.
  • Vehicle 1 has a left lane divided by center line 203 within a range in which the vehicle can travel indicated by lines 201 and 202 (for example, a line corresponding to a roadway outer road, a roadside zone, a guardrail, a curb or the like). In FIG. 2, the vehicle travels from the lower side to the upper side).
  • a pedestrian 204 and another vehicle 205 exist in the traveling direction of the vehicle 1. Although only one other vehicle and one pedestrian are shown in FIG. 2 for the sake of simplicity, other traffic participants such as bicycles and motorcycles, and non-traffic participants such as obstacles, for example, It may exist on or around the road. In addition, it may be assumed that there are two or more other vehicles and two or more pedestrians.
  • a range in which it is assumed that the pedestrian 204 will exist in the future is indicated by a dashed dotted line 211, a dotted line 212, and a dashed dotted line 213 surrounding the pedestrian 204.
  • the range of the dotted line 212 is a range where the pedestrian 204 is assumed to exist at a time later than the range of the dashed dotted line 211, and similarly, the range of the dashed double dotted line 213 is more than the range of the dotted line 212. It is a range where pedestrian 204 is assumed to be present at a later time point. Note that the existence probability of the pedestrian 204 in each region can follow, for example, a two-dimensional normal distribution centered on the center of a circle.
  • the range in which the pedestrian is assumed to be present in the future does not have a circular shape.
  • the shape of only the left portion of the range in FIG. 2 cut off by the line 202 or a shape close to it may be a range where the pedestrian 204 is assumed to exist in the future.
  • the pedestrian 204 proceeds in the direction of the face according to the direction of the face of the pedestrian 204, the range in which the pedestrian 204 is assumed to be present in the future is largely in the direction in which the face is facing It can be an expanding oval shape.
  • the estimation method of the future existence range of the pedestrian 204 is not limited to these methods, and the existence range and the existence probability may be estimated by any other method. Also, in any case, not only the range is specified, but a score corresponding to the probability that the pedestrian 204 exists at each point within the range is given, and the higher the score, the pedestrian 204 is present at that position. A first distribution is obtained that indicates that the probability of doing is high. Note that the range may not be acquired explicitly, and only the first distribution may be acquired.
  • the first distribution of the range assumed to exist in the future (the range indicated by the dashed dotted line 214, the dotted line 215, and the dashed dotted line 216) is acquired.
  • the range of the dotted line 215 is a range in which the other vehicle 205 is assumed to exist at a time later than the range of the dashed dotted line 214, and similarly, the range of the dashed double dotted line 216 is more than the range of the dotted line 215. It is a range where it is assumed that the other vehicle 205 is present at a later time.
  • the ECU 20 acquires information on the surrounding situation of the vehicle 1 from the ECUs 22 and 23, based on this information, for example, by executing predetermined processing, the probability of the future existence position for each of the moving objects Obtain a first distribution corresponding to
  • the position where the object exists is the same first distribution at each time point Is identified. For example, if a guardrail or curb is placed along the line 202, a first distribution in which the range in which the object exists is in the form along the line 202 is the first distribution for that guardrail or curb. It is identified.
  • the ECU 20 acquires, as a total first distribution, a value obtained by adding up the first distribution of each object for each position.
  • the ECU 20 specifies an area where no object exists at each time point, and determines a trajectory so as to advance the vehicle 1 to that position. According to this, it is possible to select the track so that the vehicle 1 does not interfere with the object.
  • the range regarding the first distribution may be determined so as to include a range from the actual position thereof to a range separated by a fixed distance on the roadway side. According to this, it is possible to prevent the vehicle 1 from approaching the stationary object more than necessary and for the person riding on the vehicle 1 to feel a feeling of pressure.
  • the ECU 20 can not determine the track up to and after a certain period, and as a result, the vehicle 1 may be stopped, and in some cases, automatic driving may not be possible.
  • the ECU 20 further takes into consideration the track of the vehicle 1 in consideration of, for example, data of a combination of traveling by a predetermined driver and the surrounding situation detected at that time in various situations.
  • the predetermined driver may be, for example, a non-accident driver, a taxi driver, a certified driving expert, etc.
  • the ECU 20 obtains a second distribution that indicates what travel a predetermined driver has performed in the same situation, or indicates a position where the predetermined driver moves the vehicle 1. In the second distribution, the higher the probability that the predetermined driver moves the vehicle 1 in the situation where the vehicle 1 is placed, the higher the value, and the lower the probability that the predetermined driver moves the vehicle 1, the lower the position.
  • the “predetermined driver” may be, for example, a professional driver or a good driver.
  • travel data is collected from a large number of vehicles, and out of these, travel data meeting predetermined criteria such as sudden start, sudden braking, sudden steering, or travel speed stability is extracted. It may be handled as traveling data of a predetermined driver.
  • the second distribution is obtained by specifying values for a plurality of points included in a certain range around the vehicle 1. For example, as shown in FIG. 3, straight lines in a straight direction and a direction perpendicular to the straight line are drawn at constant intervals for a predetermined range around the vehicle 1, and the above-mentioned value is specified at each intersection of the straight lines. For example, values for points corresponding to the respective pixels of the image as shown in FIG. 3 showing information on the surrounding situation of the vehicle 1 acquired from the ECUs 22 and 23 (that is, the intersections of the grids in FIG. 3 correspond to the respective pixels) Is identified. Note that FIG. 3 is merely an example, and for example, the above-described values may be calculated at each intersection point of a plurality of arcs centered on the vehicle 1 and a straight line drawn radially from the vehicle 1.
  • the second distribution is acquired in predetermined time (for example, 0.1 seconds) intervals for a short period (for example, 5 seconds) minutes. That is, for example, two-dimensional distributions of values for each intersection of the grid in FIG. 3 are created for 50 for 5 seconds every 0.1 seconds. At this time, for example, it is not possible to move to an area corresponding to the side of the vehicle 1 at least immediately after (for example, after 0.1 seconds), and such traveling can not be performed by a predetermined driver. Therefore, the above-mentioned value at a point in the area is always zero.
  • the above-mentioned value at a point next to a certain period of time may be a non-zero value.
  • a pedestrian is present on the left side, and another vehicle is present on the right side.
  • the above-mentioned value at a point in the right front direction becomes high.
  • the second distribution is, for example, in a large number of situations, acquiring a large number of travel data realized by a given driver, and the action actually taken by the given driver in the situation where the vehicle 1 is currently placed.
  • a distribution of That is, the frequency or the probability that the vehicle was present at each position at each subsequent point in the traveling performed by the predetermined driver in the situation completely or almost the same as the situation where the vehicle 1 is actually placed is a second distribution It can be acquired.
  • a second distribution is obtained such that the higher the trajectory actually traveled by a number of predetermined drivers, the higher the value.
  • This second distribution may be particularly useful, for example, when driving along a road with few moving objects.
  • the second distribution is machine learning with the combination of data on the traveling track of the vehicle when the predetermined driver actually drives the vehicle and the data on the surroundings of the vehicle detected at that time as teacher data. It can be acquired using the executed result. That is, based on the result of performing machine learning using a large number of teacher data by a predetermined driver in advance, the ECU 20 takes as input the information regarding the surrounding situation of the vehicle 1 acquired from the ECUs 22 and 23 as described above at each point A value is calculated to obtain a second distribution.
  • the algorithm of machine learning can use a general purpose thing, and it does not specifically limit here.
  • FIG. 4 is a diagram showing, for example, a first distribution and a second distribution at positions A to A ′ and B to B ′ in FIG. 3 at a certain point in time.
  • the first distribution is shown above the axes of A to A 'and B to B'
  • the second distribution is shown below the axes of A to A 'and B to B'. That is, the first distribution and the second distribution in which the positive and negative are reversed are shown in FIG.
  • curves 401 and 411 are the first distribution for pedestrian 204
  • curves 402 and 412 are the first distribution for other vehicle 205
  • rectangular curves 404 and 414 are a first distribution of stationary objects, such as curbs (not shown).
  • stationary objects it is certain that the object does not move, so it is rectangular or nearly rectangular first, which is high at that position and has zero or a sufficiently small value at other positions.
  • a distribution of 1 is formed.
  • the shape of the tail of the first distribution may be different between the stationary object and the moving object.
  • Curves 403 and 413 indicate, for example, a second distribution obtained as a result of inputting information on the surrounding situation of the vehicle 1 acquired from the ECUs 22 and 23 as an argument to a function obtained as a result of completion of machine learning.
  • the ECU 20 adds the values of the curves 401 to 404 at each position of the axes A to A ′, and adds the values of the curves 411 to 414 at each position of the axes B to B ′. Also, the ECU 20 can calculate similar values at each position other than the axes A to A 'and B to B'.
  • the ECU 20 calculates a value obtained by subtracting the value of the second distribution from the value of the first distribution, and the position where the result is the smallest (in some cases, the position below the threshold) choose In the example of FIG. 4, the ECU 20 selects a point C as an example.
  • the ECU 20 performs similar calculations at a plurality of time points, and determines a trajectory that connects the selected points at each time point in time series.
  • FIG. 5 the point 501 plotted in the traveling direction of the vehicle 1 is the vehicle 1 determined based on the first distribution and the second distribution as described above for each of a plurality of time points. Indicate the position to be.
  • these points 501 for example, the point C determined as shown in FIG. 4 is included. It is assumed that points 501 in FIG. 5 are plotted upward in the time series as the position in the future is further.
  • the ECU 20 determines a track on which the vehicle 1 is to travel as a line 502 connecting the points 501 by specifying these points 501.
  • FIG. 6 is a flow chart showing an example of the above-mentioned process flow.
  • the ECU 20 acquires information on the surrounding situation from the ECUs 22 and 23 (S601).
  • the ECU 20 acquires, for example, an image of the vehicle 1 and the surroundings thereof as viewed from above, in which an object around the vehicle 1 is mapped.
  • the ECU 20 acquires, based on the acquired information, a first distribution corresponding to the probability that a surrounding object exists at a future time point for a plurality of points (for example, for each pixel in each image described above) S602).
  • the ECU 20 inputs the acquired information, for example, into a function obtained by machine learning based on traveling data by a predetermined driver and the situation around the vehicle when the data is acquired.
  • the second distribution may be a distribution in which a predetermined driver takes a higher value as the position at which the vehicle is moved is higher in the case of the surrounding situation indicated by the information acquired in S601.
  • the result of machine learning is a value obtained by inputting information indicating a surrounding situation to a function, and is not necessarily calculated as a probability value.
  • S602 and S603 may be performed in parallel, or the order in which they are performed may be reversed.
  • the ECU 20 selects the position to which the vehicle 1 should move at each of the plurality of time points based on the first distribution and the second distribution acquired for each of the plurality of time points (S604). Then, the ECU 20 determines the track along which the vehicle 1 should travel by connecting in time series the positions to which the vehicle 1 selected at each of the plurality of points is to move (S605). The ECU 20 repeatedly executes the series of processes and causes the vehicle 1 to travel while sequentially updating the track.
  • the track is determined in consideration of accumulation of traveling data by a predetermined driver, so it is possible to determine the track after a certain period of time
  • the probability increases.
  • the vehicle 1 takes an action similar to or near the action that the given driver would have taken in light of the surrounding environment. It will be.
  • natural traveling is performed according to the movement of traffic participants such as pedestrians and other vehicles.
  • the ECU 20 repeatedly acquires information on the surrounding condition of the vehicle 1 from the ECUs 22 and 23 in a short cycle of, for example, every 0.1 second, and repeatedly executes the above-described determination of the trajectory based on the acquired information. can do. According to this, it is possible to adjust the trajectory according to the change of the situation.
  • the ECU 20 may limit the calculation of the value regarding the second distribution to a road surface in which the vehicle 1 can pass. That is, although the second distribution may be calculated for all the intersections of the grid in FIG. 3, the value for the second distribution may be calculated only for the intersections included in the area between the lines 202 and 203.
  • the ECU 20 can calculate the value regarding the second distribution only on the target travel route. For example, when the target travel route is straight ahead at an intersection, it is not necessary to calculate the value regarding the second distribution for an area where the vehicle 1 passes only when turning left or right.
  • the ECU 20 may further limit the range in which the value regarding the second distribution is calculated based on the speed and the traveling direction of the vehicle 1 at that time.
  • the value regarding the second distribution may not be calculated for an area just beside the vehicle 1 or an area far enough to be reached even in the traveling direction due to the relationship between the speed and the elapsed time. Even if these values are calculated, the probability that the trajectory is set there is zero or extremely low. According to these, since the number of calculations for the second distribution can be significantly suppressed, the processing complexity can be reduced.
  • the first distribution of the stationary object does not become sharply zero when, for example, the object actually exceeds the position where the object is viewed from the non-roadside, but gradually becomes zero within a certain range on the roadside. It may be a distribution in which there is a tail that attenuates toward the end.
  • the first distribution of the stationary object is a rectangular distribution having a high value from the position where the object is actually located from the position where the object is actually to the roadside to the back by a certain distance and then sharply zeroing thereafter. It may be Thus, by designing the first distribution to have a non-zero value in the range beyond the position where the stationary object actually exists, it is possible to prevent the vehicle 1 from approaching the stationary object too much.
  • the second distribution can be specified using a model according to the situation, for example, when the vehicle 1 is on a straight road, when entering an intersection, or when reaching a junction or a branch. That is, a given driver pays appropriate attention when driving a vehicle, but in general, points to be taken differ from scene to scene. Therefore, by changing the model for each scene, a second distribution that allows the vehicle 1 to travel appropriately can be identified. For example, also with respect to the intersection model, a plurality of models such as an intersection straight model, an intersection right turn model, and an intersection left model may be formed. For example, when specifying the second distribution using machine learning, learning is performed based on traveling data by a predetermined driver in various situations and data of surrounding situations during the traveling, Make it per model.
  • the ECU 20 specifies a model to be followed by the vehicle 1 at that time, for example, from the current position of the vehicle 1 and the guidance route searched by the ECU 24. Then, the ECU 20 inputs the information on the surrounding situation of the vehicle 1 acquired from the ECUs 22 and 23 into the function obtained by machine learning corresponding to the model, and determines the second distribution corresponding to the model It can. It is also possible to perform machine learning as one model for all situations without classifying scenes. However, in this case, calculation of learning time and solution (specification of second distribution) may be prolonged. Therefore, as described above, by defining a plurality of scenes and specifying a model for each scene, it is possible to shorten the learning time and the time required to specify the second distribution.
  • the scene may be defined for all the positions, or the scene may be defined for only a part of the area.
  • the ECU 20 can identify the position of the vehicle 1, identify the scene uniquely associated with the position, and determine the second distribution using a model corresponding to the scene. That is, the ECU 20, for example, inputs the information on the surrounding situation of the vehicle 1 obtained from the ECUs 22 and 23 to the function obtained by machine learning for the specified scene, and determines the second distribution. Thereby, the ECU 20 can acquire the second distribution according to the position of the vehicle 1.
  • the ECU 20 inputs the information on the surrounding situation of the vehicle 1 acquired from the ECUs 22 and 23 to the function obtained by machine learning for the scene. Determine the distribution of 2.
  • the ECU 20 specifies two areas where the scene is defined, which sandwich the area. Then, the ECU 20 inputs information on the surrounding situation of the vehicle 1 obtained from the ECUs 22 and 23 to two functions obtained by machine learning for the scene respectively corresponding to the two specified areas, Get the distribution. Then, the ECU 20 combines the acquired two distributions to determine a second distribution. At this time, for example, the two acquired distributions are combined according to the distance between the vehicle 1 and each of the two areas where the scene is defined.
  • an area 701 is an area in which an intersection is defined as a scene
  • an area 702 is an area in which a straight path is defined as a scene.
  • the vehicle turns right at an intersection at position 714 from position 711 via position 712 and position 713.
  • the ECU 20 stays in the area 702 in which the scene of the straight path is defined. Therefore, the ECU 20 inputs information about the surrounding situation of the vehicle to a function corresponding to the model of the straight path.
  • the ECU 20 obtains a second distribution. Thereafter, when the vehicle travels straight and reaches the position 712, the ECU 20 does not define the scene at the position 712, so the area 701 and the area 702 are provided as two areas where the scene is defined, sandwiching the position 712. Identify. Then, the ECU 20 inputs information on the surrounding condition of the vehicle to a function corresponding to the model of the straight path to obtain a first distribution, and also, to a function corresponding to the model of the intersection, information on the surrounding condition of the vehicle Enter to get the second distribution. The model of the intersection is classified into a straight intersection model, a right intersection model, a left intersection model, and the like according to the route to the destination searched by the ECU 24. Here, the right intersection model is used. After that, the ECU 20 adds the values of the first distribution and the second distribution by weighting to obtain a second distribution.
  • the ECU 20 obtains the distance between the vehicle and each of the area 701 and the area 702, and performs weighting according to the distance. For example, location 712 is near region 702 and far from region 701. For this reason, weighting is performed such that the first distribution obtained based on the straight path model has a strong influence and the second distribution obtained based on the intersection model has a weak influence. On the other hand, the position 713 is close to the area 701 and far from the area 702. Therefore, the weighting is performed such that the first distribution obtained based on the straight path model is weak and the second distribution obtained based on the intersection model is strong.
  • the distance between the first region where the scene is defined is x meters and the distance between the second region is y meters
  • a value obtained by multiplying y / (x + y) and a value obtained by multiplying each value of the second distribution by x / (x + y) are added.
  • the first distribution according to the straight path model is multiplied by 0.2 and the second according to the intersection model
  • a second distribution is identified by multiplying the distributions by 0.8 and adding.
  • the first distribution according to the straight path model is multiplied by 0.9
  • the second according to the intersection model A second distribution is identified by multiplying the distributions by 0.1 and adding.
  • the second distribution may be specified by treating the two acquired distributions as probability distributions.
  • the ECU 20 specifies a first distribution using a straight path model while traveling on a straight path, and determines whether the range of the region 701 includes a position where the value is not 0 in this distribution. That is, when traveling on the straight path model, it is determined whether the vehicle may enter the area 701 in which the intersection model is defined within a certain period (for example, 5 seconds). Then, when the position having a non-zero value in the first distribution is included in the range of the area 701, the ECU 20 uses the second intersection model in which the vehicle is assumed to be present at that position.
  • the ECU 20 multiplies the value at each position of the first distribution included in the range of the region 701 by the value of the second distribution acquired for each position to obtain a second distribution. Identify That is, the first distribution is specified as the probability that the vehicle enters the area 701 corresponding to the intersection model, and the second distribution is based on the condition that the vehicle exists at each point in the area 701. It is specified as a conditional probability regarding the trajectory traveled by a given driver. Thus, by specifying the second distribution in accordance with the travel of the vehicle, it is possible to reduce the probability that the distribution specified for the region present at a large distance affects the travel of the vehicle.
  • the size of the geographical area corresponding to the straight path model or the intersection model may be determined according to the speed of the vehicle.
  • the extent of the area may be determined, for example, by the length of time it is possible to reach the center of the intersection. That is, the size of the area where the scene is defined as an intersection may be changed according to the speed limit or the like on the straight path or the like.
  • the intersection model will affect the second distribution from a point far away from the intersection, and the vehicle will enter the intersection at a high speed It is possible to prevent a left turn at a high speed.
  • the range to which the straight path model is applied may be determined according to the speed of the vehicle, such as the speed limit.
  • the range to which the straight path model is applied is determined, for example, as a range in which the nonzero region of the second distribution specified according to the straight path model is not included in the region corresponding to the intersection model. sell. That is, if the vehicle is traveling at high speed, the non-zero region of the second distribution will expand to a position far away from the vehicle, but this region does not overlap with the region corresponding to the intersection model Then, an area corresponding to the straight path model can be determined.
  • the first distribution may also be identified using a model according to the scene. For example, between the pedestrian present in the vicinity of the intersection and the pedestrian walking straight on the area such as a sidewalk on the straight path, the tendencies of moving direction and speed are different, and as a result, the first distribution is also different for each scene In some cases it is better to In addition, when the pedestrian travels in the direction of the intersection from the straight path, the first distribution may be identified by a combination of distributions by a plurality of models. An example of the first distribution when such a scene is considered will be described with reference to FIG. The pedestrian 801 is assumed to travel in the direction of the intersection from the area of the straight path. In addition, it is assumed that pedestrians 801 can not enter the roadway, such as a guardrail, on the straight path.
  • a distribution 802 which spreads in the direction toward the intersection and does not enter in the road direction is specified as a first distribution for the pedestrian 801 using the straight path model. Ru. Thereafter, when the pedestrian 801 enters an intersection, a distribution 803 including a region entering the road is specified as a first distribution for the pedestrian 801.
  • the first distribution of the other vehicle can spread in the traveling direction on the straight path, for example, as shown in FIG.
  • other vehicles can perform various operations such as left turn, straight ahead, and right turn at an intersection. This state is shown in the distributions 805 and 806 related to the other vehicle 804 in FIG.
  • the other vehicle 804 can first extend in the straight direction and the left direction as shown in the distribution 805, and then can extend in the straight direction, the left direction and the right direction as shown in the distribution 806.
  • the first distribution can also be identified based on the scene according to the position of the traffic participant. This makes it possible to more appropriately evaluate the location of the traffic participant.
  • the traveling speed is significantly different, so that the area of the area that should be considered as having entered an intersection differs for each of the traffic participants. That is, for example, assuming that an area capable of reaching the central part of the intersection after a predetermined time is an area to be considered to have entered the intersection, the area which can be moved per unit time is large, and this area becomes larger. The area corresponding to is smaller.
  • the first distribution may be identified for each traffic participant using an appropriate model depending on the location at which the traffic participant is currently present.
  • the model itself defined for each attribute of the traffic participant may be such that one intersection model may be defined without defining an intersection left turn model, an intersection right turn model, or an intersection straight advance model. It may be different. This makes it possible to more appropriately evaluate the position where the traffic participant is present according to the attribute of the traffic participant.
  • the model used to specify the first distribution and the model used to specify the second distribution are set separately. That is, for example, the first distribution may be specified by the straight-ahead model as the distribution 801 while the pedestrian 801 in FIG. 8 has not reached the intersection, and the second distribution may be specified by the intersection model.
  • the first distribution is identified regardless of the identification of the second distribution, ie, regardless of the position of the vehicle 1 or the like.
  • the second distribution is identified regardless of the identification of the first distribution, that is, regardless of the location of the traffic participant. Thereby, the distribution for each of the traffic participant and the vehicle can be appropriately identified.
  • a straight path model or an intersection model is used as a model in the present embodiment, the present invention is not limited to this.
  • various models such as a lane change model, a bifurcation model, a merging model, a curve model, a highway / highway model, and a city area model may be defined.
  • the curve model may be defined, for example, for each range of curvature. That is, a separate model may be defined for each range of curvature values.
  • models for each hour, models for each weather, and road surface conditions may be defined. According to this, even if the accuracy or the like for recognizing the surrounding environment changes depending on the situation, it becomes possible to specify the distribution according to the situation.
  • a model may be defined according to the number of traffic participants. That is, there is a difference in the degree of freedom of the area where the traffic participant can move between the movement of the traffic participant on the congested road and the traffic participant on the uncongested road, so a model according to the congestion degree Can be defined. According to this, it is possible to obtain an appropriate first distribution according to the situation.
  • the “predetermined driver” here may be divided into a plurality of categories.
  • a predetermined driver category may be provided, such as having a tendency to reach a destination early, tending to travel with high fuel efficiency, be good at sports driving, be good at driving in an urban area, etc. .
  • different second distributions may be configured to be identifiable for each category. This can be realized, for example, by classifying traveling data collected for each predetermined driver, and performing machine learning based on it, for example, to prepare a plurality of functions.
  • the ECU 20 selects a predetermined driver category according to the input, and selects the driver. A second distribution corresponding to the result may be determined.
  • automatic driving can be realized in consideration of the preference of the occupant of the vehicle 1.
  • first distribution and “second distribution” are used, the terms “first value” and “second” specified in each point are practically used.
  • the “distribution” may not necessarily be specified because “value” is used in determining the traveling track.
  • the vehicle control device of the above embodiment A vehicle control device that controls automatic driving of a vehicle, wherein Get information about the situation around the vehicle, Based on the information, a first value regarding the probability that an object present in the surroundings at a future time point and a second value based on traveling data of a predetermined driver are obtained for a plurality of positions,
  • the second value is specified using a model defined for a part of a region in which the vehicle travels, and in the case where the vehicle travels in a region in which the model is not defined,
  • the second value is specified by combining two values obtained respectively using two models defined by two regions sandwiching the position where the vehicle is traveling, Based on a combination of the first value and the second value, a position where the vehicle is to be present at a plurality of future time points is selected from the plurality of positions, and a trajectory for moving the vehicle is determined. It is characterized in that it is configured.
  • the trajectory can be determined using an appropriate model according to the position of the vehicle. Further, by switching and using a plurality of models, it is possible to shorten the learning time and the time for calculation of the second value, as compared with the case where all the situations are treated as one model. Furthermore, it is possible to prevent the control from becoming unstable when two scenes with largely different factors to be considered in the progress of the vehicle are switched. In addition, it is not necessary to define a scene or model at every position where the vehicle travels.
  • the vehicle control device of the above embodiment corresponds to a region closer to the vehicle according to the distance between the vehicle and each of the two regions when the vehicle travels in a region where a model is not defined.
  • the influence of the value obtained using the model is identified as a value that is greater than the value obtained using the model corresponding to the region where the distance to the vehicle is longer. It is characterized by
  • the vehicle control device of the above embodiment The first value is specified using a model that is determined according to the position where the object present in the surrounding exists. It is characterized by
  • this makes it possible to more appropriately evaluate the position where the traffic participant is present.
  • a model to be used in specifying the first value is determined according to the attribute and position of the object present in the surroundings. It is characterized by
  • the vehicle control device of the above embodiment The model used to specify the first value and the model used to specify the second value are set separately. It is characterized by
  • the vehicle control device of the above embodiment The first value is specified independently of the vehicle,
  • the second value is specified regardless of the object present in the surroundings, It is characterized by
  • the first value and the second value for each of the traffic participant and the vehicle can be appropriately identified without being affected by the process of identifying the other value.
  • the vehicle of the above embodiment is It is characterized by having the above-mentioned vehicle control device.
  • a method performed by a vehicle control device to control automatic driving of a vehicle comprising: Obtaining information about the situation around the vehicle; Obtaining, for the plurality of positions, a first value regarding a probability that an object present in the surroundings at a future time point and a second value based on travel data of a predetermined driver based on the information Where the second value is specified using a model defined for a portion of the area in which the vehicle travels, wherein the vehicle travels in the area where the model is not defined.
  • the second value is specified by combining two values respectively acquired using two models defined by two regions sandwiching the position where the vehicle is traveling, and , Based on a combination of the first value and the second value, selecting from among the plurality of positions the position at which the vehicle is to be present at a plurality of future time points, and determining a trajectory for moving the vehicle When, It is characterized by including.
  • the trajectory can be determined using an appropriate model according to the position of the vehicle. Further, by switching and using a plurality of models, it is possible to shorten the learning time and the time for calculation of the second value, as compared with the case where all the situations are treated as one model. Furthermore, it is possible to prevent the control from becoming unstable when two scenes with largely different factors to be considered in the progress of the vehicle are switched. In addition, it is not necessary to define a scene or model at every position where the vehicle travels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

車両の自動運転の制御を行う車両制御装置は、車両の周囲の状況に関する情報を取得し、複数の位置についての、将来の時点で周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、車両の周囲の状況に関する情報に基づいて取得し、ここで、第2の値は車両が走行する領域のうちの一部について定義されたモデルを用いて特定され、ここで、モデルが定義されていない領域を車両が走行する場合には、車両が走行している位置を挟む2つの領域で定義されている2つのモデルを用いてそれぞれ取得される2つの値を組み合わせることにより第2の値が特定され、第1の値と第2の値との組み合わせに基づいて、複数の将来の時点における車両を存在させる位置を複数の位置から選択して、車両を移動させる軌道を決定する。

Description

自動運転車の制御のための車両制御装置及び方法
 本発明は、自動運転車の制御のための車両制御装置及び方法に関するものであり、具体的には、車両の制御技術に関する。
 車両の自動運転は、車両の周囲の環境を認知し、その認知結果に基づいて車両の進む軌道を決定し、その起動へ車両を実際に進行させる操舵制御によって実現される。ここで、軌道の決定時には、路上又はその周辺の移動物体および静止物体の位置を特定すると共に、移動物体の将来の1つ以上の時点における予想位置を推定し、それらの特定及び推定の結果に応じて、車両が将来の各時点で存在すべき位置を決定する。例えば、各時点において、物体が存在しない領域に車両が存在するように、車両の存在すべき位置が決定される。
 上述のような軌道の決定では、例えば多数の移動物体が存在する場合に、ある時点における物体の予想位置が広範に分布し、結果としてその時点で車両が存在できる位置がなくなってしまい、軌道を確立することができなくなってしまいうる。
 本発明は、少なくともこの課題を解決するものであり、自動運転車両において状況に応じて適切な軌道を決定可能とすることを目的とする。
 本発明の一態様に係る車両制御装置は、車両の自動運転の制御を行う車両制御装置であって、前記車両の周囲の状況に関する情報を取得し、複数の位置についての、将来の時点で前記周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、前記情報に基づいて取得し、ここで、前記第2の値は車両が走行する領域のうちの一部について定義されたモデルを用いて特定され、ここで、モデルが定義されていない領域を前記車両が走行する場合には、当該車両が走行している位置を挟む2つの領域で定義されている2つのモデルを用いてそれぞれ取得される2つの値を組み合わせることにより前記第2の値が特定され、前記第1の値と前記第2の値との組み合わせに基づいて、複数の将来の時点における前記車両を存在させる位置を前記複数の位置から選択して、前記車両を移動させる軌道を決定する、ように構成されることを特徴とする。
 本発明によれば、自動運転車両において状況に応じて適切な軌道を決定することができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
車両制御装置のブロック図。 移動物体が存在することが想定される範囲の例を示す図。 所定のドライバーの走行データに基づく値を計算する位置の例を示す図。 物体に関する値と所定のドライバーの走行データに基づく値との分布と、決定される車両の位置との関係の例を示す図。 決定される軌道の例を示す図。 処理の流れの例を示すフローチャート。 車両の位置とシーンとの関係及び第2の分布を算出する際の処理の概要を説明する図。 第1の分布とモデルとの関係を説明する図。
 以下、図面を参照しながら本発明の実施の形態について説明する。
 (車両制御装置の構成)
 図1に、車両1を制御するための、本実施形態に係る車両制御装置のブロック図を示す。図1において、車両1はその概略が平面図と側面図とで示されている。車両1は一例としてセダンタイプの四輪の乗用車である。
 図1の制御装置は、制御ユニット2を含む。制御ユニット2は車内ネットワークにより通信可能に接続された複数のECU20~29を含む。各ECU(Electronic Control Unit)は、CPU(Central Processing Unit)に代表されるプロセッサ、半導体メモリ等の記憶デバイス、外部デバイスとのインタフェース等を含む。記憶デバイスにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。各ECUはプロセッサ、記憶デバイスおよびインタフェース等を複数備えていてもよい。
 以下、各ECU20~29が担当する機能等について説明する。なお、ECUの数や、担当する機能については、車両1の適宜設計可能であり、本実施形態よりも細分化したり、あるいは、統合することが可能である。
 ECU20は、車両1の自動運転に関わる制御を実行する。自動運転においては、車両1の操舵と、加減速の少なくともいずれか一方を自動制御する。
 ECU21は、電動パワーステアリング装置3を制御する。電動パワーステアリング装置3は、ステアリングホイール31に対する運転者の運転操作(操舵操作)に応じて前輪を操舵する機構を含む。また、電動パワーステアリング装置3は操舵操作をアシストしたり、あるいは、前輪を自動操舵するための駆動力を発揮するモータや、操舵角を検知するセンサ等を含む。車両1の運転状態が自動運転の場合、ECU21は、ECU20からの指示に対応して電動パワーステアリング装置3を自動制御し、車両1の進行方向を制御する。
 ECU22および23は、車両の周囲状況を検知する検知ユニット41~43の制御および検知結果の情報処理を行う。検知ユニット41は、車両1の前方を撮影するカメラであり(以下、カメラ41と表記する場合がある。)、本実施形態の場合、車両1のルーフ前部に2つ設けられている。カメラ41が撮影した画像の解析により、物標の輪郭抽出や、道路上の車線の区画線(白線等)を抽出可能である。
 検知ユニット42は、ライダ(レーザレーダ)であり(以下、ライダ42と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、ライダ42は5つ設けられており、車両1の前部の各隅部に1つずつ、後部中央に1つ、後部各側方に1つずつ設けられている。検知ユニット43は、ミリ波レーダであり(以下、レーダ43と表記する場合がある)、車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、レーダ43は5つ設けられており、車両1の前部中央に1つ、前部各隅部に1つずつ、後部各隅部に一つずつ設けられている。
 ECU22は、一方のカメラ41と、各ライダ42の制御および検知結果の情報処理を行う。ECU23は、他方のカメラ42と、各レーダ43の制御および検知結果の情報処理を行う。車両の周囲状況を検知する装置を二組備えたことで、検知結果の信頼性を向上でき、また、カメラ、ライダ、レーダといった種類の異なる検知ユニットを備えたことで、車両の周辺環境の解析を多面的に行うことができる。
 ECU24は、ジャイロセンサ5、GPSセンサ24b、通信装置24cの制御および検知結果あるいは通信結果の情報処理を行う。ジャイロセンサ5は車両1の回転運動を検知する。ジャイロセンサ5の検知結果や、車輪速等により車両1の進路を判定することができる。GPSセンサ24bは、車両1の現在位置を検知する。通信装置24cは、地図情報や交通情報を提供するサーバと無線通信を行い、これらの情報を取得する。ECU24は、記憶デバイスに構築された地図情報のデータベース24aにアクセス可能であり、ECU24は現在地から目的地へのルート探索等を行う。
 ECU25は、車車間通信用の通信装置25aを備える。通信装置25aは、周辺の他車両と無線通信を行い、車両間での情報交換を行う。
 ECU26は、パワープラント6を制御する。パワープラント6は車両1の駆動輪を回転させる駆動力を出力する機構であり、例えば、エンジンと変速機とを含む。ECU26は、例えば、アクセルペダル7Aに設けた操作検知センサ7aにより検知した運転者の運転操作(アクセル操作あるいは加速操作)に対応してエンジンの出力を制御したり、車速センサ7cが検知した車速等の情報に基づいて変速機の変速段を切り替える。車両1の運転状態が自動運転の場合、ECU26は、ECU20からの指示に対応してパワープラント6を自動制御し、車両1の加減速を制御する。
 ECU27は、方向指示器8を含む灯火器(ヘッドライト、テールライト等)を制御する。図1の例の場合、方向指示器8は車両1の前部、ドアミラーおよび後部に設けられている。
 ECU28は、入出力装置9の制御を行う。入出力装置9は運転者に対する情報の出力と、運転者からの情報の入力の受け付けを行う。音声出力装置91は運転者に対して音声により情報を報知する。表示装置92は運転者に対して画像の表示により情報を報知する。表示装置92は例えば運転席表面に配置され、インストルメントパネル等を構成する。なお、ここでは、音声と表示を例示したが振動や光により情報を報知してもよい。また、音声、表示、振動または光のうちの複数を組み合わせて情報を報知してもよい。更に、報知すべき情報のレベル(例えば緊急度)に応じて、組み合わせを異ならせたり、報知態様を異ならせてもよい。
 入力装置93は運転者が操作可能な位置に配置され、車両1に対する指示を行うスイッチ群であるが、音声入力装置も含まれてもよい。
 ECU29は、ブレーキ装置10やパーキングブレーキ(不図示)を制御する。ブレーキ装置10は例えばディスクブレーキ装置であり、車両1の各車輪に設けられ、車輪の回転に抵抗を加えることで車両1を減速あるいは停止させる。ECU29は、例えば、ブレーキペダル7Bに設けた操作検知センサ7bにより検知した運転者の運転操作(ブレーキ操作)に対応してブレーキ装置10の作動を制御する。車両1の運転状態が自動運転の場合、ECU29は、ECU20からの指示に対応してブレーキ装置10を自動制御し、車両1の減速および停止を制御する。ブレーキ装置10やパーキングブレーキは車両1の停止状態を維持するために作動することもできる。また、パワープラント6の変速機がパーキングロック機構を備える場合、これを車両1の停止状態を維持するために作動することもできる。
 (処理の概要)
 本実施形態では、ECU20が車両1の自動運転に関わる制御を実行する。ECU20は、運転者により目的地と自動運転が指示されると、ECU24により探索された案内ルートにしたがって、目的地へ向けて車両1の走行を自動制御する。自動制御の際、ECU20は、ECU22および23から車両1の周囲状況に関する情報を取得し、取得した情報に基づいて、短期間(例えば5秒間)で車両1が走行すべき軌道を特定する。この軌道の特定は、所定時間(例えば0.1秒)刻みで車両1の位置を決定することによって行われる。例えば、0.1秒刻みで5秒間分の軌道を特定する場合、0.1秒後から5.0秒後までの50個の時点における車両1の位置がそれぞれ決定され、この50個の点が結ばれる軌道が車両1の進むべき軌道として決定される。なお、ここでの「短期間」は、車両1が走行する全行程と比較して大幅に短い期間であり、例えば、検知ユニットが周囲の環境を検知できる範囲や、車両1の制動に必要な時間等に基づいて定められる。また、「所定時間」は、周囲の環境の変化に車両1が適応することができるような短さに設定される。ECU20は、このようにして特定した軌道に従って、ECU21、ECU26および29に指示して、車両1の操舵、駆動、制動を制御する。
 ここで、ECU20が実行する、車両1の短期間の軌道の特定について説明する。図2は、ある瞬間における、車両1が走行中の路上及びその周囲の状態と、将来の状態を予測するために用いる将来に物体が存在することが予想される範囲を示す図である。車両1は、線201及び202(例えば車道外側線、路側帯、ガードレール、縁石等に対応する線)によって示される車両が走行可能な範囲のうち、中央線203で区切られた左側の車線を(図2では下側から上側へ)走行している。車両1の進行方向には、歩行者204と他車両205が存在する。なお、図2では、簡単のため、1台の他車両と1人の歩行者のみを示しているが、例えば自転車や二輪車等の他の交通参加者や障害物等の非交通参加者が、路上又はその周囲に存在しうる。また、2台以上の他車両や2人以上の歩行者が存在することも想定されうる。
 図2において、歩行者204が将来存在すると想定される範囲を、歩行者204を囲む一点鎖線211、点線212、及び二点鎖線213によって表している。ここで、点線212の範囲は、一点鎖線211の範囲よりも後の時点において歩行者204が存在すると想定される範囲であり、同様に、二点鎖線213の範囲は、点線212の範囲よりも後の時点において歩行者204が存在すると想定される範囲である。なお、各領域における歩行者204の存在確率は、例えば、円の中心を中心とする二次元正規分布に従いうる。なお、例えば区分線202の付近にガードレールが存在する場合など、歩行者が車道側に移動することが困難である状況では、歩行者が将来存在すると想定される範囲は正円形状とはならない。例えば図2の範囲が線202で切り取られた左側の部分のみ又はそれに近い形状が、歩行者204が将来存在すると想定される範囲となりうる。また、歩行者204の顔の向きに応じて、その顔の方向に歩行者204が進むことが想定されるため、歩行者204が将来存在すると想定される範囲が顔の向いている方向に大きく広がる楕円形状となりうる。なお、歩行者204の将来の存在範囲の推定方法はこれらの方法に限られず、その他の任意の方式によって存在範囲及び存在確率が推定されうる。また、いずれの場合も、範囲が特定されるのみならず、範囲内の各地点に歩行者204が存在する確率に対応する得点が付され、得点が高いほど、その位置に歩行者204が存在する確率が高いことを示す第1の分布が取得される。なお、範囲については明示的に取得されなくてもよく、第1の分布が取得されるのみであってもよい。
 同様に、他車両205についても、将来存在すると想定される範囲(一点鎖線214、点線215、及び二点鎖線216で示される範囲)についての第1の分布が取得される。ここで、点線215の範囲は、一点鎖線214の範囲よりも後の時点において他車両205が存在すると想定される範囲であり、同様に、二点鎖線216の範囲は、点線215の範囲よりも後の時点において他車両205が存在すると想定される範囲である。このように、ECU20は、ECU22および23から車両1の周囲状況に関する情報を取得すると、この情報に基づいて、例えば所定の処理を実行することによって、移動物体のそれぞれについての将来の存在位置の確率に対応する第1の分布を取得する。
 静止物体については、その物体が動くことはないため時刻による変動はないが、その物体が消失することもないと想定されるため、その物体が存在する位置が各時点において同一の第1の分布が特定される。例えば、線202に沿ってガードレールや縁石が配置されている場合、物体が存在する範囲が線202の上に沿う形式となる第1の分布が、そのガードレールや縁石のための第1の分布として特定される。ECU20は、各物体についての第1の分布を位置ごとに合算した値を、トータルの第1の分布として取得する。
 ECU20は、一例において、各時点において物体が存在しない領域を特定し、車両1をその位置に進めるように軌道を決定する。これによれば、車両1が物体に干渉しないように軌道を選択することが可能となる。なお、例えばガードレールや縁石等の静止物体については、その実際の位置から車道側に一定距離だけ離れた範囲までを含むように、第1の分布に関する範囲が決定されてもよい。これによれば、車両1が静止物体に必要以上に近接して、車両1に乗車している人物が圧迫感を感じることを防ぐことが可能となる。一方、このように、物体が存在しない領域に基づいて車両1の軌道を決定する手法では、例えば歩行者が多数存在する環境において、一定期間後に物体が存在しない領域がない、又は車両1を配置するのに十分でない状況となりうる。この場合、ECU20は、一定期間後までの軌道を決定することができず、結果として、車両1が停止し、場合によっては自動運転ができない状態となってしまいうる。
 これに対し、本実施形態では、ECU20は、様々な状況において例えば所定のドライバーによる走行と、その際に検知された車両1の周囲状況との組み合わせのデータをさらに考慮して、車両1の軌道を決定する。所定のドライバーは、例えば、無事故ドライバー、タクシードライバー、認定を受けた運転熟練者等でありうる。例えば、ECU20は、同様の状況において所定のドライバーがどのような走行を行ったかに関する又は所定のドライバーであれば車両1をどの位置に移動させるかを示す、第2の分布を取得する。この第2の分布は、車両1が置かれた状況で所定のドライバーが車両1を移動させる確率が高い位置ほど高い値を有し、所定のドライバーが車両1を移動させる確率が低い位置ほど低い値を有する分布である。なお、ここでの「所定のドライバー」は、例えばプロのドライバーや優良運転者等でありうる。また、多数の車両から走行データを収集し、その中から、急発進、急制動、急ハンドルが行われない、又は、走行速度が安定している等の所定の基準を満たした走行データを抽出して、所定のドライバーの走行データとして取り扱ってもよい。
 第2の分布は、車両1の周囲の一定の範囲に含まれる複数の地点について値が特定されることによって取得される。例えば、図3のように、車両1の周囲の一定範囲について、一定間隔で直進方向及びそれに垂直な方向の直線を引き、それらの直線の交点ごとに、上述の値が特定される。例えば、ECU22及び23から取得された車両1の周囲状況に関する情報を示す図3のような画像の各画素に対応する地点(すなわち、図3の格子の交点が各画素に対応する)について、値が特定される。なお、図3は一例に過ぎず、例えば車両1を中心とした複数の円弧と、車両1から放射状に引かれる直線との交点ごとに、上述の値が算出されてもよい。
 また、第2の分布は、短期間(例えば5秒間)分について、所定時間(例えば0.1秒)刻みで取得される。すなわち、例えば図3の格子の各交点についての値の二次元分布が、0.1秒ごとに5秒間分の50個作成される。このとき、例えば、車両1の真横に対応する領域には、少なくとも直後の時点(例えば0.1秒後)に移動することはできず、所定のドライバーによってもそのような走行は行われえないため、その領域における地点での上述の値は必ず0となる。一方、一定期間後(例えば5秒後)には、所定のドライバーが後進操作を行ったこと等によって、現時点の車両1の位置の真横の領域に存在した場合があった可能性がある。このため、一定期間後での真横の地点における上述の値は0ではない値でありうる。また、図3では、車両1の直進方向において、左側に歩行者が、右側には他車両が存在する。このため、例えば所定のドライバーが平均的に人物から距離を置き、中央線に寄せて運転していた場合には、右前方向における地点での上述の値が高くなる。一方、歩行者や他車両との距離が離れている場合は、そのまま直進する方向の地点での上述の値が高くなる。このようにして、複数の時点及び複数の地点において、運転熟練者による運転に基づく第2の分布が特定される。
 第2の分布は、一例として、非常に多数の状況において、所定のドライバーによって実現された走行データを多数取得して、車両1が現に置かれている状況において所定のドライバーが実際にとった行動の分布として表現される。すなわち、車両1が現に置かれている状況と全く又はほぼ同一の状況において所定のドライバーが行った走行において、その後の各時点において各位置に車両が存在した頻度や確率が、第2の分布として取得されうる。これによれば、多数の所定のドライバーが実際に通った軌道ほど高い値を有するような第2の分布が取得される。この第2の分布は、例えば移動物体が少ない状況で道なりに運転する場合等に特に有用でありうる。
 また、第2の分布は、所定のドライバーが実際に車両を運転した際の車両の走行軌道のデータと、その際に検知された車両の周囲状況のデータとの組み合わせを教師データとして機械学習を実行した結果を用いて取得されうる。すなわち、ECU20は、事前に所定のドライバーによる多数の教師データを用いて機械学習を行った結果に基づいて、ECU22及び23から取得した車両1の周囲状況に関する情報を入力として、各地点における上述の値を算出して、第2の分布を取得する。なお、機械学習のアルゴリズムは汎用のものを用いることができ、ここでは特に限定されない。
 ECU20は、第2の分布を取得すると、各時点において、各地点での第1の分布の値から第2の分布の値を減算し、その結果の値が最小または所定の閾値以下となる地点を特定する。図4は、例えば、ある時点における、図3のA~A’及びB~B’までの位置における第1の分布と第2の分布とを示す図である。図4では、第1の分布をA~A’及びB~B’の軸の上側に、第2の分布をA~A’及びB~B’の軸の下側に、それぞれ示している。すなわち、第1の分布と、正負を逆転させた第2の分布とが図4に示されている。第1の分布のうち、曲線401及び411は歩行者204に関する第1の分布であり、曲線402及び412は他車両205に関する第1の分布である。また、矩形状の曲線404及び414は、不図示の縁石等の、静止物体に関する第1の分布である。静止物体については、物体が動かずにその位置にとどまることが確実であるため、その位置において高く、その他の位置においてはゼロ又は十分に小さい値を有するような、矩形状又はほぼ矩形状の第1の分布が形成される。このように、静止物体と移動物体とでは、第1の分布の裾の形状が異なりうる。曲線403及び413は、例えば、機械学習が完了した結果得られる関数に、ECU22及び23から取得した車両1の周囲状況に関する情報を引数として入力した結果得られる、第2の分布を示している。ECU20は、A~A’の軸の各位置において、曲線401~404の各値を加算し、B~B’の軸の各位置において、曲線411~414の各値を加算する。また、ECU20は、A~A’及びB~B’の軸以外の各位置においても、同様の値を計算しうる。ECU20は、このようにして、各地点において、第1の分布の値から第2の分布の値を減じた値を算出し、その結果が最小となる位置(場合によっては閾値以下となる位置)を選択する。図4の例では、ECU20は、一例として地点Cを選択する。
 ECU20は、複数の時点において、同様の計算を実行し、各時点において選択された地点を時系列で接続するような軌道を決定する。この例を図5に示す。図5において、車両1の進行方向にプロットされた点501は、複数の時点のそれぞれについて、上述のように第1の分布と第2の分布とに基づいて決定された、車両1が配置されるべき位置を示す。これらの点501の中に、例えば図4のようにして決定された地点Cが含まれる。なお、図5の点501は、時系列で、より先の将来の位置ほど、上方にプロットされているものとする。ECU20は、これらの点501を特定することにより、それらの点501を接続する線502として、車両1が走行すべき軌道を決定する。
 上述の処理について、処理の流れの概要をまとめる。図6は、上述の処理の流れの例を示すフローチャートである。本処理が開始されると、まず、ECU20が、ECU22及び23から周囲状況に関する情報を取得する(S601)。ECU20は、この時点において、例えば、車両1とその周囲の状況を上から見たような画像であって、車両1の周囲の物体がマッピングされたような画像を取得する。そして、ECU20は、取得した情報に基づいて、周囲の物体が将来の時点において存在する確率に対応する第1の分布を、複数の地点について(例えば上述の各画像における画素ごとに)取得する(S602)。また、ECU20は、例えば取得した情報を、所定のドライバーによる走行データとそのデータが取得された時点の車両の周囲の状況とに基づいて機械学習によって得られた関数に入力することにより、第2の分布を取得する(S603)。第2の分布は、所定のドライバーであれば、S601で取得された情報が示す周囲状況に際した場合に車両を移動させる確率が高い位置ほど高い値を取るような分布でありうる。ただし、機械学習の結果は、関数に対して周囲の状況を示す情報を入力することによって得られる値であって、必ずしも確率値として算出されるわけではないことに留意されたい。なお、S602とS603とは、並行して行われてもよいし、行われる順序は逆であってもよい。その後、ECU20は、複数の時点のそれぞれに関して取得された第1の分布及び第2の分布に基づいて、その複数の時点のそれぞれにおいて車両1が移動すべき位置を選択する(S604)。そして、ECU20は、複数の時点のそれぞれにおいて選択した車両1が移動すべき位置を、時系列で接続することにより、車両1が進むべき軌道を決定する(S605)。ECU20は、これらの一連の処理を繰り返し実行し、逐次的に軌道を更新しながら車両1を走行させる。
 これによれば、物体が存在することが想定される位置のみならず、所定のドライバーによる走行データの蓄積を考慮して軌道が決定されるため、一定期間後までの軌道を決定することができる確率が高まる。また、これによれば、市街地など、移動物体が多い環境においても、自動運転を継続できなくなる確率を低減することができる。さらに、所定のドライバーが実際にとった行動に基づいて軌道が決定されるため、車両1が、周囲の環境に照らして、所定のドライバーであれば取ったであろう行動又はそれに近い行動をとるようになる。この結果、歩行者や他車両等の交通参加者の動きに応じた自然な走行が行われることとなる。
 なお、ECU20は、例えば0.1秒ごと等の短い周期で、ECU22及び23から車両1の周囲状況に関する情報を繰り返し取得して、その取得した情報に基づいて、上述の軌道の決定を繰り返し実行することができる。これによれば、状況の変化に応じて軌道の調整を行うことが可能となる。
 また、ECU20は、第2の分布に関する値の算出を、車両1が通行可能な範囲である路面に限定してもよい。すなわち、図3の格子の全交点について第2の分布を算出してもよいが、線202及び203の間の領域に含まれる交点についてのみ、第2の分布に関する値が算出されてもよい。なお、ECU20は、第2の分布に関する値の算出を、目標走行経路上のみに対して行いうる。例えば、交差点において、目標走行経路が直進である場合、右左折する場合にのみ車両1が通過する領域については、第2の分布に関する値を算出しなくてもよい。また、ECU20は、車両1のその時点での速度や進行方向に基づいて、第2の分布に関する値の算出を行う範囲をさらに限定してもよい。例えば、車両1の真横の領域や、速度と経過時間との関係で、進行方向であっても到達しえないほど遠い領域などについては、第2の分布に関する値が算出されなくてもよい。これらの値が算出されても、そこに軌道が設定される確率はゼロ又は著しく低いからである。これらによれば、第2の分布に関する計算の回数を大幅に抑制することができるため、処理の複雑性を低減することができる。
 なお、静止物体の第1の分布は、例えば実際に物体がある位置を非車道側から見て超えた際に急峻にゼロになるのではなく、車道側の一定の範囲内で徐々にゼロに向けて減衰するような裾が存在する分布であってもよい。また、静止物体の第1の分布は、非車道側から見て実際に物体がある位置から車道側に一定距離だけ奥の範囲まで高い値を有し、その後急峻にゼロとなる矩形状の分布であってもよい。このように、実際に静止物体が存在する位置を超えた範囲において非ゼロの値を有するように第1の分布を設計することにより、車両1が静止物体に近づきすぎることを防ぐことができる。
 第2の分布は、例えば、車両1が直線路に存在する場合と、交差点に進入する場合、合流や分岐に差し掛かる場合など、状況に応じたモデルを用いて特定されうる。すなわち、所定のドライバーは、車両を走行させる際に適切な注意を払うが、一般に、シーンごとに注意を払うべきポイントが異なる。このため、シーンごとにモデルを変更することにより、車両1を適切に走行させることを可能とする第2の分布が特定されうる。なお、例えば交差点モデルについても、交差点直進モデル、交差点右折モデル、交差点左折モデル等、複数のモデルが形成されうる。例えば、機械学習を用いて第2の分布を特定する場合、様々な状況での所定のドライバーによる走行データとその走行時の周囲の状況のデータに基づいて学習が行われるが、この学習を、モデルごとに行うようにする。ECU20は、例えば、車両1の現在位置と、ECU24によって探索された案内ルートとから、その時点で車両1が従うべきモデルを特定する。そして、ECU20は、そのモデルに対応して機械学習で得られた関数に、ECU22及び23から取得された車両1の周囲状況に関する情報を入力して、そのモデルに対応した第2の分布を決定しうる。なお、シーンの分類をせずに全ての状況について1つのモデルとして機械学習を行うことも可能である。ただし、この場合、学習時間や解の算出(第2の分布の特定)が長期化しうる。このため、上述のように、複数のシーンを定義して、そのシーンごとのモデルを特定することによって、学習時間や第2の分布の特定に要する時間の短期化を図ることができる。
 ここで、全ての位置に対してシーンが定義されていてもよいし、一部の領域に関してのみシーンが定義されていてもよい。
 前者の場合、ECU20は、車両1の位置を特定して、その位置に一意に対応付けられたシーンを特定して、そのシーンに対応するモデルを用いて第2の分布を決定しうる。すなわち、ECU20は、例えば、特定されたシーンに関して機械学習によって得られた関数に、ECU22及び23から取得された車両1の周囲状況に関する情報を入力して、第2の分布を決定する。これにより、ECU20は、車両1の位置に応じた第2の分布を取得することができる。
 一方、後者の場合、ECU20は、シーンが定義されている領域については、そのシーンに関して機械学習によって得られた関数に、ECU22及び23から取得された車両1の周囲状況に関する情報を入力して第2の分布を決定する。これに対して、ECU20は、シーンが定義されていない領域については、その領域を挟む、シーンが定義された2つの領域を特定する。そして、ECU20は、その特定された2つの領域にそれぞれ対応するシーンに関して機械学習によって得られた2つの関数に、ECU22及び23から取得された車両1の周囲状況に関する情報を入力して、2つの分布を取得する。そして、ECU20は、取得した2つの分布を組み合わせて、第2の分布を決定する。このとき、例えば、車両1と、シーンが定義されている2つの領域のそれぞれとの距離に応じて、取得した2つの分布が組み合わされる。
 ここで、2つの領域のシーンが、それぞれ、直進路と交差点として定義されているものとし、車両1が、直進路から交差点へと向かっている状態の例について、図7を用いて説明する。図7において、領域701はシーンとして交差点が定義された領域であり、領域702はシーンとして直進路が定義された領域である。そして、図7では、車両が位置711から、位置712及び位置713を経由して、位置714において交差点で右折するものとする。まず、ECU20は、車両が位置711に存在する場合、直進路のシーンが定義されている領域702に滞在しているため、直進路のモデルに対応する関数に、車両の周囲状況に関する情報を入力して、第2の分布を取得する。その後、車両が直進して位置712に到達すると、ECU20は、位置712においてシーンが定義されていないため、この位置712を挟む、シーンが定義されている2つの領域として、領域701及び領域702を特定する。そして、ECU20は、直進路のモデルに対応する関数に車両の周囲状況に関する情報を入力して1つ目の分布を取得すると共に、交差点のモデルに対応する関数に、車両の周囲状況に関する情報を入力して2つ目の分布を取得する。なお、交差点のモデルは、ECU24によって探索された目的地へのルートに応じて、交差点直進モデル、交差点右折モデル、交差点左折モデル等に分類され、ここでは交差点右折モデルが用いられるものとする。その後、ECU20は、1つ目の分布と2つ目の分布の値を重み付け加算して第2の分布を取得する。
 例えば、ECU20は、車両と、領域701及び領域702のそれぞれとの間の距離を取得し、その距離に応じた重み付けを行う。例えば、位置712は、領域702に近く、領域701からは遠い。このため、直進路のモデルに基づいて取得された1つ目の分布の影響が強く、交差点モデルに基づいて取得された2つ目の分布の影響が弱くなるように、重み付けが行われる。一方、位置713は、領域701に近く、領域702からは遠い。このため、直進路のモデルに基づいて取得された1つ目の分布の影響が弱く、交差点モデルに基づいて取得された2つ目の分布の影響が強くなるように、重み付けが行われる。例えば、シーンが定義された1つ目の領域との間の距離がxメートルであり、2つ目の領域との間の距離がyメートルである場合に、1つ目の分布の各値にy/(x+y)を乗じた値と、2つ目の分布の各値にx/(x+y)を乗じた値とが加算される。例えば、領域701と領域702との距離が100mで、車両が領域701まで20mの地点に存在する場合、直進路モデルによる1つ目の分布に0.2を乗じ、交差点モデルによる2つ目の分布に0.8を乗じて加算することにより、第2の分布が特定される。また、領域701と領域702との距離が100mで、車両が領域701まで90mの地点に存在する場合、直進路モデルによる1つ目の分布に0.9を乗じ、交差点モデルによる2つ目の分布に0.1を乗じて加算することにより、第2の分布が特定される。これにより、簡単な構成により、例えば車両が直進路から交差点に接近することに応じて、直進路モデルによる分布が支配的な状態から徐々に交差点モデルによる分布が支配的になるようにすることができる。また、これにより、車両の進行において考慮されるべき要素が大きく異なる2つのシーンが切り替えられる場合に制御が不安定となることを防ぐことができる。
 なお、取得される2つの分布を確率分布として扱って、第2の分布を特定してもよい。例えば、ECU20は、直進路を走行中に直進路モデルを用いて1つ目の分布を特定し、領域701の範囲に、この分布において値が0でない位置が含まれるか否かを判定する。すなわち、直進路モデルで走行した場合に、一定期間(例えば5秒)の範囲内で、車両が交差点モデルが定義されている領域701に進入する可能性があるかが判定される。そして、ECU20は、1つ目の分布において非ゼロの値を有する位置が領域701の範囲に含まれることとなった場合、その位置に車両が存在するとした場合の交差点モデルを用いた2つ目の分布を取得する。そして、ECU20は、領域701の範囲に含まれている1つ目の分布の各位置における値を、その各位置に対して取得された2つ目の分布の値に乗じて、第2の分布を特定する。すなわち、車両が交差点モデルに対応する領域701に進入する確率として1つ目の分布が特定され、2つ目の分布は、領域701内の各地点に車両が存在することを条件とした場合の所定のドライバーが進行する軌道に関する、条件付確率として特定される。このように、車両の進行に合わせて第2の分布が特定されることにより、大きく離れた位置に存在する領域について特定された分布が車両の進行に影響を及ぼす確率を低減することができる。
 なお、直進路モデルや交差点モデル等が対応する地理的な領域の広さは、車両の速度に応じて決定されうる。例えば交差点の中心に達することができる時間の長さによって、領域の広さが決定されうる。すなわち、直進路等における制限速度等に応じて、シーンが交差点として定義される領域の広さが変更されうる。これによれば、例えば、相対的に高速度で走行中の車両については、交差点から大きく離れた地点から交差点モデルが第2の分布に影響するようになり、交差点に高速度で進入してしまうことや、高速度で右左折が行われることを防ぐことが可能となる。同様に、直進路モデルが適用される範囲も、制限速度等の車両の速度に応じて決定されうる。例えば、直進路モデルが適用される範囲は、例えば、直進路モデルに応じて特定される第2の分布の非ゼロの領域が、交差点モデルに対応する領域に含まれないような範囲として決定されうる。すなわち、車両が高速度で進行中である場合、車両から遠く離れた位置まで第2の分布の非ゼロの領域が広がることとなるが、この領域が、交差点モデルに対応する領域と重ならないように、直進路モデルに対応する領域が決定されうる。
 なお、第1の分布についても、シーンに応じたモデルを用いて特定されうる。例えば交差点の付近に存在する歩行者と、直進路において歩道等の領域を直進方向に歩いている歩行者とでは、移動する方向や速度の傾向が異なり、結果として、第1の分布もシーンごとに異ならしめた方がよい場合があるからである。また、歩行者が直進路から交差点の方向へ進行する場合など、複数のモデルによる分布の組み合わせによって、第1の分布が特定されうる。このようなシーンを考慮した場合の第1の分布の例を図8を用いて説明する。歩行者801は、直進路のエリアから交差点方向に進行しているものとする。なお、直進路においては、ガードレール等、歩行者801が車道に進入できないようになっているものとする。このとき、歩行者801は、短期的には、直進路モデルを用いて、交差点方向に向かう方向へ広がると共に車道方向へは進入しない分布802が、歩行者801についての第1の分布として特定される。その後、歩行者801が交差点に進入すると、車道に進入する領域を含んだ分布803が、歩行者801についての第1の分布として特定される。また、他車両の第1の分布は、直進路においては、例えば図2に示すように、進行方向に向かって広がりうる。一方で、他車両は、交差点では、左折、直進、右折など、様々な動作をしうる。この様子を示したのが図8の他車両804に関する分布805及び806である。他車両804は、交差点においては、まず、分布805に示すように、直進方向と左折方向に広がり、その後、分布806に示すように、直進方向と左折方向と右折方向とに広がりうる。このように、第1の分布についても、交通参加者の位置に応じたシーンに基づいて特定されうる。これにより、交通参加者の存在する位置に関する評価をより適切に行うことができるようになる。
 さらに、例えば歩行者と車両等、属性が異なる交通参加者においては、移動速度が大きく異なるため、これらの交通参加者ごとに交差点に進入したと考えるべき領域の広さが異なる。すなわち、例えば所定時間後に交差点の中心部分に到達可能な領域を交差点に進入したと考えるべき領域とすると、車両は単位時間当たりに移動可能な範囲が大きいためこの領域が大きくなり、一方、歩行者に対応するこの領域は小さくなる。このように、第1の分布は、交通参加者ごとに、その時点でその交通参加者が存在する位置に応じた適切なモデルを使用して特定されうる。なお、例えば、歩行者には交差点左折モデル、交差点右折モデル、交差点直進モデルを定義せずに1つの交差点モデルを定義してもよいなど、交通参加者の属性ごとに、定義されるモデル自体が異なっていてもよい。これにより、交通参加者の属性に応じて、交通参加者が存在する位置に関する評価をより適切に行うことができるようになる。
 なお、複数の交通参加者が存在する場合、例えばこれらの交通参加者ごとに算出された第1の分布を(均等に又は重み付けして)足し合わせることによって、又は、位置ごとにこれらの最大値をとることによって、取得される。
 なお、第1の分布の特定のために用いられるモデルと、第2の分布の特定のために用いられるモデルは、別個に設定される。すなわち、例えば第1の分布は、図8の歩行者801が交差点に達していない間の分布801のように直進モデルによって特定され、第2の分布は交差点モデルによって特定されてもよい。このように、第1の分布は、第2の分布の特定と関係なく、すなわち、車両1の位置等によらずに特定される。また、第2の分布は、第1の分布の特定と関係なく、すなわち、交通参加者の位置等によらずに特定される。これにより、その交通参加者と車両のそれぞれについての分布を適切に特定することができる。
 本実施形態では、モデルとして、直進路モデルや交差点モデルが用いられる場合について説明したが、これに限られない。例えば、車線変更モデル、分岐モデル、合流モデル、カーブモデル、高速道路・幹線道路モデル、市街地モデル等の様々なモデルが定義されうる。なお、カーブモデルは、例えば、曲率の範囲ごとに定められてもよい。すなわち、曲率の値の範囲ごとに別個のモデルが定義されてもよい。また、同じ形状の道路であっても、時間ごとのモデルや、天候、路面状況ごとのモデルが定義されてもよい。これによれば、周囲の環境を認識する精度等が状況に応じて変化しても、その状況に応じた分布の特定が可能となる。また、第1の分布は、交通参加者の数に応じたモデルが定義されてもよい。すなわち、混雑している道路における交通参加者の動きと、混雑していない道路における交通参加者とでは、交通参加者が移動可能な領域の自由度に差が生じるため、混雑度に応じたモデルが定義されうる。これによれば、状況に応じて、適切な第1の分布を取得することが可能となる。
 なお、第2の分布は所定のドライバーの走行データに基づいて特定されると説明したが、ここでの「所定のドライバー」は、複数のカテゴリに分けられてもよい。例えば、目的地への到達が早い傾向にある、燃費の良い走行をする傾向にある、スポーツドライビングを得意とする、市街地での運転を得意とする、などの所定のドライバーのカテゴリが設けられうる。そして、カテゴリごとに、異なる第2の分布が特定可能なように構成されてもよい。これは、例えば所定のドライバーごとに収集した走行データを分類して、例えばそれに基づいて機械学習を行って複数の関数を用意しておくことにより、実現されうる。そして、例えば車両1の乗員が、どのような運転を望むかを車両1の入出力装置9を介して入力し、ECU20は、その入力に応じて、所定のドライバーのカテゴリを選択し、その選択結果に対応する第2の分布を決定しうる。これにより、車両1の乗員の嗜好を考慮した自動運転を実現することができる。
 なお、上述の説明では、「第1の分布」及び「第2の分布」という用語を用いているが、実体的には、各地点において特定される「第1の値」及び「第2の値」が、走行軌道を決定する際に用いられるため、「分布」は必ずしも特定されなくてもよい。
 <実施形態のまとめ>
 1.上記実施形態の車両制御装置は、
 車両の自動運転の制御を行う車両制御装置であって、
  前記車両の周囲の状況に関する情報を取得し、
  複数の位置についての、将来の時点で前記周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、前記情報に基づいて取得し、ここで、前記第2の値は車両が走行する領域のうちの一部について定義されたモデルを用いて特定され、ここで、モデルが定義されていない領域を前記車両が走行する場合には、当該車両が走行している位置を挟む2つの領域で定義されている2つのモデルを用いてそれぞれ取得される2つの値を組み合わせることにより前記第2の値が特定され、
  前記第1の値と前記第2の値との組み合わせに基づいて、複数の将来の時点における前記車両を存在させる位置を前記複数の位置から選択して、前記車両を移動させる軌道を決定する、
 ように構成されることを特徴とする。
 この実施形態によれば、車両の位置に応じて適切なモデルを用いて軌道を決定することができる。また、複数のモデルを切り替えながら用いることにより、全ての状況を1つのモデルとして扱う場合と比して、学習時間や第2の値の算出のための時間の短縮をはかることができる。さらに、車両の進行において考慮されるべき要素が大きく異なる2つのシーンが切り替えられる場合に制御が不安定となることを防ぐことができる。また、車両が走行する全ての位置においてシーンやモデルを定義する必要がなくなる。
 2.上記実施形態の車両制御装置は、
 前記第2の値は、モデルが定義されていない領域を前記車両が走行する場合、前記車両と前記2つの領域のそれぞれとの距離に応じて、前記車両との距離が近い方の領域に対応するモデルを用いて取得される値の影響が、前記車両との距離が遠い方の領域に対応するモデルを用いて取得される値より大きくなるような値として特定される、
 ことを特徴とする。
 この実施形態によれば、異なるシーン間の移行時に、第2の値の傾向が急峻に変化することを防ぐことができ、車両の進行において考慮されるべき要素が大きく異なる2つのシーンが切り替えられる場合に制御が不安定となることを防ぐことができる。
 3.上記実施形態の車両制御装置は、
 前記第1の値は、前記周囲に存在する物体が存在する位置に応じて定まるモデルを用いて特定される、
 ことを特徴とする。
 この実施形態によれば、これにより、交通参加者の存在する位置に関する評価をより適切に行うことができるようになる。
 4.上記実施形態の車両制御装置は、
 前記周囲に存在する物体の属性および位置に応じて、前記第1の値を特定する際に用いられるモデルが決定される、
 ことを特徴とする。
 この実施形態によれば、交通参加者の属性に応じて、交通参加者が存在する位置に関する評価をより適切に行うことができるようになる。
 5.上記実施形態の車両制御装置は、
 前記第1の値の特定に用いられるモデルと、前記第2の値の特定に用いられるモデルとは、別個に設定される、
 ことを特徴とする。
 この実施形態によれば、交通参加者と車両のそれぞれについての第1の値及び第2の値を適切に特定することができる。
 6.上記実施形態の車両制御装置は、
 前記第1の値は、前記車両によらず特定され、
 前記第2の値は、前記周囲に存在する物体によらず特定される、
 ことを特徴とする。
 この実施形態によれば、交通参加者と車両のそれぞれについての第1の値及び第2の値を、他方の値を特定する処理に影響されずに、適切に特定することができる。
 7.上記実施形態の車両は、
 上述の車両制御装置を有することを特徴とする。
 これによれば、車両内部で上述の処理を迅速に実行することにより、リアルタイムに適正な制御を実行することが可能となる。
 8.上記実施形態の方法は、
 車両の自動運転の制御を行うために車両制御装置によって実行される方法であって、
  前記車両の周囲の状況に関する情報を取得することと、
  複数の位置についての、将来の時点で前記周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、前記情報に基づいて取得することであって、ここで、前記第2の値は車両が走行する領域のうちの一部について定義されたモデルを用いて特定され、ここで、モデルが定義されていない領域を前記車両が走行する場合には、当該車両が走行している位置を挟む2つの領域で定義されている2つのモデルを用いてそれぞれ取得される2つの値を組み合わせることにより前記第2の値が特定されることと、
  前記第1の値と前記第2の値との組み合わせに基づいて、複数の将来の時点における前記車両を存在させる位置を前記複数の位置から選択して、前記車両を移動させる軌道を決定することと、
 を含むことを特徴とする。
 この実施形態によれば、車両の位置に応じて適切なモデルを用いて軌道を決定することができる。また、複数のモデルを切り替えながら用いることにより、全ての状況を1つのモデルとして扱う場合と比して、学習時間や第2の値の算出のための時間の短縮をはかることができる。さらに、車両の進行において考慮されるべき要素が大きく異なる2つのシーンが切り替えられる場合に制御が不安定となることを防ぐことができる。また、車両が走行する全ての位置においてシーンやモデルを定義する必要がなくなる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。

Claims (8)

  1.  車両の自動運転の制御を行う車両制御装置であって、
      前記車両の周囲の状況に関する情報を取得し、
      複数の位置についての、将来の時点で前記周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、前記情報に基づいて取得し、ここで、前記第2の値は車両が走行する領域のうちの一部について定義されたモデルを用いて特定され、ここで、モデルが定義されていない領域を前記車両が走行する場合には、当該車両が走行している位置を挟む2つの領域で定義されている2つのモデルを用いてそれぞれ取得される2つの値を組み合わせることにより前記第2の値が特定され、
      前記第1の値と前記第2の値との組み合わせに基づいて、複数の将来の時点における前記車両を存在させる位置を前記複数の位置から選択して、前記車両を移動させる軌道を決定する、
     ように構成されることを特徴とする車両制御装置。
  2.  前記第2の値は、モデルが定義されていない領域を前記車両が走行する場合、前記車両と前記2つの領域のそれぞれとの距離に応じて、前記車両との距離が近い方の領域に対応するモデルを用いて取得される値の影響が、前記車両との距離が遠い方の領域に対応するモデルを用いて取得される値より大きくなるような値として特定される、
     ことを特徴とする請求項1に記載の車両制御装置。
  3.  前記第1の値は、前記周囲に存在する物体が存在する位置に応じて定まるモデルを用いて特定される、
     ことを特徴とする請求項1又は2に記載の車両制御装置。
  4.  前記周囲に存在する物体の属性および位置に応じて、前記第1の値を特定する際に用いられるモデルが決定される、
     ことを特徴とする請求項3に記載の車両制御装置。
  5.  前記第1の値の特定に用いられるモデルと、前記第2の値の特定に用いられるモデルとは、別個に設定される、
     ことを特徴とする請求項3又は4に記載の車両制御装置。
  6.  前記第1の値は、前記車両によらず特定され、
     前記第2の値は、前記周囲に存在する物体によらず特定される、
     ことを特徴とする請求項1から5のいずれか1項に記載の車両制御装置。
  7.  請求項1から6のいずれか1項に記載の車両制御装置を有する車両。
  8.  車両の自動運転の制御を行うために車両制御装置によって実行される方法であって、
      前記車両の周囲の状況に関する情報を取得することと、
      複数の位置についての、将来の時点で前記周囲に存在する物体が存在する確率に関する第1の値と、所定のドライバーの走行データに基づく第2の値とを、前記情報に基づいて取得することであって、ここで、前記第2の値は車両が走行する領域のうちの一部について定義されたモデルを用いて特定され、ここで、モデルが定義されていない領域を前記車両が走行する場合には、当該車両が走行している位置を挟む2つの領域で定義されている2つのモデルを用いてそれぞれ取得される2つの値を組み合わせることにより前記第2の値が特定されることと、
      前記第1の値と前記第2の値との組み合わせに基づいて、複数の将来の時点における前記車両を存在させる位置を前記複数の位置から選択して、前記車両を移動させる軌道を決定することと、
     を含むことを特徴とする方法。
PCT/JP2017/020698 2017-06-02 2017-06-02 自動運転車の制御のための車両制御装置及び方法 WO2018220853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019521928A JP6901555B2 (ja) 2017-06-02 2017-06-02 自動運転車の制御のための車両制御装置及び方法
CN201780091031.4A CN110692094B (zh) 2017-06-02 2017-06-02 用于自动驾驶车的控制的车辆控制装置及方法
PCT/JP2017/020698 WO2018220853A1 (ja) 2017-06-02 2017-06-02 自動運転車の制御のための車両制御装置及び方法
US16/685,024 US11275379B2 (en) 2017-06-02 2019-11-15 Vehicle control apparatus and method for controlling automated driving vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020698 WO2018220853A1 (ja) 2017-06-02 2017-06-02 自動運転車の制御のための車両制御装置及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/685,024 Continuation US11275379B2 (en) 2017-06-02 2019-11-15 Vehicle control apparatus and method for controlling automated driving vehicle

Publications (1)

Publication Number Publication Date
WO2018220853A1 true WO2018220853A1 (ja) 2018-12-06

Family

ID=64455289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020698 WO2018220853A1 (ja) 2017-06-02 2017-06-02 自動運転車の制御のための車両制御装置及び方法

Country Status (4)

Country Link
US (1) US11275379B2 (ja)
JP (1) JP6901555B2 (ja)
CN (1) CN110692094B (ja)
WO (1) WO2018220853A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020135672A (ja) * 2019-02-22 2020-08-31 アセントロボティクス株式会社 交通流の推論
US11275379B2 (en) 2017-06-02 2022-03-15 Honda Motor Co., Ltd. Vehicle control apparatus and method for controlling automated driving vehicle
US11300961B2 (en) 2017-06-02 2022-04-12 Honda Motor Co., Ltd. Vehicle control apparatus and method for controlling automated driving vehicle
JP7348344B1 (ja) 2022-03-28 2023-09-20 ソフトバンク株式会社 車両およびサーバ
WO2024075165A1 (ja) * 2022-10-03 2024-04-11 株式会社Subaru 情報処理装置、プログラム
US11986964B2 (en) 2018-12-27 2024-05-21 Honda Motor Co., Ltd. Path determination device, robot, and path determination method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130497B2 (en) 2017-12-18 2021-09-28 Plusai Limited Method and system for ensemble vehicle control prediction in autonomous driving vehicles
US20190185012A1 (en) 2017-12-18 2019-06-20 PlusAI Corp Method and system for personalized motion planning in autonomous driving vehicles
US11273836B2 (en) * 2017-12-18 2022-03-15 Plusai, Inc. Method and system for human-like driving lane planning in autonomous driving vehicles
JP7014032B2 (ja) * 2018-04-23 2022-02-01 株式会社デンソー 車両衝突推定装置
US11927967B2 (en) * 2020-08-31 2024-03-12 Woven By Toyota, U.S., Inc. Using machine learning models for generating human-like trajectories
US11491987B1 (en) * 2022-06-22 2022-11-08 Embark Trucks Inc. Merge handling based on merge intentions over time
CN115083208B (zh) * 2022-07-20 2023-02-03 深圳市城市交通规划设计研究中心股份有限公司 人车冲突预警方法、预警分析方法、电子设备及存储介质
CN115056754B (zh) * 2022-08-18 2022-10-28 江苏天一航空工业股份有限公司 一种物流行李牵引车制动控制***及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228204A (ja) * 2014-05-30 2015-12-17 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 先進運転者支援システムによりリスクベースの交通シーン分析を行う方法、及び当該分析を行う当該システムを備える乗り物
JP2016212872A (ja) * 2015-05-04 2016-12-15 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 対象物体の将来状態を計算により予測する方法の性能を向上するための方法、運転者支援システム、そのような運転者支援システムを備える車両、並びに対応するプログラムの記憶媒体及びプログラム

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59809476D1 (de) * 1997-11-03 2003-10-09 Volkswagen Ag Autonomes Fahrzeug und Verfahren zur Steuerung eines autonomen Fahrzeuges
JPH11337643A (ja) 1998-05-27 1999-12-10 Mitsubishi Motors Corp 車両用後方モニタシステム
JP3902543B2 (ja) * 2002-12-17 2007-04-11 本田技研工業株式会社 道路交通シミュレーション装置
US7233861B2 (en) * 2003-12-08 2007-06-19 General Motors Corporation Prediction of vehicle operator destinations
JP4604683B2 (ja) * 2004-11-25 2011-01-05 日産自動車株式会社 危険状況警報装置
JP4254844B2 (ja) * 2006-11-01 2009-04-15 トヨタ自動車株式会社 走行制御計画評価装置
US7860813B2 (en) 2008-01-24 2010-12-28 Nec Laboratories America, Inc. Monitoring driving safety using semi-supervised sequential learning
FI20095716L (fi) * 2009-06-24 2010-12-25 Sandvik Mining & Constr Oy Liikkuvan kaivoskoneen automaattista ohjaamista varten tarvittavien tietojen määrittäminen
JP5407764B2 (ja) * 2009-10-30 2014-02-05 トヨタ自動車株式会社 運転支援装置
DE102010021591B4 (de) * 2010-05-26 2024-02-01 Audi Ag Verfahren zur Steuerung des Betriebs eines vollautomatischen, zur unabhängigen Fahrzeugführung ausgebildeten Fahrerassistenzsystems eines Kraftfahrzeugs und Kraftfahrzeug
JP5429234B2 (ja) * 2011-03-23 2014-02-26 トヨタ自動車株式会社 車両用情報処理装置
CN105074793A (zh) * 2013-03-15 2015-11-18 凯利普公司 用于车辆路径规划和交通管理的车道级车辆导航
DE102013213339A1 (de) * 2013-07-08 2015-01-08 Ford Global Technologies, Llc Steuereinrichtung für ein autonomes Landfahrzeug
CN103531024B (zh) * 2013-10-28 2015-04-22 武汉旭云科技有限公司 一种动态交通路网城市道路要素模型及其建模方法
DE102013019374B4 (de) * 2013-11-19 2022-09-08 Audi Ag Verfahren zum Betrieb eines zur vollständig automatisierten Führung eines Kraftfahrzeugs ausgebildeten Fahrzeugsystems und Kraftfahrzeug
US9165477B2 (en) * 2013-12-06 2015-10-20 Vehicle Data Science Corporation Systems and methods for building road models, driver models, and vehicle models and making predictions therefrom
CN103646561B (zh) * 2013-12-24 2016-03-02 重庆大学 基于道路异常区域评估的路径选择方法及***
DE102014205014A1 (de) 2014-03-18 2015-09-24 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Erfassen von bewegten Objekten in der Umgebung eines Fahrzeugs
DE102014214506A1 (de) * 2014-07-24 2016-01-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erstellung eines Umfeldmodells eines Fahrzeugs
CN104260725B (zh) * 2014-09-23 2016-09-14 北京理工大学 一种含有驾驶员模型的智能驾驶***
CN104590274A (zh) * 2014-11-26 2015-05-06 浙江吉利汽车研究院有限公司 一种驾驶行为自适应***及驾驶行为自适应方法
CN105808314B (zh) * 2014-12-30 2019-05-10 ***通信集团公司 一种交通仿真的方法及装置
JP6581379B2 (ja) * 2015-03-31 2019-09-25 株式会社デンソー 車両制御装置、及び車両制御方法
CN104834776B (zh) * 2015-04-30 2019-01-18 吉林大学 一种微观交通仿真中交通车辆建模仿真***及方法
US9934688B2 (en) 2015-07-31 2018-04-03 Ford Global Technologies, Llc Vehicle trajectory determination
CN105574537B (zh) * 2015-11-23 2018-12-28 北京高科中天技术股份有限公司 基于多传感器的危险驾驶行为检测和评估方法
US9493158B2 (en) * 2015-12-14 2016-11-15 Thomas Danaher Harvey Methods and devices for safe operation of undersize autonomous vehicles on public roads
CN105809130B (zh) * 2016-03-08 2020-03-10 武汉大学 一种基于双目深度感知的车辆可行驶区域计算方法
KR102102102B1 (ko) * 2016-03-09 2020-04-20 얀마 가부시키가이샤 작업 차량 및 주행 영역 특정 장치
GB201608233D0 (en) * 2016-05-04 2016-06-22 Tomtom Navigation Bv Methods and systems for determining safe return range
MX2018014594A (es) * 2016-05-30 2019-03-14 Nissan Motor Metodo de deteccion de objetos y aparato de deteccion de objetos.
JP6622148B2 (ja) * 2016-06-17 2019-12-18 日立オートモティブシステムズ株式会社 周辺環境認識装置
CN105892471B (zh) * 2016-07-01 2019-01-29 北京智行者科技有限公司 汽车自动驾驶方法和装置
US10414394B2 (en) * 2016-08-29 2019-09-17 Mazda Motor Corporation Vehicle control system
CN106408983B (zh) * 2016-10-10 2019-01-04 上海宏英智能科技有限公司 一种车辆自动驾驶***
JP6756661B2 (ja) * 2017-04-28 2020-09-16 日立オートモティブシステムズ株式会社 車両電子制御装置
DE112017007600T5 (de) 2017-06-02 2020-02-20 Honda Motor Co., Ltd. Fahrzeug-Steuervorrichtung und Verfahren zum Steuern eines automatisiert fahrenden Fahrzeugs
WO2018220853A1 (ja) 2017-06-02 2018-12-06 本田技研工業株式会社 自動運転車の制御のための車両制御装置及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228204A (ja) * 2014-05-30 2015-12-17 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 先進運転者支援システムによりリスクベースの交通シーン分析を行う方法、及び当該分析を行う当該システムを備える乗り物
JP2016212872A (ja) * 2015-05-04 2016-12-15 ホンダ リサーチ インスティテュート ヨーロッパ ゲーエムベーハーHonda Research Institute Europe GmbH 対象物体の将来状態を計算により予測する方法の性能を向上するための方法、運転者支援システム、そのような運転者支援システムを備える車両、並びに対応するプログラムの記憶媒体及びプログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11275379B2 (en) 2017-06-02 2022-03-15 Honda Motor Co., Ltd. Vehicle control apparatus and method for controlling automated driving vehicle
US11300961B2 (en) 2017-06-02 2022-04-12 Honda Motor Co., Ltd. Vehicle control apparatus and method for controlling automated driving vehicle
US11986964B2 (en) 2018-12-27 2024-05-21 Honda Motor Co., Ltd. Path determination device, robot, and path determination method
JP2020135672A (ja) * 2019-02-22 2020-08-31 アセントロボティクス株式会社 交通流の推論
JP7348344B1 (ja) 2022-03-28 2023-09-20 ソフトバンク株式会社 車両およびサーバ
WO2023188995A1 (ja) * 2022-03-28 2023-10-05 ソフトバンク株式会社 車両およびサーバ
JP2023145176A (ja) * 2022-03-28 2023-10-11 ソフトバンク株式会社 車両およびサーバ
WO2024075165A1 (ja) * 2022-10-03 2024-04-11 株式会社Subaru 情報処理装置、プログラム

Also Published As

Publication number Publication date
CN110692094B (zh) 2022-02-01
US11275379B2 (en) 2022-03-15
JP6901555B2 (ja) 2021-07-14
US20200081442A1 (en) 2020-03-12
JPWO2018220853A1 (ja) 2020-04-09
CN110692094A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2018220853A1 (ja) 自動運転車の制御のための車両制御装置及び方法
US11498563B2 (en) Vehicle control device, vehicle control method, and storage medium
CN110356402B (zh) 车辆控制装置、车辆控制方法及存储介质
WO2018220851A1 (ja) 自動運転車の制御のための車両制御装置及び方法
JP6676697B2 (ja) 車両制御装置、車両制御方法、及びプログラム
US11900812B2 (en) Vehicle control device
RU2760046C1 (ru) Способ помощи при вождении и устройство помощи при вождении
RU2738228C1 (ru) Устройство помощи при вождении и способ помощи при вождении
US10803307B2 (en) Vehicle control apparatus, vehicle, vehicle control method, and storage medium
KR20150061781A (ko) 차량 코너링 제어 방법 및 그 장치
JP2020064402A (ja) 表示装置
US20200339194A1 (en) Vehicle control apparatus, vehicle, and control method
CN111731294A (zh) 行驶控制装置、行驶控制方法以及存储程序的存储介质
US20210291736A1 (en) Display control apparatus, display control method, and computer-readable storage medium storing program
US11254326B2 (en) Automatic comfort score system based on human driving reference data
CN112985435A (zh) 用于操作自主驾驶车辆的方法及***
JP2019045985A (ja) 車両制御装置、車両、車両制御方法およびプログラム
US10766412B1 (en) Systems and methods for notifying other road users of a change in vehicle speed
JP2020192824A (ja) 運転挙動制御方法及び運転挙動制御装置
CN115257813B (en) Intelligent driving control method through construction barrier and vehicle
CN113496189B (zh) 基于静态障碍物地图的感知方法及***
JP7467520B2 (ja) 車両制御装置
EP4306382A1 (en) Planning trajectories for controlling autonomous vehicles
EP4140846A2 (en) Planning system for autonomously navigating around lane-sharing road agents
JP2022152051A (ja) 走行制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911994

Country of ref document: EP

Kind code of ref document: A1