WO2018207553A1 - 液体材料気化供給装置及び制御プログラム - Google Patents

液体材料気化供給装置及び制御プログラム Download PDF

Info

Publication number
WO2018207553A1
WO2018207553A1 PCT/JP2018/015588 JP2018015588W WO2018207553A1 WO 2018207553 A1 WO2018207553 A1 WO 2018207553A1 JP 2018015588 W JP2018015588 W JP 2018015588W WO 2018207553 A1 WO2018207553 A1 WO 2018207553A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
flow rate
pressure
material gas
detected
Prior art date
Application number
PCT/JP2018/015588
Other languages
English (en)
French (fr)
Inventor
宮本 英顕
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to KR1020197025748A priority Critical patent/KR102639507B1/ko
Priority to US16/491,466 priority patent/US11066746B1/en
Priority to JP2019517522A priority patent/JP7105765B2/ja
Priority to CN201880016459.7A priority patent/CN110382103B/zh
Publication of WO2018207553A1 publication Critical patent/WO2018207553A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/19Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a liquid material vaporization supply device and a control program.
  • a liquid material vaporization supply device used in a semiconductor manufacturing process includes a vaporization tank that vaporizes a liquid material to generate a material gas, and a pressure sensor that detects a pressure in the vaporization tank. And a deriving path for deriving material gas from the vaporization tank, and a flow rate control device (so-called mass flow controller) provided in the deriving path and controlling the flow rate of the material gas flowing through the deriving path.
  • a flow rate control device so-called mass flow controller
  • the main object of the present invention is to make it possible to accurately control the flow rate even for a material gas that does not require calibration depending on the type of material gas and for which there is no calibration data.
  • the liquid material vaporization supply apparatus includes a first tank that vaporizes a liquid material and generates a material gas, and the material gas generated in the first tank is connected to the first tank.
  • a second tank accommodated by pressure; a pressure sensor for detecting the pressure in the second tank; a lead-out path for leading the material gas from the second tank; and the lead-out path.
  • a fluid control valve that opens and closes, and the fluid control valve based on a decrease in detected pressure detected by the pressure sensor when the material gas stored in the second tank at a predetermined pressure is derived from the outlet passage.
  • a flow rate control unit for controlling the flow rate of the material gas led out from the lead-out path by controlling the degree of opening.
  • the flow rate of the material gas derived from the second tank is controlled based on the decrease in the pressure in the second tank detected by the pressure sensor. Regardless of the type, the flow rate of the material gas can be accurately controlled. Thereby, even if it is material gas without calibration data, a flow rate can be controlled correctly.
  • the flow rate control device used for the conventional liquid material vaporization supply device has low heat resistance
  • the upper limit of the heating temperature of the vaporization tank corresponding to the first tank of the present invention must be set low, Along with this, the upper limit of the vapor pressure in the vaporization tank is also lowered, and there is a problem that the maximum flow rate of the material gas is limited, but according to the liquid material vaporization supply apparatus according to the present invention, high heat resistance, Since the flow rate of the material gas can be controlled by the pressure sensor and the fluid control valve, the upper limit of the heating temperature for vaporizing the liquid material can be set high, and accordingly, the first tank is accommodated in the second tank. As a result, the maximum flow rate of the material gas can be increased.
  • a flow rate calculation unit that calculates a flow rate of gas, a valve control unit that controls an opening degree of the fluid control valve based on a deviation between a calculated flow rate calculated by the flow rate calculation unit and a preset set flow rate; May be provided.
  • the flow rate control unit of the liquid material vaporization supply apparatus further includes a flow rate sensor that detects the flow rate of the material gas derived from the lead-out path, and the flow rate control unit is detected by the flow rate sensor.
  • a valve control unit that controls the opening of the fluid control valve based on a deviation between a detected flow rate and a preset set flow rate, and based on a decrease amount per unit time of a detected pressure detected by the pressure sensor
  • the flow rate calculation unit that calculates the flow rate of the material gas derived from the second tank within the unit time, and the setting based on the deviation between the calculated flow rate calculated by the flow rate calculation unit and the set flow rate And a set flow rate correction unit that corrects the flow rate.
  • the flow rate of the material gas is controlled based on the detected flow rate detected by the flow sensor, as in the conventional liquid material vaporization and supply device, but the control is detected by the pressure sensor. Therefore, the flow rate of the material gas can be accurately controlled regardless of the type of the material gas.
  • the flow rate of the material gas derived from the lead-out path is controlled based on the detected flow rate during the timing at which the detected pressure is detected by the pressure sensor, it is affected by noise caused by disturbances, etc. occurring during that timing Can be suppressed.
  • the set flow rate is not changed (the reference set flow rate stored in the memory in advance is not reset), it is detected by the pressure sensor by limiting the fluctuation range of the set flow rate by correction. It is possible to suppress a sensitive flow rate change when noise fluctuation due to the detected pressure is large. However, since the flow rate sensor is used, the response speed is slow and the heat resistance is low.
  • any one of the flow rate control units may further include a unit time changing unit that changes the unit time based on the set flow rate and changes the unit time longer as the set flow rate is smaller. Good.
  • the amount of pressure drop per unit time is small, it is easily affected by the error in the detected pressure detected by the pressure sensor. Therefore, if the unit time is changed longer as the set flow rate is smaller as in the flow rate control unit, the amount of decrease in pressure per unit time increases, and the influence of the error in the detected pressure detected by the pressure sensor can be suppressed. .
  • a flow rate control unit of the liquid material vaporization supply device based on the amount of decrease between the detected pressure detected by the pressure sensor at a predetermined timing and the detected pressure detected after a predetermined time from the predetermined timing, Assuming a case where the flow rate of the material gas derived from the second tank is calculated within the predetermined time, and the material gas is derived from the second tank according to a preset flow rate, Under the assumption, an assumed flow rate calculation unit for calculating the flow rate of the material gas derived within the predetermined time, a calculated flow rate calculated by the flow rate calculation unit, and an assumed flow rate calculated by the assumed flow rate calculation unit And a valve control unit that controls the opening degree of the fluid control valve based on the deviation.
  • the flow rate calculation unit may include the pressure sensor.
  • the flow rate of the material gas derived from the second tank within each unit time is calculated based on the decrease amount per unit time of the detected pressure detected every unit time from the predetermined timing.
  • the flow rate of the material gas derived from the second tank within the predetermined time based on the flow rate may be calculated.
  • the calculated flow rate calculated by the flow rate calculation unit is an average flow rate of the material gas derived from the lead-out path within a certain time (the unit time, the predetermined time), but is detected by a pressure sensor due to a disturbance or the like.
  • the average flow rate does not become a strict meaning. Therefore, it can be said that the calculated flow rate is a substantially average flow rate.
  • the material gas is derived from the second tank according to a preset flow rate as the flow rate control unit of the liquid material vaporization supply device, and the material gas starts to be derived under the assumption.
  • An assumed pressure calculation unit for calculating an assumed pressure in the second tank after elapse of a predetermined time; and a detected pressure detected by the pressure sensor after elapse of the predetermined time after the material gas starts to be derived from the second tank;
  • a valve control unit that controls an opening degree of the fluid control valve based on a deviation from the assumed pressure calculated by the assumed pressure calculation unit.
  • any one of the liquid material vaporization and supply devices further includes a temperature sensor that detects the temperature in the second tank, and the flow rate control unit is based on the detected temperature detected by the temperature sensor, You may further provide the detection pressure correction
  • the detected pressure correction unit may correct the detected pressure based on the detected temperature detected by the temperature sensor when the detected pressure is detected by the pressure sensor.
  • the detection pressure correction unit is filled with the material gas from the vaporization tank to the filling tank, the period from the start of filling detected by the temperature sensor to the time when the temperature in the filling tank is stabilized after filling is completed.
  • a temperature increase amount may be acquired in advance, and a detection pressure detected by the pressure sensor may be corrected based on the temperature increase amount when the material gas is derived from the filling tank. .
  • the pressure in the second tank decreases and the second tank expands. Along with this, the temperature in the second tank decreases, and this causes an error in the detected pressure detected by the pressure sensor. Therefore, as described above, if the detected pressure detected by the pressure sensor is corrected based on the detected temperature detected by the temperature sensor in the detected pressure correction unit, an error in the detected pressure detected by the pressure sensor can be suppressed. .
  • any one of the liquid material vaporization and supply devices may further include a pressure control mechanism for controlling the material gas introduced from the first tank to the second tank to a predetermined pressure.
  • the detected pressure detected by the pressure sensor increases accordingly, and an error is likely to occur. Therefore, if the pressure of the material gas stored in the second tank is controlled by the pressure control mechanism as described above and the pressure of the material gas stored in the second tank is kept low to some extent, the pressure sensor detects the pressure. The detection pressure is also lowered, and errors can be suppressed.
  • the pressure control mechanism opens and closes the open / close valve for adjusting the flow rate of the material gas introduced from the first tank to the second tank, and the open / close valve.
  • a pressure control unit that controls the pressure of the material gas introduced into the second tank by a differential pressure between the first tank and the second tank.
  • the pressure control unit may control a differential pressure between the first tank and the second tank by adjusting a temperature of a heater that heats the first tank.
  • the pressure control mechanism a pump for forcibly introducing the material gas from the first tank to the second tank, a driving stop of the pump, and the introduction to the second tank
  • a pump for forcibly introducing the material gas from the first tank to the second tank, a driving stop of the pump, and the introduction to the second tank A thing provided with the pressure control part which controls the pressure of material gas is also mentioned.
  • the pressure of the material gas introduced into the second tank can be increased without increasing the heating temperature of the liquid material, and thus it is necessary to expose the liquid material to a high temperature for a long time. This eliminates the risk of denaturation and decomposition of liquid materials.
  • the pressure control unit stops introduction of the material gas to the second tank when a detected pressure detected by the pressure sensor becomes a predetermined pressure. It may be.
  • the pressure of the material gas introduced into the second tank can be controlled, and the pressure of the material gas introduced into the second tank can be kept low to some extent. The pressure is lowered and the error can be suppressed.
  • a plurality of the second tanks are connected to the first tank, and the second tank introduces the material gas based on the set flow rate.
  • You may further comprise the introduction tank number adjustment part which adjusts a number.
  • the number of second tanks containing the material gas can be increased, and the total amount of material gas derived from the second tank can be secured, while the set flow rate is small.
  • the number of second tanks that store the material gas can be reduced, and the amount of decrease in the detected pressure detected by the pressure sensor can be increased to suppress the error.
  • the control program includes a pressure sensor that detects a pressure in a second tank in which the material gas is temporarily stored at a predetermined pressure from a first tank that vaporizes a liquid material to generate a material gas.
  • a control program for a liquid material vaporization supply apparatus comprising: a fluid control valve that opens and closes a lead-out path for leading the material gas from the second tank; and a flow rate control unit that controls an opening degree of the fluid control valve.
  • the flow rate control unit derives the material gas stored in the second tank at a predetermined pressure from the lead-out path, the fluid control is performed based on a decrease in the detected pressure detected by the pressure sensor.
  • the valve opening degree is controlled so that the function of controlling the flow rate of the material gas led out from the lead-out path can be exhibited.
  • FIG. 10 is a schematic diagram illustrating a liquid material vaporization supply device according to a fifth embodiment.
  • the liquid material vaporization supply apparatus is used, for example, for supplying a material gas at a stable flow rate to a chamber (supply destination) in a semiconductor manufacturing process.
  • the liquid material vaporization supply apparatus can be used for applications other than the semiconductor control process.
  • the liquid material vaporization and supply apparatus 100 includes a first tank 10 that vaporizes a liquid material and generates a material gas, and a material gas generated in the first tank 10 is temporarily.
  • the second tank 20 accommodated at a predetermined pressure, the connection path L1 connecting the first tank 10 and the second tank 20, the introduction path L2 for introducing the liquid material into the first tank 10, and the second tank 20.
  • a lead-out path L3 for leading out the material gas. Note that one end of the connection path L1 connected to the first tank 10 is connected to the gas phase space in the first tank 10.
  • introduction path L2 is connected to a liquid material supply device (not shown) on the opposite side to the one end connected to the first tank 10, and the lead-out path L3 is one end connected to the second tank 20. The other end on the opposite side is connected to a chamber (not shown).
  • connection path L1 is provided with a first opening / closing valve 30 for opening / closing the flow path
  • introduction path L2 is provided with a second opening / closing valve 40 for opening / closing the flow path.
  • a fluid control valve 50 for controlling the flow rate of the material gas led out from the second tank 20 is installed in the lead-out path L3.
  • the second tank 20 is provided with a pressure sensor PS for detecting the internal pressure.
  • the first on-off valve 30 corresponds to the on-off valve in the claims.
  • the fluid control valve 50 may be anything that can control the fluid, and includes those that control the pressure in addition to those that control the flow rate.
  • the members (the first tank 10, the second tank 20, the valves 30, 40, 50, the pressure sensor, etc.) excluding the other end side of the introduction path L2 and the other end side of the outlet path L3 are all constant temperature. It is accommodated in the region TR, whereby each member is kept at a predetermined temperature (high temperature). Thereby, reliquefaction of the liquid material is prevented, and the amount of the material gas stored in the second tank 20 can be kept constant.
  • the first tank 10 is provided with a heater H for heating and vaporizing the liquid material.
  • the liquid material vaporization supply device 100 includes a control device (not shown), and the control device is connected to the pressure sensor PS and the valves 30, 40, and 50.
  • the control device is constituted by a so-called computer having a CPU, a memory, an A / D / D / A converter, an input / output means, etc., and a program stored in the memory is executed, and various devices cooperate.
  • the function is realized by working. Specifically, as a flow rate control unit that controls the flow rate of the material gas derived from the second tank 20 and a pressure control unit that controls the material gas introduced from the first tank 10 to the second tank 20 to a pressure. Demonstrate the function.
  • the flow rate control unit calculates a flow rate of the material gas derived from the second tank 20 within the unit time based on a decrease amount per unit time of the detected pressure detected by the pressure sensor PS, A valve control unit that controls the opening degree of the fluid control valve 50 so that the calculated flow rate approaches the set flow rate based on a deviation between the calculated flow rate calculated by the flow rate calculation unit and a preset set flow rate. ing.
  • the flow rate calculation unit is obtained by first substituting the decrease amount ⁇ P per unit time ⁇ t of the detected pressure detected by the pressure sensor PS into the equation (1) which is a gas state equation. From equation (2), the total amount ⁇ n of material gas derived from the second tank 20 per unit time ⁇ t is calculated.
  • PV nRT Formula (1)
  • ⁇ P ⁇ n ⁇ (RT / V) Equation (2)
  • P is the pressure in the second tank 20
  • V the volume of the second tank 20
  • n the physical quantity of the material gas accommodated in the second tank 20
  • R is in the second tank 20.
  • the molar gas constant of the contained material gas, T is the temperature of the material gas in the second tank. Incidentally, the temperature in the second tank 20 is kept constant.
  • the calculated flow rate Q of the material gas derived from the second tank 20 within the unit time is calculated by the equation (3).
  • Q A ⁇ ( ⁇ P / ⁇ t) Equation (3)
  • A is a coefficient, and is a value corrected based on the type of material gas, temperature T, and pressure P. Note that the correction value of A may be a small value that can be ignored.
  • ⁇ t in each of the above formulas is not limited to unit time, and may be an arbitrary time interval.
  • the pressure control unit sequentially opens and closes the respective valves 30, 40, 50, and is introduced from the first tank 10 to the second tank 20 by the differential pressure between the first tank 10 and the second tank 20. It has a function of controlling the pressure of the material gas. Further, the pressure difference between the first tank 10 and the second tank 20 is adjusted by adjusting the heating temperature of the heater H provided in the first tank 10 and limiting the pressure increase value in the first tank 10. It also has a function of controlling the size.
  • the pressure control unit closes the first on-off valve 30 and the second on-off valve 40 and opens the fluid control valve 50.
  • the pressure control unit adjusts the heating temperature of the heater H provided in the first tank 10, vaporizes the liquid material in the first tank 10 to generate a material gas, and the pressure in the first tank 10. To a predetermined vapor pressure.
  • the second tank 20 is decompressed to a substantially vacuum state by a vacuum pump (not shown) provided on the downstream side of the lead-out path L3.
  • the pressure control unit closes the fluid control valve 50 and opens the first opening / closing valve 30 while keeping the inside of the second tank 20 in a substantially vacuum state.
  • the material gas vaporized in the first tank 10 is increased by the pressure difference between the first tank 10 and the second tank 20 until the pressure in the second tank 20 reaches the predetermined vapor pressure.
  • the material gas is introduced into the two tanks 20.
  • the pressure control unit closes the first opening / closing valve 30 to complete the introduction operation. Thereby, the material gas is accommodated in the second tank 20 at a predetermined pressure (predetermined vapor pressure).
  • the flow rate control unit opens the fluid control valve 50 to a preset initial opening. Thereby, the material gas flows out from the second tank 20 to the lead-out path L3.
  • the flow rate calculation unit detects the pressure in the second tank 20 by the pressure sensor PS, obtains the pressure decrease amount ⁇ Pt per unit time ⁇ t, and substitutes it into the above equation (3). calculating the calculated flow rate Q C of the material gas derived within unit time ⁇ t from.
  • the valve control unit calculates the flow rate Q C calculated by the flow rate calculation unit, so as to approach the set flow rate Q S which is set in advance, controls the opening of the fluid control valve 50.
  • the flow rate calculation unit repeats the calculation of the calculated flow rate every unit time, and the valve control unit repeats the opening control of the fluid control valve 50 based on the calculation result, so that the material gas is set to the set flow rate from the second tank 20.
  • Q S is controlled by the flow rate in the vicinity.
  • ALD Atomic Layer Deposition
  • the liquid material vaporization and supply apparatus of the present embodiment is a modification of the first embodiment.
  • a flow sensor FS is installed on the downstream side of the fluid control valve 50 in the lead-out path L3 in the first embodiment.
  • the flow rate control unit in the present embodiment includes a valve control unit that controls the opening degree of the fluid control valve 50 so that the detected flow rate detected by the flow rate sensor FS approaches a preset set flow rate, and the pressure sensor PS.
  • the flow rate calculation unit that calculates the flow rate of the material gas derived from the second tank 20 within the unit time based on the amount of decrease in the detected pressure per unit time detected in Step 1, and the calculation calculated by the flow rate calculation unit
  • a set flow rate correction unit that corrects the set flow rate based on a deviation between the flow rate and the set flow rate.
  • Other configurations are the same as those in the first embodiment.
  • the flow rate control unit opens the fluid control valve 50 to a preset initial opening. Thereby, the material gas flows out from the second tank 20 to the lead-out path L3. Then, the valve control unit, so closer to the set flow rate Q S to detect the flow rate Q m is detected by the flow sensor FS is set in advance, it starts the feedback control for controlling the opening of the fluid control valve 50.
  • the flow rate calculation unit detects the pressure in the second tank 20 by the pressure sensor PS, calculates the pressure drop amount ⁇ Pt per unit time ⁇ t, substitutes it into the equation (3), and from the second tank 20 calculating the calculated flow rate Q C of the material gas to be derived during the unit time Delta] t. Then, setting the flow rate correction section, based on a deviation between the calculated flow rate Q C calculated by the flow rate calculation unit and the set flow rate Q S, to correct the set flow rate Q S. Then, while correcting the set flow rate Q S for each unit time ⁇ t by setting flow rate correction unit, by the valve control section repeats the feedback control, the material gas is controlled by the flow rate set flow rate Q S near the second tank 20.
  • the liquid material vaporization and supply apparatus of the present embodiment is a modification of the first embodiment, and has the same configuration as that of the first embodiment except that the configuration of the flow rate control unit is different.
  • the flow rate control unit in the present embodiment is based on a pressure drop amount between a detected pressure detected by the pressure sensor PS at a predetermined timing and a detected pressure detected after a predetermined time has elapsed from the predetermined timing.
  • a flow rate calculation unit for calculating the flow rate of the material gas derived from the second tank 20 and a case where the material gas is derived from the second tank 20 according to a preset flow rate, and under the assumption,
  • the assumed flow rate calculation unit that calculates the flow rate of the material gas derived in time, and the calculated flow rate is assumed based on the deviation between the calculated flow rate calculated by the flow rate calculation unit and the assumed flow rate calculated by the assumed flow rate calculation unit
  • a valve control unit that controls the opening of the fluid control valve so as to approach the flow rate.
  • the flow rate control unit opens the fluid control valve 50 to a preset initial opening. Thereby, the material gas flows out from the second tank 20 to the lead-out path L3.
  • the flow rate calculation unit detects the detected pressure P m detected at a predetermined timing by the pressure sensor PS and the detected pressure P m ′ detected after a predetermined time ⁇ t ′ from the predetermined timing, and the predetermined time ⁇ t. calculating a pressure reduction amount ⁇ Pt' in ', the equation is substituted into (3), to calculate a calculated flow rate Q C of the material gas to be derived during the predetermined time ⁇ t' from the second tank 20.
  • the valve control unit on the basis of the deviation between the assumed flow rate Q A of the calculated flow rate Q C is calculated by the flow rate calculating unit is calculated by assuming a flow rate calculation unit, calculates the flow rate Q C approaches the assumed flow rate Q A
  • the opening degree of the fluid control valve 50 is controlled.
  • the flow rate calculation unit and the assumed flow rate calculation unit repeat the calculation every elapsed time from the predetermined timing, and the valve control unit repeats the opening degree control of the fluid control valve 50 based on the calculation result, whereby the second tank 20 material gas is controlled by a set flow rate Q S in the vicinity of the flow rate from.
  • the flow rate Q C may be calculated to calculate the flow rate Q C as follows. That is, first, the flow rate of the material gas derived from the second tank within each unit time ⁇ t is calculated based on the decrease amount per unit time ⁇ t of the detected pressure detected by the pressure sensor PS every unit time ⁇ t. . Subsequently, the integrated value obtained by integrating the calculated flow rates of the unit times ⁇ t included between the predetermined timing and the predetermined time ⁇ T is divided by the number of units. Thus, calculating the calculated flow rate Q C of the material gas derived from the second tank to the predetermined time within [Delta] T.
  • the liquid material vaporization and supply apparatus of the present embodiment is a modification of the first embodiment, and has the same configuration as that of the first embodiment except that the configuration of the flow rate control unit is different.
  • the flow rate control unit in the present embodiment assumes a case where the material gas is derived from the second tank 20 according to a preset flow rate, and the second time after a predetermined time has elapsed since the material gas began to be derived under the assumption. Based on an assumed pressure calculation unit for calculating an assumed pressure in the tank 20 and a deviation between the detected pressure detected by the pressure sensor PS and the assumed pressure after the predetermined time has elapsed since the material gas began to be derived from the second tank 20. And a valve control unit that controls the opening degree of the fluid control valve 50 so that the detected pressure approaches the assumed pressure.
  • the flow rate control unit opens the fluid control valve 50 to a preset initial opening. Thereby, the material gas flows out from the second tank 20 to the lead-out path L3. Then, assuming the pressure calculating unit, the assumption that derived in accordance with the set flow rate Q S of the material gas is set in advance from the second tank 20, after the predetermined time ⁇ T has elapsed since the material gas starts to be derived in the assumption under calculating the assumed pressure P a in the second tank 20. In this case, the assumption pressure P A that is required for the flow rate of the material gas derived from the previously second tank 20 is set flow rate Q S, calculated back by said formula (3).
  • the equation (3) by it is possible to calculate the pressure drop amount ⁇ Pt per predetermined time [Delta] T, the pressure reduction amount ⁇ Pt and the predetermined time [Delta] T calculating the assumed pressure P a.
  • the sensed pressure P m approaches the assumed pressure P a, controls the opening of the fluid control valve 50.
  • the hypothetical pressure calculation unit repeats the calculation every elapsed time after the material gas begins to be derived from the second tank 20, and the valve control unit repeats the opening control of the fluid control valve 50 based on the calculation result.
  • the material gas is controlled by a set flow rate Q S near the flow from the second tank 20.
  • the liquid material vaporization and supply apparatus of the present embodiment is a modification of the first embodiment, and as shown in FIG. 3, two second tanks 20a and 20b are connected to the first tank 10 of the first embodiment.
  • the control device is provided with an introduction tank number adjusting unit (not shown) for adjusting the number of second tanks 20a and 20b for introducing the material gas from the first tank 10 based on the set flow rate.
  • the two second tanks 20a and 20b have the same volume.
  • the downstream side of the connection path L1 extending from the first tank 10 is branched and connected to each of the second tanks 20a and 20b, and the first opening and closing valves 30a and 30a are connected to the downstream side of the branch point of the connection path L1, respectively.
  • the leading end side of the connecting pipe extending from the pressure sensor PS is branched and connected to each of the second tanks 20a and 20b, and the third on-off valve 60 is connected to the leading end side connected to one second tank 20a of the connecting pipe. Is installed. Further, the downstream side of the lead-out path L3 extending from each of the second tanks 20a and 20b joins, and the fourth opening / closing valve 70 is installed upstream from the junction of the lead-out path L3 extending from one second tank 20a.
  • the fluid control valve 50 is installed on the downstream side with respect to the confluence of the lead-out path L3.
  • the introduction tank number adjusting unit opens the third on-off valve 60 and the fourth on-off valve 70 from the state in which the material gas is stored in both the second tanks 20a, 20b, The material gas of the tanks 20a and 20b is derived. Thereby, the total amount of material gas supplied to a supply destination can be increased.
  • the third open / close valve 60 and the fourth open / close valve 70 are closed from the state in which the material gas is stored in the second tanks 20a and 20b, and only the material gas of the other second tank 20b is closed. Is derived.
  • the introduction gas number adjusting unit controls the material gas of each of the second tanks 20a and 20b to be alternately derived, so that the material gas can be continuously supplied to the supply destination. Specifically, while the material gas stored in one second tank 20a is being led out, the material gas is stored in the other second tank 20b and also stored in the other second tank 20b. While the material gas is being led out, the material gas is accommodated in one second tank 20a. By repeating this operation, the material gas can be continuously supplied to the supply destination.
  • the 2nd tank was installed, three or more may be installed and the volume of each tank does not need to be the same.
  • the flow rate control unit is configured to change the unit time interval based on the set flow rate, and to change the unit time longer as the set flow rate is smaller. It may be provided.
  • the unit time interval is changed according to the set flow rate, and when the set flow rate is small, the unit time interval is lengthened and the pressure drop per unit time is increased. Thereby, the influence of the detection error by the pressure sensor PS can be suppressed.
  • a temperature sensor TS that detects the temperature in the second tank PS is installed, and the flow rate control unit is based on the detected temperature detected by the temperature sensor TS. You may provide the detection pressure correction
  • the temperature when detecting the detected pressure by the pressure sensor PS, the temperature may be detected by the temperature sensor TS, and the detected pressure may be corrected by the detected temperature. Further, when the material gas is introduced from the first tank 10 to the second tank 20, the temperature sensor TS increases the temperature from the start of the introduction until the temperature in the second tank 20 is stabilized after the introduction is finished. Is measured in advance, and when the material gas is derived from the second tank 20 based on the temperature increase amount, the detected pressure detected by the pressure sensor PS may be corrected.
  • a pump for forcibly supplying material gas from the first tank 10 to the second tank 20 is installed instead of the first opening / closing valve 30 installed in the connection path L1. Then, the pump control of the pump may be controlled by the pressure control unit, and the material gas may be introduced from the first tank 10 to the second tank 20.
  • the pressure in the second tank 20 is monitored by the pressure sensor PS, and when the pressure in the second tank 20 reaches a predetermined pressure, the pressure control unit
  • the drive of the pump may be stopped.
  • the mechanism including the pump and the pressure control unit in the present embodiment corresponds to the pressure control mechanism in the claims.
  • the pressure of the material gas stored in the second tank 20 can be ensured without heating the liquid material at a high temperature to increase the vapor pressure. There is no need to be exposed to high temperatures, reducing the risk of denaturation and decomposition of liquid materials.
  • the pressure in the second tank 20 is set. It can be lowered intentionally, thereby suppressing the detection error by the pressure sensor PS.
  • the first on-off valve 30 can be closed and set, and the pressure in the second tank 20 can be intentionally lowered below the vapor pressure.
  • the flow rate can be accurately controlled even for material gas without calibration data.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Flow Control (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

材料ガスの種類によって校正を実施する必要がなく、校正データがない材料ガスであっても正確に流量を制御できるようにする。液体材料を気化して材料ガスを生成する第1タンクと、前記第1タンクに接続され、前記第1タンクで生成された前記材料ガスが所定圧力で収容される第2タンクと、前記第2タンク内の圧力を検知する圧力センサと、前記第2タンクから前記材料ガスを導出する導出路と、前記導出路に設けられ、その導出路を開閉する流体制御バルブと、前記第2タンクに所定圧力で収容された前記材料ガスを前記導出路から導出する場合に、前記圧力センサによって検知される検知圧力の低下に基づいて、前記流体制御バルブの開度を制御して前記導出路から導出される前記材料ガスの流量を制御する流量制御部と、を具備する。

Description

液体材料気化供給装置及び制御プログラム
 本発明は、液体材料気化供給装置及び制御プログラムに関するものである。
 半導体製造プロセスに使用される液体材料気化供給装置としては、特許文献1に開示されるように、液体材料を気化して材料ガスを生成する気化タンクと、気化タンク内の圧力を検知する圧力センサと、気化タンクから材料ガスを導出する導出路と、導出路に設けられ、その導出路を流れる材料ガスの流量を制御する流量制御装置(所謂、マスフローコントローラ)と、を具備するものがある。
 しかし、前記特許文献1に開示される従来の液体材料気化供給装置においては、流量制御装置に内蔵される流量センサの感度が材料ガスの種類によって異なるため、材料ガスの種類に応じて校正を実施する必要があり、このため、校正データのない材料ガスについては、正確に流量を制御できないという問題があった。
特開2014-236018
 そこで、本発明は、材料ガスの種類によって校正を実施する必要がなく、校正データがない材料ガスであっても正確に流量を制御できるようにすることを主たる課題とするものである。
 すなわち、本発明に係る液体材料気化供給装置は、液体材料を気化して材料ガスを生成する第1タンクと、前記第1タンクに接続され、前記第1タンクで生成された前記材料ガスが所定圧力で収容される第2タンクと、前記第2タンク内の圧力を検知する圧力センサと、前記第2タンクから前記材料ガスを導出する導出路と、前記導出路に設けられ、その導出路を開閉する流体制御バルブと、前記第2タンクに所定圧力で収容された前記材料ガスを前記導出路から導出する場合に、前記圧力センサによって検知される検知圧力の低下に基づいて、前記流体制御バルブの開度を制御して前記導出路から導出される前記材料ガスの流量を制御する流量制御部と、を具備することを特徴とするものである。
 本発明に係る液体材料気化供給装置によれば、圧力センサによって検知される第2タンク内の圧力の低下に基づいて、第2タンクから導出される材料ガスの流量を制御するため、材料ガスの種類に関係なく、材料ガスの流量を正確に制御することができる。これにより、校正データがない材料ガスであっても流量を正確に制御することができる。また、前記従来の液体材料気化供給装置に使用される流量制御装置は、耐熱性が低いため、本発明の第1タンクに対応する気化タンクの加熱温度の上限を低く設定せざるを得ず、これに伴って気化タンク内の蒸気圧の上限も低くなり、材料ガスの最大流量が制限されるという問題があったが、本発明に係る液体材料気化供給装置によれば、耐熱性の高い、圧力センサや流体制御バルブによって材料ガスの流量を制御することができため、液体材料を気化させる加熱温度の上限を高く設定することができ、これに伴って第1タンクから第2タンクに収容される材料ガスの蒸気圧が高くなり、結果として、材料ガスの最大流量を上昇させることができる。さらに、前記従来の液体材料気化供給装置に使用される流量制御装置固有の問題として、応答速度が遅いという問題もあったが、本発明に係る液体材料気化供給装置によれば、圧力センサによって検知される検知圧力に基づいて、流体制御バルブの開度を制御することができるため、応答速度が速くなる。
 また、前記液体材料気化供給装置の流量制御部としては、前記圧力センサで検知される検知圧力の単位時間当たりの低下量に基づいて、その単位時間内に前記第2タンクから導出される前記材料ガスの流量を算出する流量算出部と、前記流量算出部で算出された算出流量と予め設定された設定流量との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、を備えるものであってもよい。
 また、前記液体材料気化供給装置の流量制御部としては、前記導出路から導出される前記材料ガスの流量を検知する流量センサをさらに具備し、前記流量制御部が、前記流量センサによって検知される検知流量と予め設定された設定流量との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、前記圧力センサで検知される検知圧力の単位時間当たりの低下量に基づいて、その単位時間内に前記第2タンクから導出される前記材料ガスの流量を算出する流量算出部と、前記流量算出部で算出された算出流量と前記設定流量との偏差に基づいて、前記設定流量を補正する設定流量補正部と、を備えるものであってもよい。
 このようなものであれば、従来の液体材料気化供給装置と同様に、流量センサによって検知される検知流量に基づいて材料ガスの流量を制御しているが、その制御が、圧力センサによって検知される検知圧力の低下を参照して補正した設定流量に基づくものであるため、材料ガスの種類に関係なく、材料ガスの流量を正確に制御することができる。なお、この場合、圧力センサによって検知圧力を検知するタイミング間に導出路から導出される材料ガスの流量を検知流量に基づいて制御しているため、そのタイミング間に生じる外乱等に伴うノイズによる影響を抑制することができる。また、設定流量を変更しない(予めメモリに記憶されている基準となる設定流量を設定し直さない)のであれば、補正による設定流量の変動幅に制限を設けることにより、圧力センサによって検知される検知圧力によるノイズの変動が大きい場合における過敏な流量変化を抑制できる。但し、流量センサを用いるため、応答速度が遅くなり、また、耐熱性が低くなる。
 また、前記いずれかの流量制御部が、前記設定流量に基づいて、前記単位時間を変更し、前記設定流量が小さいほど前記単位時間を長く変更する単位時間変更部をさらに備えるものであってもよい。
 単位時間当たりの圧力の低下量が小さいと、圧力センサによって検知される検知圧力の誤差の影響を受け易くなる。そこで、前記流量制御部のように、設定流量が小さいほど単位時間を長く変更すれば、単位時間当たりの圧力の低下量が大きくなり、圧力センサによって検知される検知圧力の誤差の影響を抑制できる。
 また、前記液体材料気化供給装置の流量制御部として、前記圧力センサによって所定タイミングで検知される検知圧力と前記所定タイミングから所定時間経過後に検知される検知圧力との間の低下量に基づいて、その所定時間内に前記第2タンクから導出される前記材料ガスの流量を算出する流量算出部と、前記第2タンクから前記材料ガスが予め設定された設定流量に従って導出された場合を仮定し、その仮定下において前記所定時間内に導出される前記材料ガスの流量を算出する仮定流量算出部と、前記流量算出部で算出される算出流量と前記仮定流量算出部で算出される仮定流量との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、を備えるものであってもよく、この場合、前記流量算出部が、前記圧力センサによって前記所定タイミングから単位時間毎に検知される検知圧力の単位時間当たりの低下量に基づいて、各単位時間内に前記第2タンクから導出される前記材料ガスの流量を算出し、その各算出流量に基づいて前記所定時間内に前記第2タンクから導出される前記材料ガスの流量を算出するものであってもよい。
 このようなものであれば、第2タンクから材料ガスの導出が進むほど、所定タイミングからの経過時間が長くなるため、その経過時間における圧力の低下量が大きくなり、圧力センサによって検知される圧力の誤差の影響を抑制できる。
 ここで、前記流量算出部で算出される算出流量は、ある時間(前記単位時間、前記所定時間)内に導出路から導出される材料ガスの平均流量であるが、外乱等によって圧力センサによる検知にノイズが生じることもあり、この場合、厳密な意味での平均流量にならない。従って、算出流量は、略平均流量であるとも言える。
 また、前記液体材料気化供給装置の流量制御部として、前記第2タンクから前記材料ガスが予め設定された設定流量に従って導出された場合を仮定し、その仮定下において前記材料ガスが導出され始めてから所定時間経過後の前記第2タンク内の仮定圧力を算出する仮定圧力算出部と、前記第2タンクから前記材料ガスが導出され始めてから前記所定時間経過後に前記圧力センサによって検出される検知圧力と前記仮定圧力算出部で算出される仮定圧力との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、を備えるものであってもよい。
 また、前記いずれかの液体材料気化供給装置が、前記第2タンク内の温度を検知する温度センサをさらに具備し、前記流量制御部が、前記温度センサによって検知される検知温度に基づいて、前記圧力センサによって検知される検知圧力を補正する検知圧力補正部をさらに備えるものであってもよい。この場合、前記検知圧力補正部が、前記圧力センサによって検知圧力が検知された時に前記温度センサによって検知される検知温度に基づいて、その検知圧力を補正するものであってもよく、また、前記検知圧力補正部が、前記気化タンクから前記充填タンクに前記材料ガスが充填される場合に、前記温度センサによって検知される充填開始から充填終了後前記充填タンク内の温度が安定するまでの間の温度の上昇量を予め取得し、その温度の上昇量に基づいて、前記充填タンクから前記材料ガスが導出される場合に、前記圧力センサによって検知される検知圧力を補正するものであってもよい。
 第2タンクから材料ガスの導出が進むと、第2タンク内の圧力が低下し、第2タンクが膨張する。これに伴って第2タンク内の温度が低下し、これが原因となって圧力センサによって検知される検知圧力に誤差が生じる。そこで、前記のように検知圧力補正部において、温度センサによって検知される検知温度に基づいて、圧力センサによって検知される検知圧力を補正すれば、圧力センサによって検知される検知圧力の誤差を抑制できる。
 また、前記いずれかの液体材料気化供給装置において、前記第1タンクから前記第2タンクに導入される前記材料ガスを所定圧力に制御する圧力制御機構をさらに具備するものであってもよい。
 第2タンクに収容される材料ガスの圧力が増すと、これに伴って圧力センサによって検知される検知圧力も高くなり、誤差が生じ易くなる。そこで、前記のように圧力制御機構によって、第2タンクに収容される材料ガスの圧力を制御し、第2タンクに収容される材料ガスの圧力をある程度低く保てば、圧力センサによって検知される検知圧力も低くなって誤差を抑制できる。
 なお、前記圧力制御機構の具体例としては、前記圧力制御機構が、前記第1タンクから前記第2タンクに導入される前記材料ガスの流量を調節する開閉バルブと、前記開閉バルブを開閉し、前記第1タンクと前記第2タンクとの間の差圧によって、前記第2タンクに導入される前記材料ガスの圧力を制御する圧力制御部と、を備えるものが挙げられる。この場合、前記圧力制御部が、前記第1タンクを加熱するヒータの温度を調節し、前記第1タンクと前記第2タンクとの間の差圧を制御するものであってもよい。
 また、前記圧力制御機構の具体例としては、前記第1タンクから前記第2タンクに前記材料ガスを強制的に導入するポンプと、前記ポンプを駆動停止し、前記第2タンクに導入される前記材料ガスの圧力を制御する圧力制御部と、を備えるものも挙げられる。このようなものであれば、液体材料の加熱温度を上昇させることなく、第2タンクに導入される材料ガスの圧力を上昇させることができ、これにより、液体材料を長時間高温に晒す必要がなくなり、液体材料の変性・分解等のリスクを低減できる。
 また、前記いずれかの圧力制御機構において、前記圧力制御部が、前記圧力センサによって検知される検知圧力が所定圧力になった場合に、前記第2タンクに対する前記材料ガスの導入を停止するものであってよい。
 このようなものであっても、第2タンクに導入される材料ガスの圧力を制御し、第2タンクに導入される材料ガスの圧力をある程度低く保つことができ、圧力センサによって検知される検知圧力が低くなって誤差を抑制できる。
 また、前記いずれかの液体材料気化供給装置において、前記第2タンクが、前記第1タンクに対して複数接続されており、前記設定流量に基づいて、前記材料ガスを導入する前記第2タンクの数を調節する導入タンク数調節部をさらに具備するものであってもよい。
 このようなものであれば、設定流量が大きい場合には、材料ガスを収容する第2タンクの数を増やし、第2タンクから導出される材料ガスの総量を確保でき、一方、設定流量が小さい場合には、材料ガスを収容する第2タンクの数を減らし、圧力センサによって検知される検知圧力の低下量を大きくして誤差を抑制できる。
 また、本発明に係る制御プログラムは、液体材料を気化して材料ガスを生成する第1タンクから前記材料ガスが一時的に所定圧力で収容される第2タンク内の圧力を検知する圧力センサと、前記第2タンクから前記材料ガスを導出する導出路を開閉する流体制御バルブと、前記流体制御バルブの開度を制御する流量制御部と、を具備する液体材料気化供給装置の制御プログラムであって、前記流量制御部が、前記第2タンクに所定圧力で収容された前記材料ガスを前記導出路から導出する場合に、前記圧力センサによって検知される検知圧力の低下に基づいて、前記流体制御バルブの開度を制御して前記導出路から導出される前記材料ガスの流量を制御する機能を発揮できるようにすることを特徴とするものである。
 このように構成した本発明によれば、材料ガスの種類によって校正を実施する必要がなく、校正データがない材料ガスであっても正確に流量を制御できる。
実施形態1における液体材料気化供給装置を示す模式図である。 実施形態2における液体材料気化供給装置を示す模式図である。 実施形態5における液体材料気化供給装置を示す模式図である。
 100 液体材料気化供給装置
 10 第1タンク
 20 第2タンク
 30 第1開閉バルブ
 40 第2開閉バルブ
 50 流体制御バルブ
 L1 接続路
 L2 導入路
 L3 導出路
 H ヒータ
 PS 圧力センサ
 FS 流量センサ
以下に、本発明に係る液体材料気化供給装置について図面を参照して説明する。
 本実施形態に係る液体材料気化供給装置は、例えば、半導体製造プロセスにおいて、チャンバ(供給先)に対して材料ガスを安定した流量で供給するために用いられる。なお、液体材料気化供給装置は、半導体制御プロセス以外の用途にも用いることができる。
<実施形態1>
 本実施形態に係る液体材料気化供給装置100は、図1に示すように、液体材料を気化して材料ガスを生成する第1タンク10と、第1タンク10で生成された材料ガスが一時的に所定圧力で収容される第2タンク20と、第1タンク10及び第2タンク20を接続する接続路L1と、第1タンク10に液体材料を導入する導入路L2と、第2タンク20から材料ガスを導出する導出路L3と、を具備している。なお、接続路L1は、第1タンク10に接続される一端がその第1タンク10内の気相空間に接続されている。また、導入路L2は、第1タンク10に接続される一端とは反対側の他端が図示しない液体材料供給装置に接続されており、導出路L3は、第2タンク20に接続される一端とは反対側の他端が図示しないチャンバに接続されている。
 そして、接続路L1には、その流路を開閉するための第1開閉バルブ30が設置されており、導入路L2には、その流路を開閉するための第2開閉バルブ40が設置されており、導出路L3には、第2タンク20から導出される材料ガスの流量を制御するための流体制御バルブ50が設置されている。また、第2タンク20には、その内部の圧力を検知するための圧力センサPSが設置されている。なお、第1開閉バルブ30が、請求項における開閉バルブに対応している。また、流体制御バルブ50としては、流体を制御できるものであればよく、流量を制御するもの以外にも、圧力を制御するもの等も含まれる。
 なお、導入路L2の他端側及び導出路L3の他端側を除く前記各部材(第1タンク10、第2タンク20、各バルブ30,40,50、圧力センサ等)は、いずれも恒温領域TR内に収容されており、これにより、各部材が所定温度(高温)に保たれる。これにより、液体材料の再液化が防止され、第2タンク20に収容される材料ガスの量を一定に保つことができる。また、第1タンク10には、液体材料を加熱して気化させるためのヒータHが設けられている。
 液体材料気化供給装置100は、図示しない制御装置を具備しており、制御装置は、圧力センサPS及び各バルブ30,40,50に接続されている。なお、制御装置は、CPU、メモリ、A/D・D/Aコンバータ、入出力手段等を備えたいわゆるコンピュータによって構成してあり、前記メモリに格納されているプログラムが実行され、各種機器が協働することによってその機能が実現されるようにしてある。具体的には、第2タンク20から導出される材料ガスの流量を制御する流量制御部や、第1タンク10から第2タンク20に導入される材料ガスを圧力に制御する圧力制御部としての機能を発揮する。なお、本実施形態における第1開閉バルブ30と圧力制御部との備える機構が請求項における圧力制御機構に対応する。
 流量制御部は、圧力センサPSで検知される検知圧力の単位時間当たりの低下量に基づいて、その単位時間内に第2タンク20から導出される材料ガスの流量を算出する流量算出部と、流量算出部で算出された算出流量と予め設定された設定流量との偏差に基づいて、算出流量が設定流量に近づくように、流体制御バルブ50の開度を制御するバルブ制御部と、を備えている。
 なお、流量算出部は、具体的には、先ず、気体の状態方程式である式(1)に、圧力センサPSによって検知される検知圧力の単位時間Δt当たりの低下量ΔPを代入して得られる式(2)から、単位時間Δtに第2タンク20から導出される材料ガスの総量Δnを算出する。
 
 PV=nRT            式(1)
 
 ΔP=Δn×(RT/V)      式(2)
 
 ここで、Pは、第2タンク20内の圧力、Vは、第2タンク20の容積、nは、第2タンク20内に収容される材料ガスの物理量、Rは、第2タンク20内に収容された材料ガスのモル気体定数、Tは、第2タンク内の材料ガスの温度、である。因みに、第2タンク20内の温度は一定に保たれる。
 そして、第2タンク20から導出される材料ガスの単位時間内における算出流量Qを、式(3)によって算出する。
 
 Q=A×(ΔP/Δt)       式(3)
 
 ここで、Aは、係数であり、材料ガスの種類、温度T、圧力Pに基づいて補正される値である。なお、Aの補正値は、無視できる程度に小さい値になる場合もある。なお、前記各式におけるΔtは、単位時間に限定されず、任意の時間間隔であってもよい。
 圧力制御部は、具体的には、各バルブ30,40,50の順次開閉し、第1タンク10と第2タンク20との間の差圧によって、第1タンク10から第2タンク20に導入される材料ガスの圧力を制御する機能を有している。また、第1タンク10に設けられたヒータHの加熱温度を調整し、第1タンク10内の圧力の上昇値を制限することにより、第1タンク10と第2タンク20との間の差圧の大きさを制御する機能も有している。
 次に、本実施形態における第1タンク10から第2タンク20に材料ガスを導入する動作を説明する。
 先ず、圧力制御部に、入力手段から導入指示信号が入力されると、圧力制御部は、第1開閉バルブ30及び第2開閉バルブ40を閉じ、流体制御バルブ50を開く。次に、圧力制御部は、第1タンク10に設けられたヒータHの加熱温度を調節し、第1タンク10内の液体材料を気化させて材料ガスを生成し、第1タンク10内の圧力を所定蒸気圧まで上昇させる。この時、並行して第2タンク20は、導出路L3の下流側に設けられた真空ポンプ(図示せず)によって略真空状態にまで減圧される。次に、圧力制御部は、流体制御バルブ50を閉じ、第2タンク20内を略真空状態に保ちながら、第1開閉バルブ30を開く。これにより、第1タンク10内で気化された材料ガスが、第1タンク10と第2タンク20との間の差圧によって、第2タンク20内の圧力が前記所定蒸気圧に達するまで、第2タンク20内に材料ガスが導入される。最後に、圧力制御部は、第1開閉バルブ30を閉じて導入作業を完了する。これにより、第2タンク20内に所定圧力(所定蒸気圧)で材料ガスが収容された状態となる。
 なお、第1タンク10内の液体材料を気化させる場合に、第1タンク10内の圧力(蒸気圧)が所定値まで上昇したか否かは、ヒータHの加熱温度毎に第1タンク10の加熱時間に伴う圧力上昇の関係を関連付けした気化データを予め取得し、その気化データをメモリに記憶しておき、気化データを参照して判断すればよい。また、第1タンク10内の圧力を検知する圧力センサを別途設け、その圧力センサによって第1タンク10内の圧力を実測して判断してもよい。
 次に、本実施形態における第2タンク20から供給先に材料ガスを供給する動作を説明する。
 先ず、流量制御部に、入力手段から供給指示信号が入力されると、流量制御部は、流体制御バルブ50を予め設定された初期開度まで開く。これにより、第2タンク20から導出路L3に材料ガスが流れ出す。次に、流量算出部は、第2タンク20内の圧力を圧力センサPSによって検知し、単位時間Δt当たりの圧力低下量ΔPtを取得し、前記式(3)に代入し、第2タンク20内から前記単位時間Δt内に導出される材料ガスの算出流量Qを算出する。次に、バルブ制御部は、流量算出部で算出された算出流量Qが、予め設定された設定流量Qに近づくように、流体制御バルブ50の開度を制御する。そして、流量算出部が単位時間毎に算出流量の算出を繰り返し、その算出結果に基づいてバルブ制御部が流体制御バルブ50の開度制御を繰り返すことにより、第2タンク20から材料ガスが設定流量Q近傍の流量で制御される。
 なお、このような構成では、第2タンク20の容積に応じた量の材料ガスを供給先に供給した後、再び第2タンク20に材料ガスを導入する必要があり、供給先に対して連続的に材料ガスを供給し続けることができないが、近年、半導体制御プロセスの成膜技術の一つとしてパルス的に材料ガスを供給するALD(Atomic Layer Deposition)なる技術が確立しており、この成膜技術に対する活用が非常に有効である。
<実施形態2>
 本実施形態の液体材料気化供給装置は、前記実施形態1の変形例であり、図2に示すように、前記実施形態1における導出路L3の流体制御バルブ50の下流側に流量センサFSが設置されている。また、本実施形態における流量制御部は、流量センサFSによって検知される検知流量が予め設定された設定流量に近づくように、流体制御バルブ50の開度を制御するバルブ制御部と、圧力センサPSで検知される検知圧力の単位時間当たりの低下量に基づいて、その単位時間内に第2タンク20から導出される材料ガスの流量を算出する流量算出部と、流量算出部で算出された算出流量と設定流量との偏差に基づいて、設定流量を補正する設定流量補正部と、を備える。なお、その他の構成は、前記実施形態1と同様である。
 次に、本実施形態における第2タンク20から供給先へ材料ガスを供給する動作を説明する。
 先ず、流量制御部に、入力手段から供給指示信号が入力されると、流量制御部は、流体制御バルブ50を予め設定された初期開度まで開く。これにより、第2タンク20から導出路L3に材料ガスが流れ出す。そして、バルブ制御部が、流量センサFSによって検知される検知流量Qが予め設定された設定流量Qに近づくように、流体制御バルブ50の開度を制御するフィードバック制御を開始する。また、流量算出部は、第2タンク20内の圧力を圧力センサPSによって検知し、単位時間Δt当たりの圧力低下量ΔPtを算出し、前記式(3)に代入し、第2タンク20内から前記単位時間Δt中に導出される材料ガスの算出流量Qを算出する。そして、設定流量補正部が、流量算出部で算出された算出流量Qと設定流量Qとの偏差に基づいて、その設定流量Qを補正する。そして、設定流量補正部によって設定流量Qを単位時間Δt毎に補正しながら、バルブ制御部がフィードバック制御を繰り返すことにより、第2タンク20から材料ガスが設定流量Q近傍の流量で制御される。
 また、本実施形態において、設定流量補正部によって補正される設定流量Qの変動幅に制限を設けることにより、圧力センサによって検知される検知圧力のノイズや変動が大きい場合の過敏な流量変化を抑制できる。
<実施形態3>
 本実施形態の液体材料気化供給装置は、前記実施形態1の変形例であり、前記実施形態1と流量制御部の構成が異なる他は同様の構成である。本実施形態における流量制御部は、圧力センサPSによって所定タイミングで検知される検知圧力と前記所定タイミングから所定時間経過後に検知される検知圧力との間の圧力低下量に基づいて、その所定時間内に第2タンク20から導出される材料ガスの流量を算出する流量算出部と、第2タンク20から材料ガスが予め設定された設定流量に従って導出された場合を仮定し、その仮定下において前記所定時間内に導出される材料ガスの流量を算出する仮定流量算出部と、流量算出部で算出される算出流量と仮定流量算出部で算出される仮定流量との偏差に基づいて、算出流量が仮定流量に近づくように、流体制御バルブの開度を制御するバルブ制御部と、を備える。
 次に、本実施形態における第2タンク20から供給先へ材料ガスを供給する動作を説明する。
 先ず、流量制御部に、入力手段から供給指示信号が入力されると、流量制御部は、流体制御バルブ50を予め設定された初期開度まで開く。これにより、第2タンク20から導出路L3に材料ガスが流れ出す。次に、流量算出部が、圧力センサPSによって所定タイミングで検知される検知圧力Pと前記所定タイミングから所定時間Δt´経過後に検知される検知圧力P´とを検知し、前記所定時間Δt´における圧力低下量ΔPt´を算出し、前記式(3)に代入し、第2タンク20内から前記所定時間Δt´中に導出される材料ガスの算出流量Qを算出する。また、仮定流量算出部が、第2タンク20から材料ガスが予め設定された設定流量Qに従って導出された場合を仮定し、その仮定下において前記所定時間Δt´中に導出される材料ガスの仮定流量Qを算出する。次に、バルブ制御部が、流量算出部で算出される算出流量Qと仮定流量算出部で算出される仮定流量Qとの偏差に基づいて、算出流量Qが仮定流量Qに近づくように、流体制御バルブ50の開度を制御する。そして、流量算出部及び仮定流量算出部が所定タイミングからの経過時間毎に算出を繰り返し、その算出結果に基づいてバルブ制御部が流体制御バルブ50の開度制御を繰り返すことにより、第2タンク20から材料ガスが設定流量Q近傍の流量で制御される。
 このようなものであれば、所定タイミングからの経過時間が短い場合に、圧力センサによって検知される検知圧力に大きな誤差が出たとしても、その後に経過時間が長くなるほど誤差が小さくなり、トータルで見れば、誤差の影響が大幅に抑制される。
 なお、本実施形態においては、次のようにして算出流量Qを算出してもよい。すなわち、先ず、圧力センサPSによって単位時間Δt毎に検知される検知圧力の単位時間Δt当たりの低下量に基づいて、各単位時間Δt内に第2タンクから導出される材料ガスの流量を算出する。続いて、所定タイミングから所定時間ΔTの間に含まれる各単位時間Δtの算出流量を積算した積算値をその単位数で除算する。これにより、前記所定時間ΔT内に第2タンクから導出される材料ガスの算出流量Qを算出する。
<実施形態4>
 本実施形態の液体材料気化供給装置は、前記実施形態1の変形例であり、前記実施形態1と流量制御部の構成が異なる他は同様の構成である。本実施形態における流量制御部は、第2タンク20から材料ガスが予め設定された設定流量に従って導出された場合を仮定し、その仮定下において材料ガスが導出され始めてから所定時間経過後の第2タンク20内の仮定圧力を算出する仮定圧力算出部と、第2タンク20から材料ガスが導出され始めてから前記所定時間経過後に圧力センサPSによって検出される検知圧力と仮定圧力との偏差に基づいて、検知圧力が仮定圧力に近づくように、流体制御バルブ50の開度を制御するバルブ制御部と、を備える。
 次に、本実施形態における第2タンク20から供給先へ材料ガスを供給する動作を説明する。
 先ず、流量制御部に、入力手段から供給指示信号が入力されると、流量制御部は、流体制御バルブ50を予め設定された初期開度まで開く。これにより、第2タンク20から導出路L3に材料ガスが流れ出す。次に、仮定圧力算出部が、第2タンク20から材料ガスが予め設定された設定流量Qに従って導出された場合を仮定し、その仮定下において材料ガスが導出され始めてから所定時間ΔT経過後の第2タンク20内の仮定圧力Pを算出する。なお、この場合、予め第2タンク20から導出される材料ガスの流量が設定流量Qになるために必要となる仮定圧力Pを、前記式(3)によって逆算する。すなわち、設定流量Q及び所定時間ΔTが既知であることから、前記式(3)によって所定時間ΔT当たりの圧力低下量ΔPtを算出することができ、この圧力低下量ΔPtと所定時間ΔTとから仮定圧力Pを算出する。次に、バルブ制御部が、第2タンク20から材料ガスが導出され始めてから所定時間ΔT経過後に圧力センサPSによって検出される検知圧力Pと仮定圧力Pとをとの偏差に基づいて、検知圧力Pが仮定圧力Pに近づくように、流体制御バルブ50の開度を制御する。そして、仮定圧力算出部が第2タンク20から材料ガスが導出され始めてからの経過時間毎に算出を繰り返し、その算出結果に基づいてバルブ制御部が流体制御バルブ50の開度制御を繰り返すことにより、第2タンク20から材料ガスが設定流量Q近傍の流量で制御される。
<実施形態5>
 本実施形態の液体材料気化供給装置は、前記実施形態1の変形例であり、図3に示すように、前記実施形態1の第1タンク10に対して二つの第2タンク20a,20bが接続されており、また、設定流量に基づいて、第1タンク10から材料ガスを導入する第2タンク20a,20bの数を調節する導入タンク数調節部(図示せず)を制御装置に備えている。なお、二つの第2タンク20a,20bは、同じ容積を有している。そして、第1タンク10から伸びる接続路L1の下流側が分岐して各第2タンク20a,20bに接続されており、その接続路L1の分岐点に対して下流側にそれぞれ第1開閉バルブ30a,30bが設置されている。また、圧力センサPSから伸びる接続管の先端側が分岐して各第2タンク20a,20bに接続されており、その接続管の一方の第2タンク20aに接続される先端側に第3開閉バルブ60が設置されている。また、各第2タンク20a,20bから伸びる導出路L3の下流側が合流しており、一方の第2タンク20aから伸びる導出路L3の合流点に対して上流側に第4開閉バルブ70が設置されており、その導出路L3の合流点に対して下流側に流体制御バルブ50が設置されている。
 なお、導入タンク数調節部は、設定流量が大きい場合には、両第2タンク20a,20bに材料ガスを収容した状態から、第3開閉バルブ60及び第4開閉バルブ70を開き、両第2タンク20a,20bの材料ガスを導出させる。これにより、供給先に供給される材料ガスの総量を増加させることができる。一方、設定流量が小さい場合には、両第2タンク20a,20bに材料ガスを収容した状態から、第3開閉バルブ60及び第4開閉バルブ70を閉じ、他方の第2タンク20bの材料ガスのみを導出させる。これにより、圧力センサPSによって検知される検知圧力の単位時間当たりの圧力低下量が増し、圧力センサPSによる誤差を抑制できる。また、導入タンク数調節部が、各第2タンク20a,20bの材料ガスを交互に導出するように制御することにより、連続的に供給先へ材料ガスを供給することもできる。具体的には、一方の第2タンク20aに収容された材料ガスを導出している間に、他方の第2タンク20bに材料ガスを収容し、また、他方の第2タンク20bに収容された材料ガスを導出している間に、一方の第2タンク20aに材料ガスを収容する。そして、この動作を繰り返すことにより、連続的に供給先へ材料ガスを供給することができる。なお、本実施形態においては、第2タンクを二つ設置したが、三つ以上設置してもよく、各タンクの容積は、同一でなくてもよい。
<その他の実施形態>
 その他の実施形態としては、前記実施形態1及び2において、流量制御部に、設定流量に基づいて、単位時間の間隔を変更し、設定流量が小さいほど単位時間を長く変更する単位時間変更部を設けてもよい。
 通常、設定流量が小さい場合には、単位時間当たりの圧力低下量が小さくなり、これに伴って圧力センサPSによる検知誤差が大きくなる。そこで、前記構成を採用することにより、設定流量に応じて単位時間の間隔を変更し、設定流量が小さい場合には、単位時間の間隔を長くし、単位時間当たりの圧力低下量が増加させることにより、圧力センサPSによる検知誤差の影響を抑制できる。
 また、その他の実施形態としては、前記各実施形態において、第2タンクPS内の温度を検知する温度センサTSを設置し、流量制御部に、温度センサTSによって検知される検知温度に基づいて、圧力センサPSによって検知される検知圧力を補正する検知圧力補正部を設けてもよい。
 第2タンク20から材料ガスが導出され、第2タンク20内の圧力が低下すると、これに伴って断熱膨張が生じ、第2タンク20内の温度が低下する。これが原因となって、圧力センサPSによる圧力の検知に誤差が生じる。そこで、前記構成を採用することにより、温度センサTSによって第2タンク20内の温度を検知し、その検知温度に基づいて圧力センサPSによって検知される検知圧力を補正することより、誤差が抑制される。
 具体的には、圧力センサPSによる検知圧力の検知時に、温度センサTSによって温度を検知し、その検知温度によって検知圧力を補正すればよい。また、第1タンク10から第2タンク20に材料ガスを導入する場合に、温度センサTSによって、その導入開始から導入終了後第2タンク20内の温度が安定するまでの間の温度の上昇量を予め測定しておき、その温度の上昇量に基づいて、第2タンク20から材料ガスを導出する場合に、圧力センサPSによって検知される検知圧力を補正すればよい。
 なお、第2タンク20の熱伝導面積を広げることにより、第2タンク20内の圧力の低下に伴う温度の低下を抑制することもできる。
 その他の実施形態としては、前記各実施形態において、接続路L1に設置される第1開閉バルブ30に代えて、第1タンク10から第2タンク20へ強制的に材料ガスを供給するポンプを設置し、圧力制御部で、ポンプの駆動停止を制御し、第1タンク10から第2タンク20に材料ガスを導入するようにしてもよい。この場合、第1タンク10から第2タンク20に材料ガスを導入する動作において、第2タンク20内の圧力を圧力センサPSによって監視し、第2タンク20内が所定圧力になると、圧力制御部が、ポンプの駆動を停止するようにすればよい。なお、本実施形態におけるポンプと圧力制御部とを含む機構が請求項における圧力制御機構に対応する。
 このようなものであれば、液体材料を高温で加熱して蒸気圧を上昇させなくても、第2タンク20に収容される材料ガスの圧力を確保できるため、これにより、液体材料を長時間高温に晒す必要がなくなり、液体材料の変性・分解等のリスクを低減できる。また、第2タンク20に対する材料ガスの圧力を、第1タンク10と第2タンク20との差圧でなく、圧力センサPSによる検知圧力に基づいて設定するため、第2タンク20内の圧力を意図的に下げることができ、これにより、圧力センサPSによる検知誤差を抑制することができる。なお、前記実施形態1のように、第1タンク10と第2タンク20との差圧を利用して、第2タンク20に材料ガスを導入する場合にも、第2タンク20内の圧力を圧力センサPSによる検知圧力に基づき、第1開閉バルブ30を閉じて設定することもでき、第2タンク20内の圧力を蒸気圧よりも意図的に下げることができる。
 本発明によれば、材料ガスの種類によって校正を実施する必要がなく、校正データがない材料ガスであっても正確に流量を制御できる。

Claims (15)

  1. 液体材料を気化して材料ガスを生成する第1タンクと、
    前記第1タンクに接続され、前記第1タンクで生成された前記材料ガスが所定圧力で収容される第2タンクと、
    前記第2タンク内の圧力を検知する圧力センサと、
    前記第2タンクから前記材料ガスを導出する導出路と、
    前記導出路に設けられ、その導出路を開閉する流体制御バルブと、
    前記第2タンクに所定圧力で収容された前記材料ガスを前記導出路から導出する場合に、前記圧力センサによって検知される検知圧力の低下に基づいて、前記流体制御バルブの開度を制御して前記導出路から導出される前記材料ガスの流量を制御する流量制御部と、を具備することを特徴とする液体材料気化供給装置。
  2. 前記流量制御部が、
    前記圧力センサで検知される検知圧力の単位時間当たりの低下量に基づいて、その単位時間内に前記第2タンクから導出される前記材料ガスの流量を算出する流量算出部と、
    前記流量算出部で算出された算出流量と予め設定された設定流量との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、を備える請求項1記載の液体材料気化供給装置。
  3. 前記導出路から導出される前記材料ガスの流量を検知する流量センサをさらに具備し、
    前記流量制御部が、
    前記流量センサによって検知される検知流量と予め設定された設定流量との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、
    前記圧力センサで検知される検知圧力の単位時間当たりの低下量に基づいて、その単位時間内に前記充填タンクから導出される前記材料ガスの流量を算出する流量算出部と、
    前記流量算出部で算出された算出流量と前記設定流量との偏差に基づいて、前記設定流量を補正する設定流量補正部と、を備える請求項1記載の液体材料気化供給装置。
  4. 前記流量制御部が、
    前記設定流量に基づいて、前記単位時間を変更し、前記設定流量が小さいほど前記単位時間を長く変更する単位時間変更部をさらに備える請求項2記載の液体材料気化供給装置。
  5. 前記流量制御部が、
    前記圧力センサによって所定タイミングで検知される検知圧力と前記所定タイミングから所定時間経過後に検知される検知圧力との間の低下量に基づいて、その所定時間内に前記第2タンクから導出される前記材料ガスの流量を算出する流量算出部と、
    前記第2タンクから前記材料ガスが予め設定された設定流量に従って導出された場合を仮定し、その仮定下において前記所定時間内に導出される前記材料ガスの流量を算出する仮定流量算出部と、
    前記流量算出部で算出される算出流量と前記仮定流量算出部で算出される仮定流量との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、を備える請求項1記載の液体材料気化供給装置。
  6. 前記流量算出部が、
    前記圧力センサによって前記所定タイミングから単位時間毎に検知される検知圧力の単位時間当たりの低下量に基づいて、各単位時間内に前記第2タンクから導出される前記材料ガスの流量を算出し、その各算出流量に基づいて前記所定時間内に前記第2タンクから導出される前記材料ガスの流量を算出する請求項5記載の液体材料気化供給装置。
  7. 前記流量制御部が、
    前記第2タンクから前記材料ガスが予め設定された設定流量に従って導出された場合を仮定し、その仮定下において前記材料ガスが導出され始めてから所定時間経過後の前記第2タンク内の仮定圧力を算出する仮定圧力算出部と、
    前記第2タンクから前記材料ガスが導出され始めてから前記所定時間経過後に前記圧力センサによって検出される検知圧力と前記仮定圧力算出部で算出される仮定圧力との偏差に基づいて、前記流体制御バルブの開度を制御するバルブ制御部と、を備える請求項1記載の液体材料気化供給装置。
  8. 前記第2タンク内の温度を検知する温度センサをさらに具備し、
    前記流量制御部が、
    前記温度センサによって検知される検知温度に基づいて、前記圧力センサによって検知される検知圧力を補正する検知圧力補正部をさらに備える請求項1記載の液体材料気化供給装置。
  9. 前記第1タンクから前記第2タンクに導入される前記材料ガスを所定圧力に制御する圧力制御機構をさらに具備する請求項1記載の液体材料気化供給装置。
  10. 前記圧力制御機構が、
    前記第1タンクから前記第2タンクに導入される前記材料ガスの流量を調節する開閉バルブと、
    前記開閉バルブを開閉し、前記第1タンクと前記第2タンクとの間の差圧によって、前記第2タンクに導入される前記材料ガスの圧力を制御する圧力制御部と、を備える請求項9記載の液体材料気化供給装置。
  11. 前記圧力制御部が、
    前記第1タンクを加熱するヒータの温度を調節し、前記第1タンクと前記第2タンクとの間の差圧を制御する請求項10記載の液体材料気化供給装置。
  12. 前記圧力制御機構が、
    前記第1タンクから前記第2タンクに前記材料ガスを強制的に導入するポンプと、
    前記ポンプを駆動停止し、前記第2タンクに導入される前記材料ガスの圧力を制御する圧力制御部と、を備える請求項9記載の液体材料気化供給装置。
  13. 前記圧力制御部が、
    前記圧力センサによって検知される検知圧力が所定圧力になった場合に、前記第2タンクに対する前記材料ガスの導入を停止する請求項10記載の液体材料気化供給装置。
  14. 前記第2タンクが、前記第1タンクに対して複数接続されており、
    前記設定流量に基づいて、前記材料ガスを導入する前記第2タンクの数を調節する導入タンク数調節部をさらに具備する請求項2記載の液体材料気化供給装置。
  15. 液体材料を気化して材料ガスを生成する第1タンクから前記材料ガスが所定圧力で収容される第2タンク内の圧力を検知する圧力センサと、前記第2タンクから前記材料ガスを導出する導出路を開閉する流体制御バルブと、前記流体制御バルブの開度を制御する流量制御部と、を具備する液体材料気化供給装置の制御プログラムであって、
    前記流量制御部が、前記第2タンクに所定圧力で収容された前記材料ガスを前記導出路から導出する場合に、前記圧力センサによって検知される検知圧力の低下に基づいて、前記流体制御バルブの開度を制御して前記導出路から導出される前記材料ガスの流量を制御する機能を発揮できるようにする制御プログラム。
PCT/JP2018/015588 2017-05-11 2018-04-13 液体材料気化供給装置及び制御プログラム WO2018207553A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197025748A KR102639507B1 (ko) 2017-05-11 2018-04-13 액체 재료 기화 공급 장치 및 제어 프로그램
US16/491,466 US11066746B1 (en) 2017-05-11 2018-04-13 Liquid material vaporization and supply device, and control program
JP2019517522A JP7105765B2 (ja) 2017-05-11 2018-04-13 液体材料気化供給装置及び制御プログラム
CN201880016459.7A CN110382103B (zh) 2017-05-11 2018-04-13 液体材料汽化供给装置和计算机可读存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017094775 2017-05-11
JP2017-094775 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018207553A1 true WO2018207553A1 (ja) 2018-11-15

Family

ID=64104521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015588 WO2018207553A1 (ja) 2017-05-11 2018-04-13 液体材料気化供給装置及び制御プログラム

Country Status (5)

Country Link
US (1) US11066746B1 (ja)
JP (1) JP7105765B2 (ja)
KR (1) KR102639507B1 (ja)
CN (1) CN110382103B (ja)
WO (1) WO2018207553A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112808171A (zh) * 2020-12-30 2021-05-18 邓会秋 无泵阀腐蚀性液体的加料***及工艺
WO2021097143A3 (en) * 2019-11-12 2021-08-19 Forge Nano Inc. Coatings on particles of high energy materials and methods of forming same
CN113574204A (zh) * 2019-04-05 2021-10-29 万机仪器公司 用于脉冲气体输送的方法和设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501027B (zh) * 2019-12-27 2022-01-21 清华大学无锡应用技术研究院 化学气相沉积设备流场均匀控制的方法
CN111020536B (zh) * 2019-12-27 2022-05-24 清华大学无锡应用技术研究院 一种优化的化学气相沉积工艺
CN111141332B (zh) * 2020-01-16 2024-05-28 清华大学 蒸馏酒摘酒过程的导流装置以及在线测量***和方法
US11710838B2 (en) * 2020-11-06 2023-07-25 Toyota Motor Engineering & Manufacturing North America, Inc. Air system pressure observer control method for fuel cell system
CN115505899A (zh) * 2022-08-16 2022-12-23 湖南顶立科技有限公司 一种沉积设备的工艺气源输入装置及其使用方法
CN116036899A (zh) * 2023-01-10 2023-05-02 中国核动力研究设计院 一种含微量杂质气体的二氧化碳配制及供应试验***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162295A (en) * 1978-06-13 1979-12-22 Ulvac Corp Gas introducing device
JPS60244332A (ja) * 1984-05-21 1985-12-04 Sharp Corp 凝縮性材料のガス化供給装置
JPH03141192A (ja) * 1989-10-26 1991-06-17 Fujitsu Ltd 気相成長装置および気相成長方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141192B2 (ja) * 1995-12-11 2001-03-05 株式会社カワキタ リフィル用紙綴じ具
US6039809A (en) * 1998-01-27 2000-03-21 Mitsubishi Materials Silicon Corporation Method and apparatus for feeding a gas for epitaxial growth
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
JP3424654B2 (ja) * 2000-04-27 2003-07-07 株式会社島津製作所 液状物質の連続処理方法、連続処理装置及びそれらにより処理された液状物質
JP2006294466A (ja) * 2005-04-12 2006-10-26 Mitsubishi Electric Corp 燃料電池発電システム
US8202367B2 (en) * 2006-03-30 2012-06-19 Mitsui Engineering & Shipbuilding Co., Ltd. Atomic layer growing apparatus
JP4605790B2 (ja) * 2006-06-27 2011-01-05 株式会社フジキン 原料の気化供給装置及びこれに用いる圧力自動調整装置。
CN101369514B (zh) * 2007-08-16 2013-06-05 北京北方微电子基地设备工艺研究中心有限责任公司 半导体加工设备的供气***及其气体流量校准的方法
JP5461786B2 (ja) * 2008-04-01 2014-04-02 株式会社フジキン 気化器を備えたガス供給装置
KR101578220B1 (ko) * 2008-10-31 2015-12-16 가부시키가이샤 호리바 세이샤쿠쇼 재료가스 농도 제어 시스템
KR20100119346A (ko) * 2009-04-30 2010-11-09 한국에이에스엠지니텍 주식회사 증착 장치
JP5538119B2 (ja) * 2010-07-30 2014-07-02 株式会社フジキン ガス供給装置用流量制御器の校正方法及び流量計測方法
JP5755958B2 (ja) * 2011-07-08 2015-07-29 株式会社フジキン 半導体製造装置の原料ガス供給装置
JP5548292B1 (ja) 2013-05-30 2014-07-16 株式会社堀場エステック 加熱気化システムおよび加熱気化方法
JP2015190035A (ja) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 ガス供給機構およびガス供給方法、ならびにそれを用いた成膜装置および成膜方法
CN106133483B (zh) * 2014-03-31 2019-11-22 日立金属株式会社 质量流量的测定方法、使用该方法的热式质量流量计
JP6477075B2 (ja) * 2015-03-17 2019-03-06 東京エレクトロン株式会社 原料ガス供給装置及び成膜装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162295A (en) * 1978-06-13 1979-12-22 Ulvac Corp Gas introducing device
JPS60244332A (ja) * 1984-05-21 1985-12-04 Sharp Corp 凝縮性材料のガス化供給装置
JPH03141192A (ja) * 1989-10-26 1991-06-17 Fujitsu Ltd 気相成長装置および気相成長方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574204A (zh) * 2019-04-05 2021-10-29 万机仪器公司 用于脉冲气体输送的方法和设备
EP3947770A4 (en) * 2019-04-05 2023-03-08 MKS Instruments, Inc. PULSE GAS DELIVERY METHOD AND DEVICE
WO2021097143A3 (en) * 2019-11-12 2021-08-19 Forge Nano Inc. Coatings on particles of high energy materials and methods of forming same
CN112808171A (zh) * 2020-12-30 2021-05-18 邓会秋 无泵阀腐蚀性液体的加料***及工艺

Also Published As

Publication number Publication date
US20210197157A1 (en) 2021-07-01
JP7105765B2 (ja) 2022-07-25
CN110382103A (zh) 2019-10-25
US11066746B1 (en) 2021-07-20
CN110382103B (zh) 2022-07-22
KR20200006964A (ko) 2020-01-21
JPWO2018207553A1 (ja) 2020-03-12
KR102639507B1 (ko) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2018207553A1 (ja) 液体材料気化供給装置及び制御プログラム
KR102303943B1 (ko) 질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법
JP5868796B2 (ja) 圧力制御装置、流量制御装置、及び、圧力制御装置用プログラム、流量制御装置用プログラム
KR102384035B1 (ko) 유량 제어 장치, 유량 제어 장치용 프로그램을 기억한 기억 매체 및 유량 제어 방법
KR102454096B1 (ko) 가스 제어 시스템, 그 가스 제어 시스템을 구비한 성막 장치, 그 가스 제어 시스템에 이용하는 프로그램 및 가스 제어 방법
US10705545B2 (en) Fluid control device and flow rate ratio control device
JP5350824B2 (ja) 液体材料の気化供給システム
JP6423792B2 (ja) 流量制御装置及び流量制御プログラム
TWI796376B (zh) 氣化系統和氣化系統用程式
WO2019163676A1 (ja) 流量制御装置および流量制御方法
JPWO2020004183A1 (ja) 流量制御方法および流量制御装置
JP3828821B2 (ja) 液体材料気化供給装置
JP2019219821A (ja) 流体制御装置、及び、流量比率制御装置
JP7131561B2 (ja) 質量流量制御システム並びに当該システムを含む半導体製造装置及び気化器
JP2020013269A (ja) 流量制御装置
US20140319705A1 (en) Vapor concentration control system, vapor concentration control device and control program
WO2021005879A1 (ja) 流量制御装置、流量測定方法、及び、流量制御装置用プログラム
JP5511108B2 (ja) 材料ガス濃度制御装置
JP7376959B2 (ja) ガス供給量測定方法およびガス供給量制御方法
JP7111408B2 (ja) 流量制御装置の異常検知方法および流量監視方法
JP2023067758A (ja) 気化装置、気化装置の制御方法、気化装置用プログラム、及び、流体制御装置
JP2019145047A (ja) 流体制御装置、制御プログラム及び流体制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019517522

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20197025748

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799221

Country of ref document: EP

Kind code of ref document: A1