WO2018211945A1 - 二酸化炭素分離膜及びその製造方法 - Google Patents

二酸化炭素分離膜及びその製造方法 Download PDF

Info

Publication number
WO2018211945A1
WO2018211945A1 PCT/JP2018/017121 JP2018017121W WO2018211945A1 WO 2018211945 A1 WO2018211945 A1 WO 2018211945A1 JP 2018017121 W JP2018017121 W JP 2018017121W WO 2018211945 A1 WO2018211945 A1 WO 2018211945A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
liquid
ionic liquid
separation membrane
dioxide separation
Prior art date
Application number
PCT/JP2018/017121
Other languages
English (en)
French (fr)
Inventor
中村 敏和
真男 岩谷
崇将 鈴木
友尋 後藤
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to EP18802639.7A priority Critical patent/EP3626334A4/en
Priority to CN201880032904.9A priority patent/CN110662597B/zh
Priority to JP2019519157A priority patent/JP7073357B2/ja
Priority to US16/612,036 priority patent/US11524265B2/en
Publication of WO2018211945A1 publication Critical patent/WO2018211945A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/226Use of ionic liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide separation membrane suitable for fertilizing carbon dioxide in the agricultural field, a method for producing the same, and a carbon dioxide concentrating device equipped with the carbon dioxide separation membrane.
  • a method of fertilizing carbon dioxide for example, a method of supplying with a gas cylinder, a method of supplying carbon dioxide generated by burning fuel (for example, kerosene, propane gas, etc.) are known.
  • fuel for example, kerosene, propane gas, etc.
  • the temperature in the facility is likely to rise due to waste heat, so that applicable plants may be limited, and ventilation or air conditioning equipment may be required separately.
  • the use of fossil fuel is also not preferable from the viewpoint of reducing environmental impact.
  • Patent Document 1 discloses a CO 2 gas apparatus including two predetermined pressure vessels, an air compressor, and the like as an apparatus for supplying CO 2 gas to a plant factory, a horticultural greenhouse, or the like. A two gas concentrator is disclosed. This document describes that zeolite, alumina, activated carbon and the like can be used as an adsorbent.
  • Patent Document 2 an ionic liquid having a primary or secondary amino group and a specific skeleton as an anion and having a cation as a cation can be used as the acidic gas chemical absorption liquid. It is disclosed.
  • an apparatus is described in which carbon dioxide is circulated in the acidic gas chemical absorption solution accommodated in the reaction vessel 12 using a gas introduction pipe 16.
  • JP-A-2015-124264 discloses a polymer obtained by subjecting a polyfunctional thiol compound having a polyethylene glycol skeleton and a polyfunctional vinyl compound having a polyethylene glycol skeleton to an enethiol reaction, A gel-like thin film containing a liquid such as an ionic liquid is disclosed.
  • This gel-like thin film has a high liquid content, has high strength and high pressure resistance, can be used as a gas separation membrane having excellent gas permeation performance, and is coated on a porous membrane to form a composite membrane It is described that the film can be made thin.
  • a gel-like thin film is prepared in which a polymer obtained by reacting the tetrafunctional thiol compound and the tetrafunctional vinyl compound contains a liquid such as an ionic liquid.
  • a composite membrane in which a gel-like thin film is formed on a polysulfone layer is prepared.
  • Patent Document 4 JP-A-2001-120940 discloses a non-gelling porous membrane (A) impregnated with a carbon dioxide carrier liquid (C) in which polyols and amines are combined, and the carrier liquid.
  • a carbon dioxide separation / removal method using a film in which a liquid-repellent hydrophobic porous film (B) is laminated on (C) is disclosed.
  • a membrane is prepared by laminating a porous membrane made of hydrophilic polytetrafluoroethylene impregnated with a mixed solution of triethylene glycol and diethanolamine and a porous membrane made of polyvinylidene fluoride.
  • this document does not describe any ionic liquid.
  • Patent Documents 2 to 4 mainly describe industrial applications, for example, exhaust gas exhausted from factories and the like, and applications for separating and recovering (or removing) carbon dioxide from energy resources (for example, natural gas).
  • energy resources for example, natural gas.
  • fertilizer use that supplies carbon dioxide concentrated from the atmosphere to plants.
  • JP 2014-75994 A (Claims, FIG. 1, [0048]) Japanese Patent Laying-Open No. 2016-10760 (Claim 1, Example, FIG. 1, [0130]) Japanese Patent Laying-Open No. 2015-124264 (Claims, Examples, [0133]) JP 2001-120940 A (Claims, Examples, [0013])
  • an object of the present invention is to provide a carbon dioxide separation membrane capable of reducing the size of the carbon dioxide concentrator and enabling smooth operation, and a method for producing the same.
  • Another object of the present invention is to provide a carbon dioxide separation membrane that can be easily molded and can be stably held (or fixed) while maintaining the liquid state of an ionic liquid, and a method for producing the same.
  • Still another object of the present invention is to provide a carbon dioxide separation membrane excellent in handleability (or handleability) and a method for producing the same even if it contains an ionic liquid.
  • Another object of the present invention is to provide a carbon dioxide separation membrane that can be easily thinned and can efficiently improve gas permeability (eg, permeation rate) and a method for producing the same.
  • gas permeability eg, permeation rate
  • the ionic liquid-containing liquid [or liquid composition containing ionic liquid] (A) is contained (or retained) in the voids of the ionic liquid affinity porous layer (C). ),
  • the carbon dioxide concentrating device can be reduced in size and can be effectively used as a carbon dioxide separation membrane that enables smooth operation (particularly, a carbon dioxide separation membrane for fertilization in the agricultural field). completed.
  • the carbon dioxide separation membrane of the present invention is an ionic liquid-containing liquid (A) [IL-containing liquid (A) or a liquid composition containing an ionic liquid.
  • An ionic liquid affinity porous layer (C) [also referred to as an IL affinity porous layer (C)] holding an object (also referred to as an object (A)) in a void, and an ionic liquid non-affinity porous layer (B) [IL Also referred to as non-affinity porous layer (B)].
  • the ionic liquid affinity porous layer (C) [material (or forming component) constituting the ionic liquid affinity porous layer (C)] may contain an inorganic material. Metal oxide particles having a diameter of about 0.001 to 5 ⁇ m may be included. The average thickness of the ionic liquid affinity porous layer (C) may be about 0.01 to 10 ⁇ m.
  • the ionic liquid-containing liquid (A) contains an ionic liquid, and the ionic liquid comprises a cation selected from ammoniums, imidazoliums and phosphoniums, a fluorine-containing anion, a cyano group-containing anion and an anion derived from an amino acid. And selected anions.
  • the IL affinity porous layer (C) may contain the ionic liquid-containing liquid (A) in a proportion of 0.1 to 99 parts by volume with respect to 100 parts by volume of the internal voids.
  • Equivalent film thickness of the ionic liquid-containing liquid (A) liquid membrane film formed of the same amount of liquid as the ionic liquid-containing liquid (A) held in the carbon dioxide separation membrane and having the same area as the carbon dioxide separation membrane (Thickness) may be about 0.1 to 2 ⁇ m.
  • the ionic liquid non-affinity porous layer (B) [material (or forming component) constituting the ionic liquid non-affinity porous layer (B)] is at least selected from polyolefin resins, fluororesins and cellulose derivatives. One kind of resin may be contained, and the contact angle of the ionic liquid non-affinity porous layer (B) with respect to the ionic liquid-containing liquid (A) is about 90 ° or more (for example, 90 to 150 °). May be.
  • the ionic liquid-containing liquid (A) may further contain a second liquid (for example, a facilitated transport agent) that is compatible with the ionic liquid.
  • the second liquid may be a polyamine.
  • the carbon dioxide separation membrane of the present invention may be a carbon dioxide separation membrane for fertilizing plants with carbon dioxide.
  • the plant may be a plant cultivated indoors.
  • the present invention provides a void in the ionic liquid affinity porous layer (C).
  • a method for producing the carbon dioxide separation membrane including a step of impregnating a liquid containing the ionic liquid-containing liquid (A) (impregnation step).
  • the present invention also includes a carbon dioxide concentrator provided with the carbon dioxide separation membrane.
  • the affinity and non-affinity of the “ionic liquid non-affinity porous layer (B)” and “ionic liquid affinity porous layer (C)” can be evaluated by the contact angle of the porous layer with respect to the ionic liquid. That is, of the two porous layers, a layer having a relatively large contact angle with respect to the ionic liquid [or ionic liquid-containing liquid (A)] contained in the carbon dioxide separation membrane is an ionic liquid non-affinity porous layer (B ), Meaning that the relatively small layer is an ionic liquid affinity porous layer (C).
  • the contact angle is measured by a conventional method, for example, a temperature of 27 ° C., a humidity of 55% RH, and atmospheric pressure (1 atm: 101.3 kPa). It can measure by the method etc. which analyze the observation image immediately after dripping (for example, after 1 second).
  • the carbon dioxide separation membrane of the present invention was contained in the voids of the ionic liquid non-affinity porous layer (B), the ionic liquid affinity porous layer (C), and the ionic liquid affinity porous layer (C). Since the ionic liquid-containing liquid (A) is included, the carbon dioxide concentrator can be reduced in size and can be smoothly operated. Further, the carbon dioxide separation membrane can be easily molded and can be stably held (or fixed) while maintaining the liquid state of the ionic liquid (without increasing the viscosity due to gelation or the like). Therefore, even if the carbon dioxide separation membrane contains an ionic liquid, stickiness on the surface can be suppressed and the handling property (or handling property) is excellent. Furthermore, the carbon dioxide separation membrane of the present invention can be easily thinned and can efficiently improve gas permeability (for example, permeation rate).
  • gas permeability for example, permeation rate
  • FIG. 1 is a cross-sectional observation image of the carbon dioxide separation membrane prepared in Example 23.
  • FIG. FIG. 2 is a schematic diagram of an apparatus for evaluating the carbon dioxide enrichment characteristics of the examples.
  • the carbon dioxide separation membrane (IL-containing laminate) of the present invention includes an ionic liquid affinity porous layer (C) in which an ionic liquid-containing liquid (A) is held in a void, and an ionic liquid non-affinity porous layer (B). Including.
  • the ionic liquid-containing liquid (A) contains at least an ionic liquid.
  • the ionic liquid [or room temperature molten salt] is composed mainly of a cation (cation) and an anion (anion) (for example, 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, As long as it is in the form of a liquid at room temperature and normal pressure (for example, about 100 ° C. or less, about 1 atmosphere).
  • cation examples of the cation usually include monovalent organic cations such as ammoniums, imidazoliums, pyridiniums, pyrrolidiniums, piperidiniums, phosphoniums, sulfoniums and the like.
  • ammoniums include tetraalkylammonium [eg, trimethyl-n-propylammonium ([N 1113 ] + ), n-butyl-trimethylammonium ([N 1114 ] + ), n-hexyl-trimethylammonium ([N 1116 ] + ), triethyl-methylammonium ([N 2221 ] + ), tetraethylammonium ([N 2222 ] + ), n-butyl-triethylammonium ([N 2224 ] + ), tetra-n-butylammonium ([N 4444] +) and tri C 1-6 alkyl -C 2-10 alkyl ammonium, etc.]; ammonium having a functional group [for example, 2-hydroxyethyl - ammonium having trimethylammonium ([choline] +) hydroxyl groups, such as 2-methoxyethyl - diethyl
  • imidazoliums examples include 1,3-dialkylimidazolium [eg, 1-ethyl-3-methylimidazolium ([emim] + ), 1-n-butyl-3-methylimidazolium ([bmim] + ), 1-n-hexyl-3-methylimidazolium ([hmim] + ), 1-n-octyl-3-methylimidazolium ([omim] + ) and the like 1-C 2-10 alkyl-3-C 1-3 alkyl-imidazolium and the like]; imidazolium having a functional group [for example, 1-methyl-3-nonafluorohexylimidazolium ([C 6 H 4 F 9 mim] + ), 1-methyl-3-tri imidazolium having tridecafluorooctyl imidazolium ([C 8 H 4 F 13 mim] +) fluorinated alkyl groups such as; 1- (3- Nopuropiru)
  • pyridiniums include N—C 2-6 alkyl-pyridinium such as N-alkylpyridinium [eg, N-ethylpyridinium ([C 2 py] + ), N-butylpyridinium ([C 4 py] + ), etc. Etc.].
  • N-alkylpyridinium eg, N-ethylpyridinium ([C 2 py] + ), N-butylpyridinium ([C 4 py] + ), etc. Etc.
  • pyrrolidiniums examples include N, N-dialkylpyrrolidinium [eg, N-methyl-N-propylpyrrolidinium ([Pyr 13 ] + ), N-butyl-N-methylpyrrolidinium ([Pyr 14 ] +) N-C 1-3 alkyl -N-C 2-6 alkyl such as - such as pyrrolidinium], and the like.
  • N-dialkylpyrrolidinium eg, N-methyl-N-propylpyrrolidinium ([Pyr 13 ] + ), N-butyl-N-methylpyrrolidinium ([Pyr 14 ] +) N-C 1-3 alkyl -N-C 2-6 alkyl such as - such as pyrrolidinium
  • piperidiniums examples include N, N-dialkylpiperidinium [eg, N-methyl-N-propylpiperidinium ([Pip 13 ] + ), N-butyl-N-methylpiperidinium ([Pip 14 ] +) N-C 1-3 alkyl -N-C 2-6 alkyl such as - such as piperidinium] and the like.
  • N-dialkylpiperidinium eg, N-methyl-N-propylpiperidinium ([Pip 13 ] + ), N-butyl-N-methylpiperidinium ([Pip 14 ] +) N-C 1-3 alkyl -N-C 2-6 alkyl such as - such as piperidinium] and the like.
  • Examples of the phosphoniums include tetraalkylphosphonium [eg, triethyl-pentylphosphonium ([P 2225 ] + ), tetrabutylphosphonium ([P 4444 ] + ), trihexyl-tetradecylphosphonium ([P 666 (14) ] + ) and tri C 1-10 alkyl -C 2-20 alkyl phosphonium such], and the like.
  • tetraalkylphosphonium eg, triethyl-pentylphosphonium ([P 2225 ] + ), tetrabutylphosphonium ([P 4444 ] + ), trihexyl-tetradecylphosphonium ([P 666 (14) ] + ) and tri C 1-10 alkyl -C 2-20 alkyl phosphonium such], and the like.
  • sulfoniums examples include trialkylsulfonium (eg, tri-C 2-6 alkylsulfonium such as triethylsulfonium).
  • cations can be used alone or in combination of two or more. Of these cations, they are usually ammoniums, imidazoliums, phosphoniums (for example, imidazoliums, phosphoniums, preferably phosphoniums), and among them, 1,3-dialkylimidazoliums (for example, , 1-C 2-8 alkyl-3-C 1-2 alkyl imidazolium such as [emim] + ), tri-C 1-8 alkyl-C 3- such as tetraalkylphosphonium (eg, [P 4444 ] + 18 alkylphosphonium etc.) in many cases.
  • phosphoniums for example, imidazoliums, phosphoniums, preferably phosphoniums
  • 1,3-dialkylimidazoliums for example, 1-C 2-8 alkyl-3-C 1-2 alkyl imidazolium such as [emim] +
  • tri-C 1-8 alkyl-C 3-
  • anion usually a monovalent anion, for example, a fluorine-containing anion, a cyano group-containing anion, a halogen ion (for example, a chloride ion ([Cl] ⁇ ), a bromide ion ([Br] ⁇ ), an iodide ion) (Eg, [[I] ⁇ )), alkyl sulfonate ions [eg C 1-6 alkyl sulfonate ions such as methanesulfonate ion ([CH 3 SO 3 ] ⁇ )], alkyl carboxylate ions [eg acetate ion ([ C 1-6 alkyl-carboxylate ions such as CH 3 COO] ⁇ ), sulfate ions [eg, methyl sulfate ions ([CH 3 SO 4 ] ⁇ ), ethyl sulfate ions ([E
  • fluorine-containing anion examples include triflate ion ([CF 3 SO 3 ] ⁇ or [TfO] ⁇ ), bis (fluorosulfonyl) amide ion ([(FSO 2 ) 2 N] ⁇ or [FSA] ⁇ ), bis (Trifluoromethanesulfonyl) amide ion ([(CF 3 SO 2 ) 2 N] ⁇ , [Tf 2 N] ⁇ or [TFSA] ⁇ ) [or bis (trifluoromethanesulfonyl) imide ion ([TFSI] ⁇ )] , Anions having a sulfonyl group such as tris (trifluoromethanesulfonyl) methide ion ([(CF 3 SO 2 ) 3 C] ⁇ or [Tf 3 C] ⁇ ); tetrafluoroborate ion ([BF 4 ] ⁇ ), tri fluoromethyl - trifluor
  • Examples of the cyano group-containing anion include dicyanamide ion ([N (CN) 2 ] ⁇ or [DCA] ⁇ ), tricyanomethide ion ([C (CN) 3 ] ⁇ ), tetracyanoborate ion ([B (CN) 4 ] ⁇ ) and the like.
  • anions derived from amino acids include glycine (Gly), alanine (Ala), ⁇ -alanine ( ⁇ -Ala), valine (Val), leucine (Leu), isoleucine (Ile), phenylalanine (Phe), serine ( Ser), threonine (Thr), tyrosine (Tyr), cysteine (Cys), methionine (Met), asparagine (Asn), glutamine (Gln), aspartic acid (Asp), glutamic acid (Glu), lysine (Lys), arginine Carboxylate ions corresponding to (Arg), histidine (His), tryptophan (Trp), proline (Pro) and the like.
  • anions can be used alone or in combination of two or more.
  • a fluorine-containing anion for example, an anion having a sulfonyl group such as [TFSA] ⁇ ), a cyano group-containing anion (for example, [DCA] ⁇ ), an amino acid-derived anion (for example, proline)
  • it is an anion derived from an amino acid ([Pro] ⁇ ), an anion derived from glycine ([Gly] ⁇ ), etc.], especially an anion derived from an amino acid such as [Pro] ⁇ .
  • an ionic liquid for example, an ionic liquid containing a cation selected from ammoniums, imidazoliums and phosphoniums, and an anion selected from a fluorine-containing anion, a cyano group-containing anion and an anion derived from an amino acid, etc. Is mentioned.
  • an ionic liquid in which ammoniums and a fluorine-containing anion are combined for example, [N 1114 ] [TFSA], [choline] [TFSA], etc.
  • an imidazolium in combination with a fluorine-containing anion Ionic liquids eg, [emim] [TFSA], [emim] [TfO], [emim] [BF 4 ], [bmim] [TFSA], [bmim] [Tf 3 C], [bmim] [TfO], [Bmim] [BF 4 ], [bmim] [PF 6 ], [bmim] [TFA], [hmim] [TFSA], [omim] [TFSA], [C 6 H 4 F 9 mim] [TFSA], etc.
  • a fluorine-containing anion Ionic liquids eg, [emim] [TFSA], [emim] [TfO], [emim] [BF 4 ], [bmim] [TFSA], [
  • An ionic liquid in which an imidazolium and a cyano group-containing anion are combined for example, [emim] [DCA], [emim] [C (CN 3], [emim] [B (CN) 4], [bmim] [DCA], [bmim] [C (CN) 3], [bmim] [B (CN) 4] like); phosphonium compound and derived amino acid And ionic liquids (for example, [P 4444 ] [Pro], [P 2225 ] [Pro], [P 2225 ] [Gly], etc.)).
  • ionic liquids may be used alone or in combination of two or more as long as they are compatible.
  • ionic liquids in which imidazoliums and fluorine-containing anions are combined for example, ionic liquids in which 1,3-dialkylimidazolium and fluorine-containing anions having a sulfonyl group are combined, preferably [emim] 1-C 2-6 alkyl-3-C 1-2 alkyl imidazolium such as [TFSA] and the like, an ionic liquid combining a fluorine-containing anion having a sulfonyl group, etc.
  • a combination of an imidazolium and a cyano group-containing anion Ionic liquids for example, ionic liquids combining 1,3-dialkylimidazolium and cyano group-containing anions, preferably 1-C 2-6 alkyl-3-C 1-2 alkyl such as [emim] [DCA] -I
  • An ionic liquid in which an alkylphosphonium and an anion derived from proline are combined is preferable.
  • the ionic liquid-containing liquid (A) may or may not contain other liquid (or second liquid) other than the ionic liquid together with the ionic liquid.
  • the second liquid is not particularly limited as long as it is compatible with the ionic liquid, and is often a liquid having relatively low volatility.
  • the second liquid include facilitated transport agents such as amines having a hydroxyl group (for example, mono to tri C 2-6 alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, diisopropanolamine, etc.), polyamines, and the like.
  • facilitated transport agents such as amines having a hydroxyl group (for example, mono to tri C 2-6 alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, diisopropanolamine, etc.), polyamines, and the like.
  • amines having a hydroxyl group for example, mono to tri C 2-6 alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, diis
  • These 2nd liquids can also be used individually or in combination of 2 or more types.
  • polyamines such as (poly) C 2-6 alkylene polyamine, and in particular, (poly) C 2-4 alkylene polyamine such as triethylenetetramine are preferable.
  • an amine for example, polyamines such as triethylenetetramine
  • the permeation coefficient (or the permeation rate of carbon dioxide) in the carbon dioxide separation membrane may be unexpectedly improved.
  • an ionic liquid physically adsorbs carbon dioxide with a certain degree of selectivity, and thus has a property of being easily desorbed (or permeated). Since they interact, they can be selectively adsorbed (or improved in separation ability), but they are difficult to desorb. Therefore, when a facilitated transport agent is added to the ionic liquid, a decrease in the permeability coefficient (or permeation rate) of the carbon dioxide separation membrane is expected.
  • the proportion of the ionic liquid can be selected from a range of, for example, about 10% by weight or more (for example, 30% by weight or more), for example, 50% by weight or more, preferably 70% by weight with respect to the entire ionic liquid-containing liquid (A). % Or more, more preferably 90% by weight or more, and substantially about 100% by weight.
  • 10/90 to 90/10 for example, 20/80 to 80/20
  • 25/75 to 75/25 for example, 30/70 to 70/30
  • it may be about 40/60 to 60/40 (for example, 45/55 to 55/45). If the proportion of the ionic liquid is too small, carbon dioxide may not be separated (or permeated) efficiently.
  • the IL non-affinity porous layer (B) (or first porous layer (B))
  • the IL non-affinity porous layer (B) has a large number of pores (pores or voids) inside, and the surface thereof (which may include the surface (or wall surface) of the internal voids) Usually, it is often hydrophobic (relatively hydrophobic with respect to the IL affinity porous layer (C)).
  • the gap may or may not include an independent hole, but includes at least a communication hole (or a through hole) communicating in the thickness direction.
  • IL non-affinity porous layer (B) [material constituting IL non-affinity porous layer (B) or component forming IL non-affinity porous layer (B)] is a resin (for example, thermoplastic resin) [For example, 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more (substantially about 100% by weight, based on the entire IL non-affinity porous layer (B)) May be included. From the viewpoint of excellent moldability and the like, the IL non-affinity porous layer (B) is usually a porous film (porous film, porous film or microporous film) formed of a thermoplastic resin in many cases.
  • a resin for example, thermoplastic resin
  • the IL non-affinity porous layer (B) is usually a porous film (porous film, porous film or microporous film) formed of a thermoplastic resin in many cases.
  • thermoplastic resin examples include polyolefin resins, polyester resins (for example, polyalkylene arylate resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate), polycarbonate resins (for example, bisphenol A type polycarbonate resin, bisphenol F).
  • polycarbonate resin for example, bisphenol A type polycarbonate resin, bisphenol F.
  • polyamide type resin eg, aliphatic polyamide resin such as polyamide 6 and polyamide 66
  • polysulfone type resin eg, polysulfone, polyether sulfone, etc.
  • Fluororesins cellulose derivatives and the like.
  • thermoplastic resins can be used alone or in combination of two or more. Of these thermoplastic resins, it often contains at least one resin selected from polyolefin resins, fluororesins, and cellulose derivatives (for example, polyolefin resins and fluororesins).
  • polystyrene resin examples include polyethylene resin, polypropylene resin, polymethylpentene resin (eg, poly-4-methyl-1-pentene resin) and the like. These polyolefin resins can be used alone or in combination of two or more. Of the polyolefin resins, they are usually polyethylene resins and polypropylene resins (particularly polyethylene resins).
  • the polyethylene resin may be an ethylene homopolymer (ethylene homopolymer) or an ethylene copolymer (ethylene copolymer).
  • Examples of the copolymerizable monomer (copolymerizable monomer) in the copolymer include ⁇ -olefins (eg, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 2 -Methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-hexene, -Octene, 4,4-dimethyl-1-hexene, 3-ethyl-1-hexene, 4-ethyl-1-hexene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1 - hexadecene, 1-octadecene, alpha-C 3-20 olefins, such as 1-eicosene), alka
  • copolymerizable monomers can be used alone or in combination of two or more.
  • ⁇ -C 3-10 olefins such as propylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene are widely used.
  • the form of the copolymer examples include block copolymerization, random copolymerization, alternating copolymerization, and graft copolymerization. Usually, random copolymerization and alternating copolymerization are often used.
  • polyethylene resin examples include low density polyethylene (LDPE), medium density polyethylene, high density polyethylene (HDPE), and linear (linear) low density polyethylene (LLDPE).
  • the polyethylene resin may be a polymer using a Ziegler catalyst or the like, but may be a metallocene resin using a metallocene catalyst from the viewpoint of obtaining a polymer having a narrow molecular weight distribution. These polyethylene resins can be used alone or in combination of two or more.
  • the polypropylene resin may be a propylene homopolymer (propylene homopolymer) or a propylene copolymer (propylene copolymer).
  • examples of the monomer copolymerizable with propylene include ethylene and copolymerizable monomers (excluding propylene) exemplified in the section of the polyethylene resin. These monomers can be used alone or in combination of two or more. Of these monomers, ⁇ -C 2-6 olefins such as ethylene and 1-butene are widely used. Examples of the form of the copolymer include block copolymerization, random copolymerization, alternating copolymerization, and graft copolymerization. Usually, random copolymerization and alternating copolymerization are often used.
  • the polypropylene resin may be atactic, but from the viewpoint that heat resistance can be improved, a structure having stereoregularity such as isotactic or syndiotactic is preferable, and an isotactic polymer may be used.
  • the polypropylene resin may be a polymer using a Ziegler catalyst or the like, but may be a metallocene resin using a metallocene catalyst from the viewpoint of obtaining a polymer having a narrow molecular weight distribution. These polypropylene resins can be used alone or in combination of two or more.
  • fluororesin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene copolymer [for example, tetrafluoro Ethylene-hexafluoropropylene copolymer (PFEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (PETFE), etc.].
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PCTFE polychlorotrifluoroethylene
  • tetrafluoroethylene copolymer for example, tetrafluoro Ethylene-hexafluoropropylene copolymer (PFEP), tetrafluor
  • fluororesins can be used alone or in combination of two or more.
  • fluororesins they are usually PTFE, solvent-soluble fluororesins (for example, PVDF) and the like in many cases.
  • cellulose derivative examples include cellulose esters, cellulose carbamates, and cellulose ethers. These cellulose derivatives can be used alone or in combination of two or more. Of the cellulose derivatives, cellulose esters are usually the most common.
  • Cellulose esters include cellulose organic acid esters, cellulose organic acid esters / ethers, cellulose inorganic acid esters, cellulose organic acid / inorganic acid mixed esters, and the like.
  • cellulose organic acid ester examples include cellulose acylate [cellulose acetate such as cellulose diacetate (DAC) and cellulose triacetate (TAC); cellulose C 3-6 acylate such as cellulose propionate and cellulose butyrate; cellulose acetate pro Cellulose acetate-C 3-6 acylate such as pionate (CAP), cellulose acetate butyrate (CAB)], aromatic organic acid ester (cellulose C 7-12 aromatic carboxylic acid ester such as cellulose phthalate, cellulose benzoate, etc.) ) And the like.
  • cellulose acylate cellulose acetate such as cellulose diacetate (DAC) and cellulose triacetate (TAC)
  • cellulose C 3-6 acylate such as cellulose propionate and cellulose butyrate
  • cellulose acetate pro Cellulose acetate-C 3-6 acylate such as pionate (CAP), cellulose acetate butyrate (CAB)
  • aromatic organic acid ester cellulose C 7-12 aromatic carboxylic acid este
  • cellulose organic acid esters and ethers examples include C 2-6 acyl cellulose C 1-6 alkyl ethers such as acetyl methyl cellulose, acetyl ethyl cellulose, and acetyl propyl cellulose; C 2-6 acyls such as acetyl hydroxyethyl cellulose and acetyl hydroxypropyl cellulose. And cellulose hydroxy C 2-6 alkyl ether.
  • cellulose inorganic acid ester examples include cellulose nitrate, cellulose sulfate, and cellulose phosphate.
  • cellulose organic acid / inorganic acid mixed ester examples include cellulose nitrate acetate.
  • cellulose esters can be used alone or in combination of two or more.
  • cellulose organic acid esters such as cellulose acetate
  • cellulose inorganic acid esters such as cellulose nitrate
  • cellulose acylates such as TAC are often used.
  • thermoplastic resins polyolefin resins, fluororesins, and cellulose derivatives (especially polyolefin resins, fluororesins, polyolefin resins from the viewpoint of easy availability) are preferred, among which polyethylene resins and polypropylene resins are preferred.
  • Poly ⁇ -C 2-3 olefin resins particularly polyethylene resins
  • fluorine resins particularly PVDF
  • PTFE and PVDF fluorine resins
  • thermoplastic resins may contain conventional additives.
  • Conventional additives include, for example, heat stabilizers, antioxidants, stabilizers such as ultraviolet absorbers, preservatives, bactericides, plasticizers, lubricants, colorants, viscosity modifiers, leveling agents, surfactants, Examples thereof include an antistatic agent.
  • These additives can be used alone or in combination of two or more.
  • the ratio of the additive is, for example, 50 parts by weight or less, preferably 30 parts by weight or less (for example, 0.01 to 30 parts by weight), more preferably 10 parts by weight or less (for example, 0.1 parts by weight) relative to 100 parts by weight of the resin. About 10 parts by weight).
  • the method for preparing such a porous film of a thermoplastic resin is not particularly limited, and a conventional method, for example, a method using phase separation of a resin solution, a method of stretching a resin film, ⁇ ray or the like on a resin film, etc. You may prepare by the method of irradiating a high energy ray.
  • the IL non-affinity porous layer (B) is prepared by a conventional surface treatment (for example, in JP-A-6-9810) in order to adjust wettability (or contact angle) with respect to the ionic liquid-containing liquid (A).
  • the treatment described that is, the treatment of attaching a cross-linked product derived from an ethylenically unsaturated monomer having a fluorinated alkyl group, etc. may be applied.
  • IL non-affinity porous layer (B) commercially available products may be used.
  • IL non-affinity porous layer (B) commercially available products may be used.
  • the average thickness of the IL non-affinity porous layer (B) may be, for example, about 1 to 200 ⁇ m, preferably 10 to 150 ⁇ m, and more preferably about 15 to 130 ⁇ m.
  • the pore diameter (average pore diameter or average pore diameter) of the IL non-affinity porous layer (B) may be selected from a wide range of about 0.001 to 10 ⁇ m (for example, 0.01 to 5 ⁇ m), for example, 0.001 to 1 ⁇ m (for example, 0.005 to 0.5 ⁇ m), preferably 0.01 to 0.4 ⁇ m (for example, 0.03 to 0.35 ⁇ m), and more preferably 0.05 to 0.3 ⁇ m ( For example, it may be about 0.07 to 0.25 ⁇ m.
  • the pore diameter (average pore diameter or average pore diameter) can be measured by a conventional method such as mercury porosimetry.
  • the porosity (porosity or porosity) of the IL non-affinity porous layer (B) is, for example, about 1 to 90% (for example, 10 to 80%) depending on the production method of the porous layer. For example, it may be 20 to 85%, preferably 30 to 80%, and more preferably about 40 to 75%. If the porosity is too small, gas permeability may be reduced, and if it is too large, the ionic liquid-containing liquid (A) may permeate and may not be retained on the carbon dioxide separation membrane (IL-containing laminate). .
  • the porosity is any one of the whole porous layer [the whole IL non-affinity porous layer (B) or the IL affinity porous.
  • the whole layer (C)] represents the volume ratio of voids of the porous layer relative to the whole layer, and can be measured by the method described in the examples described later.
  • the communicating porosity of the IL non-affinity porous layer (B) may be, for example, about 50% or more, preferably about 70% or more, and more preferably about 90% or more (for example, substantially 100%).
  • the communication porosity represents the volume ratio of the communication holes to the voids of the porous layer, and is calculated from an image of a cross section observed with a scanning electron microscope (SEM) or the like. Good.
  • the contact angle of the IL non-affinity porous layer (B) with respect to the ionic liquid-containing liquid (A) is, for example, 90 ° or more (eg, 90 to 150 °), preferably 95 ° or more ( For example, it may be about 95 to 148 °), more preferably about 100 ° or more (for example, 100 to 145 °). If the contact angle is too small, the ionic liquid-containing liquid (A) may be transmitted and cannot be retained. In the present specification and claims, the contact angle can be measured by a conventional method as described above.
  • the IL affinity porous layer (C) has a large number of pores (pores or voids) inside, and the surface thereof (which may include the surface (or wall surface) in the internal voids) is usually In many cases, it is hydrophilic (relatively hydrophilic with respect to the IL non-affinity porous layer (B)).
  • the gap may or may not include an independent hole, but includes at least a communication hole (or a through hole) communicating in the thickness direction.
  • the IL affinity porous layer (C) [the material constituting the IL affinity porous layer (C) or the IL affinity porous layer (C) forming component] is the IL non-affinity porous layer (B).
  • the organic material such as the resin described in the above section may be contained as a main component, but from the viewpoint of excellent moldability and mechanical properties, an inorganic material is used as a main component [IL affinity porous layer ( C), for example, in a proportion of 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more (substantially about 100% by weight).
  • the IL affinity porous layer (C) is obtained by hydrophilizing the resin described in the section of the IL non-affinity porous layer (B) (for example, a porous membrane made of hydrophilic PTFE, a hydrophilic PVDF In general, it is often a porous film (a porous film, a porous film or a microporous film) formed of an inorganic material.
  • the IL affinity porous layer (C) is formed of an inorganic material in this way, the IL-containing laminate can be imparted with rigidity derived from the inorganic material, so even if it is thin, the carbon dioxide separation membrane (IL-containing laminate) ) Is easy to handle and can effectively improve handling.
  • Inorganic materials are usually metal oxides such as Group 4A metal oxides (eg, titanium oxide, zirconium oxide, etc.), Group 5A metal oxides (vanadium oxide, etc.), Group 6A metal oxides, etc. (Molybdenum oxide, tungsten oxide, etc.), Group 7A metal oxides (manganese oxide, etc.), Group 8 metal oxides (nickel oxide, iron oxide, etc.), Group 1B metal oxides (copper oxide, etc.), 2B Group metal oxides (such as zinc oxide), Group 3B metal oxides (such as aluminum oxide and indium oxide), Group 4B metal oxides (such as silicon oxide and tin oxide), Group 5B metal oxides (such as antimony oxide) ) And the like.
  • Group 4A metal oxides eg, titanium oxide, zirconium oxide, etc.
  • Group 5A metal oxides vanadium oxide, etc.
  • Group 6A metal oxides, etc. Molybdenum oxide, tungsten oxide, etc.
  • metal oxides can be used alone or in combination of two or more.
  • a Group 3B metal oxide such as aluminum oxide, a Group 4B metal oxide such as silicon oxide (particularly a Group 3B metal oxide such as aluminum oxide), and the like are preferable.
  • the inorganic material (or metal oxide) may be in a particulate form.
  • the average particle diameter of the inorganic material (or metal oxide) is, for example, 0.001 to 10 ⁇ m (for example, 0.01 to 5 ⁇ m), preferably 0.1 to 3 ⁇ m (for example, 0.3 to 2 ⁇ m) on a number basis. More preferably, it may be about 0.5 to 1.5 ⁇ m (for example, 0.8 to 1.2 ⁇ m). In the present specification and claims, the average particle diameter can be measured by the method described in Examples below.
  • the shape of the particles is not particularly limited, and includes spherical (or substantially spherical), ellipsoidal, polygonal (polygonal, rectangular, rectangular), plate, rod, indeterminate, Usually, it is irregular.
  • the inorganic material may or may not be surface-treated from the viewpoint of improving dispersibility.
  • the gas permeability of the IL affinity porous layer (C) itself is reduced by the gaps (voids) between the particles. Since it can adjust highly, even if it is a laminated structure, the fall of gas permeability can be controlled effectively. Further, even if the surface of the carbon dioxide separation membrane (for example, the IL affinity porous layer (C) side in the carbon dioxide separation membrane) is touched, it is included because of the rigidity of the IL affinity porous layer (C).
  • the ionic liquid-containing liquid (A) is difficult to exude, the ionic liquid-containing liquid (A) can be held stably in a liquid state and the stickiness of the carbon dioxide separation membrane (IL-containing laminate) surface is effectively suppressed. Seems to be able to.
  • the IL affinity porous layer (C) is prepared by a conventional surface treatment (for example, a silane cup) in order to adjust wettability (or contact angle) with respect to the ionic liquid-containing liquid (A) (for example, ionic liquid).
  • a treatment with a ring agent or the like may be applied.
  • the average thickness of the IL affinity porous layer (C) can be selected, for example, from the range of about 0.01 to 100 ⁇ m (for example, 0.03 to 70 ⁇ m), for example, 0.05 to 50 ⁇ m (for example, 0.1 to 0.1 ⁇ m). To 30 ⁇ m), preferably 0.5 to 20 ⁇ m (for example, 1 to 15 ⁇ m), more preferably about 1 to 10 ⁇ m (for example, 2 to 7 ⁇ m). If the average thickness is too large, the weight of the carbon dioxide separation membrane (IL-containing laminate) may increase.
  • the pore size (average pore size or average pore size) of the IL affinity porous layer (C) may be, for example, about 0.001 to 10 ⁇ m (for example, 0.01 to 5 ⁇ m).
  • the pore diameter is too small, not only the amount capable of holding the ionic liquid-containing liquid (A) is decreased, but gas permeability may be decreased.
  • the IL affinity porous layer (C) is formed of an inorganic material (for example, metal oxide particles), the gas permeability seems to be easily adjusted.
  • the porosity (porosity or porosity) of the IL affinity porous layer (C) may be selected from a wide range of about 1 to 90% (for example, 10 to 80%), for example, 5 It may be about 70% (for example, 10 to 60%), preferably about 15 to 50% (for example, 20 to 45%), and more preferably about 25 to 40% (for example, 30 to 35%).
  • the porosity is too small, not only the amount that can hold the ionic liquid-containing liquid (A) is decreased but also gas permeability may be decreased. If it is too large, the ionic liquid-containing liquid (A) may not be stably maintained.
  • the communicating porosity of the IL affinity porous layer (C) may be, for example, about 50% or more, preferably about 70% or more, and more preferably about 90% or more (for example, substantially 100%).
  • the contact angle of the IL affinity porous layer (C) with respect to the ionic liquid-containing liquid (A) is, for example, less than 90 ° (eg, 0 ° or more and less than 90 °), preferably 85 ° or less. (For example, 15 to 85 °), more preferably about 80 ° or less (for example, 30 to 80 °). If the contact angle is too large, it may be difficult to hold the ionic liquid-containing liquid (A).
  • the difference in contact angle with respect to the ionic liquid-containing liquid (A) (or ionic liquid) in the IL non-affinity porous layer (B) and the IL affinity porous layer (C) is, for example, 10 ° or more (for example, 15 to 55 °), preferably 20 ° or more (eg, 25 to 50 °), more preferably about 30 ° or more (eg, 30 to 45 °). If the difference in contact angle is too small, it may be difficult to stably hold the ionic liquid-containing liquid (A). In addition, if the difference in contact angle is too large, there is a possibility that it does not spread flat (or in the surface direction) inside the IL affinity porous layer when the basis weight of the ionic liquid-containing liquid (A) is small.
  • the carbon dioxide separation membrane (IL-containing laminate) of the present invention is a laminate (IL-free laminate) comprising an IL non-affinity porous layer (B) and an IL-affinity porous layer (C).
  • the step of impregnating the liquid (or impregnating liquid) containing the ionic liquid-containing liquid (A) in the voids of the IL affinity porous layer (C) may be included.
  • the impregnation liquid may be composed only of the ionic liquid-containing liquid (A), and is a mixed liquid (solution or dispersion) in which the ionic liquid-containing liquid (A) and a solvent (or dispersion medium) are mixed. Also good. From the viewpoint of easily reducing the equivalent film thickness of the ionic liquid-containing liquid (A), the impregnating liquid is preferably a mixed liquid.
  • the “equivalent film thickness” is the same area as the carbon dioxide separation membrane (IL-containing laminate) using the ionic liquid-containing liquid (A) contained in the porous layer. It means the film thickness in the case of forming a liquid film.
  • the solvent (or dispersion medium) is preferably a solvent having higher volatility than the ionic liquid-containing liquid (A).
  • a solvent having higher volatility for example, water, alcohols (lower alcohols such as methanol, ethanol, isopropanol, butanol, cyclohexanol) Etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), esters (methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, etc.), ethers (diethyl ether, dioxane, tetrahydrofuran) ), Aliphatic hydrocarbons (such as hexane), alicyclic hydrocarbons (such as cyclohexane), aromatic hydrocarbons (such as benzene), halogenated hydrocarbons (such as dich
  • ionic liquid-containing liquid (A) in the impregnating liquid is, for example, 0.001 to 100% by weight, preferably 0.01 to 50% by weight (eg 0.05 to 30% by weight), and more preferably 0.00. It may be about 1 to 10% by weight (for example, 0.1 to 8% by weight).
  • the method of impregnating the impregnating liquid is not particularly limited, and for example, a method of press-fitting the impregnating liquid may be used.
  • a laminate an IL-free laminate including an IL non-affinity porous layer (B) and an IL affinity porous layer (C)
  • a laminate on the IL affinity porous layer (C) side is brought into contact with the impregnating liquid, and the other side (IL non-affinity porous layer (B) side) is depressurized (or sucked from the opposite side) to impregnate the impregnating liquid.
  • the carbon dioxide separation membrane (IL-containing laminate) of the present invention can be easily or efficiently molded.
  • a carbon dioxide separation membrane may be prepared by volatilizing the solvent (or dispersion medium) after the impregnation step.
  • the equivalent film thickness of the ionic liquid-containing liquid (A) can be easily adjusted, and the film thickness can be easily reduced.
  • the method for volatilizing the solvent is not particularly limited, and may be volatilized by appropriately heating and / or reducing the pressure according to the boiling point or vapor pressure of the solvent.
  • the content of the ionic liquid-containing liquid (A) is 100 parts by volume with respect to 100 parts by volume of voids inside the IL-affinity porous layer (C). It is preferable not to contain an ionic liquid-containing liquid (A) that exceeds. That is, the carbon dioxide separation membrane (IL-containing laminate) contains an ionic liquid that does not completely enter the gap adjacent to the IL-affinity porous layer (C) containing (or holding) the ionic liquid-containing liquid (A). It is preferable not to have the second ionic liquid-containing layer containing the liquid (A).
  • the IL affinity porous layer (C) is 100 parts by volume with respect to 100 parts by volume of the internal voids.
  • it can be selected from the range of about 0.1 to 99 volume parts (for example, 1 to 90 volume parts), for example, 3 to 80 volume parts (for example, 5 to 70 volume parts), preferably 10 to 50 volumes.
  • Part for example, 15 to 45 parts by volume
  • more preferably about 20 to 40 parts by volume for example, 25 to 35 parts by volume
  • the equivalent film thickness of the ionic liquid-containing liquid (A) is, for example, 0.01 to 5 ⁇ m (for example, 0.05 to 3 ⁇ m), preferably 0. It may be about 1 to 2 ⁇ m (for example, 0.15 to 1.5 ⁇ m), more preferably about 0.2 to 1 ⁇ m (for example, 0.2 to 0.7 ⁇ m). If the converted film thickness is too large, the transmission speed may be reduced.
  • the laminated body (IL non-containing laminated body) provided with the IL non-affinity porous layer (B) and the IL affinity porous layer (C) is, for example, an IL non-affinity porous layer (B). It can be prepared by laminating (or forming) the IL affinity porous layer (C) directly or indirectly on any one of the surfaces.
  • the method for laminating (or forming) the IL affinity porous layer (C) is not particularly limited, and may be, for example, pressure bonding, thermal fusion, adhesion with an adhesive or a pressure sensitive adhesive, and the like.
  • the IL-affinity porous layer (C) when the IL-affinity porous layer (C) is formed of an inorganic material, it may be formed by a conventional method, for example, a method of sintering a powdery inorganic material, etc. From the point that the layer can be easily or efficiently formed and the handleability can be improved, a dispersion (or slurry) in which a particulate (or powder) inorganic material is dispersed in a dispersion medium is applied, and the coating film is dried. You may form by the method including an application
  • dispersion medium examples include those similar to the solvent (or dispersion medium) exemplified in the section of the impregnating liquid. These dispersion media can be used alone or in combination of two or more. Of these dispersion media, water is usually used in many cases. When water is used as a dispersion medium, a small amount of alcohol such as isopropanol is used (for example, with respect to 100 parts by weight of the inorganic material) in order to improve the coating property with respect to the IL non-affinity porous layer (B). 0.01 to 10 parts by weight, preferably about 0.1 to 2 parts by weight).
  • a binder for example, carboxymethylcellulose or a salt thereof (sodium salt, etc.), hydroxyalkylcellulose (hydroxyethylcellulose, hydroxypropylcellulose, etc.), water-soluble resin such as methylcellulose; styrene butadiene
  • a small amount eg, about 0.01 to 10 parts by weight, preferably about 0.1 to 2 parts by weight with respect to 100 parts by weight of the inorganic material
  • a binder is not always necessary, but an IL-affinity porous layer (C) having a large film thickness can often be easily prepared.
  • the concentration of the inorganic material in the dispersion is, for example, 0.1 to 50% by weight, preferably 1 to 30% by weight, more preferably 3 to 20% by weight (eg 5 to 15% by weight) with respect to the whole dispersion. %) Degree.
  • the coating method is not particularly limited, and a conventional method such as a roll coater method, an air knife coater method, a blade coater method, a rod coater method, a reverse coater method, a bar coater method, a comma coater method, a dip squeeze coater method, Examples include a die coater method, a gravure coater method, a micro gravure coater method, a silk screen coater method, a dip method, a spray method, and a spinner method. Of these methods, the bar coater method is widely used. If necessary, the dispersion (or coating solution) may be applied a plurality of times.
  • the dispersion liquid is further cast or applied, and then the dispersion medium is evaporated to dry the coating film.
  • the drying temperature can be generally selected according to the boiling point of the dispersion medium, and may be, for example, about 50 to 150 ° C., preferably about 80 to 120 ° C., and more preferably about 90 to 110 ° C.
  • the carbon dioxide separation membrane of the present invention (or an IL-free laminate comprising an IL non-affinity porous layer (B) and an IL affinity porous layer (C)) is an IL non-affinity porous material. It may be a two-layer structure of a layer (B) and an IL affinity porous layer (C), and further includes a multilayer structure of three or more layers including another layer (or a third layer) such as the support layer. (For example, a 3 to 5 layer structure) may be used.
  • the third layer is not particularly limited as long as gas can permeate.
  • the support layer for example, metal (such as stainless steel) or resin net (or mesh)], adhesive, or adhesive An agent layer etc. are mentioned.
  • the carbon dioxide separation membrane (IL-containing laminate) of the present invention preferably has a 2- to 3-layer structure (particularly a 2-layer structure). Further, from the viewpoint of effectively holding or fixing the ionic liquid-containing liquid (A), the IL non-affinity porous layer (B) and the IL affinity porous layer (C) are formed adjacent to each other. Is preferred.
  • the carbon dioxide separation membrane (IL-containing laminate) of the present invention is excellent in gas permeability, for example, in the agricultural field, a carbon dioxide separation membrane (carbon dioxide enrichment membrane) for fertilizing plants. It can utilize suitably as.
  • the IL affinity porous layer (C) side containing the ionic liquid-containing liquid (A) is usually the gas supply side (supply side or upstream side), and the opposite side (IL non-affinity).
  • the porous layer (B) side) is often used with the permeation side (or downstream side).
  • the carbon dioxide permeability coefficient in the carbon dioxide separation membrane of the present invention is, for example, 0.5 ⁇ 10 ⁇ 10 cm 3 ⁇ cm / (s ⁇ cm 2 ⁇ cmHg) or more under the conditions of 27 ° C. and 1 atm [for example, 0.7 ⁇ 10 ⁇ 10 to 4 ⁇ 10 ⁇ 10 cm 3 ⁇ cm / (s ⁇ cm 2 ⁇ cmHg)], preferably 1 ⁇ 10 ⁇ 10 cm 3 ⁇ cm / (s ⁇ cm 2 ⁇ cmHg) or more [
  • the carbon dioxide permeation rate of the carbon dioxide separation membrane is as follows: 27 ° C., 1 atm, differential pressure between the supply side and the permeation side of 50 to 100 kPa (for example, about 65 to 90 kPa), and membrane area of about 12.57 cm 2 .
  • 0.5 ⁇ 10 ⁇ 3 mL / second or more for example, 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 3 mL / second
  • preferably 1.2 ⁇ 10 ⁇ 3 mL / second or more for example, 1.4 ⁇ 10 ⁇ 3 to 3 ⁇ 10 ⁇ 3 mL / second
  • more preferably 1.6 ⁇ 10 ⁇ 3 mL / second or more for example, 1.7 ⁇ 10 ⁇ 3 to 2.5 ⁇ 10 ⁇ 3).
  • mL / second 0.5 ⁇ 10 ⁇ 3 mL / second or more (for example, 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 3 mL / second), preferably 1.2 ⁇ 10 ⁇ 3 mL / second or more (for example, 1.4 ⁇ 10 ⁇ 3 to 3 ⁇ 10 ⁇ 3 mL / second), more preferably 1.6 ⁇ 10 ⁇ 3 mL / second or more (for example, 1.7 ⁇ 10 ⁇ 3 to 2.5
  • a carbon dioxide permeation coefficient and a carbon dioxide permeation rate can be measured by the method described in Examples described later.
  • the carbon dioxide concentrator (or carbon dioxide separator) of the present invention includes the carbon dioxide separator.
  • the shape of the carbon dioxide separation membrane is not particularly limited, and may be, for example, a flat membrane shape, a spiral shape in which a flat membrane is wound, a hollow fiber membrane shape, or the like. These shapes can be used alone or in combination of two or more.
  • the carbon dioxide separation membrane often forms a membrane module (concentration unit or separation unit) together with a support material for supporting or fixing the carbon dioxide separation membrane.
  • the material and shape of the support material are not particularly limited as long as gas permeation is not inhibited, and is appropriately selected according to the shape of the carbon dioxide separation membrane.
  • the concentration unit may include one carbon dioxide separation membrane or may include two or more carbon dioxide separation membranes.
  • the carbon dioxide concentrating device further includes an intake unit for supplying a gas component containing carbon dioxide (for example, air) to the carbon dioxide separation membrane in addition to the concentration unit.
  • the intake unit can supply a gas component containing carbon dioxide to the carbon dioxide separation membrane by generating a differential pressure upstream (or gas supply side) and downstream (permeation side) of the concentration unit.
  • the intake unit is not particularly limited as long as the differential pressure can be formed, and may be disposed on the upstream side of the concentration unit, or may be disposed on the downstream side.
  • an air compressor disposed on the upstream side of the concentration unit, a pump (for example, a diaphragm pump) disposed on the downstream side, or the like may be used.
  • the carbon dioxide concentrating device of the present invention can be operated (or operated) as long as it includes at least the concentrating unit and the intake unit, so that the device configuration (or design) can be simplified and the size can be easily reduced. Moreover, even if the carbon dioxide concentration membrane has a high permeation rate (carbon dioxide permeation rate) and a relatively low differential pressure, carbon dioxide can be concentrated (or enriched) effectively or efficiently. Therefore, even a small intake unit with a low intake capacity can operate smoothly (smoothly).
  • the carbon dioxide concentrator is intended to concentrate and reliably remove carbon dioxide from gas components containing carbon dioxide (for example, exhaust gas discharged from factories, etc .; energy resources such as natural gas). It is used for the purpose.
  • gas component which is a target in the industrial field is often a high pressure, and separation ability for selectively separating carbon dioxide from such a gas component is regarded as important.
  • the agricultural field or fertilizer application
  • it is used for the purpose of supplying from the atmosphere or the like to such an extent that the indoor carbon dioxide concentration can be maintained at a predetermined level.
  • the carbon dioxide separation membrane used for fertilization applications is required to be able to supply an appropriate amount of carbon dioxide smoothly (or smoothly). That is, the balance between carbon dioxide separation ability and permeation rate is very important.
  • the carbon dioxide separation membrane (or carbon dioxide concentrator) of the present invention that can separate (concentrate or supply) carbon dioxide at a high carbon dioxide permeation rate even at a relatively low differential pressure is used for the carbon dioxide separation in the agricultural field. It can be suitably used for fertilizing applications.
  • the plant to be fertilized is not particularly limited, and is usually a plant cultivated indoors such as an agricultural or horticultural facility (for example, a greenhouse, a plastic house, a plant factory, etc.). Specifically, for example, fruits or vegetables such as strawberries, tomatoes, cucumbers, bean sprouts, flower buds (or ornamental plants) such as roses, aquatic plants, and the like may be used.
  • an agricultural or horticultural facility for example, a greenhouse, a plastic house, a plant factory, etc.
  • fruits or vegetables such as strawberries, tomatoes, cucumbers, bean sprouts, flower buds (or ornamental plants) such as roses, aquatic plants, and the like may be used.
  • emimDCA 1-ethyl-3-methylimidazolium dicyanamide, manufactured by Tokyo Chemical Industry Co., Ltd.
  • emimTFSA 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide
  • P 4444 Pro tetrabutylphosphonium prolinate manufactured by Tokyo Chemical Industry Co., Ltd., synthesized according to the description in JP-A-2014-139149 [0034].
  • TETA Triethylenetetramine, manufactured by Tokyo Chemical Industry Co., Ltd.
  • PE porous membrane “Upore” manufactured by Ube Industries, Ltd., porous membrane made of polyethylene, pore diameter 0.1 ⁇ m, thickness 20 ⁇ m Durapel: “Durapel” manufactured by Merck Millipore, a surface-treated polyvinylidene fluoride (PVDF) porous membrane with a fluorine-containing monomer, pore size 0.22 ⁇ m, thickness 125 ⁇ m PVDF filter 1: “Durapore GVHP” manufactured by Merck Millipore, porous membrane made of polyvinylidene fluoride (PVDF), pore diameter 0.22 ⁇ m, thickness 125 ⁇ m PVDF filter 2: “Durapore VVHP” manufactured by Merck Millipore, a porous membrane made of polyvinylidene fluoride (PVDF), pore diameter 0.1 ⁇ m, thickness 125 ⁇ m Cellulose acetate filter: “C020A047A” manufactured by ADVANTEC
  • Alumina particles “ ⁇ -alumina” manufactured by Wako Pure Chemical Industries, Ltd., average particle size (catalog value): about 1 ⁇ m, number-based average particle size (actual value): 0.94 ⁇ m; The number-based average particle diameter (actual measurement value) was obtained by taking an image magnified 10,000 times with a scanning electron microscope (manufactured by JEOL Ltd., “JSM-6700F”). The major axis was measured, and the average value of the obtained major axes was calculated.
  • Hydrophilic PVDF filter 1 “Durapore GVWP” manufactured by Merck Millipore, a porous membrane made of polyvinylidene fluoride (PVDF) subjected to hydrophilization treatment (treatment for chemically bonding a hydrophilic group to the PVDF main chain), pore size 0. 22 ⁇ m, thickness 125 ⁇ m
  • Hydrophilic PVDF filter 2 “Durapore VVPP” manufactured by Merck Millipore, a porous membrane made of polyvinylidene fluoride (PVDF), which has been subjected to a hydrophilization treatment (treatment in which a hydrophilic group is chemically bonded to the PVDF main chain). 1 ⁇ m, thickness 125 ⁇ m.
  • Spreads on the base material without passing through the base material and without forming a drop.
  • Drops on the base material to form a drop.
  • Example 1 The alumina particles and water were mixed to prepare an alumina particle dispersion (alumina particle slurry) having a concentration of 8 to 10% by weight.
  • alumina particle slurry On the PE porous film as the IL non-affinity porous layer (B), the alumina particle slurry is applied by a bar coater method using a wire bar, dried at 100 ° C. for 1 minute, and the IL affinity porous layer ( C) was formed.
  • the alumina particle slurry was applied so that the thickness of the IL affinity porous layer (C) after drying was 5 ⁇ m.
  • the permeability with respect to an ionic liquid was evaluated using the obtained IL-free laminate. The ionic liquid was dropped on the IL-affinity porous layer (C) side of the fixed IL-free laminate, and the opposite side of the dropped surface (IL non-affinity porous layer (B) side) was decompressed. .
  • Example 2 Example 1 except that 1% by weight of isopropanol (IPA) based on the weight of the alumina particles is added to the alumina particle dispersion and that Durapel is used as the IL non-affinity porous layer (B).
  • IPA isopropanol
  • Table 1 shows the results of Examples 1-2 and Comparative Examples 1-8.
  • the basis weight of the IL-containing liquid (A) is the value shown in Table 2.
  • the pressure was reduced from the IL non-affinity porous layer (B) side so that the differential pressure was 30 kPa.
  • the laminate was dried at 60 ° C. under reduced pressure for 10 hours using a vacuum dryer to prepare a carbon dioxide separation membrane (IL-containing laminate).
  • Table 2 shows the evaluation results of the appearance of the obtained carbon dioxide separation membrane.
  • the basis weight was calculated from the weight change of the laminate before and after application of the ionic liquid-containing liquid (A).
  • Example 7 The IL-free laminate of Durapel as the IL non-affinity porous layer (B) prepared in Example 2 and the alumina particle film as the IL affinity porous layer (C) was cut into a 4 cm diameter circle. The sample was fixed on a filter installed on a suction bottle.
  • EmimDCA aqueous solution as impregnating solution [concentration of IL-containing liquid (A): 0.14 wt% (Example 7), 0.28 wt% (Example 8), 1.39 wt% (Example 9), 5 .58 wt% (Example 10)] was applied so that the basis weight of the IL-containing liquid (A) [emimDCA] was the value shown in Table 3, and the IL non-affinity porous layer (B) The pressure was reduced from the side so that the differential pressure was 30 kPa. Next, the laminate was dried at 60 ° C. for 10 hours under reduced pressure using a vacuum dryer to prepare a carbon dioxide separation membrane. Table 3 shows the evaluation results of the appearance of the obtained carbon dioxide separation membrane.
  • Example 11 instead of the emimDCA aqueous solution as the impregnating liquid containing the IL-containing liquid (A), a methanol solution of emimTFSA [concentration of the IL-containing liquid (A): 0.19 wt% (Example 11), 0.38 wt% ( Example 12) 1.91% by weight (Example 13), 7.64% by weight (Example 14)], and the basis weight of the IL-containing liquid (A) [emimTFSA] was a value described in Table 4 A carbon dioxide separation membrane was prepared in the same manner as in Example 7 except that coating was performed so that Table 4 shows the evaluation results of the appearance of the obtained carbon dioxide separation membrane.
  • Example 15 instead of an emimDCA aqueous solution as an impregnating solution containing an IL-containing solution (A), an aqueous solution of P 4444 Pro [concentration of IL-containing solution (A): 0.12 wt% (Example 15), 0.25 wt% (Example 16), 1.24 wt% (Example 17), 4.94 wt% (Example 18)], and the basis weight of the IL-containing liquid (A) [P 4444 Pro] is shown in Table 5 A carbon dioxide separation membrane was prepared in the same manner as in Example 3 except that coating was performed so that the values described were obtained. Table 5 shows the evaluation results of the appearance of the obtained carbon dioxide separation membrane.
  • Example 19 instead of an aqueous solution of emimDCA as the impregnating solution, an aqueous solution containing an equimolar mixture of P 4444 Pro and TETA [concentration of IL-containing solution (A): 0.12 wt% (Example 19), 0.25 wt. % (Example 20), 1.23% by weight (Example 21), 4.94% by weight (Example 22)], and the basis weight of the IL-containing liquid (A) [P 4444 Pro / TETA]
  • a carbon dioxide separation membrane was prepared in the same manner as in Example 3 except that coating was performed so that the values shown in Table 6 were obtained. Table 6 shows the evaluation results of the appearance of the obtained carbon dioxide separation membrane.
  • the porosity ⁇ C of the IL affinity porous layer (C) was calculated by the following formula.
  • ⁇ C [%] (1 ⁇ C / ⁇ C0 ) ⁇ 100 [Wherein ⁇ C is the porosity of the IL affinity porous layer (C), ⁇ C is the bulk density of the IL affinity porous layer (C), and ⁇ C0 is the IL affinity porous layer (C) forming component Is true density (for example, true density at room temperature of about 25 ° C.)].
  • maximum basis weight means the maximum value of the ionic liquid-containing liquid (A) that can be contained in the voids inside the IL-affinity porous layer (C) per unit area, and is calculated by the following formula. did.
  • ⁇ A is the density of the ionic liquid-containing liquid (A) (for example, the density at room temperature of about 25 ° C.)
  • V C is the volume of the IL-affinity porous layer (C) (the total volume including voids)
  • ⁇ C represents the porosity of the IL affinity porous layer (C)
  • S represents the area of the IL affinity porous layer (C) (or carbon dioxide separation membrane).
  • the “equivalent film thickness” is the case where a liquid film (circular shape with a diameter of 4 cm) having the same area as the carbon dioxide separation membrane is formed using the same amount of liquid as the retained ionic liquid-containing liquid (A). It was calculated by the following formula.
  • t (weight per unit area) / ⁇ A [Where t is the equivalent film thickness [ ⁇ m], and ⁇ A is the density of the ionic liquid-containing liquid (A) (for example, the density at room temperature of about 25 ° C.).
  • the carbon dioxide separation membranes of the examples can be easily molded and can stably hold or fix the ionic liquid in the liquid state.
  • a carbon dioxide separation membrane (IL-containing laminate) Not only the surface is not sticky, but also the liquid does not ooze out when touched, so the ionic liquid is stably held (or fixed) in the liquid state, and it is understood that it is excellent in handleability. It was.
  • the thickness of the IL-affinity porous layer (C) and the equivalent film thickness of the IL-containing liquid (A) can be easily reduced as shown in the examples, so that the handleability of the carbon dioxide separation membrane is maintained.
  • gas permeability for example, permeation speed
  • Example 23 A carbon dioxide separation membrane was prepared by the same method as in Example 3 except that an aqueous solution of emimDCA as an impregnating solution containing an IL-containing solution (A) was used by further adding a red aqueous ink.
  • the obtained carbon dioxide separation membrane was fixed with an adhesive tape, frozen, and cut with a razor to prepare a section. The result of observing the cut surface of this section with a CCD camera is shown in FIG.
  • the IL-containing liquid (A) spreads in the surface direction (or in a flat shape) toward the IL non-affinity porous layer (B) side in the IL affinity porous layer (C). Distributed. Therefore, even if it touches the carbon dioxide separation membrane surface, it is estimated that the ionic liquid-containing liquid (A) does not adhere and is excellent in handleability.
  • v [mL / sec] (100 ⁇ T 100 ) / T 100 (Wherein, v shows the the permeation rate of the gas passing through the IL-containing laminate [mL / sec], T 100 is the time taken to collect gas 100mL discharged from the diaphragm pump [sec]).
  • v CO2 v ⁇ C IL ⁇ 10 ⁇ 6 (where v CO2 is the permeation rate of CO 2 permeating the IL-containing laminate, mL is the permeation rate [mL / sec] of gas permeating the IL-containing laminate, and C IL is increased by concentration. (The carbon dioxide concentration (supplied from the atmosphere through the carbon dioxide separation membrane (IL-containing laminate)) (volume basis) [ppm] is shown).
  • P v CO2 / S / p ⁇ t (Wherein P is the CO 2 permeability coefficient [cm 3 ⁇ cm / (s ⁇ cm 2 ⁇ cmHg)], v CO2 is the CO 2 permeation rate [mL / sec], and S is the carbon dioxide separation membrane area (IL-containing laminate) Body area) [cm 2 ], p is the differential pressure [cmHg] between the upstream side (supply side) and the downstream side (decompression side or permeation side) of the carbon dioxide separation membrane (IL-containing laminate), and t is the ionic liquid The equivalent film thickness [cm] of the containing liquid (A) is shown).
  • Example 24 By using an emimDCA aqueous solution [concentration of IL-containing liquid (A): 0.14 wt% (Example 24), 0.28 wt% (Example 26)] as an impregnation liquid, an ionic liquid-containing liquid (A) A carbon dioxide separation membrane (IL-containing laminate) was prepared in the same manner as in Example 7 except that coating was performed so that the amount of [emimDCA] was as shown in Table 7. Table 8 shows the evaluation results of the carbon dioxide concentration characteristics of the obtained carbon dioxide separation membrane (IL-containing laminate).
  • Examples 28 to 29 and 35 to 36 Using emimTFSA methanol solution [concentration of IL-containing liquid (A): 0.38 wt% (Examples 28 to 29), 1.91 wt% (Examples 35 to 36)] as an impregnation liquid, A carbon dioxide separation membrane (IL-containing laminate) was prepared in the same manner as in Example 7 except that coating was performed so that the basis weight of the containing liquid (A) [emimTFSA] was a value shown in Table 7. Table 8 shows the evaluation results of the carbon dioxide concentration characteristics of the obtained carbon dioxide separation membrane (IL-containing laminate).
  • the carbon dioxide separation membrane of the example can effectively concentrate carbon dioxide from the atmosphere.
  • the equivalent film thickness could be adjusted to be thin, and carbon dioxide could be concentrated at a high permeation rate.
  • the permeation rate tended to be high, and in particular, in Example 32 where TETA was added as the second liquid, the permeation rate was particularly high. This means that TETA does not inhibit the permeation (or elimination) of carbon dioxide due to the high affinity (or good dispersion state) between TETA and the proline anion ([Pro] ⁇ ) in P 4444 Pro. It is speculated that it was possible to interact with carbon dioxide to a certain extent.
  • the carbon dioxide separation membrane of the present invention can stably hold (or fix) an ionic liquid and is excellent in handleability (or handling properties), for example, in the field of agriculture, carbon dioxide for fertilizing plants with carbon dioxide. It can be used effectively as a carbon separation membrane.

Abstract

本発明の二酸化炭素分離膜は、イオン液体含有液(A)を空隙に保持したイオン液体親和性多孔質層(C)と、イオン液体非親和性多孔質層(B)とを含む。前記イオン液体親和性多孔質層(C)は、無機材料(例えば、個数基準で平均粒径0.001~5μm程度の金属酸化物粒子)を含んでいてもよい。イオン液体親和性多孔質層(C)の平均厚みは、0.01~10μm程度であってもよい。イオン液体親和性多孔質層(C)は、内部の空隙100体積部に対して、イオン液体含有液(A)を0.1~99体積部の割合で含んでいてもよい。植物に二酸化炭素を施肥するための二酸化炭素分離膜であってもよい。前記二酸化炭素分離膜は、二酸化炭素濃縮装置を小型化でき、かつスムーズな稼働を可能にする。

Description

二酸化炭素分離膜及びその製造方法
 本発明は、農業分野における二酸化炭素の施肥に適した二酸化炭素分離膜及びその製造方法、並びに前記二酸化炭素分離膜を備えた二酸化炭素濃縮装置に関する。
 農業用又は園芸用施設(例えば、温室、ビニールハウス、植物工場など)などでは、日中、日射量が多い時間帯では、植物の光合成が活発になるため、施設内の二酸化炭素(炭酸ガス又はCO)濃度が低下し易い。施設内の二酸化炭素濃度が低い状態が続くと、植物が十分に光合成できず、成長が阻害されたり成長速度が低下するおそれがある。そのため、植物の成長を促進して収穫量を向上する目的で、二酸化炭素の施肥が行われている。
 二酸化炭素を施肥する方法としては、例えば、ガスボンベにより供給する方法、燃料(例えば、灯油、プロパンガスなど)を燃焼して発生させた二酸化炭素を供給する方法などが知られている。しかし、ガスボンベによる供給では、高圧ガスが封入されたボンベを頻繁に交換する必要があるため、交換作業が煩雑であるとともに、安全性の面からも好ましくない。また、燃料の燃焼を利用する方法では、廃熱により施設内の温度が上昇し易いため、適用可能な植物が制限されたり、換気又は空調設備が別途必要になる場合がある。化石燃料の利用も、環境負荷低減の観点から好ましくない。
 上記方法では、いずれもランニングコストが高く、植物の種類によっては採算がとれない場合がある。そのため、ガスボンベや燃料を用いることなく、吸着材により大気中の二酸化炭素を濃縮して供給する方法も検討されている。例えば、特開2014-75994号公報(特許文献1)には、植物工場や園芸用温室などにCOガスを供給するための装置として、所定の2つの圧力容器、エアコンプレッサーなどを備えたCOガス濃縮装置が開示されている。この文献には、吸着剤として、ゼオライト、アルミナ、活性炭などを利用できることが記載されている。しかし、この装置は、二酸化炭素の濃縮に2つの圧力容器が必要なため、小型化が困難であり、施設によっては設置が困難な場合がある。また、二酸化炭素を吸着材に吸着させて濃縮する工程と、濃縮した二酸化炭素を吸着剤から脱離させる工程とが必須なため工程が煩雑であり、特に、運転開始直後においてはスムーズ(又は円滑)に稼働できない。
 一方で、イオン液体の優れたガス吸収特性が注目を浴びており、近年、この特性を利用したガスの分離回収(又は除去)方法の開発が進められている。
 例えば、特開2016-10760号公報(特許文献2)には、1級又は2級アミノ基と、特定の骨格とを有するアミニウムをカチオンとするイオン液体が、酸性ガス化学吸収液として利用できることが開示されている。この文献の実施例では、反応容器12内に収容された前記酸性ガス化学吸収液中に、ガス導入管16を用いて二酸化炭素を流通させる装置が記載されている。
 しかし、イオン液体を液状のまま用いるため取り扱い難く、装置の組み立てや設置作業が煩雑になり易い。
 また、特開2015-124264号公報(特許文献3)には、ポリエチレングリコール骨格を有する多官能性チオール化合物と、ポリエチレングリコール骨格を有する多官能性ビニル化合物とをエンチオール反応させて得られるポリマーと、イオン液体などの液体とを含むゲル状薄膜が開示されている。このゲル状薄膜は、液体含有率が高く、高強度かつ高耐圧性を有し、優れた気体透過性能を有する気体分離膜として利用できること、また、多孔質膜上にコーティングして複合膜とすることで薄膜化可能であることなどが記載されている。この文献の実施例では、4官能の前記チオール化合物と、4官能の前記ビニル化合物とを反応させたポリマーに、イオン液体などの液体を含有させたゲル状薄膜を調製している。特に、実施例6及び7では、ポリスルホン層の上にゲル状薄膜を形成した複合膜を調製している。
 このようなゲル状薄膜は、ゲルとしてイオン液体を保持できるため、液状のままの形態(例えば、液膜など)に比べて取り扱い易いものの、手で触れると液が付着してべたべたするため、取り扱い性が充分なものとはいえず、ゲル化により粘度が増加するため、気体透過性能の向上には限界がある。また、前記ポリマーを調製するための化合物も高粘度で取り扱い性が低く、薄い塗膜を安定して又は効率よく形成し難いため、薄膜化による気体透過性能(透過速度など)の改善も困難である。さらに、前記ポリマーの膜厚を薄く調製できたとしても、液体を含浸してゲル化させるため、膨潤により必然的に膜厚が増加するだけでなく、寸法安定性も低い。そのため、利用用途などが制限される場合がある。
 なお、特開2001-120940号公報(特許文献4)には、ポリオール類とアミン類とを組み合わせた炭酸ガスキャリアー液(C)を含浸した非ゲル化多孔質膜(A)と、前記キャリアー液(C)に対して撥液性の疎水性多孔質膜(B)とを積層した膜を利用した炭酸ガス分離・除去方法が開示されている。この文献の実施例では、トリエチレングリコール及びジエタノールアミンの混合液を含浸させた親水性ポリテトラフルオロエチレン製多孔質膜と、ポリビニリデンフルオライド製多孔質膜とを積層した膜を調製している。しかし、この文献には、イオン液体について何ら記載されていない。
 また、特許文献2~4には、主として工業用途、例えば、工場などから排出される排気ガスや、エネルギー資源(例えば、天然ガスなど)から二酸化炭素を分離回収(又は除去)する用途について記載されているものの、大気から濃縮した二酸化炭素を植物に供給する農業用途(施肥用途)については何ら記載されていない。
特開2014-75994号公報(特許請求の範囲、図1、[0048]) 特開2016-10760号公報(請求項1、実施例、図1、[0130]) 特開2015-124264号公報(特許請求の範囲、実施例、[0133]) 特開2001-120940号公報(特許請求の範囲、実施例、[0013])
 従って、本発明の目的は、二酸化炭素濃縮装置を小型化でき、かつスムーズな稼働を可能にする二酸化炭素分離膜及びその製造方法を提供することにある。
 本発明の他の目的は、容易に成形可能であり、かつイオン液体の液体状態を維持しつつ安定に保持(又は固定)できる二酸化炭素分離膜及びその製造方法を提供することにある。
 本発明のさらに他の目的は、イオン液体を含んでいても、取り扱い性(又はハンドリング性)に優れた二酸化炭素分離膜及びその製造方法を提供することにある。
 本発明の別の目的は、薄膜化が容易であり、気体透過性(例えば、透過速度など)を効率よく向上できる二酸化炭素分離膜及びその製造方法を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、イオン液体に対して非親和なイオン液体非親和性多孔質層(B)と、イオン液体に対して親和性を示すイオン液体親和性多孔質層(C)とを備えた積層体において、イオン液体親和性多孔質層(C)の空隙にイオン液体含有液[又はイオン液体を含む液状組成物](A)を含有(又は保持)させると、二酸化炭素濃縮装置を小型化でき、かつスムーズな稼働を可能とする二酸化炭素分離膜(特に、農業分野における施肥用の二酸化炭素分離膜)として有効に利用できることを見いだし、本発明を完成した。
 すなわち、本発明の二酸化炭素分離膜[イオン液体含有積層体(又はIL含有積層体)という場合がある]は、イオン液体含有液(A)[IL含有液(A)又はイオン液体を含む液状組成物(A)ともいう]を空隙に保持したイオン液体親和性多孔質層(C)[IL親和性多孔質層(C)ともいう]と、イオン液体非親和性多孔質層(B)[IL非親和性多孔質層(B)ともいう]とを含む。
 前記イオン液体親和性多孔質層(C)[イオン液体親和性多孔質層(C)を構成する材質(又は形成成分)]は、無機材料を含んでいてもよく、例えば、個数基準で平均粒径0.001~5μm程度の金属酸化物粒子を含んでいてもよい。前記イオン液体親和性多孔質層(C)の平均厚みは、0.01~10μm程度であってもよい。
 前記イオン液体含有液(A)は、イオン液体を含み、このイオン液体は、アンモニウム類、イミダゾリウム類及びホスホニウム類から選択されるカチオンと、フッ素含有アニオン、シアノ基含有アニオン及びアミノ酸由来のアニオンから選択されるアニオンとを含んでいてもよい。
 前記IL親和性多孔質層(C)が、内部の空隙100体積部に対して、イオン液体含有液(A)を0.1~99体積部の割合で含んでいてもよい。イオン液体含有液(A)の換算膜厚(二酸化炭素分離膜に保持されたイオン液体含有液(A)と等量の液で形成され、かつ二酸化炭素分離膜と同じ面積を有する液膜の膜厚)は0.1~2μm程度であってもよい。
 前記イオン液体非親和性多孔質層(B)[イオン液体非親和性多孔質層(B)を構成する材質(又は形成成分)]は、ポリオレフィン系樹脂、フッ素樹脂及びセルロース誘導体から選択される少なくとも1種の樹脂を含んでいてもよく、イオン液体非親和性多孔質層(B)の前記イオン液体含有液(A)に対する接触角は、90°以上(例えば、90~150°)程度であってもよい。
 前記イオン液体含有液(A)は、イオン液体と相溶可能な第2の液体(例えば、促進輸送剤など)をさらに含んでいてもよい。前記第2の液体はポリアミン類であってもよい。前記イオン液体含有液(A)において、イオン液体と前記第2の液体との割合は、例えば、前者/後者(モル比)=25/75~75/25程度であってもよい。
 本発明の二酸化炭素分離膜は、植物に二酸化炭素を施肥するための二酸化炭素分離膜であってもよい。前記植物は、屋内で栽培される植物であってもよい。
 本発明は、前記イオン液体非親和性多孔質層(B)と、前記イオン液体親和性多孔質層(C)とを備えた積層体において、イオン液体親和性多孔質層(C)の空隙に、前記イオン液体含有液(A)を含む液体を含浸させる工程(含浸工程)を含む前記二酸化炭素分離膜を製造する方法を包含する。
 また、本発明は、前記二酸化炭素分離膜を備えた二酸化炭素濃縮装置も包含する。
 なお、本願明細書及び特許請求の範囲において、「イオン液体非親和性多孔質層(B)」及び「イオン液体親和性多孔質層(C)」の親和性及び非親和性は、前記2つの多孔質層のイオン液体に対する接触角により評価できる。すなわち、前記2つの多孔質層のうち、二酸化炭素分離膜が含有するイオン液体[又はイオン液体含有液(A)]に対する接触角が相対的に大きい層がイオン液体非親和性多孔質層(B)、相対的に小さい層がイオン液体親和性多孔質層(C)であることを意味する。また、接触角は、慣用の方法、例えば、温度27℃、湿度55%RH、大気圧(1気圧:101.3kPa)の環境下、多孔質層上に液を滴下してCCDカメラなどにより側面から観察し、滴下直後(例えば、1秒後)の観察画像を解析する方法などにより測定できる。
 本発明の二酸化炭素分離膜は、イオン液体非親和性多孔質層(B)と、イオン液体親和性多孔質層(C)と、イオン液体親和性多孔質層(C)の空隙に含有されたイオン液体含有液(A)とを含むため、二酸化炭素濃縮装置を小型化でき、かつスムーズな稼働を可能とする。また、二酸化炭素分離膜は容易に成形可能であり、かつイオン液体の液体状態を維持しつつ(ゲル化などにより粘度を増加することなく)安定に保持(又は固定)できる。そのため、二酸化炭素分離膜は、イオン液体を含んでいても、表面におけるべたつきなどを抑制でき、取り扱い性(又はハンドリング性)に優れている。さらに、本発明の二酸化炭素分離膜は、薄膜化が容易であり、気体透過性(例えば、透過速度など)を効率よく向上できる。
図1は、実施例23で調製した二酸化炭素分離膜の断面観察画像である。 図2は、実施例の二酸化炭素濃縮特性を評価するための装置の概略図である。
 本発明の二酸化炭素分離膜(IL含有積層体)は、イオン液体含有液(A)を空隙に保持したイオン液体親和性多孔質層(C)と、イオン液体非親和性多孔質層(B)とを含む。
 [イオン液体含有液(A)]
 イオン液体含有液(A)は、少なくともイオン液体を含んでいる。イオン液体[又は常温溶融塩]は、カチオン(陽イオン)とアニオン(陰イオン)とを主成分(例えば、50重量%以上、好ましくは80重量%以上、さらに好ましくは90重量%以上、通常、実質的に100重量%程度)として含み、常温常圧下(例えば、100℃程度以下、1気圧程度)で液体の形態であればよい。
 (カチオン)
 カチオンとしては、通常、1価の有機カチオン、例えば、アンモニウム類、イミダゾリウム類、ピリジニウム類、ピロリジニウム類、ピペリジニウム類、ホスホニウム類、スルホニウム類などが挙げられる。
 アンモニウム類としては、例えば、テトラアルキルアンモニウム[例えば、トリメチル-n-プロピルアンモニウム([N1113)、n-ブチル-トリメチルアンモニウム([N1114)、n-ヘキシル-トリメチルアンモニウム([N1116)、トリエチル-メチルアンモニウム([N2221)、テトラエチルアンモニウム([N2222)、n-ブチル-トリエチルアンモニウム([N2224)、テトラ-n-ブチルアンモニウム([N4444)などのトリC1-6アルキル-C2-10アルキルアンモニウムなど];官能基を有するアンモニウム[例えば、2-ヒドロキシエチル-トリメチルアンモニウム([choline])などのヒドロキシル基を有するアンモニウム;2-メトキシエチル-ジエチル-メチルアンモニウム([N221(2O1))などのエーテル基を有するアンモニウムなど]などが挙げられる。
 イミダゾリウム類としては、例えば、1,3-ジアルキルイミダゾリウム[例えば、1-エチル-3-メチルイミダゾリウム([emim])、1-n-ブチル-3-メチルイミダゾリウム([bmim])、1-n-ヘキシル-3-メチルイミダゾリウム([hmim])、1-n-オクチル-3-メチルイミダゾリウム([omim])などの1-C2-10アルキル-3-C1-3アルキル-イミダゾリウムなど];官能基を有するイミダゾリウム[例えば、1-メチル-3-ノナフルオロヘキシルイミダゾリウム([Cmim])、1-メチル-3-トリデカフルオロオクチルイミダゾリウム([C13mim])などのフッ化アルキル基を有するイミダゾリウム;1-(3-アミノプロピル)-3-ブチルイミダゾリウム([CNHbim])などのアミノ基を有するイミダゾリウムなど]などが挙げられる。
 ピリジニウム類としては、例えば、N-アルキルピリジニウム[例えば、N-エチルピリジニウム([Cpy])、N-ブチルピリジニウム([Cpy])などのN-C2-6アルキル-ピリジニウムなど]などが挙げられる。
 ピロリジニウム類としては、例えば、N,N-ジアルキルピロリジニウム[例えば、N-メチル-N-プロピルピロリジニウム([Pyr13)、N-ブチル-N-メチルピロリジニウム([Pyr14)などのN-C1-3アルキル-N-C2-6アルキル-ピロリジニウムなど]などが挙げられる。
 ピペリジニウム類としては、例えば、N,N-ジアルキルピペリジニウム[例えば、N-メチル-N-プロピルピペリジニウム([Pip13)、N-ブチル-N-メチルピペリジニウム([Pip14)などのN-C1-3アルキル-N-C2-6アルキル-ピペリジニウムなど]などが挙げられる。
 ホスホニウム類としては、例えば、テトラアルキルホスホニウム[例えば、トリエチル-ペンチルホスホニウム([P2225)、テトラブチルホスホニウム([P4444)、トリヘキシル-テトラデシルホスホニウム([P666(14))などのトリC1-10アルキル-C2-20アルキルホスホニウムなど]などが挙げられる。
 スルホニウム類としては、例えば、トリアルキルスルホニウム(例えば、トリエチルスルホニウムなどのトリC2-6アルキルスルホニウムなど)などが挙げられる。
 これらのカチオンは、単独で又は2種以上組み合わせて使用することもできる。これらのカチオンのうち、通常、アンモニウム類、イミダゾリウム類、ホスホニウム類(例えば、イミダゾリウム類、ホスホニウム類、好ましくはホスホニウム類)である場合が多く、なかでも、1,3-ジアルキルイミダゾリウム(例えば、[emim]などの1-C2-8アルキル-3-C1-2アルキルイミダゾリウムなど)、テトラアルキルホスホニウム(例えば、[P4444などのトリC1-8アルキル-C3-18アルキルホスホニウムなど)である場合が多い。
 (アニオン)
 アニオンとしては、通常、1価の陰イオン、例えば、フッ素含有アニオン、シアノ基含有アニオン、ハロゲンイオン(例えば、塩化物イオン([Cl])、臭化物イオン([Br])、ヨウ化物イオン([I])など)、アルキルスルホネートイオン[例えば、メタンスルホネートイオン([CHSO)などのC1-6アルキルスルホネートイオンなど]、アルキルカルボキシレートイオン[例えば、酢酸イオン([CHCOO])などのC1-6アルキル-カルボキシレートイオンなど]、スルフェートイオン[例えば、メチルスルフェートイオン([CHSO)、エチルスルフェートイオン([EtSO)などのC1-6アルキルスルフェートイオン、ヒドロキシスルフェートイオン([HSO)など]、硝酸イオン([NO)、アミノ酸由来のアニオンなどが挙げられる。
 フッ素含有アニオンとしては、例えば、トリフラートイオン([CFSO又は[TfO])、ビス(フルオロスルホニル)アミドイオン([(FSON]又は[FSA])、ビス(トリフルオロメタンスルホニル)アミドイオン([(CFSON]、[TfN]又は[TFSA])[あるいはビス(トリフルオロメタンスルホニル)イミドイオン([TFSI])ともいう]、トリス(トリフルオロメタンスルホニル)メチドイオン([(CFSOC]又は[TfC])などのスルホニル基を有するアニオン;テトラフルオロホウ酸イオン([BF)、トリフルオロメチル-トリフルオロボレートイオン([CFBF)などのホウ素を有するアニオン;ヘキサフルオロリン酸イオン([PF)、トリス(ペンタフルオロエチル)トリフルオロホスフェートイオン([FAP])などのリンを有するアニオン;トリフルオロ酢酸イオン([CFCOO]又は[TFA])などのフッ化アルキルカルボキシレートイオンなどが挙げられる。
 シアノ基含有アニオンとしては、例えば、ジシアナミドイオン([N(CN)又は[DCA])、トリシアノメチドイオン([C(CN))、テトラシアノボレートイオン([B(CN))などが挙げられる。
 アミノ酸由来のアニオンとしては、例えば、グリシン(Gly)、アラニン(Ala)、β-アラニン(β-Ala)、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、フェニルアラニン(Phe)、セリン(Ser)、スレオニン(Thr)、チロシン(Tyr)、システイン(Cys)、メチオニン(Met)、アスパラギン(Asn)、グルタミン(Gln)、アスパラギン酸(Asp)、グルタミン酸(Glu)、リシン(Lys)、アルギニン(Arg)、ヒスチジン(His)、トリプトファン(Trp)、プロリン(Pro)などに対応するカルボキシレートイオンなどが挙げられる。
 これらのアニオンは、単独で又は2種以上組み合わせて使用することもできる。これらのアニオンのうち、通常、フッ素含有アニオン(例えば、[TFSA]などのスルホニル基を有するアニオンなど)、シアノ基含有アニオン(例えば、[DCA]など)、アミノ酸由来のアニオン(例えば、プロリン由来のアニオン([Pro])、グリシン由来のアニオン([Gly])など)、なかでも、[Pro]などのアミノ酸由来のアニオンである場合が多い。
 代表的なイオン液体としては、例えば、アンモニウム類、イミダゾリウム類及びホスホニウム類から選択されるカチオンと、フッ素含有アニオン、シアノ基含有アニオン及びアミノ酸由来のアニオンから選択されるアニオンとを含むイオン液体などが挙げられる。具体的には、例えば、アンモニウム類とフッ素含有アニオンとを組み合わせたイオン液体(例えば、[N1114][TFSA]、[choline][TFSA]など);イミダゾリウム類とフッ素含有アニオンとを組み合わせたイオン液体(例えば、[emim][TFSA]、[emim][TfO]、[emim][BF]、[bmim][TFSA]、[bmim][TfC]、[bmim][TfO]、[bmim][BF]、[bmim][PF]、[bmim][TFA]、[hmim][TFSA]、[omim][TFSA]、[Cmim][TFSA]など);イミダゾリウム類とシアノ基含有アニオンとを組み合わせたイオン液体(例えば、[emim][DCA]、[emim][C(CN)]、[emim][B(CN)]、[bmim][DCA]、[bmim][C(CN)]、[bmim][B(CN)]など);ホスホニウム類とアミノ酸由来のアニオンとを組み合わせたイオン液体(例えば、[P4444][Pro]、[P2225][Pro]、[P2225][Gly]など)などが挙げられる。
 これらのイオン液体は、単独で用いてもよく、相溶可能である限り2種以上組み合わせて使用することもできる。これらのイオン液体のうち、イミダゾリウム類とフッ素含有アニオンとを組み合わせたイオン液体(例えば、1,3-ジアルキルイミダゾリウムとスルホニル基を有するフッ素含有アニオンとを組み合わせたイオン液体、好ましくは[emim][TFSA]などの1-C2-6アルキル-3-C1-2アルキルイミダゾリウムとスルホニル基を有するフッ素含有アニオンとを組み合わせたイオン液体など);イミダゾリウム類とシアノ基含有アニオンとを組み合わせたイオン液体(例えば、1,3-ジアルキルイミダゾリウムとシアノ基含有アニオンとを組み合わせたイオン液体、好ましくは[emim][DCA]などの1-C2-6アルキル-3-C1-2アルキル-イミダゾリウムとシアノ基含有アニオンとを組み合わせたイオン液体など);ホスホニウム類とアミノ酸由来のアニオンとを組み合わせたイオン液体(例えば、テトラアルキルホスホニウムとアミノ酸由来のアニオンとを組み合わせたイオン液体、好ましくは[P4444][Pro]などのトリC1-8アルキル-C3-18アルキルホスホニウムとプロリン又はグリシン由来のアニオンとを組み合わせたイオン液体など)が好ましく、なかでも、[P4444][Pro]などのトリC2-6アルキル-C4-16アルキルホスホニウムとプロリン由来のアニオンとを組み合わせたイオン液体が好ましい。
 また、イオン液体含有液(A)は、前記イオン液体とともに、イオン液体以外の他の液体(又は第2の液体)を含んでいてもよく、含んでいなくてもよい。第2の液体としては、イオン液体と相溶可能な限り特に制限されず、揮発性が比較的低い液体である場合が多い。第2の液体としては、促進輸送剤、例えば、ヒドロキシル基を有するアミン類(例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミンなどのモノ乃至トリC2-6アルカノールアミンなど)、ポリアミン類[例えば、(ポリ)エチレンポリアミン(例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンなど)などの(ポリ)C2-6アルキレンポリアミンなど]などのアミン類などが挙げられる。
 これらの第2の液体(例えば、促進輸送剤)は、単独で又は2種以上組み合わせて使用することもできる。これらの第2の液体(例えば、促進輸送剤)のうち、(ポリ)C2-6アルキレンポリアミンなどのポリアミン類、なかでも、トリエチレンテトラミンなどの(ポリ)C2-4アルキレンポリアミンなどが好ましい。第2の液体として、アミン類(例えば、トリエチレンテトラミンなどのポリアミン類など)を含むと、意外にも二酸化炭素分離膜における透過係数(又は二酸化炭素の透過速度)が向上できる場合がある。
 この理由は定かではないが、以下のように推測される。一般的に、イオン液体は、二酸化炭素をある程度の選択性で物理的に吸着するため、脱離(又は透過)し易い性質を有するのに対して、促進輸送剤は、二酸化炭素と化学的に相互作用するため、より選択的に吸着(又は分離能を向上)できるものの、脱離し難いという性質を有する。そのため、イオン液体に促進輸送剤を添加すると、二酸化炭素分離膜の透過係数(又は透過速度)の低下が予想される。しかし、アミン類と、イオン液体中のアニオン(特に、プロリンアニオン([Pro])などのアミノ酸由来のアニオンなど)との親和性が高い(又は分散状態がよい)ことが関係するためか、アミン類が二酸化炭素の透過(又は脱離)を阻害しない程度に二酸化炭素と相互作用できることが推測される。そのため、二酸化炭素分離膜の透過係数(又は透過速度)が向上することが考えられる。
 イオン液体の割合は、イオン液体含有液(A)全体に対して、例えば、10重量%以上(例えば、30重量%以上)程度の範囲から選択でき、例えば、50重量%以上、好ましくは70重量%以上、さらに好ましくは90重量%以上、実質的に100重量%程度であってもよい。
 イオン液体含有液(A)が第2の液体を含む場合において、イオン液体と第2の液体(例えば、アミン類)との割合は、例えば、前者/後者(モル比)=1/99~99/1程度の範囲から選択でき、例えば、10/90~90/10(例えば、20/80~80/20)、好ましくは25/75~75/25(例えば、30/70~70/30)、さらに好ましくは40/60~60/40(例えば、45/55~55/45)程度であってもよい。イオン液体の割合が少なすぎると、二酸化炭素を効率よく分離(又は透過)できないおそれがある。
 [IL非親和性多孔質層(B)(又は第1の多孔質層(B))]
 IL非親和性多孔質層(B)は、内部に多数の孔(細孔又は空隙)を有しており、その表面(内部の空隙における表面(又は壁面)を含んでいてもよい)は、通常、疎水性(IL親和性多孔質層(C)に対して、相対的に疎水性)である場合が多い。また、前記空隙は、独立孔を含んでいてもよく、含んでいなくてもよいが、厚み方向に連通する連通孔(又は貫通孔)を少なくとも含んでいる。IL非親和性多孔質層(B)[IL非親和性多孔質層(B)を構成する材質、又はIL非親和性多孔質層(B)形成成分]は、樹脂(例えば、熱可塑性樹脂)を主成分として[IL非親和性多孔質層(B)全体に対して、例えば、50重量%以上、好ましくは70重量%以上、さらに好ましくは90重量%以上(実質的に100重量%程度)の割合で]含んでいてもよい。成形性などに優れる点から、IL非親和性多孔質層(B)は、通常、熱可塑性樹脂で形成された多孔質膜(多孔膜、多孔性膜又は微多孔膜)である場合が多い。
 熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリアルキレンアリレート樹脂など)ポリカーボネート系樹脂(例えば、ビスフェノールA型ポリカーボネート樹脂、ビスフェノールF型ポリカーボネート樹脂、ビスフェノールS型ポリカーボネート樹脂などのビスフェノール型ポリカーボネート樹脂など)、ポリアミド系樹脂(例えば、ポリアミド6、ポリアミド66などの脂肪族ポリアミド樹脂など)、ポリスルホン系樹脂(例えば、ポリスルホン、ポリエーテルスルホンなど)、フッ素樹脂、セルロース誘導体などが挙げられる。
 これらの熱可塑性樹脂は、単独で又は2種以上組み合わせて使用することもできる。これらの熱可塑性樹脂のうち、ポリオレフィン系樹脂、フッ素樹脂及びセルロース誘導体(例えば、ポリオレフィン系樹脂及びフッ素樹脂)から選択される少なくとも1種の樹脂を含む場合が多い。
 ポリオレフィン系樹脂としては、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチルペンテン樹脂(例えば、ポリ-4-メチル-1-ペンテン樹脂など)などが挙げられる。これらのポリオレフィン系樹脂は、単独で又は2種以上組み合わせて使用することもできる。ポリオレフィン系樹脂のうち、通常、ポリエチレン系樹脂、ポリプロピレン系樹脂(特にポリエチレン系樹脂)であることが多い。
 ポリエチレン系樹脂は、エチレンホモポリマー(エチレン単独重合体)であってもよく、エチレンコポリマー(エチレン系共重合体)であってもよい。
 コポリマーにおいて、エチレンと共重合可能なモノマー(共重合性モノマー)としては、例えば、α-オレフィン(例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ヘキセン、1-オクテン、4,4-ジメチル-1-ヘキセン、3-エチル-1-ヘキセン、4-エチル-1-ヘキセン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどのα-C3-20オレフィン)、アルカジエン(例えば、1,4-ヘキサジエン、1,7-オクタジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役アルカジエン、ブタジエン、イソプレンなどの共役アルカジエンなど)、エチレン系不飽和カルボン酸及びその酸無水物[例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、メサコン酸、アンゲリカ酸など]、(メタ)アクリル酸エステル[(メタ)アクリル酸アルキルエステル、グリシジル(メタ)アクリレートなど]、カルボン酸ビニルエステル(酢酸ビニル、プロピオン酸ビニルなどの飽和カルボン酸ビニルエステルなど)などが挙げられる。これらの共重合性モノマーは、単独で又は2種以上組み合わせて使用できる。これらのモノマーのうち、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンなどのα-C3-10オレフィンが汎用される。
 共重合体の形態としては、ブロック共重合、ランダム共重合、交互共重合、グラフト共重合などが挙げられ、通常、ランダム共重合、交互共重合であることが多い。ポリエチレン系樹脂において、エチレン(エチレン単位)と共重合性モノマー(共重合性モノマー単位)との割合(モル比)は、例えば、エチレン/共重合性モノマー=50/50~100/0、好ましくは60/40~99/1、さらに好ましくは65/35~95/5(例えば、70/30~90/10)程度であってもよい。
 ポリエチレン系樹脂としては、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン、高密度ポリエチレン(HDPE)、直鎖状(線状)低密度ポリエチレン(LLDPE)などが挙げられる。また、ポリエチレン系樹脂は、チーグラー触媒などを用いた重合体であってもよいが、分子量分布の狭い重合体が得られる点から、メタロセン触媒を用いたメタロセン系樹脂であってもよい。これらのポリエチレン系樹脂は、単独で又は2種以上組み合わせて使用することもできる。
 ポリプロピレン系樹脂は、プロピレンホモポリマー(プロピレン単独重合体)であってもよく、プロピレンコポリマー(プロピレン系共重合体)であってもよい。
 コポリマーにおいて、プロピレンと共重合可能なモノマー(共重合性モノマー)としては、例えば、エチレン、前記ポリエチレン系樹脂の項に例示した共重合性モノマー(ただし、プロピレンを除く。)などが挙げられる。これらのモノマーは、単独で又は2種以上組み合わせて使用できる。これらのモノマーのうち、エチレンや1-ブテンなどのα-C2-6オレフィンが汎用される。共重合体の形態としては、ブロック共重合、ランダム共重合、交互共重合、グラフト共重合などが挙げられ、通常、ランダム共重合、交互共重合であることが多い。ポリプロピレン系樹脂において、プロピレン(プロピレン単位)と共重合性モノマー(共重合性モノマー単位)との割合(モル比)は、プロピレン/共重合性モノマー=90/10~100/0、好ましくは95/5~100/0、さらに好ましくは99/1~100/0程度であってもよい。
 ポリプロピレン系樹脂は、アタクチックであってもよいが、耐熱性を向上できる点から、アイソタクチック、シンジオタクチックなどの立体規則性を有する構造が好ましく、アイソタクチック重合体であってもよい。また、ポリプロピレン系樹脂は、チーグラー触媒などを用いた重合体であってもよいが、分子量分布の狭い重合体が得られる点から、メタロセン触媒を用いたメタロセン系樹脂であってもよい。これらのポリプロピレン系樹脂は、単独で又は2種以上組み合わせて使用することもできる。
 フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン共重合体[例えば、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(PFEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(PETFE)など]などが挙げられる。
 これらのフッ素樹脂は、単独で又は2種以上組み合わせて使用することもできる。これらのフッ素樹脂のうち、通常、PTFE、溶媒可溶性フッ素樹脂(例えば、PVDFなど)などである場合が多い。
 セルロース誘導体としては、例えば、セルロースエステル類、セルロースカーバメート類、セルロースエーテル類などが挙げられる。これらのセルロース誘導体は、単独で又は2種以上組み合わせて使用することもできる。セルロース誘導体のうち、通常、セルロースエステル類である場合が多い。
 セルロースエステル類には、セルロース有機酸エステル、セルロース有機酸エステル・エーテル、セルロース無機酸エステル、セルロース有機酸・無機酸混合エステルなどが含まれる。
 セルロース有機酸エステルとしては、例えば、セルロースアシレート[セルロースジアセテート(DAC)、セルローストリアセテート(TAC)などのセルロースアセテート;セルロースプロピオネート、セルロースブチレートなどのセルロースC3-6アシレート;セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート(CAB)などのセルロースアセテート-C3-6アシレートなど]、芳香族有機酸エステル(セルロースフタレート、セルロースベンゾエートなどのセルロースC7-12芳香族カルボン酸エステルなど)などが挙げられる。
 セルロース有機酸エステル・エーテルとしては、例えば、アセチルメチルセルロース、アセチルエチルセルロース、アセチルプロピルセルロースなどのC2-6アシルセルロースC1-6アルキルエーテル;アセチルヒドロキシエチルセルロース、アセチルヒドロキシプロピルセルロースなどのC2-6アシルセルロースヒドロキシC2-6アルキルエーテルなどが挙げられる。
 セルロース無機酸エステルとしては、例えば、硝酸セルロース、硫酸セルロース、リン酸セルロースなどが挙げられる。
 セルロース有機酸・無機酸混合エステルとしては、例えば、硝酸酢酸セルロースなどが挙げられる。
 これらのセルロースエステル類は、単独で又は2種以上組み合わせて使用できる。これらのセルロースエステル類のうち、セルロースアセテートなどのセルロース有機酸エステル、硝酸セルロースなどのセルロース無機酸エステル、なかでも、TACなどのセルロースアシレートである場合が多い。
 これらの熱可塑性樹脂のうち、ポリオレフィン系樹脂、フッ素樹脂、セルロース誘導体(特に、ポリオレフィン系樹脂、フッ素樹脂、容易に入手できる観点からはポリオレフィン系樹脂)が好ましく、なかでも、ポリエチレン系樹脂、ポリプロピレン系樹脂などのポリα-C2-3オレフィン系樹脂(特に、ポリエチレン系樹脂)、PTFE、PVDFなどのフッ素樹脂(特に、PVDF)が好ましい。
 これらの熱可塑性樹脂は、慣用の添加剤を含んでいてもよい。慣用の添加剤としては、例えば、熱安定剤、酸化防止剤、紫外線吸収剤などの安定剤、防腐剤、殺菌剤、可塑剤、滑剤、着色剤、粘度調整剤、レベリング剤、界面活性剤、帯電防止剤などが挙げられる。これらの添加剤は、単独で又は2種以上組み合わせて使用することもできる。添加剤の割合は、樹脂100重量部に対して、例えば、50重量部以下、好ましくは30重量部以下(例えば0.01~30重量部)、さらに好ましくは10重量部以下(例えば0.1~10重量部)程度であってもよい。
 このような熱可塑性樹脂の多孔質膜の調製方法は特に制限されず、慣用の方法、例えば、樹脂溶液の相分離を利用する方法、樹脂フィルムを延伸処理する方法、樹脂フィルムにα線などの高エネルギー線を照射する方法などにより調製してもよい。
 また、IL非親和性多孔質層(B)は、イオン液体含有液(A)に対する濡れ性(又は接触角)を調整するために、慣用の表面処理(例えば、特開平6-9810号公報に記載の処理、すなわち、フッ化アルキル基を有するエチレン性不飽和モノマー由来の架橋体を付着させる処理など)が施されていてもよい。
 IL非親和性多孔質層(B)としては、市販品を用いてもよく、例えば、宇部マクセル(株)製「シーポア」、宇部興産(株)製「ユーポア」、メルクミリポア社製「デュラペル」などが挙げられる。
 IL非親和性多孔質層(B)の平均厚みは、例えば、1~200μm、好ましくは10~150μm、さらに好ましくは15~130μm程度であってもよい。
 IL非親和性多孔質層(B)の孔径(平均孔径又は平均細孔径)は、例えば、0.001~10μm(例えば、0.01~5μm)程度の広い範囲から選択してもよく、例えば、0.001~1μm(例えば、0.005~0.5μm)、好ましくは0.01~0.4μm(例えば、0.03~0.35μm)、さらに好ましくは0.05~0.3μm(例えば、0.07~0.25μm)程度であってもよい。孔径が小さすぎると、気体透過性が低下するおそれがあり、大きすぎると、イオン液体含有液(A)などが透過して、二酸化炭素分離膜(IL含有積層体)に保持できなくなるおそれがある。なお、本明細書及び特許請求の範囲において、孔径(平均孔径又は平均細孔径)は、水銀圧入法などの慣用の方法により測定できる。
 IL非親和性多孔質層(B)の空隙率(空孔率又は多孔度)は、多孔質層の製造方法などに応じて、例えば、1~90%(例えば、10~80%)程度の広い範囲から選択してもよく、例えば、20~85%、好ましくは30~80%、さらに好ましくは40~75%程度であってもよい。空隙率が小さすぎると、気体透過性が低下するおそれがあり、大きすぎると、イオン液体含有液(A)が透過して、二酸化炭素分離膜(IL含有積層体)に保持できなくなるおそれがある。なお、本明細書及び特許請求の範囲において、空隙率(空孔率又は多孔度)は、いずれか一方の多孔質層全体[IL非親和性多孔質層(B)全体又はIL親和性多孔質層(C)全体]対する前記多孔質層の空隙の体積割合を表し、後述する実施例に記載の方法により測定できる。
 IL非親和性多孔質層(B)の連通孔率は、例えば、50%以上、好ましくは70%以上、さらに好ましくは90%以上(例えば、実質的に100%)程度であってもよい。なお、本明細書及び特許請求の範囲において、連通孔率は、多孔質層の空隙に対する連通孔の体積割合を表し、走査型電子顕微鏡(SEM)などにより観察した断面の画像から算出してもよい。
 IL非親和性多孔質層(B)のイオン液体含有液(A)(例えば、イオン液体など)に対する接触角は、例えば、90°以上(例えば、90~150°)、好ましくは95°以上(例えば、95~148°)、さらに好ましくは100°以上(例えば、100~145°)程度であってもよい。接触角が小さすぎると、イオン液体含有液(A)が透過してしまい、保持できないおそれがある。なお、本明細書及び特許請求の範囲において、接触角は、前述のような慣用の方法により測定できる。
 [IL親和性多孔質層(C)(又は第2の多孔質層(C))]
 IL親和性多孔質層(C)は、内部に多数の孔(細孔又は空隙)を有しており、その表面(内部の空隙における表面(又は壁面)を含んでいてもよい)は、通常、親水性(IL非親和性多孔質層(B)に対して、相対的に親水性)である場合が多い。また、前記空隙は、独立孔を含んでいてもよく、含んでいなくてもよいが、厚み方向に連通する連通孔(又は貫通孔)を少なくとも含んでいる。IL親和性多孔質層(C)[IL親和性多孔質層(C)を構成する材質、又はIL親和性多孔質層(C)形成成分]は、前記IL非親和性多孔質層(B)の項に記載の樹脂などの有機材料を主成分として含んでいてもよいが、成形性に優れ、かつ機械的特性などに優れる点から、無機材料を主成分として[IL親和性多孔質層(C)全体に対して、例えば、50重量%以上、好ましくは70重量%以上、さらに好ましくは90重量%以上(実質的に100重量%程度)の割合で]含むのが好ましい。そのため、IL親和性多孔質層(C)は、前記IL非親和性多孔質層(B)の項に記載の樹脂を親水化処理したもの(例えば、親水化PTFE製多孔質膜、親水化PVDF製多孔質膜など)であってもよいが、通常、無機材料で形成された多孔質膜(多孔膜、多孔性膜又は微多孔膜)である場合が多い。このようにIL親和性多孔質層(C)が無機材料で形成されていると、IL含有積層体に無機材料由来の剛直性を付与できるため、薄くても二酸化炭素分離膜(IL含有積層体)が取り扱い易くハンドリング性を有効に向上できる。特に、気体透過性低下の原因となる膨潤又はゲル化を有効に抑制できるのみならず、寸法安定性も向上できるため好ましい。
 無機材料としては、通常、金属酸化物、例えば、周期表第4A族金属酸化物(例えば、酸化チタン、酸化ジルコニウムなど)、第5A族金属酸化物(酸化バナジウムなど)、第6A族金属酸化物(酸化モリブデン、酸化タングステンなど)、第7A族金属酸化物(酸化マンガンなど)、第8族金属酸化物(酸化ニッケル、酸化鉄など)、第1B族金属酸化物(酸化銅など)、第2B族金属酸化物(酸化亜鉛など)、第3B族金属酸化物(酸化アルミニウム、酸化インジウムなど)、第4B族金属酸化物(酸化ケイ素、酸化錫など)、第5B族金属酸化物(酸化アンチモンなど)などが挙げられる。
 これらの金属酸化物は、単独で又は2種以上組み合わせて使用できる。これらの金属酸化物のうち、イオン液体含有液(A)との親和性(又は親水性)、比重などに由来する分散液(又はスラリー)の調製容易性、さらには、入手容易性などの観点から、酸化アルミニウムなどの第3B族金属酸化物、酸化ケイ素などの第4B族金属酸化物(特に、酸化アルミニウムなどの第3B族金属酸化物)などが好ましい。
 前記無機材料(又は金属酸化物)は粒子状の形態であってもよい。無機材料(又は金属酸化物)の平均粒径は、例えば、個数基準で、0.001~10μm(例えば、0.01~5μm)、好ましくは0.1~3μm(例えば、0.3~2μm)、さらに好ましくは0.5~1.5μm(例えば、0.8~1.2μm)程度であってもよい。本明細書及び請求の範囲において、前記平均粒径は、後述の実施例に記載の方法で測定できる。
 粒子の形状は、特に限定されず、球状(又は略球状)、楕円体状、多角体形状(多角錘状、正方体状、直方体状など)、板状、棒状、不定形などが挙げられるが、通常、不定形である場合が多い。また、無機材料は、分散性を向上する点から、表面処理されていてもよく、されていなくてもよい。
 IL親和性多孔質層(C)を粒子状の無機材料(又は金属酸化物)を用いて調製すると、粒子間の隙間(空隙)によりIL親和性多孔質層(C)自体の気体透過性を高く調整できるため、積層構造としても気体透過性の低下を有効に抑制できる。また、二酸化炭素分離膜(例えば、二酸化炭素分離膜におけるIL親和性多孔質層(C)側)の表面に触れても、IL親和性多孔質層(C)の剛直性のためか、内包されたイオン液体含有液(A)が滲出し難いため、イオン液体含有液(A)を液体状態のまま安定に保持し易く、かつ二酸化炭素分離膜(IL含有積層体)表面のべたつきを有効に抑制できるようである。
 また、IL親和性多孔質層(C)は、イオン液体含有液(A)(例えば、イオン液体など)に対する濡れ性(又は接触角)を調整するために、慣用の表面処理(例えば、シランカップリング剤による処理など)が施されていてもよい。
 IL親和性多孔質層(C)の平均厚みは、例えば、0.01~100μm(例えば、0.03~70μm)程度の範囲から選択でき、例えば、0.05~50μm(例えば、0.1~30μm)、好ましくは0.5~20μm(例えば、1~15μm)、さらに好ましくは1~10μm(例えば、2~7μm)程度であってもよい。平均厚みが大きすぎると、二酸化炭素分離膜(IL含有積層体)の重量が増加するおそれがある。
 IL親和性多孔質層(C)の孔径(平均孔径又は平均細孔径)は、例えば、0.001~10μm(例えば、0.01~5μm)程度であってもよい。孔径が小さすぎると、イオン液体含有液(A)を保持できる量が減少するのみならず、気体透過性が低下するおそれがある。IL親和性多孔質層(C)を無機材料(例えば、金属酸化物粒子など)で形成すると、気体透過性を高く調整し易いようである。
 IL親和性多孔質層(C)の空隙率(空孔率又は多孔度)は、例えば、1~90%(例えば、10~80%)程度の広い範囲から選択してもよく、例えば、5~70%(例えば、10~60%)、好ましくは15~50%(例えば、20~45%)、さらに好ましくは25~40%(例えば、30~35%)程度であってもよい。空隙率が小さすぎると、イオン液体含有液(A)を保持できる量が減少するのみならず、気体透過性が低下するおそれがある。大きすぎると、イオン液体含有液(A)を安定に保持できなくなるおそれがある。
 IL親和性多孔質層(C)の連通孔率は、例えば、50%以上、好ましくは70%以上、さらに好ましくは90%以上(例えば、実質的に100%)程度であってもよい。
 IL親和性多孔質層(C)のイオン液体含有液(A)(例えば、イオン液体など)に対する接触角は、例えば、90°未満(例えば、0°以上90°未満)、好ましくは85°以下(例えば、15~85°)、さらに好ましくは80°以下(例えば、30~80°)程度であってもよい。接触角が大きすぎると、イオン液体含有液(A)を保持し難くなるおそれがある。
 IL非親和性多孔質層(B)及びIL親和性多孔質層(C)におけるイオン液体含有液(A)(又はイオン液体)に対する接触角の差は、例えば、10°以上(例えば、15~55°)、好ましくは20°以上(例えば、25~50°)、さらに好ましくは30°以上(例えば、30~45°)程度であってもよい。接触角の差が小さすぎると、イオン液体含有液(A)を安定に保持し難くなるおそれがある。また、接触角の差が大きすぎると、イオン液体含有液(A)の目付け量が少ない場合に、IL親和性多孔質層内部で扁平状(又は面方向)に広がらないおそれがある。
 [二酸化炭素分離膜(IL含有積層体)及びその製造方法]
 本発明の二酸化炭素分離膜(IL含有積層体)は、IL非親和性多孔質層(B)と、IL親和性多孔質層(C)とを備えた積層体(IL未含有積層体)において、IL親和性多孔質層(C)の空隙に、イオン液体含有液(A)を含む液体(又は含浸液)を含浸させる工程(含浸工程)を含んでいてもよい。
 含浸液は、前記イオン液体含有液(A)のみで構成されていてもよく、イオン液体含有液(A)と溶媒(又は分散媒)とを混合した混合液(溶液又は分散液)であってもよい。イオン液体含有液(A)の換算膜厚を薄膜化し易い観点からは、含浸液は混合液であるのが好ましい。なお、本明細書及び特許請求の範囲において、「換算膜厚」は、多孔質層が含有するイオン液体含有液(A)を用いて、二酸化炭素分離膜(IL含有積層体)と同じ面積を有する液膜を形成した場合の膜厚を意味する。
 溶媒(又は分散媒)としては、イオン液体含有液(A)よりも揮発性が高い溶媒であるのが好ましく、例えば、水、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノールなどの低級アルコールなど)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、ギ酸メチル、ギ酸エチルなど)、エーテル類(ジエチルエーテル、ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(ヘキサンなど)、脂環式炭化水素類(シクロヘキサンなど)、芳香族炭化水素類(ベンゼンなど)、ハロゲン化炭化水素類(ジクロロメタン、ジクロロエタンなど)、セロソルブ類(メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)などが挙げられる。これらの溶媒は、単独で又は2種以上組み合わせて使用することもできる。これらの溶媒のうち、通常、水、アルコール類(例えば、メタノールなどのC2-6アルカノールなど)などの水性溶媒(又は水溶性溶媒)が使用されることが多い。含浸液におけるイオン液体含有液(A)の濃度は、例えば、0.001~100重量%、好ましくは0.01~50重量%(例えば、0.05~30重量%)、さらに好ましくは0.1~10重量%(例えば、0.1~8重量%)程度であってもよい。
 含浸液を含浸させる方法は特に制限されず、例えば、含浸液を圧入する方法などであってもよい。詳しくは、IL非親和性多孔質層(B)とIL親和性多孔質層(C)とを備えた積層体(IL未含有積層体)において、IL親和性多孔質層(C)側の積層体表面(又は積層体の最外層)を含浸液と接触させ、反対側(IL非親和性多孔質層(B)側)を減圧する(又は反対側から吸引する)方法により含浸液を含浸してもよい。このような方法により、本発明の二酸化炭素分離膜(IL含有積層体)を容易に又は効率よく成形できる。
 また、含浸液として前記混合液を用いる場合、含浸工程後に溶媒(又は分散媒)を揮発させることにより、二酸化炭素分離膜(IL含有積層体)を調製してもよい。溶媒(又は分散媒)を除去することにより、イオン液体含有液(A)の換算膜厚を簡便に調整可能であり、薄膜化も容易である。溶媒を揮発させる方法は特に制限されず、溶媒の沸点や蒸気圧に応じて、適宜加熱及び/又は減圧して揮発させればよい。
 本発明の二酸化炭素分離膜(IL含有積層体)において、イオン液体含有液(A)の含有量は、IL親和性多孔質層(C)の内部の空隙100体積部に対して、100体積部を超えるイオン液体含有液(A)を含まないのが好ましい。すなわち、二酸化炭素分離膜(IL含有積層体)は、イオン液体含有液(A)を含有(又は保持)するIL親和性多孔質層(C)に隣接して、空隙に入り切らないイオン液体含有液(A)を含む第2のイオン液体含有層を有さないのが好ましい。従って、二酸化炭素分離膜(IL含有積層体)の二酸化炭素透過速度や取り扱い性を向上できる観点から、IL親和性多孔質層(C)は、内部の空隙100体積部に対して、100体積部以下、例えば、0.1~99体積部(例えば、1~90体積部)程度の範囲から選択でき、例えば、3~80体積部(例えば、5~70体積部)、好ましくは10~50体積部(例えば、15~45体積部)、さらに好ましくは20~40体積部(例えば、25~35体積部)程度のイオン液体含有液(A)を含んでいてもよい。イオン液体含有液(A)の量が多すぎると、取り扱い性が低下するおそれがある。
 本発明の二酸化炭素分離膜(IL含有積層体)において、イオン液体含有液(A)の換算膜厚は、例えば、0.01~5μm、(例えば、0.05~3μm)、好ましくは0.1~2μm(例えば、0.15~1.5μm)、さらに好ましくは0.2~1μm(例えば、0.2~0.7μm)程度であってもよい。換算膜厚が大きすぎると、透過速度が低下するおそれがある。
 なお、IL非親和性多孔質層(B)と、IL親和性多孔質層(C)とを備えた積層体(IL未含有積層体)は、例えば、IL非親和性多孔質層(B)のいずれか一方の表面に、IL親和性多孔質層(C)を直接又は間接的に積層(又は形成)することにより調製できる。IL親和性多孔質層(C)を積層(又は形成)する方法は、特に制限されず、例えば、圧着、熱融着、接着剤又は粘着剤などによる接着などであってもよい。また、無機材料でIL親和性多孔質層(C)を形成する場合には、慣用の方法、例えば、粉末状の無機材料を焼結する方法などで形成してもよいが、所定の多孔質層を容易に又は効率よく成形でき、取り扱い性も向上できる点から、粒子状(又は粉末状)の無機材料を分散媒に分散した分散液(又はスラリー)を塗布して、塗膜を乾燥する塗布工程を含む方法により形成してもよい。
 前記分散媒としては、例えば、前記含浸液の項に例示した溶媒(又は分散媒)と同様のものなどが挙げられる。これらの分散媒は、単独で又は2種以上組み合わせて使用できる。これらの分散媒のうち、通常、水が用いられることが多い。分散媒として水を用いる場合、必要に応じて、IL非親和性多孔質層(B)に対する塗布性を改善するために、イソプロパノールなどのアルコール類を少量(例えば、無機材料100重量部に対して、0.01~10重量部、好ましくは0.1~2重量部程度)添加してもよい。
 また、必要に応じて、結着剤(又はバインダー)[例えば、カルボキシメチルセルロース又はその塩(ナトリウム塩など)、ヒドロキシアルキルセルロース(ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど)、メチルセルロースなどの水溶性樹脂;スチレンブタジエンゴムラテックスなどのラテックスなど]を少量(例えば、無機材料100重量部に対して、0.01~10重量部、好ましくは0.1~2重量部程度)添加してもよい。結着剤は必ずしも必要ではないが、膜厚が大きなIL親和性多孔質層(C)を容易に調製できることが多い。
 分散液中の無機材料の濃度は、分散液全体に対して、例えば、0.1~50重量%、好ましくは1~30重量%、さらに好ましくは3~20重量%(例えば、5~15重量%)程度である。
 塗布方法としては、特に制限されず、慣用の方法、例えば、ロールコーター法、エアナイフコーター法、ブレードコーター法、ロッドコーター法、リバースコーター法、バーコーター法、コンマコーター法、ディップ・スクイズコーター法、ダイコーター法、グラビアコーター法、マイクログラビアコーター法、シルクスクリーンコーター法、ディップ法、スプレー法、スピナー法などが挙げられる。これらの方法のうち、バーコーター法が汎用される。なお、必要であれば、分散液(又は塗布液)は複数回に亘り塗布してもよい。
 塗布工程では、さらに前記分散液を流延又は塗布した後、分散媒を蒸発させて塗膜を乾燥する。乾燥温度は、通常、分散媒の沸点などに応じて選択でき、例えば、50~150℃、好ましくは80~120℃、さらに好ましくは90~110℃程度であってもよい。
 なお、本発明の二酸化炭素分離膜(又はIL非親和性多孔質層(B)と、IL親和性多孔質層(C)とを備えたIL未含有積層体)は、IL非親和性多孔質層(B)及びIL親和性多孔質層(C)の2層構造であってもよく、さらに、前記支持体層などの他の層(又は第3の層)を含む3層以上の多層構造(例えば、3~5層構造など)であってもよい。第3の層としては、気体が透過可能である限り特に制限されず、例えば、前記支持体層[例えば、金属(ステンレス鋼など)又は樹脂製の網(又はメッシュ)など]、接着剤又は粘着剤層などが挙げられる。これらの第3の層は、単独で又は2種以上組み合わせてもよい。気体透過性の観点から、本発明の二酸化炭素分離膜(IL含有積層体)は、2~3層構造(特に、2層構造)であるのが好ましい。また、イオン液体含有液(A)を有効に保持又は固定化できる観点から、IL非親和性多孔質層(B)とIL親和性多孔質層(C)とが隣接して形成されているのが好ましい。
 このようにして得られる本発明の二酸化炭素分離膜(IL含有積層体)は、気体透過性に優れるため、例えば、農業分野において、植物に施肥するための二酸化炭素分離膜(二酸化炭素濃縮膜)などとして好適に利用できる。本発明の二酸化炭素分離膜は、通常、イオン液体含有液(A)を含有するIL親和性多孔質層(C)側を気体供給側(供給側又は上流側)、反対側(IL非親和性多孔質層(B)側)を透過側(又は下流側)にして使用することが多い。
 本発明の二酸化炭素分離膜における二酸化炭素透過係数は、27℃、1気圧の条件下において、例えば、0.5×10-10cm・cm/(s・cm・cmHg)以上[例えば、0.7×10-10~4×10-10cm・cm/(s・cm・cmHg)]、好ましくは1×10-10cm・cm/(s・cm・cmHg)以上[例えば、1.5×10-10~2.5×10-10cm・cm/(s・cm・cmHg)]、さらに好ましくは2×10-10cm・cm/(s・cm・cmHg)以上[例えば、2.5×10-10~3.5×10-10cm・cm/(s・cm・cmHg)]程度であってもよい。
 また、二酸化炭素分離膜の二酸化炭素透過速度は、27℃、1気圧、供給側と透過側との差圧50~100kPa(例えば、65~90kPa程度)、膜面積約12.57cmの条件下において、例えば、0.5×10-3mL/秒以上(例えば、1×10-3~5×10-3mL/秒)、好ましくは1.2×10-3mL/秒以上(例えば、1.4×10-3~3×10-3mL/秒)、さらに好ましくは1.6×10-3mL/秒以上(例えば、1.7×10-3~2.5×10-3mL/秒)程度であってもよい。
 なお、二酸化炭素透過係数及び二酸化炭素透過速度は、後述する実施例に記載の方法などにより測定できる。
 [二酸化炭素分離膜を備えた二酸化炭素濃縮装置]
 本発明の二酸化炭素濃縮装置(又は二酸化炭素分離装置)は、前記二酸化炭素分離膜を備えている。二酸化炭素分離膜の形状は特に制限されず、例えば、平膜状であってもよく、平膜を巻回したスパイラル状、中空糸膜状などであってもよい。これらの形状は、単独で又は2種以上組み合わせて使用することもできる。二酸化炭素分離膜は、通常、二酸化炭素分離膜を支持又は固定するための支持材などとともに、膜モジュール(濃縮ユニット又は分離ユニット)を形成することが多い。前記支持材の材質や形状などは、気体の透過を阻害しない限り特に制限されず、二酸化炭素分離膜の形状などに応じて適宜選択される。また、濃縮ユニットは1つの二酸化炭素分離膜を含んでいてもよく、2以上の複数の二酸化炭素分離膜を含んでいてもよい。
 二酸化炭素濃縮装置は、前記濃縮ユニットに加えて、二酸化炭素分離膜に二酸化炭素を含むガス成分(例えば、大気など)を供給するための吸気ユニットをさらに備えていることが多い。吸気ユニットは、濃縮ユニットの上流側(又は気体供給側)及び下流側(透過側)に差圧を発生させることにより、二酸化炭素分離膜に二酸化炭素を含むガス成分を供給できる。吸気ユニットは、前記差圧を形成できる限り特に制限されず、濃縮ユニットの上流側に配設されていてもよく、下流側に配設されていてもよい。具体的には、例えば、濃縮ユニットの上流側に配設されたエアーコンプレッサーや、下流側に配設されたポンプ(例えば、ダイヤフラムポンプなど)などであってもよい。
 本発明の二酸化炭素濃縮装置は、前記濃縮ユニットと吸気ユニットとを少なくとも含んでいれば稼働(又は運転)できるため、装置構成(又は設計)を簡略化でき、小型化も容易である。また、前記二酸化炭素濃縮膜の透過速度(二酸化炭素透過速度)が高く、比較的低い差圧であっても有効に又は効率よく二酸化炭素を濃縮(又は富化)できる。そのため、吸気能力が低い小型の吸気ユニットであってもスムーズに(円滑に)稼働できる。
 二酸化炭素濃縮装置は、工業分野においては、二酸化炭素を含むガス成分(例えば、工場などで排出される排気ガス;天然ガスなどのエネルギー資源など)から、二酸化炭素を濃縮して確実に除去することを目的として利用されている。また、工業分野において対象となるガス成分は、高圧である場合が多く、このようなガス成分から二酸化炭素を選択的に分離する分離能が重要視される。
 一方、農業分野(又は施肥用途)においては、屋内の二酸化炭素濃度を所定の水準に維持できる程度に、大気などから供給することを目的として利用される。通常、施肥用途においては、例えば、100ppm(体積基準)程度の二酸化炭素濃度の低下であっても、植物(又は作物)の収穫量に大きく影響することが知られている。そのため、施肥用途に用いられる二酸化炭素分離膜には、適切な二酸化炭素量をスムーズに(又は円滑に)供給できることが求められる。すなわち、二酸化炭素分離能と透過速度とのバランスが非常に重要となる。従って、比較的低い差圧であっても、高い二酸化炭素透過速度で二酸化炭素を分離(濃縮又は供給)できる本発明の二酸化炭素分離膜(又は二酸化炭素濃縮装置)は、農業分野における二酸化炭素の施肥用途に好適に利用できる。
 施肥の対象となる植物は特に制限されず、通常、農業用又は園芸用施設(例えば、温室、ビニールハウス、植物工場など)などの屋内で栽培される植物であることが多い。具体的には、例えば、イチゴ、トマト、キュウリ、もやしなどの果物又は野菜、バラ、水草などの花卉(又は観賞用植物)などであってもよい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例において使用した材料を以下に示す。
 [材料]
 (イオン液体)
 emimDCA:1-エチル-3-メチルイミダゾリウムジシアナミド、東京化成工業(株)製
 emimTFSA:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)アミド[又は1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド]、東京化成工業(株)製
 P4444Pro:テトラブチルホスホニウムプロリネート、特開2014-139149[0034]の記載に準拠して合成した。
 (第2の液体又は促進輸送剤)
 TETA:トリエチレンテトラミン、東京化成工業(株)製。
 (イオン液体非親和性多孔質層(B))
 PE多孔膜:宇部興産(株)製「ユーポア」、ポリエチレン製の多孔質膜、孔径0.1μm、厚み20μm
 デュラペル:メルクミリポア社製「デュラペル」、ポリフッ化ビニリデン(PVDF)性の多孔質膜をフッ素含有モノマーで表面処理したもの、孔径0.22μm、厚み125μm
 PVDFフィルター1:メルクミリポア社製「デュラポアGVHP」、ポリフッ化ビニリデン(PVDF)製の多孔質膜、孔径0.22μm、厚み125μm
 PVDFフィルター2:メルクミリポア社製「デュラポアVVHP」、ポリフッ化ビニリデン(PVDF)製の多孔質膜、孔径0.1μm、厚み125μm
 セルロースアセテートフィルター:ADVANTEC社製「C020A047A」、セルロースアセテート製の多孔質膜、孔径0.2μm、厚み20μm
 桐山ろ紙:(有)桐山製作所製「桐山ロート用ろ紙No5C」、捕集粒子サイズ1μm、厚み200μm。
 (IL親和性多孔質層(C))
 アルミナ粒子:和光純薬工業(株)製「α-アルミナ」、平均粒径(カタログ値):約1μm、個数基準の平均粒径(実測値):0.94μm;不定形。なお、個数基準の平均粒径(実測値)は、走査型電子顕微鏡(日本電子(株)製、「JSM-6700F」)にて10000倍に拡大した画像を撮影し、任意の20個の粒子の長径を測定し、得られた長径の平均値を算出して求めた。
 親水性PVDFフィルター1:メルクミリポア社製「デュラポアGVWP」、ポリフッ化ビニリデン(PVDF)製の多孔質膜を親水化処理(PVDF主鎖に親水性基を化学結合させる処理)したもの、孔径0.22μm、厚み125μm
 親水性PVDFフィルター2:メルクミリポア社製「デュラポアVVPP」、ポリフッ化ビニリデン(PVDF)製の多孔質膜を親水化処理(PVDF主鎖に親水性基を化学結合させる処理)したもの、孔径0.1μm、厚み125μm。
 [イオン液体の各種基材に対する透過性評価]
 基材(又はIL未含有積層体)を直径4cmの円形に切断して、吸引瓶上に設置したろ過器に固定した。固定した基材にイオン液体を滴下し、滴下した面の反対側を差圧が30kPaとなるように減圧した。滴下したイオン液体の基材に対する透過性を目視で確認し、以下の基準で評価した。
 ○:基材を抜けず、かつ滴を形成することなく基材上に広がっていく
 △:基材上ではじかれて、滴を形成する
 ×:基材を抜けてしまう。
 (実施例1)
 前記アルミナ粒子と、水とを混合して、濃度8~10重量%のアルミナ粒子分散液(アルミナ粒子スラリー)を調製した。IL非親和性多孔質層(B)としてのPE多孔膜の上に、アルミナ粒子スラリーをワイヤーバーを用いてバーコーター方式で塗布し、100℃で1分間乾燥してIL親和性多孔質層(C)を形成した。なお、アルミナ粒子スラリーは、乾燥後のIL親和性多孔質層(C)の厚みが5μmとなるように塗布した。得られたIL未含有積層体を用いて、イオン液体に対する透過性を評価した。なお、イオン液体は、固定したIL未含有積層体のIL親和性多孔質層(C)側に滴下し、滴下した面の反対側(IL非親和性多孔質層(B)側)を減圧した。
 (実施例2)
 アルミナ粒子分散液に、アルミナ粒子の重量に対して1重量%のイソプロパノール(IPA)を添加すること、及びIL非親和性多孔質層(B)として、デュラペルを使用すること以外は、実施例1と同様にしてIL未含有積層体を調製し、得られたIL未含有積層体に対するイオン液体の透過性を評価した。
 (比較例1~8)
 IL未含有積層体を形成することなく、表1に記載のIL非親和性多孔質層(B)又はIL親和性多孔質層(C)のみを基材として、イオン液体の透過性を評価した。
 実施例1~2及び比較例1~8の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、比較例に比べて、IL未含有積層体を形成した実施例では、イオン液体を透過することなく、液体状態のまま基材に安定に保持できた。
 [イオン液体含有液(A)量に対する外観の評価]
 (実施例3~6)
 実施例1で調製したIL非親和性多孔質層(B)としてのPE多孔膜と、IL親和性多孔質層(C)としてのアルミナ粒子膜とのIL未含有積層体を直径4cmの円形に切断し、吸引瓶上に設置したろ過器に固定した。IL親和性多孔質層(C)側にIL含有駅(A)を含む含浸液としてemimDCAの水溶液[IL含有液(A)の濃度:0.14重量%(実施例3)、0.28重量%(実施例4)、1.39重量%(実施例5)、5.58重量%(実施例6)]を用いて、IL含有液(A)の目付け量が表2に記載の値となるように塗布して、IL非親和性多孔質層(B)側から差圧が30kPaとなるように減圧した。次いで、真空乾燥機を用いて積層体を減圧下、60℃で10時間乾燥して、二酸化炭素分離膜(IL含有積層体)を調製した。得られた二酸化炭素分離膜の外観の評価結果を表2に示す。なお、目付け量は、イオン液体含有液(A)塗布前後の積層体の重量変化から算出した。
 (実施例7~10)
 実施例2で調製したIL非親和性多孔質層(B)としてのデュラペルと、IL親和性多孔質層(C)としてのアルミナ粒子膜とのIL未含有積層体を直径4cmの円形に切断し、吸引瓶上に設置したろ過器に固定した。含浸液としてemimDCAの水溶液[IL含有液(A)の濃度:0.14重量%(実施例7)、0.28重量%(実施例8)、1.39重量%(実施例9)、5.58重量%(実施例10)]を用いて、IL含有液(A)[emimDCA]の目付け量が表3に記載の値となるよう塗布して、IL非親和性多孔質層(B)側から差圧が30kPaとなるように減圧した。次いで、真空乾燥機を用いて積層体を減圧下、60℃で10時間乾燥して、二酸化炭素分離膜を調製した。得られた二酸化炭素分離膜の外観の評価結果を表3に示す。
 (実施例11~14)
 IL含有液(A)を含む含浸液としてのemimDCAの水溶液に代えて、emimTFSAのメタノール溶液[IL含有液(A)の濃度:0.19重量%(実施例11)、0.38重量%(実施例12)、1.91重量%(実施例13)、7.64重量%(実施例14)]を用いて、IL含有液(A)[emimTFSA]の目付け量が表4に記載の値となるよう塗布する以外は、実施例7と同様にして、二酸化炭素分離膜を調製した。得られた二酸化炭素分離膜の外観の評価結果を表4に示す。
 (実施例15~18)
 IL含有液(A)を含む含浸液としてのemimDCAの水溶液に代えて、P4444Proの水溶液[IL含有液(A)の濃度:0.12重量%(実施例15)、0.25重量%(実施例16)、1.24重量%(実施例17)、4.94重量%(実施例18)]を用いて、IL含有液(A)[P4444Pro]の目付け量が表5に記載の値となるよう塗布する以外は、実施例3と同様にして、二酸化炭素分離膜を調製した。得られた二酸化炭素分離膜の外観の評価結果を表5に示す。
 (実施例19~22)
 含浸液としてのemimDCAの水溶液に代えて、P4444ProとTETAとの等モル混合液を含む水溶液[IL含有液(A)の濃度:0.12重量%(実施例19)、0.25重量%(実施例20)、1.23重量%(実施例21)、4.94重量%(実施例22)]を用いて、IL含有液(A)[P4444Pro/TETA]の目付け量が表6に記載の値となるよう塗布する以外は、実施例3と同様にして、二酸化炭素分離膜を調製した。得られた二酸化炭素分離膜の外観の評価結果を表6に示す。
 なお、表において、IL親和性多孔質層(C)の空隙率εは、下記式により算出した。
 ε[%]=(1-ρ/ρC0)×100
[式中、εはIL親和性多孔質層(C)の空隙率、ρはIL親和性多孔質層(C)のかさ密度、ρC0はIL親和性多孔質層(C)形成成分の真密度(例えば、25℃程度の室温における真密度)を示す]。
 表において、「最大目付け量」は、単位面積当たりのIL親和性多孔質層(C)内部の空隙に、含有可能なイオン液体含有液(A)量の最大値を意味し、下記式により算出した。
 (最大目付量)[g/m]=ρ×(V×ε)/S
[式中、ρはイオン液体含有液(A)の密度(例えば、25℃程度の室温における密度)、VはIL親和性多孔質層(C)の体積(空隙を含む全体積)、εはIL親和性多孔質層(C)の空隙率、SはIL親和性多孔質層(C)(又は二酸化炭素分離膜)の面積を示す]。
 表において、「換算膜厚」は、保持されたイオン液体含有液(A)と等量の液を用いて、二酸化炭素分離膜と同じ面積の液膜(直径4cmの円形状)を形成した場合の膜厚を意味し、下記式により算出した。
 t=(目付け量)/ρ
[式中、tは換算膜厚[μm]、ρはイオン液体含有液(A)の密度(例えば、25℃程度の室温における密度)を示す]。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2~6から明らかなように、実施例の二酸化炭素分離膜は、容易に成形可能であり、イオン液体を液体状態のまま安定に保持又は固定できる。特に、実施例3~4、7~8、11~12、15~16及び19~20のように、イオン液体含有液(A)の目付け量が最大目付け量以下であれば、二酸化炭素分離膜(IL含有積層体)表面がべたつかないだけでなく、触れても液が滲出しないため、イオン液体を液体状態のまま安定に保持(又は固定)しつつ、取り扱い性にも優れていることが分かった。しかも、IL親和性多孔質層(C)の厚み及びIL含有液(A)の換算膜厚は、実施例が示すように容易に薄膜化できるため、二酸化炭素分離膜の取り扱い性を維持しつつ、気体透過性(例えば、透過速度など)を有効に向上できる。
 (実施例23)
 IL含有液(A)を含む含浸液としてのemimDCAの水溶液に、赤色水性インクをさらに添加したものを用いる以外は、実施例3と同様の方法により二酸化炭素分離膜を調製した。得られた二酸化炭素分離膜を粘着テープで挟んで固定して凍結し、剃刀で切断して切片を作製した。この切片の切断面をCCDカメラで観察した結果を図1に示す。図1から明らかなように、IL含有液(A)は、IL親和性多孔質層(C)内部において、IL非親和性多孔質層(B)側に面方向に(又は扁平状に)広がって分布していることが確認された。そのため、二酸化炭素分離膜表面に触れても、イオン液体含有液(A)が付着せず、取り扱い性に優れると推測される。
 [二酸化炭素濃縮特性の評価]
 室温27℃、1気圧の条件下において、図2に示す装置により、後述する表8に記載の差圧をかけて、二酸化炭素分離膜(IL含有積層体)に系外の大気を供給して透過させることにより評価を行った。測定方法の詳細を以下に示す。
 (気体透過速度の測定)
 系内のガスをダイアフラムポンプで吸引し、排気されたガス[IL含有積層体を透過した気体と、この気体を滞留させることなく押し流すためのスイープガス(流入速度60mL/分に制御された大気)との混合気体]を水上置換法で100mLメスシリンダーに採集して、100mLのガスを採集するのに要した時間T100[sec]を計測した。下記式により、二酸化炭素分離膜(IL含有積層体)を透過する気体の透過速度v(mL/sec)を算出した。
 v[mL/sec]=(100-T100)/T100
(式中、vはIL含有積層体を透過した気体の透過速度[mL/sec]、T100はダイヤフラムポンプから排出されたガス100mLを採集するのに要した時間[sec]を示す)。
 (採取ガス中の二酸化炭素濃度の測定)
 ダイヤフラムから排出されるガスの出口を、ガス分析用テドラーバッグ(ジーエルサイエンス(株)製、ポリフッ化ビニル製)に接続し、排出されたガス約400mLを採取した。採取したガスを二酸化炭素濃度分析用検知管((株)ガステック製「GV-100S」)に通気させ、排出ガス中の二酸化炭素濃度C(体積基準)[ppm]を求めた。得られた二酸化炭素濃度Cから、スイープガス中の二酸化炭素濃度(又は大気中の二酸化炭素濃度)Cを差し引くことにより、濃縮により上昇した二酸化炭素濃度(二酸化炭素分離膜(IL含有積層体)を通して大気中から供給(又は濃縮)された二酸化炭素に相当する値)CIL(=C-C)を算出した。
 上記評価から得られた測定結果に基づいて、二酸化炭素分離膜(IL含有積層体)における二酸化炭素濃縮速度[二酸化炭素透過速度又はCO透過速度]vCO2及び二酸化炭素透過係数(CO透過係数)Pを、下記式により算出した。
 vCO2=v×CIL×10-6
(式中、vCO2はIL含有積層体を透過するCOの透過速度[mL/sec]、vはIL含有積層体を透過した気体の透過速度[mL/sec]、CILは濃縮により上昇した(二酸化炭素分離膜(IL含有積層体)を通して大気中から供給された)二酸化炭素濃度(体積基準)[ppm]を示す)。
 P=vCO2/S/p×t
(式中、PはCO透過係数[cm・cm/(s・cm・cmHg)]、vCO2はCO透過速度[mL/sec]、Sは二酸化炭素分離膜面積(IL含有積層体の面積)[cm]、pは二酸化炭素分離膜(IL含有積層体)の上流側(供給側)と下流側(減圧側又は透過側)との差圧[cmHg]、tはイオン液体含有液(A)の換算膜厚[cm]を示す)。
 (実施例24及び26)
 含浸液としてのemimDCAの水溶液[IL含有液(A)の濃度:0.14重量%(実施例24)、0.28重量%(実施例26)]を用いて、イオン液体含有液(A)[emimDCA]の目付け量が表7に記載の値となるように塗布する以外は、実施例7と同様にして二酸化炭素分離膜(IL含有積層体)を調製した。得られた二酸化炭素分離膜(IL含有積層体)の二酸化炭素濃縮特性の評価結果を表8に示す。
 (実施例25、27及び33~34)
 含浸液としてのemimDCAの水溶液[IL含有液(A)の濃度:0.14重量%(実施例25)、0.28重量%(実施例27)、1.39重量%(実施例33)、5.58重量%(実施例34)]を用いて、イオン液体含有液(A)[emimDCA]の目付け量が表7に記載の値となるように塗布する以外は、実施例3と同様にして二酸化炭素分離膜(IL含有積層体)を調製した。得られた二酸化炭素分離膜(IL含有積層体)の二酸化炭素濃縮特性の評価結果を表8に示す。
 (実施例28~29及び35~36)
 含浸液としてのemimTFSAのメタノール溶液[IL含有液(A)の濃度:0.38重量%(実施例28~29)、1.91重量%(実施例35~36)]を用いて、イオン液体含有液(A)[emimTFSA]の目付け量が表7に記載の値となるように塗布する以外は、実施例7と同様にして二酸化炭素分離膜(IL含有積層体)を調製した。得られた二酸化炭素分離膜(IL含有積層体)の二酸化炭素濃縮特性の評価結果を表8に示す。
 (実施例30~31及び37~38)
 含浸液としてのP4444Proの水溶液[IL含有液(A)の濃度:0.12重量%(実施例30)、0.25重量%(実施例31)、1.24重量%(実施例37)、4.94重量%(実施例38)]を用いて、イオン液体含有液(A)[P4444Pro]の目付け量が表7に記載の値となるように塗布する以外は、実施例3と同様にして二酸化炭素分離膜(IL含有積層体)を調製した。得られた二酸化炭素分離膜(IL含有積層体)の二酸化炭素濃縮特性の評価結果を表8に示す。
 (実施例32及び39~40)
 含浸液としてのP4444ProとTETAとの等モル混合液を含む水溶液[IL含有液(A)の濃度:0.12重量%(実施例32)、1.23重量%(実施例39)、4.94重量%(実施例40)]を用いて、イオン液体含有液(A)[P4444Pro/TETA]の目付け量が表7に記載の値となるように塗布する以外は、実施例3と同様にして二酸化炭素分離膜(IL含有積層体)を調製した。得られた二酸化炭素分離膜(IL含有積層体)の二酸化炭素濃縮特性の評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7及び8から明らかなように、実施例の二酸化炭素分離膜は、大気から二酸化炭素を有効に濃縮できる。実施例24~32の二酸化炭素分離膜(IL含有積層体)は、換算膜厚を薄く調整でき、高い透過速度で二酸化炭素を濃縮できた。なかでも、P4444Proを用いた実施例30~32では、透過速度が高い傾向にあり、特に、第2の液体としてTETAを添加した実施例32では、特に、透過速度が高かった。このことは、TETAと、P4444Pro中のプロリンアニオン([Pro])との親和性が高い(又は分散状態がよい)ことにより、TETAが二酸化炭素の透過(又は脱離)を阻害しない程度に二酸化炭素と相互作用できたためではないかと推測される。
 本発明の二酸化炭素分離膜は、イオン液体を安定に保持(又は固定)でき、取り扱い性(又はハンドリング性)に優れているため、例えば、農業分野において、二酸化炭素を植物に施肥するための二酸化炭素分離膜などとして有効に利用できる。
 

Claims (15)

  1.  イオン液体含有液(A)を空隙に保持したイオン液体親和性多孔質層(C)と、イオン液体非親和性多孔質層(B)とを含む二酸化炭素分離膜。
  2.  イオン液体親和性多孔質層(C)が、無機材料を含む請求項1記載の二酸化炭素分離膜。
  3.  無機材料が、個数基準で平均粒径0.001~5μmの金属酸化物粒子を含む請求項2記載の二酸化炭素分離膜。
  4.  イオン液体親和性多孔質層(C)の平均厚みが、0.01~10μmである請求項1~3のいずれかに記載の二酸化炭素分離膜。
  5.  イオン液体含有液(A)が、アンモニウム類、イミダゾリウム類及びホスホニウム類から選択されるカチオンと、フッ素含有アニオン、シアノ基含有アニオン及びアミノ酸由来のアニオンから選択されるアニオンとを含むイオン液体を含む請求項1~4のいずれかに記載の二酸化炭素分離膜。
  6.  イオン液体親和性多孔質層(C)が、内部の空隙100体積部に対して、イオン液体含有液(A)を0.1~99体積部の割合で含む請求項1~5のいずれかに記載の二酸化炭素分離膜。
  7.  二酸化炭素分離膜に保持されたイオン液体含有液(A)と等量の液で形成され、かつ二酸化炭素分離膜と同じ面積を有する液膜の膜厚が、0.1~2μmである請求項1~6のいずれかに記載の二酸化炭素分離膜。
  8.  イオン液体非親和性多孔質層(B)が、ポリオレフィン系樹脂、フッ素樹脂及びセルロース誘導体から選択される少なくとも1種の樹脂を含み、かつイオン液体非親和性多孔質層(B)のイオン液体含有液(A)に対する接触角が、90~150°である請求項1~7のいずれかに記載の二酸化炭素分離膜。
  9.  イオン液体含有液(A)が、イオン液体と相溶可能な第2の液体をさらに含む請求項1~8のいずれかに記載の二酸化炭素分離膜。
  10.  第2の液体がポリアミン類である請求項9記載の二酸化炭素分離膜。
  11.  イオン液体と第2の液体との割合が、前者/後者(モル比)=25/75~75/25である請求項9又は10記載の二酸化炭素分離膜。
  12.  植物に二酸化炭素を施肥するための請求項1~11のいずれかに記載の二酸化炭素分離膜。
  13.  植物が、屋内で栽培される植物である請求項12記載の二酸化炭素分離膜。
  14.  イオン液体非親和性多孔質層(B)と、イオン液体親和性多孔質層(C)とを備えた積層体において、イオン液体親和性多孔質層(C)の空隙に、イオン液体含有液(A)を含む液体を含浸させる工程を含む請求項1~13のいずれかに記載の二酸化炭素分離膜を製造する方法。
  15.  請求項1~13のいずれかに記載の二酸化炭素分離膜を備えた二酸化炭素濃縮装置。
PCT/JP2018/017121 2017-05-18 2018-04-27 二酸化炭素分離膜及びその製造方法 WO2018211945A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18802639.7A EP3626334A4 (en) 2017-05-18 2018-04-27 CARBON DIOXIDE SEPARATION MEMBRANE AND MANUFACTURING METHOD FOR IT
CN201880032904.9A CN110662597B (zh) 2017-05-18 2018-04-27 二氧化碳分离膜及其制造方法
JP2019519157A JP7073357B2 (ja) 2017-05-18 2018-04-27 二酸化炭素分離膜及びその製造方法
US16/612,036 US11524265B2 (en) 2017-05-18 2018-04-27 Carbon dioxide separation membrane and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099325 2017-05-18
JP2017-099325 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018211945A1 true WO2018211945A1 (ja) 2018-11-22

Family

ID=64274273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017121 WO2018211945A1 (ja) 2017-05-18 2018-04-27 二酸化炭素分離膜及びその製造方法

Country Status (5)

Country Link
US (1) US11524265B2 (ja)
EP (1) EP3626334A4 (ja)
JP (1) JP7073357B2 (ja)
CN (1) CN110662597B (ja)
WO (1) WO2018211945A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172087A1 (ja) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置
US11254026B2 (en) 2015-12-07 2022-02-22 Timothée BOITOUZET Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
EP3943180A4 (en) * 2019-03-19 2022-12-14 Nitto Denko Corporation STRUCTURE CONTAINING AN IONIC LIQUID
WO2023032744A1 (ja) * 2021-09-06 2023-03-09 日東電工株式会社 分離機能層、分離膜及び分離機能層の製造方法
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078613B2 (ja) * 2017-05-18 2022-05-31 株式会社ダイセル イオン液体含有積層体及びその製造方法
GB202006427D0 (en) * 2020-04-30 2020-06-17 Norwegian Univ Sci & Tech Ntnu Gas separation membranes
CN114950073B (zh) * 2021-07-14 2023-10-20 上海宜室建筑环境工程有限公司 一种提高舒适性的离子复配液及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069810A (ja) 1992-03-17 1994-01-18 Millipore Corp 疎水性高分子複合膜
JP2001120940A (ja) 1999-10-27 2001-05-08 Japan Science & Technology Corp 液体膜による炭酸ガス分離・除去方法およびその装置
JP2001333639A (ja) * 2000-05-25 2001-12-04 Natl Inst Of Advanced Industrial Science & Technology Meti 高二酸化炭素選択分離膜を用いた植物への二酸化炭素施肥
JP2010214324A (ja) * 2009-03-18 2010-09-30 Petroleum Energy Center 炭酸ガス分離膜
WO2013118776A1 (ja) * 2012-02-06 2013-08-15 株式会社ルネッサンス・エナジー・リサーチ Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置
JP2014075994A (ja) 2012-10-09 2014-05-01 The Wakasa Wan Energy Research Center Co2ガス濃縮装置、及びco2ガス濃縮方法
JP2014139149A (ja) 2013-01-21 2014-07-31 Ajinomoto Co Inc アミノ酸イオン液体を用いたペプチドの製造方法
US20140283839A1 (en) * 2013-03-01 2014-09-25 Reaction Systems, Llc Advanced supported liquid membranes for carbon dioxide control in extravehicular activity applications
JP2015124264A (ja) 2013-12-26 2015-07-06 旭化成株式会社 ゲル状薄膜、複合膜、気体分離膜及び製造方法
JP2016010760A (ja) 2014-06-27 2016-01-21 国立研究開発法人産業技術総合研究所 酸性ガス化学吸収液及び酸性ガス分離回収方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043418B2 (en) * 2006-12-08 2011-10-25 General Electric Company Gas separator apparatus
JP5525699B2 (ja) * 2008-05-27 2014-06-18 株式会社Kri 高分子イオン性化合物
US7937948B2 (en) * 2009-09-23 2011-05-10 Pioneer Energy, Inc. Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US9597632B2 (en) * 2012-02-06 2017-03-21 Renaissance Energy Research Corporation Selectively CO 2-permeable membrane, method for separating CO2 from mixed gas, and membrane separation equipment
CN104379241B (zh) 2012-05-30 2017-09-01 东丽株式会社 二氧化碳分离膜
JP6156838B2 (ja) * 2013-03-29 2017-07-05 富士フイルム株式会社 酸性ガス分離用複合体の製造方法
JP6228033B2 (ja) 2014-02-26 2017-11-08 旭化成株式会社 気体分離膜及び製造方法
KR101650236B1 (ko) * 2014-07-22 2016-08-22 한양대학교 산학협력단 이온성 액체가 담지된 나노기공 다공체를 이용한 이산화탄소 분리용 촉진수송 분리막

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069810A (ja) 1992-03-17 1994-01-18 Millipore Corp 疎水性高分子複合膜
JP2001120940A (ja) 1999-10-27 2001-05-08 Japan Science & Technology Corp 液体膜による炭酸ガス分離・除去方法およびその装置
JP2001333639A (ja) * 2000-05-25 2001-12-04 Natl Inst Of Advanced Industrial Science & Technology Meti 高二酸化炭素選択分離膜を用いた植物への二酸化炭素施肥
JP2010214324A (ja) * 2009-03-18 2010-09-30 Petroleum Energy Center 炭酸ガス分離膜
WO2013118776A1 (ja) * 2012-02-06 2013-08-15 株式会社ルネッサンス・エナジー・リサーチ Co2選択透過膜、co2を混合ガスから分離する方法、及び膜分離装置
JP2014075994A (ja) 2012-10-09 2014-05-01 The Wakasa Wan Energy Research Center Co2ガス濃縮装置、及びco2ガス濃縮方法
JP2014139149A (ja) 2013-01-21 2014-07-31 Ajinomoto Co Inc アミノ酸イオン液体を用いたペプチドの製造方法
US20140283839A1 (en) * 2013-03-01 2014-09-25 Reaction Systems, Llc Advanced supported liquid membranes for carbon dioxide control in extravehicular activity applications
JP2015124264A (ja) 2013-12-26 2015-07-06 旭化成株式会社 ゲル状薄膜、複合膜、気体分離膜及び製造方法
JP2016010760A (ja) 2014-06-27 2016-01-21 国立研究開発法人産業技術総合研究所 酸性ガス化学吸収液及び酸性ガス分離回収方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254026B2 (en) 2015-12-07 2022-02-22 Timothée BOITOUZET Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11662899B2 (en) 2018-02-09 2023-05-30 Sas Woodoo Touch detection device with touch interface made of composite material
EP3943180A4 (en) * 2019-03-19 2022-12-14 Nitto Denko Corporation STRUCTURE CONTAINING AN IONIC LIQUID
WO2021172087A1 (ja) 2020-02-25 2021-09-02 国立研究開発法人産業技術総合研究所 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置
WO2023032744A1 (ja) * 2021-09-06 2023-03-09 日東電工株式会社 分離機能層、分離膜及び分離機能層の製造方法

Also Published As

Publication number Publication date
EP3626334A1 (en) 2020-03-25
CN110662597B (zh) 2022-08-30
US11524265B2 (en) 2022-12-13
EP3626334A4 (en) 2021-03-10
CN110662597A (zh) 2020-01-07
US20210154622A1 (en) 2021-05-27
JP7073357B2 (ja) 2022-05-23
JPWO2018211945A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
WO2018211945A1 (ja) 二酸化炭素分離膜及びその製造方法
KR102257669B1 (ko) 기체 분리막
JP2018520859A (ja) ポリマーアイオノマー分離膜及び使用方法
CN103702741A (zh) 沸石咪唑酯骨架结构材料膜、其制备方法、及其用于分离c2-烃和c3+烃及用于分离丙烯和丙烷混合物的方法
JP6743706B2 (ja) エレクトレットフィルターの製造方法
Kaviani et al. Enhanced solubility of carbon dioxide for encapsulated ionic liquids in polymeric materials
US11491447B2 (en) Ionic liquid-containing laminate and method for producing same
TWI710401B (zh) 氣體分離用膜模組、連續氣體供給系統、烯烴氣體之製造方法、及膜模組單元
Roy et al. Poly (acrylamide-co-acrylic acid) hydrophilization of porous polypropylene membrane for dehumidification
KR20180101590A (ko) 가스 분리용 모듈 및 가스 분리 방법
US11338242B2 (en) Method and apparatus for removing CO2
CN102886212A (zh) 以聚苯胺纳米材料和聚乙烯胺制备co2分离膜的方法
WO2021172087A1 (ja) 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置
KR102314307B1 (ko) 일렉트릿 및 일렉트릿 필터
KR20200017682A (ko) 분리막의 제조방법 및 이에 의하여 제조된 분리막
CN111545081A (zh) 一种高通量高强度复合聚四氟乙烯中空纤维膜的制备方法
CA3136757C (en) Method of wetting low surface energy substrate and a system therefor
JP7349886B2 (ja) ガス分離膜
WO2022190938A1 (ja) スパイラル型膜エレメント及び膜分離システム
JP2019018124A (ja) 分離膜
CN104437131A (zh) 一种聚乳酸微孔膜
JP2015027644A (ja) 促進輸送型分離膜の製造方法および促進輸送型分離膜
JP2003047399A (ja) 鮮度保持材及び鮮度保持部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018802639

Country of ref document: EP

Effective date: 20191218