KR102303943B1 - 질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법 - Google Patents

질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법 Download PDF

Info

Publication number
KR102303943B1
KR102303943B1 KR1020167025167A KR20167025167A KR102303943B1 KR 102303943 B1 KR102303943 B1 KR 102303943B1 KR 1020167025167 A KR1020167025167 A KR 1020167025167A KR 20167025167 A KR20167025167 A KR 20167025167A KR 102303943 B1 KR102303943 B1 KR 102303943B1
Authority
KR
South Korea
Prior art keywords
flow
mass flow
controller
control valve
pressure
Prior art date
Application number
KR1020167025167A
Other languages
English (en)
Other versions
KR20160132404A (ko
Inventor
준후아 딩
Original Assignee
엠케이에스 인스트루먼츠, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/205,030 external-priority patent/US9557744B2/en
Application filed by 엠케이에스 인스트루먼츠, 인코포레이티드 filed Critical 엠케이에스 인스트루먼츠, 인코포레이티드
Publication of KR20160132404A publication Critical patent/KR20160132404A/ko
Application granted granted Critical
Publication of KR102303943B1 publication Critical patent/KR102303943B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/003
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/13Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using a reference counter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)
  • Pipeline Systems (AREA)

Abstract

질량 유량 컨트롤러는, 질량 유량 컨트롤러를 통과하는 질량 유량을 측정하도록 구성되고 배치된 제1 유량계; 질량 유량 컨트롤러를 통과하는 질량 유량을 측정하도록 구성되고 배치된 제2 유량계; 유량계들 중 하나에 의해 측정된 유량의 함수로서 생성된 제어 신호에 응답하여 질량 유량 컨트롤러를 통과하는 질량 유량을 제어하도록 구성되고 배치된 제어 밸브; 및 제어 신호를 생성하고, 제1 유량계에 의해 측정된 질량 유량과 제2 유량계에 의해 측정된 질량 유량 사이의 차이가 임계값을 초과할 때 표시를 제공하도록 구성되고 배치된 시스템 프로세서/컨트롤러를 포함한다.

Description

질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법{SYSTEM FOR AND METHOD OF MONITORING FLOW THROUGH MASS FLOW CONTROLLERS IN REAL TIME}
[관련 출원에 대한 교차 참조]
본 출원은 2012년 1월 20일 출원되고 대리인 도켓 번호가 086400-0090(MKS-227US)이며, 발명의 명칭이 "SYSTEM FOR AND METHOD OF MONITORING FLOW THROUGH MASS FLOW CONTROLLERS IN REAL TIME"인 미국 특허 출원 제13/354,988호의 일부 계속 출원인, 2014년 3월 11일 출원되고 대리인 도켓 번호가 086400-0191(MKS-236US)이며, 발명의 명칭이 "SYSTEM FOR AND METHOD OF MONITORING FLOW THROUGH MASS FLOW CONTROLLERS IN REAL TIME"인 미국 특허 출원 제14/205,030 에 기초하고, 그에 대한 우선권을 주장하며, 이 출원들의 전체 내용은 본 명세서에 참조로서 편입된다.
[기술분야]
본 개시 내용은 일반적으로 질량 유량 컨트롤러(mass flow controller(MFC))에 관한 것으로, 더욱 상세하게는, MFC를 통한 유동을 실시간으로 모니터링하는 시스템 및 방법에 관한 것이다. 여기에서 사용되는 바와 같이, "가스(gas)"라는 용어는, 2개의 용어가 다르게 고려되어야 한다면, "증기(들)(vapor(s))"를 포함한다.
[개요]
질량 유량 컨트롤러(MFC)는 가스의 유동을 측정하고 제어하기 위한 장치이다. 이는 보통 높은 수율의 반도체 제품을 생산하기 위하여 진공 챔버와 같은 반도체 도구 내로의 가스의 유동이 주의 깊게 제어되어야 하는 반도체 제조 공정 동안 가스의 유동을 제어하는데 사용된다. MFC는 일반적으로 특정 범위의 유량(flow rate)으로 특정 종류의 가스를 제어하도록 설계되고 캘리브레이션된다. 장치는, 보통 사용자 또는 반도체 도구 자체와 같은 외부 장치에 의해 미리 정해지는, 주어진 설정점에 기초하여 유량을 제어한다. MFC는 아날로그 방식이거나 디지털 방식일 수 있다. 이는 통상적으로, 유입 가스의 압력 범위에 따라 사용되도록 설계되고, 저압 MFC 및 고압 MFC가 사용 가능하다. 모든 MFC는 입구 포트, 출구 포트, 질량 유량 센서를 포함하는 질량 유량계 및 비례 제어 밸브를 갖는다. 시스템 컨트롤러는, 설정점에 의해 결정된 유량의 질량 유량 센서에 의해 감지된 측정된 유량과의 비교의 함수로서, 제어 신호를 제어 밸브에 제공하는 피드백 제어 시스템의 일부로서 사용된다. 따라서, 피드백 제어 시스템은 측정된 유동이 설정점에 의해 결정된 유량으로 유지되도록 밸브를 동작시킨다.
이러한 제어 시스템은 MFC가 소정의 허용 오차 이내로 캘리브레이션 상태를 유지한다고 가정한다. MFC가 캘리브레이션 허용 오차 이내에 있는지 시험하기 위하여, MFC는 통상적으로 질량 유량 검증기와 같은 장치를 이용하여 오프라인에서 시험된다. 후자는 유량을 시험하는데 사용된다. 오프라인 시험이 매우 정확하지만, MFC가 공정의 운영 동안 (실시간으로) 캘리브레이션 상태를 벗어나게 될 수 있고, 공정이 완료될 때까지 검출될 수 없다는 문제점이 항상 있다. 종종 이것은 낮은 수율의 반도체 제품을 야기할 수 있고, 심지어 완전 고장이 전체 제품 수율의 손실을 초래할 수 있다. 이것은 비경제적이며, 명확히 바람직하지 않다. 필요한 것은 공정이 실행되고 있는 동안 실시간으로 MFC의 캘리브레이션 설정을 연속으로 시험하는 장치 및 방법이다.
일본공개특허공보 제2004-246826 A호, 2004. 9. 2. 미국공개특허공보 제2006/0278276호
일 실시예에 따라, 소스로부터 타겟으로의 가스의 유동을 제어하기 위한 질량 유량 컨트롤러가 제공된다. 질량 유량 컨트롤러는, 제1 및 제2 유량계와, 상류 및 하류 비례 제어 밸브를 포함한다. 제1 유량계는, 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 열 감지 질량 유량의 함수로서 측정하도록 구성되고 배치된다. 제2 유량계는, 압력 센서와, 질량 유량 컨트롤러를 통해 흐르는 가스를 공급받기 위한 미리 정의된 용적을 형성하는 구조를 포함한다. 제2 유량계는, 미리 정의된 용적으로부터 흐르도록 허용될 때, 가스의 압력의 측정된 감쇠율의 함수로서 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 측정하도록 구성되고 배치된다. 상류 비례 제어 밸브는, 질량 유량 컨트롤러 내로의 가스의 유량을 선택적으로 제어하도록 구성되고 배치된다. 하류 비례 제어 밸브는, 설정점과 유량계들 중 하나에 의해 측정된 유량의 함수로서 생성된 제어 신호에 응답하여 질량 유량 컨트롤러로부터의 가스의 질량 유량을 제어하도록 구성되고 배치된다. 시스템 프로세서/컨트롤러는, 제어 신호를 생성하고, 제1 유량계에 의해 측정된 가스의 질량 유량과 제2 유량계에 위해 측정된 가스의 질량 유량 사이의 차이가 임계값을 초과할 때 표시를 제공하도록 구성되고 배치된다. 압력 센서, 상류 유동 비례 제어 밸브 및 시스템 프로세서/컨트롤러는 미리 정의된 용적 내부에서의 압력을 조절하도록 구성된 폐루프 압력 컨트롤러를 형성하도록 더 구성되고 배치된다.
일 실시예에서, 폐루프 압력 컨트롤러는, 돌입 가스를 방지하기 위하여 미리 정의된 용적의 내부 압력이 입구 가스의 상류 압력까지 충분히 천천히 상승하게 하기 위하여 상류 비례 제어 밸브가 조정될 수 있도록 더 구성되고 배치된다.
일 실시예에서, 폐루프 압력 컨트롤러는, 질량 유량 컨트롤러가 소스로부터 타겟으로의 가스의 유동을 제어하고 있는 유동 제어 동안 상류 압력 불안이 있는 경우에, 미리 정의된 용적 내의 압력을 조절하기 위하여 폐루프 압력 컨트롤러가 상류 비례 제어 밸브의 개방을 자동으로 조정하도록 더 구성되고 배치되어, 질량 유량 컨트롤러의 출력 유동 제어에 대한 입구 압력 불안 효과가 최소화되고 질량 유량 컨트롤러의 유동 제어의 압력 둔감 성능이 개선된다.
일 실시예에서, 폐루프 압력 컨트롤러는, 질량 유량 컨트롤러가 소스로부터 타겟으로의 가스의 유동을 제어하고 있는 유동 제어 동안 상류 압력 불안이 있는 경우에, 미리 정의된 용적 내의 압력을 조절하기 위하여 폐루프 압력 컨트롤러가 상류 비례 제어 밸브의 개방을 자동으로 조정하도록 구성되고 배치되어, 질량 유량 컨트롤러의 출력 유동 제어에 대한 입구 압력 불안 효과가 최소화되고 질량 유량 컨트롤러의 유동 제어의 압력 둔감 성능이 개선된다.
일 실시예에서, 미리 정의된 용적을 형성하는 구조는 제1 유량계, 제2 유량계, 상류 비례 제어 밸브 및 하류 비례 제어 밸브 중 하나 이상을 지지한다.
일 실시예에서, 제1 질량 유량계는 열식(thermal) 질량 유량계를 포함하고, 하류 비례 제어 밸브는 열식 질량 유량계로부터 하류에 위치 설정된다.
일 실시예에서, 제2 비례 제어 밸브는 제1 비례 제어 밸브로부터 상류에 위치 설정되고, 미리 정의된 용적은 가스가 통과하여 흐를 수 있는 제1 비례 제어 밸브와 제2 비례 제어 밸브 사이에 위치 설정되고, 질량 유량 컨트롤러는 미리 정의된 용적 내의 가스의 압력과 온도를 나타내는 압력 신호와 온도 신호를 각각 생성하기 위한 압력 센서와 온도 센서를 더 포함한다.
일 실시예에서, 제2 유량계는 압력 센서를 포함하고, 시스템 프로세서/컨트롤러, 압력 센서 및 제2 제어 밸브는 미리 정의된 용적 내부의 압력을 조절하기 위한 폐루프 압력 컨트롤러를 형성한다.
일 실시예에서, 미리 정의된 용적이 제1 및 제2 제어 밸브 사이의 질량 유량 컨트롤러 내에 있고, 폐루프 압력 컨트롤러는, (1) 돌입(in-rush) 가스를 방지하기 위하여 질량 유량 컨트롤러의 내부 압력이 입구 가스의 상류 압력까지 천천히 상승하게 하도록 제2 제어 밸브가 제어될 수 있고; 그리고 (2) 유동 제어 기간 동안 상류 입구 압력 불안이 있다면, 질량 유량 컨트롤러의 출력 유동 제어에 대한 입구 압력 불안의 영향이 최소화되도록 미리 정의된 용적 내의 압력을 조절하기 위하여 폐루프 압력 컨트롤러가 제2 제어 밸브의 개방을 자동으로 조정하도록 구성되고 배치되어, 질량 유량 컨트롤러의 유동 제어의 압력 둔감 성능을 개선한다.
일 실시예에서,
(a) 설정점이 0일 때, 유동 제어 밸브가 닫히고, 유동 제어 밸브로부터 상류에 있는 제2 제어 밸브가 열려, 소스로부터의 가스가 미리 정의된 용적을 채울 수 있게 하고, 그 다음 제2 제어 밸브가 닫히고;
(b) 유량 설정점이 0에서 0이 아닌 값으로 변경될 때, 제2 제어 밸브는 닫힌 상태로 유지되고, 유동 제어 밸브는 열려, 제1 유량계에 의해 측정된 유량(Qt)을 유량 설정값으로 조절하고;
(c) 미리 정해진 기간 동안, 질량 유량 컨트롤러는
Qv = -V [d(P/T)]/dt
의 관계에 따라 압력 신호의 감쇠율에 기초하여 유량을 검증하고; 그리고,
(d) 유동 검증 후에, 상기 제2 제어 밸브가 개방되어 상기 질량 유량 컨트롤러가 상기 유동 제어를 계속하게 하도록,
질량 유량 컨트롤러와 프로세서/컨트롤러가 구성되고 배치되고,
여기에서, Qv는 제2 유량계에 의해 결정된 검증된 유량이고;
V는 미리 정해진 부피이고;
P는 압력 신호에 의해 측정된 압력이고;
T는 온도 신호에 의해 측정된 온도이고; 그리고,
d(P/T)/dt는 비 P/T의 제1 도함수, 즉, 비 P/T의 변화율이다.
일 실시예에서, 미리 정해진 기간은 대략 50 ms와 1000 ms 사이에 있다.
일 실시예에서, 질량 유량 컨트롤러는 검증된 유량(Qv)을 제1 유량계에 의해 측정된 유량(Qt)과 비교하도록 더 구성되고, Qt와 Qv 사이의 편차가 임계값을 초과하면, 유동 에러 알람 신호가 제공된다.
일 실시예에서, 질량 유량 컨트롤러는 Qv와 Qt의 측정된 값에 기초하여 자체 캘리브레이션을 수행하도록 구성된다.
일 실시예에서, 제1 비례 제어 밸브는, 유량 설정점이 0이 아닌 한, 질량 유량 컨트롤러를 통한 질량 유량의 유량 설정점의 함수로서 가스가 질량 유량 컨트롤러를 통해 흐르게 할 수 있도록 제어된다.
일 실시예에서, 유량 설정점을 0으로 설정한 것에 이어서, 질량 유량 컨트롤러는 제2 비례 유동 제어 밸브를 즉시 닫도록 구성된다.
일 실시예에서, 임계값은 사용자에 의해 설정된다.
일 실시예에서, 임계값은 공장에서 설정된다.
일 실시예에서, 임계값은 컨트롤러가 가스를 이송하는데 이용되는 공정을 위한 질량 유량에서의 허용 오차의 함수로서 설정된다.
일 실시예에 따르면, 압력 둔감형 질량 유량 컨트롤러는 소스로부터 타겟으로의 가스의 유동을 제어하도록 구성되고 배치된다. 질량 유량 컨트롤러는, 제1 유량계, 제1 비례 제어 밸브, 시스템 프로세서/컨트롤러, 제2 유량계 및 상류 비례 제어 밸브를 포함한다. 제1 유량계는, 질량 유량 컨트롤러를 통과하는 가스의 측정된 유량과 설정점의 함수로서 질량 유량 신호를 제공하도록 구성되고 배치된다. 제1 비례 제어 밸브는, 밸브 제어 신호에 응답하여 질량 유량 컨트롤러를 통과하는 가스의 유동을 제어하도록 구성되고 배치된다. 시스템 프로세서/컨트롤러는, 설정점 신호 및 질량 유량 신호의 함수로서 밸브 제어 신호를 생성하도록 구성되고 배치된다. 제2 유량계는, 질량 유량 컨트롤러를 통해 흐르는 가스의 측정된 압력을 나타내는 압력 측정 신호를 제공하도록 구성되고 배치된 압력 센서를 포함한다. 제2 유량계는, 가스의 측정된 압력의 함수로서 제2 질량 유량 신호를 제공하도록 구성되고 배치된다. 제2의 상류 비례 제어 밸브는, 제2 질량 유량 신호의 함수로서 질량 유량 컨트롤러 내로의 가스의 유량을 선택적으로 제어하도록 압력 센서로부터 상류에 구성되고 배치된다. 압력 센서, 제2의 상류 유동 비례 제어 밸브 및 시스템 프로세서/컨트롤러는, 질량 유량 컨트롤러 내로의 압력 유동을 조절하게 구성된 폐루프 압력 컨트롤러를 형성하도록 더 구성되고 배치된다.
다른 실시예에 따르면, 질량 유량 컨트롤러는 소스로부터 타겟으로의 가스의 유량을 제어하도록 구성되고 배치된다. 질량 유량 컨트롤러는, 제1 유량계, 제2 유량계, 상류 비례 제어 밸브, 하류 비례 제어 밸브 및 시스템 프로세서/컨트롤러를 포함한다. 제1 유량계는, 감지된 질량 유량의 함수로서 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 측정하도록 구성되고 배치된다. 제2 유량계는, 압력 센서와, 질량 유량 컨트롤러를 통해 흐르는 가스를 공급받기 위한 미리 정의된 용적을 형성하는 구조를 포함한다. 제2 유량계는, 미리 정의된 용적으로부터 흐르도록 허용될 때, 가스의 압력의 측정된 감쇠율의 함수로서 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 측정하고 검증하도록 구성되고 배치된다. 상류 비례 제어 밸브는, 질량 유량 컨트롤러 내로의 가스의 유량을 선택적으로 제어하도록 구성되고 배치된다. 하류 비례 제어 밸브는, 설정점과 제1 유량계에 의해 측정된 유량의 함수로서 생성된 제어 신호에 응답하여 질량 유량 컨트롤러로부터의 가스의 질량 유량을 제어하도록 구성되고 배치된다. 시스템 프로세서/컨트롤러는, 제어 신호를 생성하고, 미리 정의된 용적으로부터 흐르도록 허용된 가스의 압력의 측정된 감쇠율의 함수로서 질량 유량 컨트롤러의 질량 유동 제어의 정확성을 검증하도록 구성되고 배치된다. 미리 정의된 용적을 형성하는 구조는, 적어도 제2 유량계와 상류 비례 제어 밸브를 지지하기 위한 마운팅 블록이다.
이와 같은 구성요소, 단계, 특징, 목적, 이익 및 이점과 다른 구성요소, 단계, 특징, 목적, 이익 및 이점은 이어지는 발명을 실시하기 위한 구체적인 내용 및 첨부된 도면에 대한 검토로부터 명확하게 될 것이다.
도면은 예시적인 실시예를 개시한다. 이는 모든 실시예들을 예시하지 않는다. 다른 실시예들이 추가로 또는 대체하여 사용될 수 있다. 명료하거나 불필요할 수 있는 상세 사항은 공간을 절약하거나 더욱 효과적인 예시를 위하여 생략될 수 있다. 반대로, 일부 실시예들은 개시된 상세 내용을 전부 이용하지 않으면서 실시될 수 있다. 동일한 도면 부호가 상이한 도면에 나타날 때, 이는 동일하거나 유사한 구성요소나 단계를 지칭한다.
도 1은 MFC를 통한 유동을 제어하고 MFC의 정확성을 실시간으로 모니터링하도록 구성되고 배치된 MFC의 간략화된 블록도이다;
도 2는 본 명세서에 설명된 교시 내용을 채용하는 MFC의 일 실시예의 블록도이다;
도 3은 도 1 및 2와 관련하여 설명된 것과 같은 MFC가 캘리브레이션 허용 오차를 벗어날 때를 표시하는 신호를 생성하는 구성요소의 블록도이다; 그리고,
도 4는 여기에 설명된 교시 내용을 채용하는 MFC의 다른 실시예의 블록도이다.
예시적인 실시예가 이제 설명된다. 다른 실시예들이 추가로 또는 대체하여 사용될 수 있다. 명료하거나 불필요할 수 있는 상세 사항은 공간을 절약하거나 더욱 효과적인 예시를 위하여 생략될 수 있다. 반대로, 일부 실시예들은 개시된 상세 내용을 전부 이용하지 않으면서 실시될 수 있다.
도 1을 참조하면, 도시된 예시적인 질량 유량 컨트롤러(10)는 MFC를 통한 유동을 제어하고 MFC의 정확성을 실시간으로 모니터링하도록 구성되고 배치된다. 도시된 바와 같이, 컨트롤러(10)는, 각각 MFC를 통과하는 가스의 측정된 유량을 나타내는 신호를 독립적으로 생성하는 2개의 유량계(12, 14)를 포함한다. 2개의 유량계의 출력은 시스템 컨트롤러(16)에 제공된다. 시스템 컨트롤러(16)는 2개의 유량계(12, 14)로부터 수신된 2개의 신호를 처리하고, 유량계 중 하나에 의해 측정된 유량과 설정점에 기초하여 비례 제어 밸브(18)에 제어 신호를 제공하며, 2개의 유량계에 의해 측정된 유량에서의 차이가 미리 정해진 임계값을 초과한다는 판단이 이루어질 때 표시("알람") 신호를 제공한다.
전체로서 20으로 표시된 MFC의 더욱 상세한 예시적인 실시예가 도 2에 도시된다. MFC(20)는 MFC를 통한 유동을 제어하고 MFC의 정확성을 실시간으로 모니터링하도록 구성되고 배치된다. 도시된 바와 같이, 가스는 MFC를 통해 출구 포트(outlet port)(60)로의 메인 유로(34)를 형성하는 도관(conduit)을 포함하는 블록(28)의 입구 포트(inlet port)(32)에서 수신된다. 제1 유량계(30)는 열식 유량계(thermal mass flow meter)로서 도시된다. 열식 유량계는 통상적으로 열식 유량 센서(36)를 포함한다. 후자는 보통 블록(28)을 통한 가스 유동의 메인 유로(34)의 바이패스 내에 배치된 바이패스 요소(38)를 포함한다. U 형상의 모세관(40)은 바이패스 요소(38)의 상류 및 하류 단부에서 주요 경로에 각각 연결된 반대편의 단부들을 가진다. 하나 이상의 저항 요소(2개가 가장 일반적이다)(42)가, 예를 들어, 유체의 감지 온도 차이, 질량 유량의 측정값의 함수인 2개의 저항 요소의 저항 차이의 함수로서 온도 측정에 기초하여 모세관을 통한 유량을 측정하는데 사용된다. 바이패스 요소(38)는 모세관(40)의 2개의 단부 사이에서 바이패스 요소(38)를 통한 가스 유동이 층류(laminar)인 것을 보장하도록 설계된다. 층류를 유지함으로써, 모세관을 통과하는 가스의 측정된 유량은 메인 유로(34)를 통한 유량에 대한 정확한 비율일 것이다. 따라서, 모세관(40)을 통한 감지된 유량은 MFC(20)를 통과하고 출구 포트(60)를 빠져나가는 유량의 정확한 측정값일 것이다. 감지된 유량을 나타내는 데이터는 시스템 컨트롤러(16)로 전달된다.
제2 유량계(50)는 차압식 유량계(differential pressure flow meter)로서 도시된다. 막힌(choked) 유동 상태를 위하여, 유량계(50)는 유량 제한기(52)(예를 들어, 임계 유동(critical flow) 노즐 또는 오리피스)와, 유량 제한기(52)로부터 상류에서 메인 유로(34)를 통해 흐르는 가스의 온도 및 압력을 각각 측정하도록 배치된 온도 센서(54) 및 상류 압력 센서(56)를 포함한다. 감지된 온도와 압력을 나타내는 데이터는 감지된 측정값의 함수로서 제2 유량계(50)를 통한 질량 유량을 판단하는데 사용하기 위하여 시스템 컨트롤러로 전송된다. 막히지 않은(non-choked) 유동 상태를 위하여, 제2 또는 하류 압력 센서(58)가 유동 제한기(52)의 하류측에 제공된다. 감지된 온도, 상류 압력 및 하류 압력을 나타내는 데이터는 감지된 측정값의 함수로서 제2 유량계(50)를 통한 질량 유량을 판단하기 위하여 시스템 컨트롤러(16)로 전송된다. 제2 유량계(50)에 의해 제공된 제2 측정(막힌 실시예 및 막히지 않은 실시예 모두에서)은 제1 유량계(30)에 의해 제공된 측정에 독립적이다.
도 3을 참조하면, 시스템 컨트롤러(16)는 MFC를 통한 동일한 유동에 대한 2개의 유량 측정값을 제공하도록 유량계(70, 72)의 출력을 처리한다. 도시된 바와 같이, 유량계(70)는 유량 제어 유닛(74)으로 제공되고, 이는 제어 신호를 비례 제어 밸브(18)에 적용한다. 비교기(76)는 2개의 유량계(70, 72)에 의해 제공된 감지된 유량 측정값을 나타내는 데이터를 비교하여 2개의 측정값 사이의 임의의 차이의 함수로서 이러한 차이를 나타내는 출력 신호를 제공한다. 이 출력 신호는 임계값 검출기(78)에 의해 소정의 임계값(임계값 설정(80)에 의해 제공됨)에 비교된다. 비교기(76)의 출력 신호가 임계값을 초과하면(2개의 유량 측정값 사이의 차이가 미리 정해진 임계값을 초과하도록 2개의 유량계가 상이한 유량 측정값을 제공한다), 임계값 검출기는 유량계 중 적어도 하나가 부정확하고, MFC가 오프라인으로 되어 추가로 시험되어야 한다는 것을 사용자에게 경고하기 위하여 알람 또는 표시 신호를 제공한다. 임계값 설정(80)의 값이 MFC의 초기 공장 설정 동안 값을 설정하는 것 또는 사용자가 프로그래밍하는 것을 포함하는 많은 방법 중 어느 하나로 제공될 수 있다는 것이 주목되어야 한다. 임계값은 가스를 운반하는데 컨트롤러가 사용하는 특정 공정을 위한 질량 유량에서의 허용 가능한 오차의 함수로서 설정될 수 있다. 따라서, 일부 공정은 다른 공정보다 유량에 있어서 더 큰 허용 오차를 허용할 수 있다.
제1 및 제2 유량계가 도 2에서 열식 질량 유량계 및 차압식 유량계로서 각각 설명되었지만, 이들은, MFC(20)의 대상이 되는 적용예에 따라, 코리올리 유량계(coriolis flow meter), 자기식 유량계(magnetic flow meter) 또는 초음파 유량계와 같은 다른 종류의 유량계일 수도 있다. 다른 예가 도 4에 도시되며, 아래에서 더욱 상세히 논의된다. 제1 유량계의 종류가 제2 유량계의 종류와 상이할 수 있지만, 2개의 유량계는 동일한 종류일 수 있다. 예를 들어, 유량계 모두가 열식 질량 유량계이거나 차압식 유량계일 수 있다. 또한, 제1 유량계(30)가 제어 밸브(18)에 대하여 상류에 위치되고, 제2 유량계가 제어 밸브(18)에 대하여 하류에 위치되지만, 이러한 2개의 유량계의 위치는 MFC의 메인 유로(34)를 따라 어느 곳이라도 될 수 있다. 예를 들어, 유량계 모두가 제어 밸브(18)에 대하여 상류에 있거나 하류에 있을 수 있다.
도 3에 도시된 바와 같이, 제1 유량계(70)로부터의 측정이 MFC 유량 출력을 제어하기 위하여 유량 제어 유닛(74)에서 사용되고, 제2 유량계(72)로부터의 측정이 MFC의 정확성을 실시간으로 검증하는데 사용되지만, 제2 유량계(72)로부터의 측정이 MFC(20)의 유량 출력을 제어하기 위하여 유량 제어 유닛(74)에서 사용될 수 있고, 제1 유량계(70)로부터의 측정이 유량 검증을 위하여 사용될 수 있다.
도 4에 예시된 MFC(90)의 다른 더 상세한 예시적인 실시예는 시스템 컨트롤러 및 프로세서(110)와, 여기에서 설명된 방식으로 구성되고 배치되어 동작하는 2개의 유량계(100, 120)를 포함한다. 도 4에 도시된 실시예는 유량을 측정하기 위한 열식 질량 유량계와, MFC(90)을 통한 유동을 제어하기 위하여 열식 질량 유량계에 의한 측정에 응답하기 위한 하류 제어 밸브를 활용한다. 또한, MFC(90)는 통합된 압력 및 온도 센서와, 미리 정해진 내부 용적과, 통합된 상류 제어 밸브(하류 제어 밸브와 함께)를 포함하여, 압력 감쇠율 방법을 활용하는 유량 검증을 제공한다.
도 4에 도시된 바와 같이, 가스를 블록(94)의 입력 포트(92)에서 공급받는다. 후자는 MFC를 통한 출구 포트(98)로의 유로(96)를 형성하는 통로를 포함한다. 제1 유량계(100)는 열식 질량 유량계로서 도시된다. 전술한 바와 같이, 열식 질량 유량계는 전형적으로 102에 도시된 바와 같은 열식 질량 유량 센서를 포함한다. 후자는 일반적으로 블록(94)을 통한 가스 유동의 메인 유로(96)의 바이패스에 배치된 바이패스 요소(104)를 포함한다. U 형상의 모세관(106)은 바이패스 요소(104)의 상류 단부 및 하류 단부에서 주요 경로에 각각 연결된 반대편의 단부들을 가진다. 하나 이상의 저항 요소(도시되지 않음)(2개가 가장 일반적이다)가 온도 측정에 기초하여 모세관을 통한 유동을 측정하는데 사용된다. 이 예에서, 온도는 유체의 감지 온도에서의 차이의 함수인 2개의 저항 요소의 저항에서의 차이의 함수로서 측정될 수 있다. 측정된 온도 차이는 질량 유량의 측정값이다. 바이패스 요소(104)는 모세관(106)의 2개의 단부 사이에서 바이패스 요소(104)를 통한 가스 유동이 층류(laminar)인 것을 보장하도록 설계된다. 층류를 유지함으로써, 모세관(106)을 통과하는 가스의 측정된 유량은 메인 유로(96)를 통한 유량에 대한 정확한 비율일 것이다. 따라서, 모세관(106)을 통한 감지된 유량은 MFC(90)를 통과하고 출구 포트(98)를 빠져나가는 유량의 정확한 측정값일 것이다. 감지된 유량을 나타내는 데이터는 시스템 컨트롤러(110)로 전달된다. 유량은 하류 제어 밸브(112)로 제어된다. 더욱 구체적으로는, 신호가 유량계(100)에 의해 열식 질량 유량 센서(102)에 의해 감지된 측정된 유량의 함수로서 시스템 컨트롤러(110)에 제공된다. 시스템 컨트롤러(110)는 또한 원하는 유동을 나타내는 설정점을 대표하는 신호를 수신한다. 설정점은 실행되고 있는 프로세스의 함수이다. 2개의 신호가 비교되고, 피드백 신호가 하류 제어 밸브(112)에 제공된다. 컨트롤러는 실제 유량이 설정점에 가능한 한 가깝게 동일하게 되는 것을 보장하도록 필요에 따라 제어 밸브를 조정하도록 구성되고 배치된다.
열식 질량 유량계(100)와 제어 밸브(112)가 질량 유량 컨트롤러(90)를 통과하는 가스의 유동을 정확하게 제어하고 있다는 것을 검증하기 위하여, 질량 유량 컨트롤러(90)는 또한 압력 감쇠율 방법을 활용하여 질량 유량 컨트롤러를 통해(열식 질량 유량계에 의해 측정되는 바와 같이) 유량을 검증하도록 구성되고 배치된다. 제2 유량계는 질량 유량 컨트롤러를 통해 흐르는 가스를 공급받기 위한 미리 정해진 용적(122)을 포함한다. 예시된 실시예에서, 미리 정해진 용적(122)은 블록(94) 형태의 구조 내의 캐비티에 의해 형성되고 정의된다. 블록(94)에서 용적을 형성하는 것은 용적(122)을 형성하는 개별 용기 컨테이너에 대한 필요성을 제거하여, MFC의 복잡성과 비용을 감소시킨다. 모든 부품이 블록(94)에 고정되는 것으로 도시되지만, 모든 부품이 이와 같이 장착될 필요는 없다. 예를 들어, 제2 유량계(120)와 상류 비례 제어 밸브(128)만이 블록(94)에 장착될 수 있고, 다른 부품은 다른 구조에 개별적으로 장착된다. 또한, 제2 유량계는 시스템 컨트롤러(110)에 용적(122) 내의 가스의 압력과 온도를 나타내는 신호를 각각 제공하는 압력 센서(124)와 온도 센서(126)를 포함한다. 또한, 제2 유량계는 하류 제어 밸브(112)뿐만 아니라, 상류 제어 밸브(128)의 사용을 포함하여, 2개의 유량계가 동일한 하류 밸브를 공유한다. 제2 제어 밸브(128)는 격리 밸브(isolation valve) 또는 비례 제어 밸브일 수 있다. 제2 제어 밸브(128)가 비례 제어 밸브이면, 압력 센서(124)와 제2 제어 밸브(128)는 시스템 컨트롤러 또는 프로세서(110)와 함께 폐루프 압력 컨트롤러를 형성할 수 있어, (1) 유동 검증이 수행될 때 MFC의 미리 정의된 용적(122) 내부에서 상승하는 압력이 양호한 제어 하에 있고, 제2 제어 밸브(128)는 가스가 MFC 내로 들어가도록 개방되고, 즉 돌입(in-rush) 가스를 방지하기 위하여 MFC의 내부 압력이 입구 가스의 상류 압력까지 천천히 상승하게 하도록 제2 밸브를 제어하고; 그리고 (2) 유동 제어 기간 동안(임의의 0이 아닌 유량 설정점) 상류 입구 압력 불안이 있다면, 이 압력 컨트롤러는 MFC 출력 유동 제어에 대한 입구 압력 불안의 영향이 최소화되도록 2개의 제어 밸브(128, 112) 사이의 내부 압력을 조절하도록 제2 제어 밸브(128)의 개방을 자동으로 조정할 것이다. 이것은 MFC(90)의 유동 제어의 압력 둔감 성능을 개선한다.
컨트롤러(110)는 다음과 같이 동작하도록 구성되고 배치된다:
(a) 설정점이 0일 때, 하류 밸브가 닫히고, 상류 밸브가 열려, 제어 밸브(128)와 제어 밸브(112) 사이의 용적은 입력 포트(92)에 결합된 소스로부터의 가스로 채워지도록 허용된다. 내부 압력(압력 센서(124)로 측정됨)이 안정화되면, 상류 제어 밸브(128)가 닫힌다.
(b) 유량 설정점이 0에서 0이 아닌 값으로 변경될 때, 상류 제어 밸브(128)는 닫힌 상태로 유지되고, 하류 유동 제어 밸브(112)는 열려, 제1 유량계(100)의 측정에 기초하여 유량(Qt)을 컨트롤러(110)에 제공된 유량 설정값으로 조절한다.
(c) 미리 정해진 기간 동안, 질량 유량 컨트롤러는 다음의 관계에 따라 (압력이 용적(122) 내에서 강하함에 따른) 압력 신호의 감쇠율에 기초하여 유량을 검증한다:
[수학식 1]
Qv = -V [d(P/T)]/dt
여기에서, Qv는 제2 유량계에 의해 결정된 검증된 유량이고;
V는 용적(122)의 미리 정해진 부피이고;
P는 압력 센서(124)에 의해 측정되고 센서(124)에 의해 컨트롤러(110)에 제공된 신호로 나타내는 압력이고;
T는 온도 센서(126)에 의해 측정되고 온도 센서(126)에 의해 컨트롤러(110)에 제공된 신호로 나타내는 온도이고;
d(P/T)/dt는 비 P/T의 제1 도함수, 즉, 비 P/T의 변화율이다.
일 실시예에서, 유량계(120)로 유량을 측정하기 위한 미리 정해진 기간은 대략 50 ms와 1000 ms 사이에 있지만, 이는 질량 유량 컨트롤러가 사용되는 특정 적용예에 따라 변동할 수 있다.
(d) 검증 측정에 이어, 유량 검증값(Qv)이 컨트롤러(110)에 의해 획득되어 메모리(미도시)에 저장된다. 그 다음, 상류 제어 밸브(128)는 질량 유량 컨트롤러(90)가 제1 유량계(100)를 활용하여 유동 제어를 계속하게 하도록 개방될 수 있다.
시스템 컨트롤러(110), 압력 센서(124) 및 상류 제어 밸브(128)는 미리 정의된 용적(122) 내부의 압력을 조절하도록 폐루프 압력 컨트롤러를 형성할 수 있다. 폐루프 압력 컨트롤러가 구성되고 배치되어, (1) 돌입 가스를 방지하기 위하여 MFC의 내부 압력이 입구 가스의 상류 압력까지 천천히 상승하게 하도록 제2 밸브가 제어될 수 있고; 그리고, (2) 유동 제어 기간 동안 상류 압력 불안이 있다면, 폐루프 압력 컨트롤러는 질량 유량 컨트롤러의 출력 유동 제어에 대한 입구 압력 불안의 영향이 최소화되도록 미리 정해진 용적 내의 압력을 조절하기 위하여 제2 제어 밸브의 개방을 자동으로 조절할 것이어서, 질량 유량 컨트롤러의 유동 제어의 압력 둔감 성능을 개선한다.
시스템 컨트롤러(110)는 제1 유량계에 의해 제공된 측정의 정확성을 검증하기 위하여 제2 유량계로부터의 유동 측정을 사용하도록 도 3에 도시된 장치와 유사한 방식으로 구성될 수 있다. 따라서, 예시된 실시예에서, 질량 유량 컨트롤러(90)는 제1 유량계(120)의 검증된 유량(Qv)을 제1 유량계(100)에 의해 측정된 유량(Qt)과 비교하도록 더 구성되고, Qt와 Qv 사이의 편차가 미리 정해진 임계값을 초과하면, 유동 에러 알람 신호가 제공된다.
일 실시예에서, 질량 유량 컨트롤러(90)는 Qv 와 Qt의 측정된 값에 기초하여 자체 캘리브레이션을 수행하도록 구성된다. 제어 밸브(112)는 설정점이 0이 아닌 한 질량 유량 컨트롤러를 통한 설정점의 함수로서 가스가 질량 유량 컨트롤러(90)를 통해 흐르게 하도록 제어된다. 유량 설정점을 0으로 설정한 것에 이어서, 질량 유량 컨트롤러는 하류 유동 제어 밸브(112)를 즉시 닫도록 구성된다.
논의된 구성요소, 단계, 특징, 목적, 이익 및 이점은 단지 예시적인 것이다. 이들 및 이들과 관련된 논의는 어떠한 방식으로도 보호 범위를 제한하려고 의도되지 않는다. 많은 다른 실시예들도 고려될 수 있다. 이들은 더 적고, 추가적이고, 그리고/또는 상이한 구성요소, 단계, 특징, 목적, 이익 및/또는 이점을 가지는 실시예들을 포함한다. 이들도 구성요소 및/또는 단계가 상이하게 배열되고 그리고/또는 상이한 순서를 가지는 실시예를 포함한다.
달리 언급되지 않는다면, 모든 측정, 값, 등급(rating), 위치, 크기, 사이즈 및 이어지는 특허청구범위를 포함하는 본 명세서에서 설명된 다른 사양은 대략적인 것으로 정확한 것은 아니다. 이들은 관련된 기능 및 속하는 기술분야에서 관례적인 기능과 일관성 있는 타당한 범위를 가지도록 의도된다.
본 개시 내용에 인용된 논문, 특허, 특허 출원 및 다른 간행물은 모두 참조로서 본 명세서에 편입된다.
"~하는 수단"이라는 어구는, 특허청구범위에 사용될 때, 설명된 대응하는 구조 및 재료와 그 균등물을 포함하도록 의도되며 그와 같이 해석되어야만 한다. 유사하게, "~하는 단계"라는 어구는, 특허청구범위에 사용될 때, 설명된 대응하는 작용과 그 균등물을 포함하도록 의도되며 그와 같이 이해되어야만 한다. 특허청구범위에서 이러한 어구들이 없는 것은 이들의 대응하는 구조, 재료 또는 작용이나 그 균등물로 제한되려고 의도되지 않으며, 그에 제한되는 것으로 이해되지 않아야 한다.
설명되거나 예시된 어떠한 것도, 특허청구범위에 인용되었는지 여부에 관계없이, 공중에 대한 임의의 구성요소, 단계, 특징, 목적, 이익, 이점 또는 균등물의 헌납을 발생시키도록 의도되거나 이해되어서는 안 된다.
보호 범위는 이어지는 특허청구범위에 의해서만 제한된다. 그 범위는, 특정 의미가 설명된 것을 제외하고는, 본 명세서와 후속 출원 경과에 비추어 이해될 때 특허청구범위에 사용되는 문언의 통상적 의미와 일치하는 만큼 넓게 그리고 모든 구조적 기능적 균등물을 포함하도록 의도되며 그와 같이 해석되어야 한다.

Claims (19)

  1. 소스로부터 타겟으로의 가스의 유동을 제어하기 위한 질량 유량 컨트롤러에 있어서,
    상기 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 질량 유량의 열 감지의 함수로서 측정하도록 구성되고 배치된 제1 유량계;
    압력 센서와, 상기 질량 유량 컨트롤러를 통해 흐르는 가스를 공급받기 위한 미리 정의된 용적을 형성하는 구조를 포함하고, 미리 정의된 용적으로부터 흐르도록 허용될 때, 가스의 압력의 측정된 감쇠율의 함수로서 상기 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 측정하도록 구성되고 배치된 제2 유량계;
    상기 제1 및 제2 유량계의 상류에서, 상기 질량 유량 컨트롤러 내로의 가스의 유량을 선택적으로 제어하도록 구성되고 배치된 상류 비례 제어 밸브;
    상기 제1 및 제2 유량계의 하류에서, 유량 설정점과 상기 제1 유량계에 의해 측정된 유량의 함수로서 생성된 제어 신호에 응답하여 상기 질량 유량 컨트롤러로부터의 가스의 질량 유량을 제어하도록 구성되고 배치된 하류 비례 제어 밸브; 및
    상기 제어 신호를 생성하고,
    (a) 상기 하류 비례 제어 밸브가 닫힐 때, 상기 상류 비례 제어 밸브가 열려 상기 소스로부터의 상기 가스가 상기 미리 정의된 용적을 채울 수 있게 하고, 그 다음 상기 상류 비례 제어 밸브가 닫히고;
    (b) 상기 제1 유량계에 의해 측정된 유량을 상기 유량 설정점으로 조절하기 위하여 상기 하류 비례 제어 밸브가 열릴 때, 상기 상류 비례 제어 밸브가 닫힌 상태로 유지되고;
    (c) 소정의 기간 동안, 상기 질량 유량 컨트롤러가 상기 제2 유량계에 의해 결정된 압력 신호의 감쇠율에 기초하여 상기 제1 유량계에 의해 측정된 유량을 검증하고; 그리고
    (d) 상기 제1 유량계에 의해 측정된 유량의 검증 후에, 상기 상류 비례 제어 밸브가 열려 상기 질량 유량 컨트롤러가 유량 제어를 계속하게 함으로써,
    상기 제1 유량계에 의해 측정된 유량을 검증하도록 구성되고 배치된 시스템 프로세서/컨트롤러
    를 포함하고,
    상기 시스템 프로세서/컨트롤러는, 상기 제1 유량계에 의해 측정된 상기 가스의 질량 유량과 상기 제2 유량계에 위해 측정된 상기 가스의 질량 유량 사이의 차이가 임계값을 초과할 때 표시를 제공하고,
    상기 압력 센서, 상기 상류 비례 제어 밸브 및 상기 시스템 프로세서/컨트롤러는 상기 미리 정의된 용적 내부에서의 압력을 조절하도록 구성된 폐루프 압력 컨트롤러를 형성하도록 더 구성되고 배치된,
    질량 유량 컨트롤러.
  2. 제1항에 있어서,
    상기 폐루프 압력 컨트롤러는,
    돌입(in-rush) 가스를 방지하기 위해 입구 가스의 상류 압력까지의 상기 미리 정의된 용적의 내부 압력의 상승을 제어하도록 상기 상류 비례 제어 밸브가 조정될 수 있도록 더 구성되고 배치된,
    질량 유량 컨트롤러.
  3. 제2항에 있어서,
    상기 폐루프 압력 컨트롤러는, 상기 질량 유량 컨트롤러가 소스로부터 타겟으로의 가스의 유동을 제어하고 있는 유동 제어 동안 상류 압력 불안이 있는 경우에, 상기 미리 정의된 용적 내의 압력을 조절하기 위하여 상기 폐루프 압력 컨트롤러가 상기 상류 비례 제어 밸브의 개방을 자동으로 조정하도록 더 구성되고 배치되어, 상기 질량 유량 컨트롤러의 출력 유동 제어에 대한 상기 상류 압력 불안의 영향이 최소화되고 상기 질량 유량 컨트롤러의 유동 제어의 압력 둔감 성능이 개선되는,
    질량 유량 컨트롤러.
  4. 제1항에 있어서,
    상기 폐루프 압력 컨트롤러는, 상기 질량 유량 컨트롤러가 소스로부터 타겟으로의 가스의 유동을 제어하고 있는 유동 제어 동안 상류 압력 불안이 있는 경우에, 상기 미리 정의된 용적 내의 압력을 조절하기 위하여 상기 폐루프 압력 컨트롤러가 상기 상류 비례 제어 밸브의 개방을 자동으로 조정하도록 구성되고 배치되어, 상기 질량 유량 컨트롤러의 출력 유동 제어에 대한 상기 상류 압력 불안의 영향이 최소화되고 상기 질량 유량 컨트롤러의 유동 제어의 압력 둔감 성능이 개선되는,
    질량 유량 컨트롤러.
  5. 제1항에 있어서,
    상기 미리 정의된 용적을 형성하는 구조는 상기 제1 유량계, 상기 제2 유량계, 상기 상류 비례 제어 밸브 및 상기 하류 비례 제어 밸브 중 하나 이상을 지지하는,
    질량 유량 컨트롤러.
  6. 삭제
  7. 제1항에 있어서,
    상기 상류 비례 제어 밸브는 상기 하류 비례 제어 밸브로부터 상류에 위치 설정되고, 상기 미리 정의된 용적은 가스가 통과하여 흐를 수 있는 상기 하류 비례 제어 밸브와 상기 상류 비례 제어 밸브 사이에 위치 설정되고, 상기 질량 유량 컨트롤러는 상기 미리 정의된 용적 내의 가스의 압력과 온도를 나타내는 압력 신호와 온도 신호를 각각 생성하기 위한 압력 센서와 온도 센서를 더 포함하는,
    질량 유량 컨트롤러.
  8. 제7항에 있어서,
    상기 미리 정의된 용적이 상기 하류 비례 제어 밸브 및 상기 상류 비례 제어 밸브 사이의 상기 질량 유량 컨트롤러 내에 있고, 상기 폐루프 압력 컨트롤러는, (1) 돌입 가스를 방지하기 위하여 상기 질량 유량 컨트롤러의 내부 압력이 입구 가스의 상류 압력까지 천천히 상승하게 하도록 상기 상류 비례 제어 밸브가 제어될 수 있고; 그리고 (2) 유동 제어 기간 동안 상류 압력 불안이 있다면, 상기 질량 유량 컨트롤러의 출력 유동 제어에 대한 상기 상류 압력 불안의 영향이 최소화되도록 상기 미리 정의된 용적 내의 압력을 조절하기 위하여 상기 폐루프 압력 컨트롤러가 상기 상류 비례 제어 밸브의 개방을 자동으로 조정하도록 구성되고 배치되어, 상기 질량 유량 컨트롤러의 유동 제어의 압력 둔감 성능을 개선하는,
    질량 유량 컨트롤러.
  9. 제1항에 있어서,
    상기 질량 유량 컨트롤러와 상기 시스템 프로세서/컨트롤러는,
    (a) 상기 유량 설정점이 0일 때, 상기 하류 비례 제어 밸브가 닫히고 상기 상류 비례 제어 밸브가 열려, 상기 소스로부터의 가스가 상기 미리 정의된 용적을 채울 수 있게 하고, 그 다음 상기 상류 비례 제어 밸브가 닫히고;
    (b) 상기 유량 설정점이 0에서 0이 아닌 값으로 변경될 때, 상기 상류 비례 제어 밸브는 닫힌 상태로 유지되고, 상기 하류 비례 제어 밸브는 열려, 상기 제1 유량계에 의해 측정된 유량(Qt)을 상기 유량 설정점으로 조절하고;
    (c) 미리 정해진 기간 동안, 상기 질량 유량 컨트롤러는
    Qv = -V [d(P/T)]/dt
    의 관계에 따라 압력 신호의 감쇠율에 기초하여 상기 제1 유량계에 의해 측정된 유량을 검증하고;
    (d) 상기 제1 유량계에 의해 측정된 유량의 검증 후에, 상기 상류 비례 제어 밸브가 개방되어 상기 질량 유량 컨트롤러가 유동 제어를 계속하게 함으로써,
    상기 제1 유량계에 의해 측정된 유량을 검증하도록 구성되고 배치되고,
    여기에서, Qv는 상기 제2 유량계에 의해 결정된 검증된 유량이고;
    V는 미리 정해진 부피이고;
    P는 압력 신호에 의해 측정된 압력이고;
    T는 온도 신호에 의해 측정된 온도이고; 그리고,
    d(P/T)/dt는 비 P/T의 1차 도함수, 즉, 비 P/T의 변화율인,
    질량 유량 컨트롤러.
  10. 제9항에 있어서,
    상기 미리 정해진 기간은 50 ms와 1000 ms 사이에 있는,
    질량 유량 컨트롤러.
  11. 제9항에 있어서,
    상기 질량 유량 컨트롤러는 검증된 상기 유량(Qv)을 상기 제1 유량계에 의해 측정된 유량(Qt)과 비교하도록 더 구성되고, Qt와 Qv 사이의 편차가 상기 임계값을 초과하면, 유동 에러 알람 신호가 제공되는,
    질량 유량 컨트롤러.
  12. 제11항에 있어서,
    상기 질량 유량 컨트롤러는 Qv와 Qt의 측정된 값에 기초하여 자체 캘리브레이션을 수행하도록 구성되는,
    질량 유량 컨트롤러.
  13. 제1항에 있어서,
    상기 하류 비례 제어 밸브는, 상기 유량 설정점이 0이 아닌 한, 상기 질량 유량 컨트롤러를 통한 질량 유량의 상기 유량 설정점의 함수로서 가스가 상기 질량 유량 컨트롤러를 통해 흐르게 할 수 있도록 제어되는,
    질량 유량 컨트롤러.
  14. 제1항에 있어서,
    상기 유량 설정점을 0으로 설정한 것에 이어서, 상기 질량 유량 컨트롤러는 상기 상류 비례 제어 밸브를 즉시 닫도록 구성되는,
    질량 유량 컨트롤러.
  15. 제1항에 있어서,
    상기 임계값은 사용자에 의해 설정되는,
    질량 유량 컨트롤러.
  16. 제1항에 있어서,
    상기 임계값은 공장에서 설정되는,
    질량 유량 컨트롤러.
  17. 제1항에 있어서,
    상기 임계값은 상기 컨트롤러가 가스를 이송하는데 이용되는 공정을 위한 질량 유량에서의 허용 오차의 함수로서 설정되는,
    질량 유량 컨트롤러.
  18. 소스로부터 타겟으로의 가스의 유동을 제어하기 위한 압력 둔감형 질량 유량 컨트롤러에 있어서,
    상기 질량 유량 컨트롤러를 통과하는 가스의 측정된 유량의 함수로서 질량 유량 신호를 제공하도록 구성되고 배치된 제1 유량계;
    상기 제1 유량계의 하류에서, 밸브 제어 신호에 응답하여 상기 질량 유량 컨트롤러를 통과하는 가스의 유동을 제어하도록 구성되고 배치된 제1의 하류 비례 제어 밸브;
    유량 설정점 및 상기 질량 유량 신호의 함수로서 상기 밸브 제어 신호를 생성하도록 구성되고 배치된 시스템 프로세서/컨트롤러;
    상기 질량 유량 컨트롤러를 통해 흐르는 가스의 측정된 압력을 나타내는 압력 측정 신호를 제공하도록 구성되고 배치된 압력 센서를 포함하고, 가스의 측정된 압력의 함수로서 제2 질량 유량 신호를 제공하도록 구성되고 배치된 제2 유량계; 및
    상기 제1 및 제2 유량계의 상류에서, 가스의 측정된 압력의 함수로서 상기 질량 유량 컨트롤러 내로의 가스의 유량을 선택적으로 제어하도록 상기 압력 센서로부터 상류에 구성되고 배치된 제2의 상류 비례 제어 밸브
    를 포함하고,
    상기 압력 센서, 상기 제2의 상류 비례 제어 밸브 및 상기 시스템 프로세서/컨트롤러는, 상기 질량 유량 컨트롤러 내로의 압력 유동을 조절하게 구성된 폐루프 압력 컨트롤러를 형성하고,
    (a) 상기 제1의 하류 비례 제어 밸브가 닫힐 때, 상기 제2의 상류 비례 제어 밸브가 열려 상기 소스로부터의 상기 가스가 상기 미리 정의된 용적을 채울 수 있게 하고, 그 다음 상기 제2의 상류 비례 제어 밸브가 닫히고;
    (b) 상기 제1 유량계에 의해 측정된 유량을 상기 유량 설정점으로 조절하기 위하여 상기 제1의 하류 비례 제어 밸브가 열릴 때, 상기 제2의 상류 비례 제어 밸브가 닫힌 상태로 유지되고;
    (c) 소정의 기간 동안, 상기 질량 유량 컨트롤러가 상기 제2 유량계에 의해 결정된 압력 신호의 감쇠율에 기초하여 상기 제1 유량계에 의해 측정된 유량을 검증하고; 그리고
    (d) 상기 제1 유량계에 의해 측정된 유량의 검증 후에, 상기 제2의 상류 비례 제어 밸브가 열려 상기 질량 유량 컨트롤러가 유량 제어를 계속하게 함으로써,
    상기 제1 유량계에 의해 측정된 유량을 검증하도록 더 구성되고 배치된,
    질량 유량 컨트롤러.
  19. 소스로부터 타겟으로의 가스의 유량을 제어하기 위한 질량 유량 컨트롤러에 있어서,
    감지된 질량 유량의 함수로서 상기 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 측정하도록 구성되고 배치된 제1 유량계;
    압력 센서와, 상기 질량 유량 컨트롤러를 통해 흐르는 가스를 공급받기 위한 미리 정의된 용적을 형성하는 구조를 포함하고, 상기 미리 정의된 용적으로부터 흐르도록 허용될 때, 가스의 압력의 측정된 감쇠율의 함수로서 상기 질량 유량 컨트롤러를 통과하는 가스의 질량 유량을 측정하고 검증하도록 구성되고 배치된 제2 유량계;
    상기 제1 및 제2 유량계의 상류에서, 상기 질량 유량 컨트롤러 내로의 가스의 유량을 선택적으로 제어하도록 구성되고 배치된 상류 비례 제어 밸브;
    상기 제1 및 제2 유량계의 하류에서, 유량 설정점과 상기 제1 유량계에 의해 측정된 유량의 함수로서 생성된 제어 신호에 응답하여 상기 질량 유량 컨트롤러로부터의 가스의 질량 유량을 제어하도록 구성되고 배치된 하류 비례 제어 밸브; 및
    상기 제어 신호를 생성하고,
    (a) 상기 하류 비례 제어 밸브가 닫힐 때, 상기 상류 비례 제어 밸브가 열려 상기 소스로부터의 상기 가스가 상기 미리 정의된 용적을 채울 수 있게 하고, 그 다음 상기 상류 비례 제어 밸브가 닫히고;
    (b) 상기 제1 유량계에 의해 측정된 유량을 유량 설정점으로 조절하기 위하여 상기 하류 비례 제어 밸브가 열릴 때, 상기 상류 비례 제어 밸브가 닫힌 상태로 유지되고;
    (c) 소정의 기간 동안, 상기 질량 유량 컨트롤러가 상기 제2 유량계에 의해 결정된 압력 신호의 감쇠율에 기초하여 상기 제1 유량계에 의해 측정된 유량을 검증하고; 그리고
    (d) 상기 제1 유량계에 의해 측정된 유량의 검증 후에, 상기 상류 비례 제어 밸브가 열려 상기 질량 유량 컨트롤러가 유량 제어를 계속하게 함으로써,
    상기 미리 정의된 용적으로부터 흐르도록 허용된 가스의 압력의 측정된 감쇠율의 함수로서 상기 질량 유량 컨트롤러의 질량 유동 제어의 정확성을 검증하도록 구성되고 배치된 시스템 프로세서/컨트롤러
    를 포함하고,
    상기 미리 정의된 용적을 형성하는 구조는, 적어도 상기 제2 유량계와 상기 상류 비례 제어 밸브를 지지하기 위한 마운팅 블록인,
    질량 유량 컨트롤러.
KR1020167025167A 2014-03-11 2015-02-13 질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법 KR102303943B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/205,030 US9557744B2 (en) 2012-01-20 2014-03-11 System for and method of monitoring flow through mass flow controllers in real time
US14/205,030 2014-03-11
PCT/US2015/015831 WO2015138085A1 (en) 2014-03-11 2015-02-13 System for and method of monitoring flow through mass flow controllers in real time

Publications (2)

Publication Number Publication Date
KR20160132404A KR20160132404A (ko) 2016-11-18
KR102303943B1 true KR102303943B1 (ko) 2021-09-27

Family

ID=54072261

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167025167A KR102303943B1 (ko) 2014-03-11 2015-02-13 질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법

Country Status (7)

Country Link
EP (1) EP3117137B1 (ko)
JP (2) JP6677646B2 (ko)
KR (1) KR102303943B1 (ko)
CN (2) CN110244780A (ko)
SG (1) SG11201607383UA (ko)
TW (1) TWI521190B (ko)
WO (1) WO2015138085A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105387345A (zh) * 2015-12-10 2016-03-09 济南华信自动化工程有限公司 一种定量式气体自动切换柜
KR20190059298A (ko) * 2016-09-19 2019-05-30 플로우 디바이시스 앤드 시스템즈 인크. 자가-보정형 압력 기반 질량 유량 제어기를 위한 장치 및 방법
US10409295B2 (en) * 2016-12-31 2019-09-10 Applied Materials, Inc. Methods and apparatus for enhanced flow detection repeatability of thermal-based mass flow controllers (MFCS)
CN107908201A (zh) * 2017-09-25 2018-04-13 湖南工业大学 一种混合气体流量智能控制***及方法
US10927920B2 (en) * 2017-10-04 2021-02-23 Illinois Tool Works, Inc Passive damping system for mass flow controller
CN107676627A (zh) * 2017-10-26 2018-02-09 北京华福工程有限公司 乙炔加氢制乙烯装置的安全控制方法
KR102628015B1 (ko) * 2017-12-01 2024-01-23 삼성전자주식회사 질량 유량 제어기, 반도체 소자의 제조장치 및 그의 관리방법
US10649471B2 (en) * 2018-02-02 2020-05-12 Mks Instruments, Inc. Method and apparatus for pulse gas delivery with isolation valves
JP2019200067A (ja) 2018-05-14 2019-11-21 横河電機株式会社 測定システム、測定方法及び圧力測定装置
CN109681782A (zh) * 2019-01-07 2019-04-26 上海嘉麟杰纺织科技有限公司 一种智能型自动化流量输送***
JP6687205B1 (ja) * 2019-02-13 2020-04-22 株式会社昭和バルブ製作所 制御弁装置
CN110425429B (zh) * 2019-09-09 2021-04-23 山东拙诚智能科技有限公司 一种实时监测调压装置阀口状态及对下游流量估算的方法
KR102502013B1 (ko) * 2020-09-18 2023-02-21 엠케이피 주식회사 질량 유량 제어 장치 및 이의 제어방법
EP3995791B1 (de) * 2020-11-04 2024-05-29 Focus-On V.O.F. Computerimplementiertes verfahren zum betreiben eines fluid-absperrorgans und entsprechendes fluid-absperrorgan
KR102534971B1 (ko) * 2020-12-17 2023-05-22 주식회사 한국가스기술공사 유량 컴퓨터의 테스트를 위한 시스템 및 방법
CN113717757B (zh) * 2021-11-03 2022-02-08 华能(天津)煤气化发电有限公司 一种粉煤加压输送的变比例反馈调节方法
KR102573651B1 (ko) * 2021-12-06 2023-09-01 한화오션 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
KR102526253B1 (ko) * 2021-12-06 2023-04-28 대우조선해양 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
CN114935374A (zh) * 2022-07-26 2022-08-23 克拉玛依市富城天然气有限责任公司 一种油井天然气流量计量过程的控制方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170410A (ja) * 2006-03-20 2008-07-24 Hitachi Metals Ltd 質量流量制御装置、その検定方法及び半導体製造装置
JP2013508825A (ja) * 2009-10-15 2013-03-07 ピヴォタル システムズ コーポレーション ガス・フロー制御のための方法及び装置
WO2013109443A1 (en) * 2012-01-20 2013-07-25 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211601A (ja) * 1990-01-17 1991-09-17 Fujitsu Ltd ガス流量制御装置
US6810308B2 (en) * 2002-06-24 2004-10-26 Mks Instruments, Inc. Apparatus and method for mass flow controller with network access to diagnostics
JP4137666B2 (ja) 2003-02-17 2008-08-20 株式会社堀場エステック マスフローコントローラ
JP4086057B2 (ja) * 2004-06-21 2008-05-14 日立金属株式会社 質量流量制御装置及びこの検定方法
JP4395186B2 (ja) * 2004-07-07 2010-01-06 パーカー・ハニフィン・コーポレーション 流量制御装置および体積の内部等温制御により流量検証を行うための方法
US7296465B2 (en) * 2005-11-22 2007-11-20 Mks Instruments, Inc. Vertical mount mass flow sensor
WO2008030454A2 (en) * 2006-09-05 2008-03-13 Celerity, Inc. Multi-gas flow device
US7891228B2 (en) * 2008-11-18 2011-02-22 Mks Instruments, Inc. Dual-mode mass flow verification and mass flow delivery system and method
JP2010169657A (ja) * 2008-12-25 2010-08-05 Horiba Stec Co Ltd 質量流量計及びマスフローコントローラ
JP4750866B2 (ja) * 2009-02-18 2011-08-17 信越化学工業株式会社 石英ガラスの製造方法及び装置
US8793082B2 (en) * 2009-07-24 2014-07-29 Mks Instruments, Inc. Upstream volume mass flow verification systems and methods
DE102009046758A1 (de) * 2009-11-17 2011-05-19 Endress + Hauser Process Solutions Ag Sich selbst überwachende Durchflussmessanordnung und Verfahren zu deren Betrieb
CN202329700U (zh) * 2011-12-01 2012-07-11 于邦仲 一种流量传感器控制校正装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170410A (ja) * 2006-03-20 2008-07-24 Hitachi Metals Ltd 質量流量制御装置、その検定方法及び半導体製造装置
JP2013508825A (ja) * 2009-10-15 2013-03-07 ピヴォタル システムズ コーポレーション ガス・フロー制御のための方法及び装置
WO2013109443A1 (en) * 2012-01-20 2013-07-25 Mks Instruments, Inc. System for and method of monitoring flow through mass flow controllers in real time

Also Published As

Publication number Publication date
TW201538934A (zh) 2015-10-16
CN106233061A (zh) 2016-12-14
JP2017516183A (ja) 2017-06-15
EP3117137A1 (en) 2017-01-18
EP3117137B1 (en) 2020-12-16
SG11201607383UA (en) 2016-10-28
CN110244780A (zh) 2019-09-17
JP6677646B2 (ja) 2020-04-08
EP3117137A4 (en) 2017-11-01
CN106233061B (zh) 2019-07-02
JP2020098653A (ja) 2020-06-25
KR20160132404A (ko) 2016-11-18
WO2015138085A1 (en) 2015-09-17
TWI521190B (zh) 2016-02-11

Similar Documents

Publication Publication Date Title
KR102303943B1 (ko) 질량 유량 컨트롤러를 통해 유동을 모니터링하는 시스템 및 방법
US10606285B2 (en) System for and method of monitoring flow through mass flow controllers in real time
US10801867B2 (en) Method and apparatus for self verification of pressured based mass flow controllers
JP6702923B2 (ja) 質量流量コントローラ
US9471066B2 (en) System for and method of providing pressure insensitive self verifying mass flow controller
CN106104402B (zh) 提供压力不敏感自我验证的质量流量控制器的***和方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant