WO2018196861A1 - 亚氨脲衍生物 - Google Patents

亚氨脲衍生物 Download PDF

Info

Publication number
WO2018196861A1
WO2018196861A1 PCT/CN2018/084923 CN2018084923W WO2018196861A1 WO 2018196861 A1 WO2018196861 A1 WO 2018196861A1 CN 2018084923 W CN2018084923 W CN 2018084923W WO 2018196861 A1 WO2018196861 A1 WO 2018196861A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
compound
substituted
cycloalkyl
Prior art date
Application number
PCT/CN2018/084923
Other languages
English (en)
French (fr)
Inventor
张贵民
姚景春
任玉珊
Original Assignee
鲁南制药集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鲁南制药集团股份有限公司 filed Critical 鲁南制药集团股份有限公司
Priority to US16/608,441 priority Critical patent/US20200325109A1/en
Priority to EP18790575.7A priority patent/EP3617198B1/en
Priority to JP2019554358A priority patent/JP7256130B2/ja
Priority to KR1020197032347A priority patent/KR20190135038A/ko
Priority to RU2019138156A priority patent/RU2780118C2/ru
Priority to KR1020227015271A priority patent/KR102542904B1/ko
Priority to ES18790575T priority patent/ES2963054T3/es
Publication of WO2018196861A1 publication Critical patent/WO2018196861A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4245Oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/081,2,5-Oxadiazoles; Hydrogenated 1,2,5-oxadiazoles

Definitions

  • the invention relates to the field of medicines, in particular to imino urea derivatives and preparation methods and uses thereof.
  • Indoleamine 2,3-dioxygenase a monomeric enzyme containing heme, catalyzes the epoxidation of L-tryptophan to form kynurenine.
  • the high expression of indoleamine 2,3-dioxygenase results in local cell tryptophan depletion, which induces T cell arrest in the G1 phase, thereby inhibiting T cell proliferation.
  • indoleamine 2,3-dioxygenase-dependent tryptophan degradation leads to an increase in kynurenine levels and also induces oxygen free radical-mediated T cell apoptosis.
  • the up-regulation of dendritic cell guanamine 2,3-dioxygenase expression enhances local regulatory T cell (Treg)-mediated immunosuppression by degrading local tryptophan, promoting the body's tumor-specific antigen Peripheral immune tolerance.
  • Teg local regulatory T cell
  • Indoleamine 2,3-dioxygenase has become the most important small molecule regulatory target for anti-tumor immunotherapy.
  • indoleamine 2,3-dioxygenase is associated with many physiological processes in the human body.
  • Munn et al. revealed that the fetus was able to survive the pregnancy without being genotyped without being rejected because of placental
  • the somatic trophoblast cells synthesize indoleamine 2,3-dioxygenase, which inhibits the rejection of the fetus by maternal T cells through blood flow. They further implanted pregnant mice with a sustained-release capsule containing the indoleamine 2,3-dioxygenase inhibitor 1-methyltryptophan, and the embryo was repelled and aborted (Munn DH, Zhou M, Attwood) JT, et al.
  • Immune escape is one of the main biological mechanisms of tumorigenesis and metastasis, and has become an important factor affecting the therapeutic effect of cancer.
  • Indoleamine 2,3-dioxygenase as an immunomodulatory enzyme, can effectively inhibit T cell function, enhance Treg cell function, and induce NK cell dysfunction.
  • Tumor cells can use these organisms' inherent immune regulation mechanisms. Escape from the identification and killing of the immune system (Jia Yunwei, Wang Yu. Chinese Journal of Cancer Biotherapy, 2004, 21 (6): 693-7). In order to enable tumor patients to get the best benefit from treatment, it is imperative to rationally adjust the treatment strategy for tumor immune escape.
  • the indoleamine 2,3-dioxygenase inhibitor of the invention can effectively regulate the immune system of the patient, block the immune escape of the tumor cells, and has a good therapeutic effect on most spontaneous tumors. Based on the regulation of the immune system, the indoleamine 2,3-dioxygenase inhibitor of the present invention can treat tumors in addition to other diseases related to immunity such as chronic infection and AIDS.
  • Indoleamine 2,3-dioxygenase is also closely related to neurological diseases. It can lower the level of serotonin and cause mental illness such as depression and anxiety. It can also cause neurotoxic metabolism such as quinolinic acid in the brain. Accumulation of products, which is closely related to the occurrence of neurodegenerative diseases such as Alzheimer's disease. Indoleamine 2,3-dioxygenase affects brain function by at least two mechanisms: 1) by reducing the circulating tryptophan concentration by metabolizing tryptophan in the inflammatory response, thereby lowering serotonin levels , leading to depression; 2) catalyzing the metabolism of tryptophan in the kynurenine pathway to accumulate kynurenine and neurotoxic quinolinic acid. (Kong Linglei, Qu Chunxiang, Yang Qing. Chinese Journal of Pharmaceutical Chemistry, 2009, 19(2): 147-154).
  • the present invention provides a compound, or a pharmaceutically acceptable salt thereof, a composition containing the compound or a pharmaceutically acceptable salt thereof, and the use of the compound or a pharmaceutically acceptable salt thereof to inhibit guanamine 2,3 a method of activity of a dioxygenase (IDO) or a method for treating a pathologically characterized disease having a tryptophan 2,3-dioxygenase-mediated tryptophan metabolic pathway, and the compound or a pharmaceutically acceptable salt for the preparation of a medicament for inhibiting the activity of indoleamine 2,3-dioxygenase or for the preparation of a tryptophan mediated by indoleamine 2,3-dioxygenase Pathological features of metabolic pathways in the use of drugs for diseases.
  • IDO dioxygenase
  • the compound or a pharmaceutically acceptable salt thereof has excellent indoleamine 2,3-dioxygenase inhibitory activity, and the activity is remarkably superior to other IDO inhibitors, and the compound or the pharmaceutical thereof is accepted by measurement.
  • the body weight of the mice before and after the acceptable salt administration, compared with other IDO inhibitors, the compound of the present invention or a pharmaceutically acceptable salt thereof significantly improves the quality of life of the mouse when used for tumor treatment, and significantly reduces the drug.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof can significantly improve the learning and memory impairment of the animal and improve Learning acquisition ability and spatial memory ability have positive therapeutic significance for neurodegenerative diseases such as Alzheimer's syndrome and are superior to other IDO inhibitors; the compound of the present invention or a pharmaceutically acceptable salt thereof promotes DC stimulation T
  • the role of cell proliferation which can be used for the treatment of tumor diseases, autoimmune diseases, transplant rejection, and infectious diseases, And superior to other inhibitors of IDO.
  • the present invention provides a compound of formula I 0 compound or a pharmaceutically acceptable salt thereof:
  • R 1 and R 2 are each independently selected from the group consisting of H, substituted or unsubstituted C1-10 alkyl, aldehyde, substituted or unsubstituted carbonyl, cyano, CF 3 , substituted or unsubstituted C1-10 alkoxy, substituted or unsubstituted sulfone group, substituted or unsubstituted C3-10 cycloalkyl, substituted or unsubstituted C2-10 alkenyl, substituted or unsubstituted C6-20 aryl, substituted Or unsubstituted C3-14 heteroaryl;
  • R 3 and R 4 are each independently selected from the group consisting of H, substituted or unsubstituted C1-10 alkyl, substituted or unsubstituted C3-10 cycloalkyl, cyano, substituted or unsubstituted C1- Alkoxy, substituted or unsubstituted sulfone group, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C3-14 heteroaryl;
  • n takes an integer from 0 to 6, such as 0, 1, 2, 3, 4, 5 or 6; preferably n takes 0, 1, 2 or 3.
  • the invention provides a compound of the above I 0, or a pharmaceutically acceptable salt thereof, wherein R 1 , R 2 are each independently selected from the group consisting of one or more halogen, hydroxy, carboxy , carbonyl, aldehyde, cyano, amino, aryl, heteroaryl, C1-6 alkyl, C3-12 cycloalkyl, C2-6 alkenyl, C3-12 cycloalkenyl substituted C1-6 alkyl a carbonyl group, a C1-6 alkoxy group, a sulfone group, a decyl group or a sulfoxide group; wherein, as a C1-6 alkyl group, a carbonyl group, a C1-6 alkoxy group, a sulfone group, a thiol group or a sulfoxide group substituent Carboxyl, carbonyl, aldehyde, cyano, amino, aryl, heteroaryl, C3-12 cyclo
  • the present invention provides the above compound of I 0 or a pharmaceutically acceptable salt thereof, wherein R 1 and R 2 are each independently selected from the group consisting of H, methyl, ethyl, propyl, and iso Propyl, R 5 C(O)-, R 5 S(O)x-; R 5 is selected from C1-10 alkyl, C3-12 cycloalkyl, hydroxy, cyano, C1-6 alkyl a C3-12 cycloalkyl group, a C1-6 alkoxy group, an aryl group or a heteroaryl group-substituted C1-10 alkyl group or a C3-12 cycloalkyl group, wherein x is selected from 1 or 2;
  • R 3 and R 4 are each independently selected from the group consisting of H, substituted or unsubstituted C1-10 alkyl, substituted or unsubstituted C3-10 cycloalkyl, cyano, substituted or unsubstituted C1- Alkoxy, substituted or unsubstituted sulfone group, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C3-14 heteroaryl;
  • R 3 and R 4 are each independently selected as a di-substituent, thereby forming the following groups with the a or b-position C atom:
  • the present invention provides the above compound of I 0 or a pharmaceutically acceptable salt thereof, wherein R 1 and R 2 are each independently selected from the group consisting of H, methyl, ethyl, propyl, and iso Propyl, R 5 C(O)-, R 5 S(O) x -; R 5 is selected from C1-10 alkyl, C 3-12 cycloalkyl, hydroxy, cyano, C 1-6 alkyl, C 3 -12 cycloalkyl, C1-6 alkoxy, aryl or heteroaryl substituted C1-6 alkyl or C3-8 cycloalkyl; x is 2; R 3 and R 4 are both H.
  • the present invention provides the above compound of I 0 or a pharmaceutically acceptable salt thereof, wherein when R 2 , R 3 , and R 4 in formula I 0 are each taken as H, then a compound of formula I is obtained:
  • R 1 is selected from the group consisting of H, amino, sulfone, nitro, carbonyl, decyl, C 1-6 alkyl, halogen, hydroxy, carboxy, carbonyl, aldehyde, cyano, amino, aryl , heteroaryl, C3-12 cycloalkyl, C2-6 alkenyl, C3-12 cycloalkenyl substituted fluorenyl or C1-6 alkyl or C1-6 alkoxy or carbonyl or sulfone or sulfoxide
  • n takes an integer from 0 to 6, such as 0, 1, 2, 3, 4, 5 or 6; preferably n takes 1 or 2.
  • the present invention provides the above compound of I 0 or a pharmaceutically acceptable salt thereof, wherein when R 1 in formula I is H, structural formula II is obtained.
  • n takes an integer from 0-6, such as 0, 1, 2, 3, 4, 5 or 6.
  • the present invention provides the above compound of I 0 or a pharmaceutically acceptable salt thereof, wherein when R 1 in formula I is a carbonyl group substituted with R 0 , formula III is obtained:
  • R 0 is selected from the group consisting of H, C 1-6 alkyl, and is halogen, hydroxy, carboxy, carbonyl, aldehyde, cyano, amino, aryl, heteroaryl, C 3-12 cycloalkyl, C 2-6 alkenyl, C3-12 cycloalkenyl substituted C1-6 alkyl or C1-6 alkoxy, wherein n is an integer from 0 to 6, such as 0, 1, 2, 3, 4, 5 or 6.
  • R 0 is selected from C1-6 alkyl, and is halogen, hydroxy, carboxy, carbonyl, aldehyde, cyano, amino, aryl, heteroaryl, C3-12 cycloalkyl, C2-6 alkenyl, The C3-12 cycloalkenyl group is substituted with a C1-6 alkyl group or a C1-6 alkoxy group.
  • the present invention provides a compound of the above I 0 or a pharmaceutically acceptable salt thereof, wherein when R 1 in the formula I 0 is H, the compound of the formula IV is obtained:
  • the R 2 is selected from the group consisting of H, methyl, ethyl, propyl, isopropyl, R 5 C(O)-, R 5 S(O)m-;
  • R 5 is selected from H, C1 -10 alkyl, C3-12 cycloalkyl, C1-substituted by hydroxy, cyano, CF 3 , C 1-6 alkyl, C 3-10 cycloalkyl, alkoxy, aryl or heteroaryl 10 alkyl or C3-12 cycloalkyl;
  • m is selected from 1 or 2;
  • R 3 and R 4 are each independently selected from the group consisting of H, C1-10 alkyl, C3-12 cycloalkyl, hydroxy, cyano, halogen, C1-6 alkyl, C3-10 cycloalkyl. Alkoxy, aryl or heteroaryl substituted C1-10 alkyl or C3-12 cycloalkyl or C1-10 alkoxy or sulfone or C3-14 heteroaryl;
  • n takes an integer from 0 to 6, such as 0, 1, 2, 3, 4, 5 or 6;
  • R 2 is selected from the group consisting of H, R 5 C(O)-, R 5 S(O)m-;
  • R 5 is selected from H, C1-10 alkyl, C 3-12 cycloalkyl, Hydroxy, cyano, CF 3 , C 1-6 alkyl, C 3-10 cycloalkyl, C 1-6 alkoxy, aryl or heteroaryl substituted C 1-10 alkyl or C 3-12 cycloalkyl m is selected from 1 or 2;
  • R 2 is selected from the group consisting of R 5 C(O)-, R 5 S(O) x -;
  • R 5 is selected from C 1-6 alkyl, C 3-8 cycloalkyl, hydroxy, cyano , C1-6 alkyl, C3-8 cycloalkyl, C1-6 alkoxy, aryl or heteroaryl substituted C1-6 alkyl or C3-8 cycloalkyl;
  • x is 2;
  • R 3 , R 4 take H.
  • the invention provides the following compounds, or a pharmaceutically acceptable salt thereof:
  • the invention provides the above compounds
  • the synthesis method of (Formula I 0 ), that is, the general synthesis method one, the steps are as follows:
  • the oxidizing agent includes, but is not limited to, at least one of hydrogen peroxide, ozone or peracetic acid;
  • the base includes, but is not limited to, an alkali metal hydroxide, preferably sodium hydroxide, potassium hydroxide or barium hydroxide;
  • R 1 and R 2 are each independently selected from the group consisting of H, substituted or unsubstituted C1-10 alkyl, aldehyde, substituted or unsubstituted carbonyl, cyano, CF 3 , substituted or unsubstituted C1-10 alkoxy, substituted or unsubstituted sulfone group, substituted or unsubstituted C3-10 cycloalkyl, substituted or unsubstituted C2-10 alkenyl, substituted or unsubstituted C6-20 aryl, substituted Or unsubstituted C3-14 heteroaryl;
  • R 3 and R 4 are each independently selected from the group consisting of H, substituted or unsubstituted C1-10 alkyl, substituted or unsubstituted C3-10 cycloalkyl, cyano, substituted or unsubstituted C1- Alkoxy, substituted or unsubstituted sulfone group, substituted or unsubstituted C6-20 aryl, substituted or unsubstituted C3-14 heteroaryl;
  • R 3 and R 4 are each independently selected as a di-substituent, thereby forming the following groups with the a or b-position C atom: Wherein C is a C atom at a or b position, and m is selected from an integer of 0-6;
  • n takes an integer from 0-6.
  • the invention provides the above compounds
  • the synthesis method of (Formula I), that is, the general synthesis method A, the steps are as follows:
  • R 1 is selected from the group consisting of H, amino, sulfone, nitro, carbonyl, decyl, C 1-6 alkyl, halogen, hydroxy, carboxy, carbonyl, aldehyde, cyano, amino, aryl , heteroaryl, C3-12 cycloalkyl, C2-6 alkenyl, C3-12 cycloalkenyl substituted fluorenyl or C1-6 alkyl or C1-6 alkoxy or carbonyl or sulfone or sulfoxide ;n takes an integer from 0-6.
  • the oxidizing agent is preferably, but not limited to, at least one of hydrogen peroxide, ozone or peroxyacetic acid;
  • the base is selected from, but not limited to, an alkali metal hydroxide, preferably sodium hydroxide, potassium hydroxide or barium hydroxide.
  • the invention provides the above compounds
  • IIa is deprotected under acidic conditions and then reacted under alkaline conditions to obtain II
  • n is selected from 0 or 1 or 2 or 3 or 4,
  • the base is selected from, but not limited to, an alkali metal or alkaline earth metal hydroxide, preferably sodium hydroxide, potassium hydroxide or barium hydroxide.
  • the invention provides a compound The synthesis method of (Formula II'), that is, the general synthesis method three, the steps are as follows:
  • n is selected from 0 or 1 or 2 or 3 or 4,
  • Formula IIa is reacted under acidic conditions to give Formula II ' .
  • the invention provides the above compounds
  • the synthesis method of (Formula III), that is, the general synthesis method four, the steps are as follows:
  • R 3 is selected from the group consisting of H, OH, CN, CH 3-m X m , nitro, C1-9 alkyl, C1-9 alkoxy, C3-9 cycloalkoxy, C3-12 cycloalkyl, C1 -6 heteroalkyl, 3-12 membered heterocycloalkyl, aryl, heteroaryl, halogen, hydroxy, carboxy, carbonyl, aldehyde, cyano, amino, sulfone, aryl, heteroaryl, C3 -12 cycloalkyl, C3-12 cycloalkenyl substituted C1-6 alkyl or C1-9 alkoxy or aryl or heteroaryl or carbonyl, m is 1 or 2 or 3; preferably m is 2 or 3;
  • IIIa generates III under the conditions of practice
  • the R 3 is selected from the group consisting of H, OH, CN, CH 3-m X m , nitro, C1-9 alkyl, C 3-9 cycloalkoxy, C 3-12 cycloalkyl, C1-6 hetero Alkyl, 3-12 membered heterocycloalkyl, aryl, heteroaryl, halogen, hydroxy, carboxy, carbonyl, aldehyde, cyano, amino, sulfone, aryl, heteroaryl, C3-12 ring Alkyl, C3-12 cycloalkenyl substituted C1-6 alkyl or C1-9 alkoxy or aryl or heteroaryl.
  • the R 3 is selected from the group consisting of H, OH, CN, CF 3 , CHCl 2 , CH 2 Cl, nitro, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl Base, tert-butyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,2-dimethylpropyl, 1-ethylpropyl, hexyl, pentylmethyl, pentylethyl, pentylpropyl, pentylbutyl, hexylmethyl, hexylethyl, hexylpropyl , cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclopropylethyl, cyclo
  • R 3 is selected from the group consisting of a substituted furan, pyrrole, thiophene, pyrazole, imidazole, oxazole, thiophene, isoxazole, isothiazole, pyridine, pyran, thiopyran, pyridazine, pyridine, pyrazine, piperazine Species, which are substituted with a benzene ring to form benzofuran, benzopyrrole, benzopiperazine; or
  • the group in the formula 4a It is selected from oxazole, acridine, phenazine or phenothiazine.
  • the synthesis method provided by the present invention is only one way to realize each synthesis target compound and its intermediate, wherein each step and number, such as 1a, 2a, 3a, 4a, 1, 2, 3, etc. are independent. It is not limited to the preparation of the method of the present invention.
  • the solvent selected for each step of the above or below of the present invention is a conventional solvent in the art, and the selection principle is to dissolve the reactant but not participate in the reaction, extract the product or separate the crystal from the impurity in the corresponding product.
  • solvents such as water, halogenated alkanes, alkylamines, aliphatic hydrocarbons, esters, alcohols, aromatic hydrocarbons, ethers, heterocyclic solvents; specifically selected from, but not limited to, these solvents: methanol, ethanol, propanol, isopropyl Mixture of at least two of alcohol, diethyl ether, ethyl acetate, acetic acid, cyclohexane, dichloromethane, chloroform, tetrahydrofuran, pyridine, diethylamine, triethylamine, dimethylformamide, toluene, and the like.
  • the termination of the reaction may be carried out by adding a substance which can react with an excess of the reactants.
  • the purification of the product in each step of the reaction is selected from the group consisting of extraction, crystallization, solvent removal, column chromatography; the operations are all conventional techniques in the art, and the prior art Personnel can handle it on a case-by-case basis.
  • the numbers used in the general formula of the present invention are numbers which are conveniently used for describing the general formula, and they may be modified into other numbers in the specific embodiment, such as 1, 2, 3, etc., for convenience of description, so as not to affect
  • the essence of the structural formula and its reaction equation belongs to the expression of the general formula and the general reaction equation.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the above compounds, ie, a compound encompassed by Formulas I-III and the above specific compounds, or a pharmaceutically acceptable salt thereof, and one or more pharmaceutically acceptable salts Accepted pharmaceutical excipients.
  • “Pharmaceutically acceptable salt” as used in the present invention refers to pharmaceutically acceptable acid and base addition salts and solvates.
  • Such pharmaceutically acceptable salts include the salts of acids. Acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, formic acid, acetic acid, p-toluenesulfonic acid, sulfinic acid, methanesulfonic acid, benzoic acid, fumaric acid, citric acid, tartaric acid, maleic acid. ,fatty acid.
  • Non-toxic drug base addition salts include salts of bases including sodium, potassium, calcium, magnesium, aluminum, ammonium.
  • the present invention provides the above compound or a pharmaceutically acceptable salt thereof, which inhibits the activity of indoleamine 2,3-dioxygenase, and can be used for the preparation of a treatment with indoleamine 2,3-dual plus Oxygenase-mediated pathology of a tryptophan metabolism pathway for a disease; the medicament for treating cancer, infectious diseases, neurodegenerative diseases, depression, anxiety or age-related cataracts;
  • the cancer is selected from the group consisting of lung cancer, liver cancer, colon cancer, pancreatic cancer, breast cancer, prostate cancer, brain cancer, ovarian cancer, cervical cancer, testicular cancer, renal cancer, head and neck cancer, lymphoma, melanoma or leukemia;
  • the neurodegenerative disease refers to Alzheimer's disease
  • the infectious disease refers to an infection caused by bacteria, fungi, viruses or parasites.
  • the present invention provides a method of the above compound or a pharmaceutically acceptable salt thereof for inhibiting the activity of indoleamine 2,3-dioxygenase or for treating with amidoxime 2,3- A method of pathologically characterized diseases of a dioxygenase-mediated tryptophan metabolic pathway, the method comprising administering a therapeutically effective amount of the compound or a pharmaceutically acceptable salt thereof.
  • the disease is selected from the group consisting of cancer, infectious disease, neurodegenerative disease, depression, anxiety, or age-related cataract; wherein the cancer is selected from the group consisting of lung cancer, liver cancer, colon cancer, pancreatic cancer, breast cancer, prostate cancer, Brain cancer, ovarian cancer, cervical cancer, testicular cancer, kidney cancer, head and neck cancer, lymphoma, melanoma or leukemia; the neurodegenerative disease refers to Alzheimer's disease; the infectious disease refers to bacteria, fungi An infection caused by a virus or a parasite.
  • the activity test results according to the examples of the present invention show that the compound obtained by the present invention has excellent indoleamine 2,3-dioxygenase inhibitory activity, and the inhibitory effect is remarkably superior to the compound INCB024360.
  • the results of in vivo experiments indicate that the compounds of the present invention have a high inhibition rate on tumors, and the therapeutic effect on tumors is significantly better than that of compounds INCB024360 and other IDO inhibitors.
  • the indoleamine 2,3-dioxygenase inhibitor of the present invention can significantly reduce the side effects of the drug when used for tumor treatment, and significantly increase the small body compared with other IDO inhibitors.
  • the quality of life of rats can not only improve the quality of life of patients, but also significantly improve the patient's medication compliance and drug effectiveness.
  • the compound of the invention can significantly improve the learning and memory impairment of the animal, improve the learning acquisition ability and the spatial memory ability, and has positive therapeutic significance for neurodegenerative diseases such as Alzheimer's syndrome, and the effect is superior to other IDO inhibitors.
  • the compound of the present invention can promote the effect of DC-stimulated T cell proliferation, and can be used for the treatment of tumor diseases, autoimmune diseases, transplant rejection and infectious diseases, and is compared with other IDO inhibition.
  • the agent has obvious advantages.
  • the indoleamine 2,3-dioxygenase inhibitor of the present invention is used in the preparation of a medicament for treating a pathological characteristic disease having a tryptophan 2,3-dioxygenase-mediated tryptophan metabolic pathway
  • a pathological characteristic disease having a tryptophan 2,3-dioxygenase-mediated tryptophan metabolic pathway Has the following technical advantages:
  • the compound of the present invention is a guanamine 2,3-dioxygenase inhibitor, which inhibits the immunity of the body by inhibiting the proliferation inhibition of T cells by inhibiting the activity of the indoleamine 2,3-dioxygenase. Function, thus completing the monitoring and killing effect of the human immune system on tumor cells. Based on this special mechanism of action, this compound does not adversely affect the growth of normal cells of the human body while inhibiting the growth of tumor cells, thus significantly reducing the side effects of the drug. Moreover, it has a significant therapeutic effect on autoimmune diseases, transplant rejection, and infectious diseases associated with T cell proliferation.
  • Alzheimer's and other neurodegenerative diseases are effective, which can significantly improve the learning and memory impairment of animals, and significantly improve the ability of learning and spatial memory.
  • the compound 2 (230 mg, 1 mmol) was dissolved in acetonitrile (5 mL), stirred at room temperature for 0.5 h, then added 2a (320 mg, 2 mmol), heated at 60 ° C for 24 h, and then directly dried to give the desired product 210 mg.
  • the compound 4 (120 mg, 0.5 mmol) was dissolved in tetrahydrofuran, and the compound 4a (120 mg, 0.5 mmol) was added, and the mixture was stirred at room temperature for 10 min, 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the target product was obtained in 5 mg.
  • the compound 1 (384 mg, 1 mmol, the preparation method of the method of 3047 is described in detail) and the solution of the compound 1a (100 mg, 1.1 mmol) in tetrahydrofuran (10 mL) were stirred at room temperature for 48 h, and the reaction liquid was directly prepared to obtain the target product 2 ( 89 mg, yield 20%).
  • the compound 2 (120 mg, 0.5 mmol) was dissolved in tetrahydrofuran/water, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (100 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (100 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (100 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (100 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (530 mg, 2.65 mmol) was dissolved in acetonitrile (5 mL), and 2a (850 mg, 5.3 mmol) was added, and the mixture was stirred at room temperature for 24 h, and then directly dried to give 300 mg of product, which was directly used for the next reaction.
  • the compound 3 (300 mg, 0.99 mmol) was dissolved in dichloromethane (10 mL), EtOAc.
  • the compound 4 (200 mg, 0.99 mmol) was dissolved in tetrahydrofuran, and the compound 4a (250 mg, 1.0 mmol) was added, and the mixture was stirred at room temperature for 10 min, 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the target product was obtained in 3 mg.
  • the compound 3 (300 mg) was dissolved in THF/H 2 O, stirred at room temperature for 10 min, 1N sodium hydroxide (1 mL) was added dropwise, and stirred at room temperature for 10 min. After complete hydrolysis by LCMS, neutralized with 1 M HCl and neutralized to EA. After liquid concentration, pre-HPLC (acid method) was carried out to obtain 25 mg of the objective product.
  • the compound 2 (100 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (100 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (300 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • HPLC purity @214nm 99.90%, @254nm 99.70%.
  • the compound 2 (300 mg) was dissolved in methanol, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • HPLC purity @214nm 99.40%, @254nm 99.25%.
  • the compound 1 (330 mg, 0.75 mmol) was dissolved in tetrahydrofuran (10 mL), EtOAc (EtOAc (EtOAc,MeOHMeOHMeOHMeOHMeOHMeOHMeOH It was quenched, extracted with ethyl acetate and dried over anhydrous sodium sulfate.
  • the compound 2 (500 mg) was dissolved in tetrahydrofuran (20 mL), and the mixture was stirred at room temperature for 5 min, then 1N sodium hydroxide (5 mL) was added dropwise, and the mixture was stirred at room temperature for 30 min.
  • the crude product was dissolved in acetonitrile, which was obtained by pre-HPLC.
  • the compound 3 (100 mg) was dissolved in THF/H 2 O, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 3 (100 mg) was dissolved in THF/H 2 O, and stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 3 (100 mg) was dissolved in THF/H 2 O, and stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 3 (100 mg) was dissolved in THF/H 2 O, and stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 2 (100 mg) was dissolved in THF/H 2 O, stirred at room temperature for 10 min, and 1N sodium hydroxide (1 mL) was added dropwise, and the mixture was stirred at room temperature for 10 min.
  • the compound 3 (51 mg) was dissolved in DMF, EtOAcjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
  • the construction of the plasmid containing the human indoleamine 2,3-dioxygenase gene, expression, extraction and purification in E. coli were carried out according to the method reported by Littlejohn et al. (Takikawa O, Kuroiwa T, Yamazaki F, et al. J. Biol. Chem. 1988, 263, 2041-2048). 50 mM potassium phosphate buffer (pH 6.5), 20 mM ascorbate, 20 ⁇ M methylene blue and purified human guanamine 2,3-dioxygenase protein were mixed in a 96-well plate, and 200 ⁇ ML-tryptophan was added to the mixture. Inhibitor.
  • the reaction was carried out at 37 ° C for 60 minutes, the reaction was stopped by the addition of 30% trichloroacetic acid, and incubated at 65 ° C for 15 minutes to hydrolyze N-formyl kynurenine to kynurenine and centrifuged at 3400 g for 5 min. The precipitated protein was removed, and the supernatant was transferred to a new 96-well plate, reacted with 2% (w/v) p-dimethylaminobenzaldehyde in acetic acid, and the reaction was incubated at 25 ° C for 10 minutes. Read at 480 nm on a spectrophotometer.
  • INCB024360 is a guanamine 2,3-dioxygenase inhibitor with a structure of
  • Example 56 In vivo antitumor activity test of indoleamine 2,3-dioxygenase inhibitor
  • the LLC cells in the logarithmic growth phase were detected by trypan blue staining, and the viable cell concentration was adjusted to 1 ⁇ 10 7 cells/ml, and 0.2 ml/mouse was injected subcutaneously into homologous C57BL6 mice.
  • the mice were randomly divided into a model group, a cyclophosphamide (CTX) group, a compound INCB024360 group, and a compound group 3047 group, each group of 10, and the CTX group was intraperitoneally injected at 150 mg ⁇ kg -1 .
  • CTX cyclophosphamide
  • the drug, the compound INCB024360 group and the compound 3047 group were intragastrically administered, and the model group was given the same volume of physiological saline at the same time, and the frequency of administration in each group was once a day. The test was terminated 21 days after administration.
  • the experimental data were analyzed by spss16.0, one-way ANOVA, and p ⁇ 0.05. The difference was statistically significant.
  • the tumor weight of each drug-administered group was significantly different from that of the model group (P ⁇ 0.01); the compound 3047 group was significantly different from the cyclophosphamide group and the INCB024360 group (P ⁇ 0.05). ).
  • This result indicates that the therapeutic effect of the compound of the present invention on tumor is significantly better than that of the existing chemotherapeutic drug cyclophosphamide and the compound INCB024360.
  • the effect of each compound on the body weight of mice was examined. It was found that there was no significant difference in body weight between the compound XSD3-058 group and the compound XSD3-079 group compared with the model group. This result indicates that the compound of the present invention can be increased while controlling tumor growth.
  • the weight of the mouse reduces the side effects of the drug and significantly improves the quality of life of the mouse. Clinically, it can improve the quality of life of patients and greatly improve the patient's medication compliance and drug effectiveness.
  • Example 57 Morris water maze detection of behavioral changes in Alzheimer's mice
  • a 9-month-old mouse is selected according to the method of Richardson et al. in a single injection of aggregated A ⁇ 1-42 in the bilateral hippocampal CA3 region of rats, and then the model is divided into a model group, a compound INCB024360 group, and a compound 3047 group. Group 10, male and female.
  • Mouse behavioral analysis was performed using the Morris water maze (Ethovision XT monitoring analysis software from the Netherlands Noldus, Morris water maze system). The water maze test process was divided into two parts: the continuous 5d hidden platform acquisition test and the 6th day space exploration test. Each test was administered according to the test group and the design dose.
  • Compound 3047 can significantly improve learning and memory impairment in animals, significantly improve learning and spatial memory, and is superior to compound INCB024360, indicating that the compounds of the present invention are in Alz The treatment of Haimer Syndrome has great development value.
  • the compounds of the present invention can significantly improve learning and memory impairment in animals, and significantly improve learning ability and spatial memory ability, and the results indicate that the compounds of the present invention are in the Alzheimer's syndrome.
  • the treatment has great development value.
  • DCs Dendritic cells
  • APCs antigen-presenting cells
  • DC is the initiator of immune response.
  • DC has become one of the hotspots in immunology research because of its key role in CD4 + and CD8 + T cell immune response.
  • DC is mainly focused on tumor disease and autoimmunity. Sexual diseases, transplant rejection and prevention and treatment in anti-infection.
  • peripheral blood leukocyte layer was taken and diluted with 0.01 mol/L PBS.
  • PBMC peripheral blood leukocyte layer was taken and diluted with 0.01 mol/L PBS.
  • PBMC peripheral blood leukocyte layer was routinely isolated with lymphocyte stratification solution, adjusted to a cell concentration of 3 ⁇ 10 6 ml -1 in complete RPMI1640 medium, added to a 6-well plate, 3 ml P-well, 5% CO 2, and cultured in a 37 ° C incubator for 2 hours.
  • the non-adherent cells were washed away with PBS for 3 times, and culture medium containing IL-4 (100 U/ml), GM-CSF (150 ng/ml) and TNF- ⁇ (500 U/ml) was routinely cultured, and the solution was changed every other day. After 8 days of culture, it was used for identification and experiment.
  • the human PBMC layer was separated by the method in the step 1, and the macrophage was removed by the adherence method, and the B cells were removed by the nylon hair column method, and the obtained T cells were adjusted to a cell concentration of 1 ⁇ 10 6 /ml.
  • the mature DC with a purity of 99% was centrifuged, and the cell concentration was adjusted to 1 ⁇ 10 5 , 4 ⁇ 10 4 , 2 ⁇ 10 4 /ml by adding RPMI1640, and added to a 96-well plate, and two wells were set at each concentration, 100 ⁇ l/well. .
  • Compound INCB024360 and compound 3047 were separately added and co-cultured for 2 days.
  • T cells were added to each of the above-mentioned drug-added groups DC, 100 ⁇ l/well. 5% CO2, cultured in a 37 ° C incubator for 72 hours, gently aspirate 100 ⁇ l of the culture solution per well 6 hours before the end of the culture, add 10 ⁇ l of MTT (5 mg / ml), and put it in the incubator for 6 hours, then add 0.01 mol. /L HCl-10% SDS 100 ⁇ l, placed at 37 ° C overnight, the A570nm value measured by a microplate reader showed T cell proliferation level.
  • the number of T cells in each compound group was significantly increased compared with the control group, and there was a significant difference ( ## P ⁇ 0.01), indicating that the compound of the present invention has a remarkable DC-promoting T cell.
  • the effect of proliferation can be used for the treatment of IDO-related diseases such as tumor diseases, autoimmune diseases, transplant rejection, and infectious diseases.

Abstract

本发明涉及药物领域,特别涉及含有呋喃结构的亚氨脲衍生物及其组合物,该衍生物及其组合物可用于制备治疗具有吲哚胺2,3-双加氧酶介导的色氨酸代谢途径的病理学特征疾病的药物。本发明还涉及用于制备该衍生物及其中间体的方法。

Description

亚氨脲衍生物 技术领域
本发明涉及药物领域,特别涉及亚氨脲衍生物及其制备方法和用途。
背景技术
吲哚胺2,3-双加氧酶,是一种含亚铁血红素的单体酶,能催化L-色氨酸的吲哚环氧化裂解生成犬尿氨酸(kynurenine)。吲哚胺2,3-双加氧酶的高表达导致细胞局部的色氨酸耗竭,诱导T细胞停滞于G1期,从而抑制了T细胞的增殖。另一方面,吲哚胺2,3-双加氧酶依赖性的色氨酸降解导致犬尿氨酸水平的提高,也诱导氧自由基介导的T细胞凋亡。第三,上调树突状细胞吲哚胺2,3-双加氧酶的表达通过降解局部色氨酸而加强局部调节性T细胞(Treg)介导的免疫抑制,促使机体对肿瘤特异性抗原的外周免疫耐受。吲哚胺2,3-双加氧酶已经成为抗肿瘤免疫疗法最重要的小分子调控靶点。
研究发现吲哚胺2,3-双加氧酶与人体的许多生理过程相关,1998年,Munn等的研究揭示胎儿能够与其基因型不同的母体安全度过孕期而不被排斥是因为胎盘的合胞体滋养层细胞合成吲哚胺2,3-双加氧酶,后者通过血流抑制母体T细胞排斥胎儿的反应。他们进一步给妊娠小鼠皮下植人了含有吲哚胺2,3-双加氧酶抑制物1一甲基色氨酸的缓释胶囊后,胚胎遭排斥而流产(Munn DH,Zhou M,Attwood JT,et al。Prevention of allogeneic fetal rejection by tryptophan catabolism。Scienice,1998,281(5380):1191-3)。此外,一些由异常免疫应答所致的疾病如移植排斥反应、自身免疫性疾病也与吲哚胺2,3-双加氧酶息息相关。
尽管近年来肿瘤的治疗手段已经取得了巨大的进步,但临床疗效依然无法令人满意。免疫逃逸是肿瘤发生与转移的主要生物学机制之一,已经成为影响肿瘤治疗效果的重要因素。吲哚胺2,3-双加氧酶作为一种免疫调节酶,可以有效地抑制T细胞功能、增强Treg细胞功能以及诱导NK细胞功能紊乱,而肿瘤细胞可以利用这些机体固有的免疫调节机制来逃避免疫***的识别与杀伤(贾云泷,王郁。中国肿瘤生物治疗杂志,2004,21(6):693-7)。为了使肿瘤患者能够从治疗中获得最佳收益,针对肿瘤免疫逃逸来合理地调整治疗策略已经势在必行。本发明中的吲哚胺2,3-双加氧酶抑制剂可有效调节患者的免疫***,阻断肿瘤细胞的免疫逃逸,对大部分的自发性肿瘤均具有良好的治疗效果。基于对免疫***的调节作用,本发明中的吲哚胺2,3-双加氧酶抑制剂除了可对肿瘤进行治疗外,还可以对与免疫有关的其它疾病如慢性感染及艾滋病进行治疗。
吲哚胺2,3-双加氧酶与神经***疾病也密切相关,它能降低5-羟色胺的水平而导致抑 郁、焦虑等精神疾病,也可造成脑中喹啉酸等具有神经毒性的代谢产物的累积,这与神经退行性疾病如阿尔茨海默病的发生密切相关。吲哚胺2,3-双加氧酶至少可通过两种机制影响脑的功能:1)在炎症反应时通过代谢色氨酸,降低了循环的色氨酸浓度,从而使5-羟色胺水平降低,导致抑郁;2)催化色氨酸循犬尿氨酸途径代谢使犬尿氨酸和神经毒性喹啉酸累积。(孔令雷,匡春香,杨青。中国药学化学杂志,2009,19(2):147-154)。
发明内容:
本发明提供一种化合物或其药学上可接受的盐、含有所述化合物或其药学上可接受的盐的组合物、使用所述化合物或其药学上可接受的盐抑制吲哚胺2,3-双加氧酶(IDO)的活性的方法或用于治疗具有吲哚胺2,3-双加氧酶介导的色氨酸代谢途径的病理学特征疾病的方法、以及所述化合物或其药学上可接受的盐在制备用于抑制吲哚胺2,3-双加氧酶的活性的药物或在制备用于治疗具有吲哚胺2,3-双加氧酶介导的色氨酸代谢途径的病理学特征疾病的药物中的用途。
所述化合物或其药学上可接受的盐具有优异的吲哚胺2,3-双加氧酶抑制活性,并且所述活性明显优于其它IDO抑制剂,并且通过测定接受所述化合物或其药学上可接受的盐给药前后小鼠的体重发现,与其它IDO抑制剂比较,本发明的化合物或其药学上可接受的盐在用于肿瘤治疗时显著提高小鼠的生存质量,明显降低药物副作用,表现在临床上不仅可提高患者的生存质量,并可显著提高患者的用药依从性及药物的有效性;本发明的化合物或其药学上可接受的盐可显著改善动物学习记忆损害,提高学习获得能力和空间记忆能力,对阿尔茨海默综合症等神经退行性疾病具有积极的治疗意义,并优于其它IDO抑制剂;本发明的化合物或其药学上可接受的盐促进DC刺激T细胞增殖的作用,进而可用于肿瘤疾病、自身免疫性疾病、移植排斥反应以及感染性疾病的治疗,并且优于其它IDO抑制剂。
发明详述:
在一些实施方案中,本发明提供了式I 0化合物或其药学上可接受的盐:
Figure PCTCN2018084923-appb-000001
其中,R 1、R 2分别独立地选自以下取代基:H,取代或未取代的C1-10烷基,醛基,取代或未取代的羰基,氰基,CF 3,取代或未取代的C1-10烷氧基,取代或未取代的砜基,取代或未取代的C3-10环烷基,取代或未取代的C2-10烯基,取代或未取代的C6-20芳基,取代或未取代的C3-14杂芳基;
R 3、R 4分别独立地选自以下单取代基:H,取代或未取代的C1-10烷基,取代或未取代的C3-10环烷基,氰基,取代或未取代的C1-10烷氧基,取代或未取代的砜基,取代或未取代的C6-20芳基,取代或未取代的C3-14杂芳基;
或R 3、R 4分别独立地选双取代基,从而与a或b位C原子形成以下基团:
Figure PCTCN2018084923-appb-000002
Figure PCTCN2018084923-appb-000003
Figure PCTCN2018084923-appb-000004
其中的C即a或b位C原子,m选自0-6的整数,如0或1或2或3或4或5或6;进一步的,R 3、R 4与a或b位C原子形成的基团为C=CH 2
Figure PCTCN2018084923-appb-000005
Figure PCTCN2018084923-appb-000006
n取0-6的整数,如0,1,2,3,4,5或6;优选地n取0,1,2或3。
在一些实施方案中,本发明提供了上述I 0化合物或其药学上可接受的盐,其中R 1、R 2分别独立地选自以下取代基:任选被一个或多个卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C1-6烷基、C3-12环烷基、C2-6烯基、C3-12环烯基取代的C1-6烷基、羰基、C1-6烷氧基、砜基、脒基或亚砜基;其中,作为C1-6烷基、羰基、C1-6烷氧基、砜基、脒基或亚砜基取代基的羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基任选被一个或多个H、卤素、C1-6烷基、羰基、C1-6烷氧基或亚砜基或砜基取代;所述的卤素选自F、Cl、Br或I;
在一些实施方案中,本发明提供了上述I 0化合物或其药学上可接受的盐,其中R 1、R 2分别独立地选自以下取代基:H,甲基,乙基,丙基,异丙基,R 5C(O)-,R 5S(O)x-;R 5选自C1-10的烷基,C3-12的环烷基,被羟基、氰基、C1-6烷基、C3-12环烷基、C1-6烷氧基、芳基或杂芳基取代的C1-10的烷基或C3-12的环烷基,x选自1或2;
R 3、R 4分别独立地选自以下单取代基:H,取代或未取代的C1-10烷基,取代或未取代的C3-10环烷基,氰基,取代或未取代的C1-10烷氧基,取代或未取代的砜基,取代或未取代的C6-20芳基,取代或未取代的C3-14杂芳基;
或R 3、R 4分别独立地选双取代基,从而与a或b位C原子形成以下基团:
Figure PCTCN2018084923-appb-000007
Figure PCTCN2018084923-appb-000008
在一些实施方案中,本发明提供了上述I 0化合物或其药学上可接受的盐,其中R 1、R 2分别独立地选自以下取代基:H,甲基,乙基,丙基,异丙基,R 5C(O)-,R 5S(O) x-;R 5选自C1-10烷基,C3-12环烷基,被羟基、氰基、C1-6烷基、C3-12环烷基、C1-6烷氧基、芳基或杂芳基取代的C1-6烷基或C3-8环烷基;x是2;R 3、R 4均取H。
在一些实施方案中,本发明提供了上述I 0化合物或其药学上可接受的盐,其中当式I 0中的R 2、R 3、R 4分别取H时,则得式I化合物:
Figure PCTCN2018084923-appb-000009
其中,R 1选自以下取代基:H,氨基,砜基,硝基,羰基,脒基,C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代的脒基或C1-6烷基或C1-6烷氧基或羰基或砜基或亚砜基;n取0-6的整数,如0,1,2,3,4,5或6;优选地n取1或2。
在一些实施方案中,本发明提供了上述I 0化合物或其药学上可接受的盐,其中当式I中的R 1取H时,得结构式II
Figure PCTCN2018084923-appb-000010
其中n取0-6的整数,如0,1,2,3,4,5或6。
在一些实施方案中,本发明提供了上述I 0化合物或其药学上可接受的盐,其中当式I中的R 1取被R 0取代的羰基时,得结构式III:
Figure PCTCN2018084923-appb-000011
其中R 0选自H,C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代C1-6烷基或C1-6烷氧基,其中n取0-6的整数,如0,1,2,3,4,5或6。
进一步的,R 0选自C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代C1-6烷基或C1-6烷氧基。
在一些实施方案中,本发明提供了上述I 0化合物或其药学上可接受的盐,其中式I 0中的R 1取H时,则得式IV化合物:
Figure PCTCN2018084923-appb-000012
所述的R 2选自以下取代基:H,甲基,乙基,丙基,异丙基,R 5C(O)-,R 5S(O)m-;R 5选自H,C1-10的烷基,C3-12的环烷基,被羟基、氰基、CF 3、C1-6烷基、C3-10环烷基、烷氧基、芳基或杂芳基取代的C1-10的烷基或C3-12的环烷基;m选自1或2;
R 3、R 4分别独立选自以下取代基:H,C1-10的烷基,C3-12的环烷基,被羟基、氰基、卤素、C1-6烷基、C3-10环烷基、烷氧基、芳基或杂芳基取代的C1-10烷基或C3-12环烷基或C1-10烷氧基或砜基或C3-14杂芳基;
其中n取0-6的整数,如0,1,2,3,4,5或6;
进一步地,R 2选自以下取代基:H,R 5C(O)-,R 5S(O)m-;R 5选自H,C1-10烷基,C3-12环烷基,被羟基、氰基、CF 3、C1-6烷基、C3-10环烷基、C1-6烷氧基、芳基或杂芳基取代的C1-10的烷基或C3-12的环烷基;m选自1或2;
进一步地,R 2选自以下取代基:R 5C(O)-,R 5S(O) x-;R 5选自C1-6烷基,C3-8环烷基, 被羟基、氰基、C1-6烷基、C3-8环烷基、C1-6烷氧基、芳基或杂芳基取代的C1-6烷基或C3-8环烷基;x是2;R 3、R 4均取H。
在一些实施方案中,本发明提供了下述化合物或其药学上可接受的盐:
Figure PCTCN2018084923-appb-000013
Figure PCTCN2018084923-appb-000014
Figure PCTCN2018084923-appb-000015
Figure PCTCN2018084923-appb-000016
Figure PCTCN2018084923-appb-000017
本发明的通式以及通式合成方法中可以衍生出不限于这些具体化合物,且在本发明的通式和通式合成方法的指导下,本领域技术人员不需要付出创造性劳动即可得到的具体化合物,均在本发明范围内。
在一些实施方案中,本发明提供上述化合物
Figure PCTCN2018084923-appb-000018
(式I 0)的合成方法,即通用合成方法一,步骤如下:
1)1a氧化得到2a:
Figure PCTCN2018084923-appb-000019
所述的氧化剂包括但不限于双氧水、臭氧或过氧乙酸中的至少一种;
2)1与2a在碱性条件下反应以得2:
Figure PCTCN2018084923-appb-000020
所述的碱包括但不限于碱金属的氢氧化物,优选为氢氧化钠、氢氧化钾、氢氧化钡;
3)2与3a反应以得I 0
Figure PCTCN2018084923-appb-000021
其中,R 1、R 2分别独立地选自以下取代基:H,取代或未取代的C1-10烷基,醛基, 取代或未取代的羰基,氰基,CF 3,取代或未取代的C1-10烷氧基,取代或未取代的砜基,取代或未取代的C3-10环烷基,取代或未取代的C2-10烯基,取代或未取代的C6-20芳基,取代或未取代的C3-14杂芳基;
R 3、R 4分别独立地选自以下单取代基:H,取代或未取代的C1-10烷基,取代或未取代的C3-10环烷基,氰基,取代或未取代的C1-10烷氧基,取代或未取代的砜基,取代或未取代的C6-20芳基,取代或未取代的C3-14杂芳基;
或R 3、R 4分别独立地选双取代基,从而与a或b位C原子形成以下基团:
Figure PCTCN2018084923-appb-000022
Figure PCTCN2018084923-appb-000023
其中的C即a或b位C原子,m选自0-6的整数;
n取0-6的整数。
在一些实施方案中,本发明提供上述化合物
Figure PCTCN2018084923-appb-000024
(式I)的合成方法,即通用合成方法一A,步骤如下:
1)1a氧化得到2a;
Figure PCTCN2018084923-appb-000025
2)1与2a在碱性条件下反应以得2;
Figure PCTCN2018084923-appb-000026
3)2与3a反应以得I,
Figure PCTCN2018084923-appb-000027
其中,R 1选自以下取代基:H,氨基,砜基,硝基,羰基,脒基,C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代的脒基或C1-6烷基或C1-6烷氧基或羰基或砜基或亚砜基;n取0-6的整数。
所述的氧化剂优选自但不限于双氧水、臭氧或过氧乙酸中的至少一种;
所述的碱选自但不限于碱金属的氢氧化物,优选为氢氧化钠、氢氧化钾、氢氧化钡。
在一些实施方案中,本发明提供上述化合物
Figure PCTCN2018084923-appb-000028
(式II)的合成方法,即通用合成方法二,步骤如下:
1)2与3a'反应得IIa;
Figure PCTCN2018084923-appb-000029
2)IIa在酸性条件下脱保护,然后在碱性条件反应得II,
Figure PCTCN2018084923-appb-000030
其中n选自0或1或2或3或4,
所述的碱选自但不限于碱金属或碱土金属的氢氧化物,优选为氢氧化钠、氢氧化钾、氢氧化钡。
在一些实施方案中,本发明提供化合物
Figure PCTCN2018084923-appb-000031
(式II')的合成方法,即通用合成方法三,步骤如下:
Figure PCTCN2018084923-appb-000032
所述的n选自0或1或2或3或4,
式IIa在酸性条件下反应得到式II
在一些实施方案中,本发明提供上述化合物
Figure PCTCN2018084923-appb-000033
(式III)的合成方法,即通用合成方法四,步骤如下:
1)II与4a反应生成IIIa,
Figure PCTCN2018084923-appb-000034
其中R 3选自H,OH,CN,CH 3-mX m,硝基,C1-9烷基,C1-9烷氧基,C3-9环烷氧基,C3-12环烷基,C1-6杂烷基,3-12元杂环烷基,芳基,杂芳基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、砜基、芳基、杂芳基、C3-12环烷基、C3-12环烯基取代C1-6烷基或C1-9烷氧基或芳基或杂芳基或羰基,m为1或2或3;优选m为2或3;
2)IIIa在践行条件下生成III,
Figure PCTCN2018084923-appb-000035
具体的,所述R 3选自H,OH,CN,CH 3-mX m,硝基,C1-9烷基,C3-9环烷氧基,C3-12环烷基,C1-6杂烷基,3-12元杂环烷基,芳基,杂芳基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、砜基、芳基、杂芳基、C3-12环烷基、C3-12环烯基取代C1-6烷基或C1-9烷氧基或芳基或杂芳基。进一步地,所述R 3选自H,OH,CN,CF 3,CHCl 2,CH 2Cl,硝基,甲基,乙基,丙基,异丙基,丁基,异丁基,仲丁基,叔丁基,戊基,1-甲基丁基,2-甲基丁基,3-甲基丁基,1,1-二甲基丙基,2,2-二甲基丙基,1,2-二甲基丙基,1-乙基丙基,己基,戊基甲基,戊基乙基,戊基丙基,戊基丁基,己基甲基,己基乙基,己基丙基,环丙基,环丁基,环戊基,环己基,环丙甲基,环丙乙基,环丙基丙基,环丁甲基,环丁乙基,环丁丙基,环戊甲基,环戊乙基,环戊丙基,环己甲基,环己乙基,环己丙基,对甲氧基苄基(PMB),苄基(Bn);或
R 3选自取代呋喃,吡咯,噻吩,吡唑,咪唑,噁唑,噻吩,异噁唑,异噻唑,吡啶,吡喃,噻喃,哒嗪,吡啶,吡嗪,哌嗪中的任一种,与苯环成两位取代,即形成苯并呋喃,苯并吡咯,苯并哌嗪;或
所述式4a中的基团
Figure PCTCN2018084923-appb-000036
选自咔唑,吖啶,吩嗪或吩噻嗪。
本发明所提供的合成方法仅为实现各合成目标化合物及其中间体的一种途径,其中所述的各步骤及编号,如1a、2a、3a、4a、1、2、3等均为独立的,不限于本发明的方法所制备而得。
未经特别说明的,本发明上述或下述的各步反应所选用的溶剂为本领域常规溶剂,其选用原则是溶解反应物但不参与反应,萃取产物或使相应产物在其中结晶与杂质分离,如水、卤代烷烃、烷胺、脂肪烃类、酯类、醇类、芳香烃类、醚类、杂环类溶剂;具体选自,但不限于这些溶剂:甲醇、乙醇、丙醇、异丙醇、***、乙酸乙酯、乙酸、环己烷、二氯甲烷、三氯甲烷、四氢呋喃、吡啶、二乙胺、三乙胺、二甲基甲酰胺、甲苯及其中至少两种的混合。
未经特别说明的,本发明上述或下述的各反应中,当反应物有过量时,反应终止可采用加入可与过量反应物反应的物质进行淬灭反应。
未经特别说明,本发明上述或下述的各反应中,各步反应中的产物的纯化方式选自萃取、 结晶、除溶剂、柱层析;其操作均为本领域常规技术,本领域技术人员能够根据具体情况进行处理。
本发明通式中所用各编号是为了叙述通式方便采用的编号,它们在具体实施例中可以将其变形为其它编号,如1,2,3等,均是为了方便叙述,为不影响其结构式及其反应方程式的实质属于通式及通式反应方程式的表达。
通式I-III所涵盖的化合物及其具体物质代表中的手性异构或顺反异构体及异构体间以任何比例的混合物亦涵盖在通式I-III所涵盖的化合物及其具体物质代表范围内。
在一些实施方案中,本发明提供药物组合物,包含上述化合物,即通式I-III所涵盖的化合物及上述具体化合物,或其药学上可接受的盐,和一种或多种药学上可接受的药用辅料。
本发明所述的“药学上可接受的盐”是指药学上可接受的酸和碱加成盐和溶剂化物。这类药学上可接受的盐包括酸的盐。酸包括盐酸、硫酸、硝酸、磷酸、氢溴酸、氢碘酸、甲酸、乙酸、对甲苯磺酸、亚磺酸、甲磺酸、苯甲酸、富马酸、柠檬酸、酒石酸、马来酸、脂肪酸。无毒药物碱加成盐包括碱的盐,这些碱包括钠、钾、钙、镁、铝、铵。
在一些实施方案中,本发明提供上述化合物或其药学上可接受的盐,可抑制吲哚胺2,3-双加氧酶的活性,可用于制备治疗具有吲哚胺2,3-双加氧酶介导的色氨酸代谢途径的病理学特征疾病的药物;所述药物用于治疗癌症、感染性疾病、神经退行性病变、抑郁症、焦虑症或与年龄相关的白内障;
其中所述癌症选自肺癌、肝癌、结肠癌、胰腺癌、乳腺癌、***癌、脑癌、卵巢癌、***、睾丸癌、肾癌、头颈癌、淋巴癌、黑色素瘤或白血病;
所述的神经退行性疾病指阿尔茨海默病;
所述的感染性疾病指由细菌、真菌、病毒或寄生虫引起的感染。
在一些实施方案中,本发明提供了上述化合物或其药学上可接受的盐用于抑制吲哚胺2,3-双加氧酶的活性的方法或用于治疗具有吲哚胺2,3-双加氧酶介导的色氨酸代谢途径的病理学特征疾病的方法,所述方法包括施用治疗有效量的所述化合物或其药学上可接受的盐。所述疾病选自癌症、感染性疾病、神经退行性病变、抑郁症、焦虑症或与年龄相关的白内障;其中所述癌症选自肺癌、肝癌、结肠癌、胰腺癌、乳腺癌、***癌、脑癌、卵巢癌、***、睾丸癌、肾癌、头颈癌、淋巴癌、黑色素瘤或白血病;所述的神经退行性疾病指阿尔茨海默病;所述感染性疾病指由细菌、真菌、病毒或寄生虫引起的感染。
根据本发明实施例中活性测试结果显示,本发明所得化合物具有优异的吲哚胺2,3-双加氧酶抑制活性,并且抑制效果明显优于化合物INCB024360。体内试验结果表明本发明 中的化合物对肿瘤具有较高的抑制率,对肿瘤的治疗效果明显优于化合物INCB024360及其它IDO抑制剂。并且通过测定给药前后小鼠的体重发现,与其它IDO抑制剂比较,本发明中吲哚胺2,3-双加氧酶抑制剂在用于肿瘤治疗时可明显降低药物副作用,显著提高小鼠的生存质量,表现在临床上不仅可提高患者的生存质量,并可显著提高患者的用药依从性及药物的有效性。
本发明中的化合物可显著改善动物学习记忆损害,提高学习获得能力和空间记忆能力,对阿尔茨海默综合症等神经退行性疾病具有积极的治疗意义,并且效果优于其它IDO抑制剂。
通过T细胞增殖反应实验,发现本发明中的化合物可以促进DC刺激T细胞增殖的作用,进而可用于肿瘤疾病、自身免疫性疾病、移植排斥反应以及感染性疾病的治疗,并且相比其它IDO抑制剂具有明显优势。
本发明中的吲哚胺2,3-双加氧酶抑制剂在用于制备治疗具有吲哚胺2,3-双加氧酶介导的色氨酸代谢途径的病理学特征疾病的药物时具有如下技术优势:
(1)抗肿瘤作用显著,本发明中的化合物具有明显的吲哚胺2,3-双加氧酶抑制活性,并且体内试验显示本发明中化合物的抑瘤率明显高于阳性对照药环磷酰胺及化合物INCB024360。
(2)副作用降低,本发明的化合物为吲哚胺2,3-双加氧酶抑制剂,通过抑制吲哚胺2,3-双加氧酶的活性逆转T细胞的增殖抑制调节机体的免疫功能,从而完成人体免疫***对肿瘤细胞的监视及杀伤作用。基于这种特殊的作用机制,此种化合物在抑制肿瘤细胞生长的同时对人体正常细胞的生长无不良影响,因此明显减少了药物副作用。并且对与T细胞增殖相关的自身免疫性疾病、移植排斥反应以及感染性疾病有显著的治疗效果。
(3)治疗阿尔茨海默等神经退行性疾病时效果显著,可明显改善动物学习记忆损害,显著提高学习获得能力和空间记忆能力。
具体实施方式:
下面结合具体的实施方式对本发明做进一步描述,但本发明并不受其限制。且在本发明的通式、通式合成方法(通用合成方法一、通用合成方法一A、通用合成方法二、通用合成方法三、通用合成方法四)及具体的实施方式的指导下,本领域技术人员不需要付出创造性劳动即可得到的具体化合物,均在本发明范围内。
实施例1
反应1
Figure PCTCN2018084923-appb-000037
将化合物1(903mg,10mmol)溶解在丙酮(10mL),然后室温下加入碳酸钾(2.76g,20mmol),室温搅拌0.5h,滴加苯磺酰氯,室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得白色粉末900mg。
反应2
Figure PCTCN2018084923-appb-000038
将化合物2(230mg,1mmol)溶于乙腈(5mL),室温搅拌0.5h,加入2a(320mg,2mmol),60℃加热24h,直接旋干,pre-HPLC制备得到目标产物210mg。
反应3
Figure PCTCN2018084923-appb-000039
化合物3(171mg,0.5mmol)溶于二氯甲烷(10mL),室温搅拌5min,加入三氟乙酸(5mL),室温反应2h,直接旋干,得到目标产物4,粗品直接用于下一步。
反应4
Figure PCTCN2018084923-appb-000040
将化合物4(120mg,0.5mmol)溶于四氢呋喃,加入化合物4a(120mg,0.5mmol),室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物5mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.45(s,1H),8.89(s,1H),7.76-7.77(m,2H),7.48-7.52(m,3H),7.10-7.20(m,3H),6.75-6.77(m,2H),6.27(s,1H),3.73-3.77(m,2H),2.52-2.69(m,2H)。
HPLC purity:@214nm 99.5%,@254nm 100%。
LC-MS:m/z 541[M+1]。
参考合成方法一及实施例1,合成如下化合物
Figure PCTCN2018084923-appb-000041
实施例10
反应1
Figure PCTCN2018084923-appb-000042
将化合物1a(682mg,2mmol)溶解在三氟乙酸(13mL),然后室温下滴加30%H 2O 2,反应在50℃过夜,反应液由浑浊状变为澄清黄色溶液,反应完毕后用饱和亚硫酸钠溶液淬灭,KI淀粉试纸显示无色后,用乙酸乙酯(50mL*2)萃取,有机相用无水硫酸钠干燥,浓缩后柱层析(石油醚→石油醚:乙酸乙酯=1醚:乙:1)得到淡黄色固体2a(500mg,收率67%)。
反应2
Figure PCTCN2018084923-appb-000043
将乙二胺1(30mg,0.5mmol)加入到化合物2a(170mg,0.5mmol)的四氢呋喃(10mL)溶液中,然后加入1N NaOH(0.4mL),反应液室温搅拌0.5h,反应液直接制备得到化合物2(120mg)。
反应3
Figure PCTCN2018084923-appb-000044
化合物2(120mg,0.33mmol)和化合物3a(100mg,0.33mmol)的甲醇(10mL)溶液在室温搅拌过夜,反应液浓缩后柱层析(石油醚→石油醚:乙酸乙酯=1醚:乙:1)得到化合物3(42mg,23%)。
反应4
Figure PCTCN2018084923-appb-000045
将三氟乙酸(0.6mL)加入化合物3(31mg,0.05mmol)的二氯甲烷(3mL)溶液中,室温搅拌过夜,反应液浓缩后pre-HPLC制备得到XSD3-047(9mg,收率68%)。目标化合物的 1H-NMR(400MHz,DMSO-d6):δ(ppm):11.4(s,1H),8.88(s,1H),7.22-7.11(m,2H),6.71-6.5(m,3H),6.38-6.21(m,2H),3.37(m,3H),3.01(m,2H)。MS:m/z 401.2[M+1]。
实施例11
反应1
Figure PCTCN2018084923-appb-000046
将丙二胺(35mg,0.5mmol)加入到化合物1(170mg,0.5mmol,合成方法详见XSD3-047Final report中化合物2a的合成)的四氢呋喃(10mL)溶液中,反应液室温搅拌0.5h,反应液直接制备得到目标产物130mg。
反应2
Figure PCTCN2018084923-appb-000047
化合物2(130mg,0.33mmol)和化合物1a(100mg,0.33mmol)的甲醇(10mL)溶液在室温搅拌过夜,反应液浓缩后柱层析(石油醚→石油醚:乙酸乙酯=1醚:乙:1) 得到目标产物3(78mg,45%)。
反应3
Figure PCTCN2018084923-appb-000048
将三氟乙酸(0.6mL)加入化合物3(31mg,0.05mmol)的二氯甲烷(3mL)溶液中,室温搅拌过夜,再用1N NaOH溶液调至pH=12,继续搅拌20min,LCMS监测反应,反应完毕后用0.5N HCl将反应液调至中性,反应液浓缩后pre-HPLC制备得到目标产物(9mg,收率68%)。目标化合物的 1H-NMR(400MHz,DMSO-d6):δ(ppm):11.4(s,0.6H),8.88(s,1H),7.6(s,1H),7.4-6.7(m,6H),6.7(s,1H),6.24(s,1H),3.19-3.14(m,4H),1.75(m,2H)。MS:m/z 415.2[M+1]。
实施例12
反应1
Figure PCTCN2018084923-appb-000049
将化合物1(384mg,1mmol,制备方法详见3047的实施例中的制备方法)和化合物1a(100mg,1.1mmol)的四氢呋喃(10mL)溶液室温下搅拌48h,反应液直接制备得到目标产物2(89mg,收率20%)。
反应2
Figure PCTCN2018084923-appb-000050
将化合物(89mg,0.2mmol)溶解到THF(10mL)中,再用1N NaOH溶液调至pH=12, 继续搅拌20min,LCMS监测反应,反应完毕后用0.5N HCl将反应液调至中性,反应液浓缩后pre-HPLC制备得到目标产物(13mg,收率15%)。目标化合物的 1H-NMR(400MHz,DMSO-d6):δ(ppm):11.47(s,0.6H),8.92(s,1H),7.50-7.09(m,5H),6.70(s,1H),6.28(s,1H),2.72-2.50(m,4H),2.50(m,3H)。MS:m/z 416.2[M+1]。
实施例13
反应1
Figure PCTCN2018084923-appb-000051
将化合物1(102mg,0.016mmol,合成方法见XSD3-047Final Report)溶解在THF(10mL)中,然后室温下加入1N NaOH溶液(0.1mL),室温搅拌0.2h,LCMS监测反应,反应完毕后用0.5N HCl溶液调pH至中性,制备的到目标化合物52mg。目标化合物的 1H-NMR(400MHz,DMSO-d6):δ(ppm):11.45(s,1H),8.89(s,1H),8.24(m,1H),7.76-7.77(m,2H),7.14-7.20(m,2H),7.18(s,1H),6.31(s,1H),3.33-3.67(m,4H),1.44-1.48(m,18H)。MS:m/z 601.2[M+1]。
实施例14
Figure PCTCN2018084923-appb-000052
将化合物1(52mg,0.1mmol,合成方法参见XSD3-048Final Report)溶解在THF(10mL),然后室温下加入TFA(0.5mL),室温搅拌12h,LCMS检测反应,pre-HPLC得到目标化合物15mg。目标化合物的 1H-NMR(400MHz,DMSO-d6):δ(ppm):11.44(s,1H), 10.85(s,1H),8.91(s,1H),8.49(s,1H),7.18-7.09(m,3H),6.78-6.75(m,1H),6.28-6.25(m,1H),3.33-3.19(m,4H),1.85-1.78(m,2H),1.5(s,3H)。LC-MS表征结果:m/z 515[M+1]。
实施例15
反应1
Figure PCTCN2018084923-appb-000053
将化合物1(100mg,0.23mmol)溶解在丙酮(10mL),然后室温下加入碳酸钾(0.276g,2.0mmol),室温搅拌0.5h,滴加苯磺酰氯,室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩粗产品直接用于下一步。
反应2
Figure PCTCN2018084923-appb-000054
将化合物2(120mg,0.5mmol)溶于四氢呋喃/水,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物20mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.45(s,1H),8.90(s,1H),7.75-7.77(m,2H),7.46-7.52(m,3H),7.12-7.20(m,1H),7.10-7.11(m,1H),6.75-6.78(m,2H),6.19(s,1H),4.25(m,2H),3.11-3.19(m,4H),1.67-1.70(m,2H)。
HPLC purity:@214nm 99.2%,@254nm 99.3%。
LC-MS:m/z 555[M+1]。
实施例16
反应1
Figure PCTCN2018084923-appb-000055
将化合物1(106mg,0.25mmol)溶解在丙酮(10mL),加入碳酸钾(138mg,1mmol)滴加化合物1a(49mg,0.25mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000056
将化合物2(100mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物12mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.45(s,1H),8.90(s,1H),7.10-7.21(m,2H),6.76-7.17(m,4H),6.28(m,1H),3.33-3.40(m,4H),2.76(m,2H),0.98-1.86(m,11H)。HPLC purity:@214nm93.7%,@254nm 97.6%。
LC-MS:m/z 563[M+1]。
实施例17
反应1
Figure PCTCN2018084923-appb-000057
将化合物1(110mg,0.25mmol)溶解在丙酮(10mL),加入碳酸钾(138mg,1mmol)滴加化合物1a(47.5mg,0.25mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000058
将化合物2(100mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物15mg。
1H-NMR(400MHz,CDCl3):δ(ppm):9.96(s,1H),7.77-7.79(m,2H),6.18-7.32(m,9H),3.31-3.42(m,4H),2.40(s,3H),1.76(m,2H)。
HPLC purity:@214nm98.6%,@254nm 98.9%。
LC-MS:m/z 571[M+1]。
实施例18
反应1
Figure PCTCN2018084923-appb-000059
将化合物1(96mg,10mmol)与化合物1a(48mg,0.25mmol)溶解在乙腈(10mL),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000060
将化合物2(100mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物15mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.76(s,1H),11.45(s,1H),8.68-9.04(m,3H),7.09-7.20(m,2H),6.73-6.77(m,1H),6.33-6.36(m,1H),3.53-3.54(m,2H),3.44-3.46(m,2H),1.18(m,1H),
1.00-1.02(m,2H),0.90-0.92(m,2H)。
HPLC purity:@214nm 98.8%,@254nm 99.8%。
LC-MS:m/z 471[M+1]。
实施例19
反应1
Figure PCTCN2018084923-appb-000061
将化合物1(96mg,0.25mmol)与化合物1a(48mg,0.25mmol)溶解在乙腈(10mL),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000062
将化合物2(100mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物12mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.48(s,1H),11.28(s,1H),8.75-8.92(m,3H),7.09-7.20(m,2H),6.73-6.77(m,1H),6.35-6.38(m,1H),3.53-3.54(m,2H),3.44-3.46(m,2H),3.24-3.28(m,2H),2.13-2.20(m,3H),1.77-1.98(m,2H)。
HPLC purity:@214nm 97.9%,@254nm 98.6%。
LC-MS:m/z 485[M+1]。
实施例20
反应1
Figure PCTCN2018084923-appb-000063
将化合物1(500mg,5.5mmol)溶于3mL二氯甲烷,依次加入O-(7-氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(128mg,0.336mmol),环己基甲酸(800mg,6.25mmol)及二异丙基乙基胺(1.16g,896mmol),氮气保护下室温反应过夜,加水淬灭,乙酸乙酯(50mL x5)萃取,合并萃取液用饱和食盐水洗涤,无水硫酸钠干燥,减压旋干得产品40mg,直接用于下一步反应。
反应2
Figure PCTCN2018084923-appb-000064
将化合物2(530mg,2.65mmol)溶于乙腈(5mL),加入2a(850mg,5.3mmol),室温搅拌24h,直接旋干得到产品300mg,直接用于下一步反应。
反应3
Figure PCTCN2018084923-appb-000065
化合物3(300mg,0.99mmol)溶于二氯甲烷(10mL),室温搅拌5min,加入三氟乙酸(5mL),室温反应2h,直接旋干,得到200mg目标产物4,粗品直接用于下一步。
反应4
Figure PCTCN2018084923-appb-000066
将化合物4(200mg,0.99mmol)溶于四氢呋喃,加入化合物4a(250mg,1.0mmol),室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物3mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.90(s,1H),11.55(s,1H),8.67-9.12(m,3H),7.10-7.20(m,2H),6.73-6.77(m,1H),6.37(s,1H),3.33-3.54(m,4H),2.16-2.21(m,1H),1.56-1.81(m,6H),1.15-1.36(m,1H)。
HPLC purity:@214nm 97.7%,@254nm 98.0%。
LC-MS:m/z511[M+1]。
实施例21
反应1:
Figure PCTCN2018084923-appb-000067
将化合物1(35mg,0.2mmol)和化合物2(90mg,0.22mmol)溶于10mL乙腈中90℃下搅拌16h,反应液直接旋干得化合物3,粗产物直接用于下步(100mg)。
反应2:
Figure PCTCN2018084923-appb-000068
将化合物3(100mg,0.1mmol)溶于1.5N的NaOH(2mL)四氢呋喃(5mL)溶液中,室温搅拌0.5小时,pre-HPLC制备得到目标化合物(30mg,收率:30%)。
HNMR(DMSO,400M):11.40(s,1H),11.33(s,1H),9.09(s,1H),8.93(s,1H), 8.,7(s,1H),7.09-7.20(m,2H),6.73-6.77(m,1H),6.36(s,1H)3.45-3.55(m,4H),2.31-2.33(m,2H),0.95-0.99(m,1H),0.47-0.51(m,2H),0.16-0.20(m,2H)。
HPLC purity:@214nm 98.8%,@254nm 98.9%。
LC-MS:m/z 483.1[M+1]。
实施例22
反应1:
Figure PCTCN2018084923-appb-000069
将化合物1(44mg,0.2mmol)和化合物2(90mg,0.22mmol)溶于10mL乙腈中90℃下搅拌16h,反应液直接旋干得化合物3,粗产物直接用于下步(100mg)。
反应2:
Figure PCTCN2018084923-appb-000070
将化合物3(100mg,0.1mmol)溶于1N的NaOH(4mL)四氢呋喃(5mL)溶液中,室温搅拌1小时,pre-HPLC制备得到目标化合物(35mg,收率:35%)。
HNMR(DMSO,400M):11.40(s,1H),11.33(s,1H),9.18(s,1H),9.02(s,1H),8.78(s,1H,7.10-7.17(m,2H),6.73-6.76(m,1H),6.35-6.38(m,1H)3.46-3.65(m,4H),2.26-2.38(m,2H),1.47-1.69(m,5H),0.80-1.22(m,6H),
HPLC purity:@214nm 96.5%,@254nm 96.5%。
LC-MS:m/z527.2[M+1]。
实施例23
反应1:
Figure PCTCN2018084923-appb-000071
将化合物1(35mg,0.26mmol)和化合物2(90mg,0.22mmol)溶于10mL乙腈中90℃下搅拌20h,反应液直接旋干得化合物4,粗产物直接用于下步(110mg)。
反应2:
Figure PCTCN2018084923-appb-000072
将化合物3(100mg,0.2mmol)溶于1N的NaOH(1.5mL)四氢呋喃(5mL)溶液中,室温搅拌0.5小时,pre-HPLC制备得到目标化合物(15mg收率:15%)。
HNMR(DMSO,400M):12.50(s,1H),11.50(br,1H),9.19(s,1H),8.65-8.91(m,2H)7.12-7.21(m,2H),6.73-6.77(m,1H),6.36(s,1H)3.24-3.36(m,4H),1.77-1.84(m,3H),0.90-1.02(m,4H)。
HPLC purity:@214nm 98.6%,@254nm 98.3%。
LC-MS:m/z481.1[M+1]。
实施例24
反应1:
Figure PCTCN2018084923-appb-000073
将化合物1(42mg,0.2mmol)和化合物2(90mg,0.22mmol)溶于10mL乙腈中90℃下搅拌20h,反应液直接旋干得化合物4,粗产物直接用于下步(120mg)。
反应2:
Figure PCTCN2018084923-appb-000074
将化合物3(110mg,0.2mmol)溶于1N的NaOH(5mL)四氢呋喃(5mL)溶液中,室温搅拌1小时,pre-HPLC制备得到目标化合物(35mg收率:35%)。
HNMR(DMSO,400M):11.44(s,1H),11.35(s,1H),9.06(s,1H),8.92(s,1H),8.64(s,3H),7.16-7.21(t,1H),7.09-7.11(q,1H),6.74-6.78(m,1H),6.26-6.29(m,1H),3.23-3.34(m,4H),2.49-2.50(m,1H),1.61-1.81(m,7H),1.17-1.32(m,5H)。
HPLC purity:@214nm 99.4%,@254nm 99.8%。
LC-MS:m/z527.2[M+1]。
实施例25
反应1
Figure PCTCN2018084923-appb-000075
平行两锅将化合物1(500mg,8.77mmol)溶解在DCM中,加入1a(3.3g,21.93mmol)、HATU(4.01g,5.52mmol)、DIEA(3.71g,56.5mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,柱层析可得产品128mg。
反应2
Figure PCTCN2018084923-appb-000076
将化合物2(128mg,0.743mmol)溶解在ACN中,加入2a(300mg,0.752mmol),90℃搅拌过夜,乙酸乙酯萃取,无水硫酸钠干燥,浓缩可得粗品300mg。
反应3
Figure PCTCN2018084923-appb-000077
将化合物3(300mg)溶于THF/H 2O,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,LCMS检测完全水解后,滴加1MHCl中和到中性后EA萃取液浓缩后pre-HPLC(酸法)制备得到目标产物25mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.341(s,2H),8.649-8.923(m,4H),6.274-7.188(m,4H),3.255-3.324(m,4H),1.694-2.067(m,9H)。
HPLC purity:@214nm99.05%,@254nm 98.1%。
LC-MS:m/z497[M+1]。
实施例26
反应1:
Figure PCTCN2018084923-appb-000078
将化合物1(1.0g,10mmol)和化合物2(2.7mg,30mmol)溶于20mL DMF中室温下搅拌加入HATU(3.8g,10mmol),DIEA(6.5g,50mmol)后搅拌10h,反应液加入水60mL中,用乙酸乙酯萃取旋干过柱得化合物3(0.4g,收率:24%)。
反应2:
Figure PCTCN2018084923-appb-000079
将化合物3(35mg,0.2mmol)和化合物4(90mg,0.22mmol)溶于10mL乙腈中90℃下搅拌20h,反应液直接旋干得化合物5,粗产物直接用于下步(120mg)。
反应3:
Figure PCTCN2018084923-appb-000080
将化合物3(110mg,0.2mmol)溶于1N的NaOH(4mL)四氢呋喃(5mL)溶液中,室温搅拌1小时,pre-HPLC制备得到目标化合物(15mg,收率:15%)。
HNMR(DMSO,400M):11.43(s,1H),11.27(s,1H),9.06(s,1H),8.92(s,1H),8.64(s,3H),7.16-7.21(t,1H),7.09-7.11(q,1H),6.74-6.78(m,1H),6.26-6.29(m,1H),3.23-3.35(m,4H),2.32-2.34(m,2H),1.80-1.84(m,2H),0.95-1.01(m,1H),0.49-0.51(m,5H),0.18-0.19(m,2H)。
HPLC purity:@214nm 96.5%,@254nm 97.9%。
LC-MS:m/z497.2[M+1]。
实施例27
反应1:
Figure PCTCN2018084923-appb-000081
将化合物1(45mg,0.2mmol)和化合物2(90mg,0.22mmol)溶于10mL乙腈中90Q下搅拌20h,反应液直接旋干得化合物4,粗产物直接用于下步(120mg crude,y>99%)。
反应2:
Figure PCTCN2018084923-appb-000082
将化合物3(110mg,0.2mmol)溶于1N的NaOH(4mL)四氢呋喃(5mL)溶液中,室温搅拌1小时,pre-HPLC制备得到目标化合物(55mg y=50%)。
HNMR(DMSO,400M):11.53(s,1H),11.44(s,1H),9.13(s,1H),8.92(s,1H),8.67(s,1H),7.16-7.21(t,1H),7.09-7.11(q,1H),6.74-6.78(m,1H),6.26-6.29(m,1H),3.23-3.34(m,4H),2.27-2.28(m,2H),1.66-1.84(m,8H),0.91-1.17(m,5H)。
LC-MS:m/z 583.2[M+1]。
实施例28
反应1
Figure PCTCN2018084923-appb-000083
将化合物1(106mg,0.25mmol)溶解在丙酮(10mL),加入碳酸钾(138mg,1mmol)滴加化合物1a(43.5mg,0.25mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000084
将化合物2(100mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物9mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.48(s,1H),11.44(s,1H),8.92-8.95(m,3H),7.27-7.34(m,5H),7.09-7.17(m,2H),6.74-6.76(m,1H),6.32-6.35(m,1H),3.75-3.77(m,2H),3.50-3.56(m,2H),3.44-3.46(m,2H)。
HPLC purity:@214nm 97.9%,@254nm 99.2%。
LC-MS:m/z 521[M+1]。
实施例29
反应1
Figure PCTCN2018084923-appb-000085
将化合物1(110mg,0.25mmol)溶解在丙酮(10mL),加入碳酸钾(138mg,1mmol)滴加化合物1a(43.5mg,0.25mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000086
将化合物2(100mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物9mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.64(s,1H),11.42(s,1H),9.03-9.07(m,3H),7.27-7.34(m,5H),7.09-7.17(m,2H),6.74-6.76(m,1H),6.32-6.35(m,1H),3.75-3.77(m,2H),3.14-3.34(m,4H),1.80-1.84(m,2H)。
HPLC purity:@214nm 96.0%,@254nm 96.0%。
LC-MS:m/z 535[M+1]。
实施例30
反应1
Figure PCTCN2018084923-appb-000087
将化合物1(330mg,0.75mmol)溶解在丙酮(30mL),加入碳酸钾(414mg,3mmol)滴加化合物1a(130.5mg,0.75mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品300mg。
反应2
Figure PCTCN2018084923-appb-000088
将化合物2(300mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物59mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.64(s,1H),11.42(s,1H),9.03-9.07(m,4H),7.32-7.35(m,2H),7.15-7.32(m,3H),7.08-7.11(m,1H)6.74-6.77(m,1H),6.25-6.28(m,1H),3.75-3.77(m,2H),3.14-3.34(m,4H),1.80-1.84(m,2H)。
HPLC purity:@214nm 99.90%,@254nm 99.70%。
LC-MS:m/z569[M+1]。
实施例31
反应1
Figure PCTCN2018084923-appb-000089
将化合物1(330mg,0.75mmol)溶解在丙酮(30mL),加入碳酸钾(414mg,3mmol)滴加化合物1a(130.5mg,0.75mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品300mg。
反应2
Figure PCTCN2018084923-appb-000090
将化合物2(300mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物35mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.64(s,1H),11.42(s,1H),9.03-9.07(m,4H),7.32-7.35(m,2H),7.15-7.32(m,3H),7.08-7.11(m,1H)6.74-6.77(m,1H),6.25-6.28(m,1H),3.75-3.77(m,2H),3.14-3.34(m,4H),1.80-1.84(m,2H)。
HPLC purity:@214nm 99.40%,@254nm 99.25%。
LC-MS:m/z553[M+1]。
实施例32
反应1
Figure PCTCN2018084923-appb-000091
将化合物1(330mg,0.75mmol)溶解在四氢呋喃(10mL),加入碳酸钾(414mg,3mmol),室温搅拌20min,滴加化合物1a(184mg,1mmol)的四氢呋喃溶液(1mL),室温搅拌2h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品500mg。
反应2
Figure PCTCN2018084923-appb-000092
将化合物2(500mg)溶于四氢呋喃(20mL),室温搅拌5min,滴加1N的氢氧化钠(5mL),室温搅拌30min,反应液加入水和乙酸乙酯萃取,无水硫酸钠干燥,浓缩后粗品用乙腈溶解,pre-HPLC制备得到目标产物29mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.91(s,1H),11.43(s,1H),9.04(s,1H),8.90(s,1H),8.70(s,2H),7.25-7.23(m,2H),7.20-7.16(m,1H),7.11-7.09(m,1H),6.91-6.88(m,2H),6.78-6.75(m,1H),6.25(m,1H),3.73(s,3H),3.68(s,2H),3.28-3.23(m,4H),1.83-1.80(m,2H)。
HPLC purity:@214nm 99.2%,@254nm 99.7%。
LC-MS:m/z563.2[M+1]。
实施例33
反应1
Figure PCTCN2018084923-appb-000093
将化合物1(150mg,0.47mmol)溶解在DCM中,加入Et 3N,室温搅拌1h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩可得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000094
将化合物2(100mg,1.08mmol)溶解在ACN中,加入2a(120mg,1.06mmol),90℃搅拌过夜,乙酸乙酯萃取,无水硫酸钠干燥,浓缩可得粗品100mg。
反应3
Figure PCTCN2018084923-appb-000095
将化合物3(100mg)溶于THF/H 2O,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物8mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.579(s,1H),11.480(s,1H),8.718-8.917(m,3H),6.286-7.187(m,4H),3.255-3.324(m,4H),2.499-2.507(m,1H),1.570-1.843(m,8H)。
HPLC purity:@214nm97.3%,@254nm 98.1%。
LC-MS:m/z497[M+1]。
实施例34
反应1
Figure PCTCN2018084923-appb-000096
将化合物1(500mg,8.77mmol)溶解在DCM中,加入1a(3.3g,21.93mmol)、HATU(4.01g,5.52mmol)、DIEA(3.71g,56.5mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,柱层析可得产品120mg。
反应2
Figure PCTCN2018084923-appb-000097
将化合物2(120mg,1.08mmol)溶解在ACN中,加入2a(100mg,1.06mmol),90℃搅拌过夜,乙酸乙酯萃取,无水硫酸钠干燥,浓缩可得粗品100mg。
反应3
Figure PCTCN2018084923-appb-000098
将化合物3(100mg)溶于THF/H 2O,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物12mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):12.041(s,1H),8.649-8.923(m,3H),6.274-7.188(m,4H),3.255-3.324(m,4H),2.509-2.683(m,2H),1.594-2.067(m,6H)。
HPLC purity:@214nm95.9%,@254nm 95.4%。
LC-MS:m/z497[M+1]。
实施例35
反应1
Figure PCTCN2018084923-appb-000099
将化合物1(1g,8.77mmol)溶解在DCM中,加入1a(6.3g,21.93mmol)、HATU(4.01g,10.52mmol)、DIEA(5.71g,56.5mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,柱层析可得产品200mg。
反应2
Figure PCTCN2018084923-appb-000100
将化合物2(200mg,1.08mmol)溶解在ACN中,加入2a(420mg,1.06mmol),90℃搅拌过夜,乙酸乙酯萃取,无水硫酸钠干燥,浓缩可得粗品100mg。
反应3
Figure PCTCN2018084923-appb-000101
将化合物3(100mg)溶于THF/H 2O,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物12mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.579(s,1H),11.480(s,1H),8.718-8.917(m,3H),6.286-7.187(m,4H),3.255-3.324(m,4H),2.499-2.507(m,1H),1.570-1.843(m,10H)。
HPLC purity:@214nm91.2%,@254nm 96.8%。
LC-MS:m/z511[M+1]。
实施例36
反应1
Figure PCTCN2018084923-appb-000102
将化合物1(500mg,8.77mmol)溶解在DCM中,加入1a(3.3g,21.93mmol)、HATU(4.01g,10.52mmol)、DIEA(5.71g,56.5mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,柱层析可得产品120mg。
反应2
Figure PCTCN2018084923-appb-000103
将化合物2(120mg,1.08mmol)溶解在ACN中,加入2a(100mg,1.06mmol),90℃搅拌过夜,乙酸乙酯萃取,无水硫酸钠干燥,浓缩可得粗品100mg。
反应3
Figure PCTCN2018084923-appb-000104
将化合物3(100mg)溶于THF/H 2O,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物12mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.441(s,2H),8.649-8.923(m,3H),6.274-7.188(m,4H),3.255-3.324(m,4H),1.694-2.067(m,11H)。
HPLC purity:@214nm99.1%,@254nm 99.3%。
LC-MS:m/z511[M+1]。
实施例37
反应1
Figure PCTCN2018084923-appb-000105
将化合物1(110mg,0.25mmol)溶解在丙酮(10mL),加入碳酸钾(138mg,1mmol)滴加化合物1a(113mg,1mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000106
将化合物2和2a(100mg)溶于甲醇,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物XSD3-087(15mg)、XSD3-087-01(17mg)。
XSD3-087  1H-NMR(400MHz,DMSO):δ(ppm):11.41(s,1H),8.90(m,1H),6.18-7.32(s,1H),7.10-7.21(m,2H),7.10-7.12(m,2H),6.76-6.79(m,1H),6.23(m,1H),3.12-3.23(m,4H),6.76-6.79(m,1H),2.67(s,3H),1.72-1.75(m,2H)。
HPLC purity:@214nm93.5%,@254nm 94.6%。
LC-MS:m/z492[M+1]。
XSD3-087-01  1H-NMR(400MHz,DMSO):δ(ppm):11.43(s,1H),8.90(m,1H),8.01(m,2H),7.10-7.20(s,2H),6.85(m,1H),6.23(m,1H),3.72-3.76(m,2H),3.40(s,3H),3.24-3.26(m,2H),2.93(s,3H),1.87-1.91(m,2H)。
HPLC purity:@214nm98%,@254nm 98.6%。
LC-MS:m/z570[M+3]。
实施例38
反应1
Figure PCTCN2018084923-appb-000107
将化合物1(100mg,0.21mmol)溶解在丙酮(10mL),加入碳酸钾(78mg,0.55mmol)滴加化合物1a(41mg,0.23mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品100mg。
反应2
Figure PCTCN2018084923-appb-000108
将化合物2(100mg)溶于THF/H 2O,室温搅拌10min,滴加1N的氢氧化钠(1mL),室温搅拌10min,反应液浓缩后pre-HPLC制备得到目标产物5mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.421(s,1H),8.897(s,1H),7.153-7.197(m,2H),7.105-7.120(m,1H),6.746-7.098(m,1H),6.220(s,1H),4.078(s,2H),3.104-3.129(m,4H),2.735-2.761(m,2H),1.535-1.853(m,7H),0.976-1.202(m,6H)。
HPLC purity:@214nm99.8%,@254nm 99.3%。
LC-MS:m/z575[M+1]。
实施例39
反应1
Figure PCTCN2018084923-appb-000109
将化合物1(1.0g,3.6mmol)溶解在丙酮(16mL),加入碳酸钾(993mg,7.2mmol) 滴加化合物1a(254mg,2.7mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品300mg。
反应2
Figure PCTCN2018084923-appb-000110
将化合物2a(100mg)溶于乙腈,加入化合物2(40mg,0.27mmol),90℃搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品80mg。
反应3
Figure PCTCN2018084923-appb-000111
将化合物3(80mg)溶于DMF,室温搅拌10min,加入碳酸钾(132mg,0.96mmol),室温搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品60mg,pre-HPLC制备得到目标产物14.2mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.53(s,1H),8.91(s,1H),8.58-8.27(m,3H),7.38-7.12(m,2H),6.78(s,1H),6.28(s,1H),3.65(s,3H),3.28-3.24(m,4H),1.79(s,2H)。
HPLC purity:@214nm 94.5%,@254nm 95.4%。
LC-MS:m/z 473[M+1]。
实施例40
反应1
Figure PCTCN2018084923-appb-000112
将化合物1(1.0g,3.6mmol)溶解在丙酮(16mL),加入碳酸钾(993mg,7.2mmol) 滴加化合物1a(294mg,2.7mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品400mg。
反应2
Figure PCTCN2018084923-appb-000113
将化合物2a(100mg)溶于乙腈,加入化合物2(42mg,0.27mmol),90℃搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品66mg。
反应3
Figure PCTCN2018084923-appb-000114
将化合物3(66mg)溶于DMF,室温搅拌10min,加入碳酸钾(108mg,0.78mmol),室温搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品50mg,pre-HPLC制备得到目标产物26.5mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.47(s,1H),11.24(s,1H),8.92(s,1H),8.62(s,2H),7.21-7.09(m,2H),6.79-6.75(m,1H),6.29-6.25(m,1H),4.25-4.20(m,2H),3.32-3.24(m,4H),1.85-1.80(m,2H),1.28-1.24(m,3H)。
HPLC purity:@214nm 97.8%,@254nm 98.6%。
LC-MS:m/z 487[M+1]。
实施例41
反应1
Figure PCTCN2018084923-appb-000115
将化合物1(1.0g,3.6mmol)溶解在丙酮(16mL),加入碳酸钾(993mg,7.2mmol)滴加化合物1a(732mg,6.0mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品360mg。
反应2
Figure PCTCN2018084923-appb-000116
将化合物2a(100mg)溶于乙腈,加入化合物2(45mg,0.27mmol),90℃搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品51mg。
反应3
Figure PCTCN2018084923-appb-000117
将化合物3(51mg)溶于DMF,室温搅拌10min,加入碳酸钾(108mg,0.78mmol),室温搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品50mg,pre-HPLC制备得到目标产物10.6mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.48(s,1H),11.18(s,1H),8.92(s,1H),8.60(s,2H),7.21-7.09(m,2H),6.79-6.75(m,1H),6.30-6.25(m,1H),4.98-4.91(m,1H),3.32-3.24(m,4H),1.83-1.78(m,2H),1.28-1.27(m,6H)。
HPLC purity:@214nm 95.2%,@254nm 98.0%。
LC-MS:m/z 501[M+1]。
实施例42
反应1
Figure PCTCN2018084923-appb-000118
将化合物1(1.0g,3.6mmol)溶解在丙酮(16mL),加入碳酸钾(993mg,7.2mmol)滴加化合物1a(540mg,3.6mmol),室温搅拌过夜,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品330mg。
反应2
Figure PCTCN2018084923-appb-000119
将化合物2a(100mg)溶于乙腈,加入化合物2(50mg,0.27mmol),90℃搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品90mg。
反应3
将化合物3(90mg)溶于DMF,室温搅拌10min,加入碳酸钾(132mg,0.96mmol),室温搅拌12h,加水淬灭,乙酸乙酯萃取,无水硫酸钠干燥,浓缩得粗品70mg,pre-HPLC制备得到目标产物32.5mg。
1H-NMR(400MHz,DMSO-d6):δ(ppm):11.51(s,1H),11.24(s,1H),8.91(s,1H),8.55-8.27(m,3H),7.21-7.09(m,2H),6.79-6.75(m,1H),6.29-6.25(m,1H),4.25-4.20(m,2H),3.32-3.24(m,4H),1.80(s,2H),1.57(s,2H),1.28(s,4H),0.88-0.85(m,3H)。
1H-NMR(400MHz,CDCl3):δ(ppm):7.23-7.20(m,1H),7.10(s,1H),7.04-7.00(m,1H),6.92-6.88(m,1H),5.85(s,1H),4.09-4.06(m,2H),3.58-3.53(m,2H),3.38-3.35(m,2H),1.98-1.97(m,2H),1.70-1.63(m,2H),1.38-1.35(m,4H),0.91-0.88(m,3H)。
HPLC purity:@214nm 98.1%,@254nm 97.8%。
LC-MS:m/z 529[M+1]
参考合成方法一及上述实施例,合成如下化合物
Figure PCTCN2018084923-appb-000121
Figure PCTCN2018084923-appb-000122
实施例55吲哚胺2,3-双加氧酶抑制活性检测和IC 50的测定
含人吲哚胺2,3-双加氧酶基因的质粒的构建、在大肠杆菌中的表达、提取及纯化均按Littlejohn等报道的方法进行(Takikawa O,Kuroiwa T,Yamazaki F,et al.J.Biol.Chem.1988,263,2041-2048)。在96孔板中将50mM磷酸钾缓冲液(pH 6.5),20mM抗坏血酸盐,20μM亚甲基蓝和纯化的人吲哚胺2,3-双加氧酶蛋白混合,向混合物中加入200μML-色氨酸和抑制剂。反应在37℃下进行60分钟,通过添加30%三氯乙酸来停止反应,并于65℃温育15分钟以使N-甲酰基犬尿氨酸水解为犬尿氨酸,于3400g离心5min以去除沉淀的蛋白,上清液转移到新的96孔板内,加入2%(w/v)的对-二甲氨基苯甲醛的乙酸溶液中反应,反应于25℃温育10分钟,并于480nm在分光光度计上读数。没有吲哚胺2,3-双加氧酶抑制剂或没有吲哚胺2,3-双加氧酶的作为对照孔,用以测定每种化合物的IC 50所必须的非线性回归的参数。非线性回归和IC 50值的测定使用GraphPad PRism 4软件进行。IC 50小于10μM的化合物在该检验中被认为是有效抑制剂。本发明实施例化合物在吲哚胺2,3-双加氧酶抑制活性方面具有优异的抑制活性。
表1 各化合物的IC 50
结构式编号 IC 50(nM)
3047 37
3048 20
3049 22
3051 23
3053 16
INCB024360 102
注:INCB024360为吲哚胺2,3-双加氧酶抑制剂,其结构为
Figure PCTCN2018084923-appb-000123
用实施例55中所描述的方法测定如下化合物的IC 50,具体结果如表2所示:
表2 各化合物的IC 50
结构式编号 IC 50(nM)
XSD3-058 57
XSD3-079 95
XSD3-093 44
XSD3-093-1 56
XSD3-093-2 61
XSD3-093-3 76
XSD3-074 63
XSD3-088 72
XSD3-089 67
XSD3-076 102
XSD3-081 89
XSD3-069 345
XSD3-052 343
XSD3-065 117.9
XSD3-066 131.5
XSD3-067 142
XSD3-068 539
XSD3-070 345
XSD3-072 502
XSD3-078 145
XSD3-080 87
XSD3-082 101
XSD3-084 160
XSD3-092 399
实施例56吲哚胺2,3-双加氧酶抑制剂的体内抗肿瘤活性测试
1.动物分组及试验方法
取对数生长期的LLC细胞,台盼蓝染色法检测细胞活力,调节活细胞浓度为1×10 7个/ml,按0.2ml/只,皮下注射到同源C57BL6小鼠体内。一旦肿瘤建立,将小鼠按瘤重和体重随机分成模型组、环磷酰胺(CTX)组、化合物INCB024360组、化合物组3047组,每组10只,CTX组按150mg·kg -1腹腔注射给药,化合物INCB024360组、化合物3047组灌胃给药,模型组同一时间给予同体积的生理盐水,各组给药频次均为每天一次。给药21天后结束试验。
末次给药24h后称重处死动物,取瘤称重,计算平均抑瘤率(inhibition rate,I),公式如下:I=(1-给药组平均瘤重/模型组平均瘤重)×100%
2.数据统计及处理方法
实验数据采用spss16.0,单因素方差one way ANOVA分析,p<0.05为差异有统计学意义。
3.试验结果及讨论
表3 化合物对小鼠体内LLC肿瘤的抑制结果
Figure PCTCN2018084923-appb-000124
与模型组相比, ##P<0.01;
与CTX组及INCB024360组相比, P<0.05;
从表3可以看出,各给药组瘤重与模型组相比均具有显著性差异(P<0.01);化合物3047组与环磷酰胺组及INCB024360组相比具有显著性差异(P<0.05)。此结果表明本发明中的化合物对肿瘤的治疗效果明显优于现有化疗药环磷酰胺及化合物INCB024360对肿瘤的治疗效果。
表4 化合物对小鼠体重的影响
Figure PCTCN2018084923-appb-000125
Figure PCTCN2018084923-appb-000126
与环磷酰胺组比较, ##p<0.01
从表4可看出,化合物3047组与模型组相比小鼠体重无明显差别,与CTX组比较有显著性差别,此结果说明本发明中的化合物在控制肿瘤生长的同时可增加小鼠的体重,减少了药物副作用,显著提高小鼠的生存质量。临床上可提高患者的生存质量并大大提高患者的用药依从性及药物的有效性。
此外,我们还用小鼠结肠癌Colon26、小鼠肝癌Hepa1-6、小鼠乳腺癌4T1等细胞株进行了试验,结果显示本发明中的化合物对这些肿瘤均具有显著的抑制作用。
用实施例56中的方法测定下列化合物的体内抗肿瘤活性,具体结果如下表所示:
表5 化合物对小鼠体内LLC肿瘤的抑制结果
Figure PCTCN2018084923-appb-000127
与模型组相比, ##P<0.01。
从表5可以看出,各给药组瘤重与模型组相比均具有显著性差异(P<0.01)此结果表明本发明中的化合物对肿瘤具有明显的治疗效果。
考察各化合物对小鼠体重的影响发现:化合物XSD3-058组及化合物XSD3-079组与模型组相比小鼠体重无明显差别此结果说明本发明中的化合物在控制肿瘤生长的同时可增加小鼠的体重,减少了药物副作用,显著提高小鼠的生存质量。临床上可提高患者的生存质量并大大提高患者的用药依从性及药物的有效性。
实施例57Morris水迷宫检测阿尔茨海默小鼠的行为学变化
1.动物分组及试验方法
本发明选用9月龄小鼠根据Richardson等在大鼠双侧海马CA3区单次注射聚集态Aβ1-42的方法制作AD模型,将其随即分为模型组,化合物INCB024360组,化合物3047组,每组10只,雌雄各半。利用Morris水迷宫进行小鼠行为学分析(荷兰Noldus公司Ethovision XT监测分析软件,Morris水迷宫***)。水迷宫试验过程分为连续5d的隐藏平台获得试验和第6天的空间探索试验两部分,每次试验前按试验分组和设计剂量给药。每天训练4次,每次使小鼠在不同区域下水,水迷宫按东南西北分为1、2、3、4区域,平台即第5区域,位于第4区域内。每次游泳时间60s,每次训练间隔1h左右,小鼠没有找到平台按60s计算潜伏期。隐藏平台获得试验检测小鼠学习获得能力;空间探索试验检测小鼠空间记忆能力。
2.数据统计及处理方法
利用SPSS16.0软件统计分析,隐藏平台获得试验中的逃避潜伏期采用多重测量的方差分析学***设为双侧P=0.05。
3.试验结果及讨论
表6 各组动物隐藏平台试验中搜索平台潜伏期(s)
Figure PCTCN2018084923-appb-000128
与模型组比较, #P<0.05, ##P<0.01,
与INCB024360组比较, P<0.05, ※※P<0.01。
表7各组动物平台区域停留时间及次数
Figure PCTCN2018084923-appb-000129
与模型组比较, #P<0.05, ##P<0.01,
与INCB024360组比较, P<0.05。
从表6和表7可以看出,化合物3047可显著改善动物学习记忆损害,显著提高学习获得能力和空间记忆能力,并且效果优于化合物INCB024360,此结果表明,本发明中的化合物在对阿尔茨海默综合症的治疗方面具有巨大的开发价值。
用实施例57中的方法测定下列化合物对阿尔茨海默小鼠的行为学的影响,具体结果如下表所示:
表8 各组动物隐藏平台试验中搜索平台潜伏期(s)
Figure PCTCN2018084923-appb-000130
与模型组比较, #P<0.05, ##P<0.01。
表9 各组动物平台区域停留时间及次数
Figure PCTCN2018084923-appb-000131
与模型组比较, ##P<0.01。
从表8和表9可以看出,本发明各化合物可显著改善动物学习记忆损害,显著提高学习获得能力和空间记忆能力,此结果表明,本发明中的化合物在对阿尔茨海默综合症的治疗方面具有巨大的开发价值。
实施例58药物处理后DC刺激的T细胞增殖反应
树突状细胞(Dendritic cell,DC)是功能最强的抗原递呈细胞(APC),能有效地激活初始T细胞(naive T cell)进行增殖,是DC与其他APC最主要的区别。DC是免疫应答的启动者,由于其在CD4 +,CD8 +T细胞免疫应答反应中所起的关键作用,DC已成为当今免疫学研究热点之一,目前主要集中研究DC在肿瘤疾病、自身免疫性疾病、移植排斥反应以及抗感染中的防治作用。
1.人外周血树突状细胞的分离培养
取人外周血白细胞层,用0.01mol/L PBS等倍稀释。用淋巴细胞分层液常规分离PBMC,以完全RPMI1640培养液调整细胞浓度至3×10 6ml -1,加入6孔板中,3mlP孔,5%CO2,37℃培养箱中培养2小时,以PBS洗去非粘附细胞,共3次,加入含IL-4(100U/ml)、GM-CSF(150ng/ml)和TNF-α(500U/ml)的培养液常规培养,隔日半量换液,培养8天后供鉴定和实验用。
2.T细胞的制备
用步骤1中的方法分离人PBMC层,贴壁法除巨噬细胞,用尼龙毛柱法除去B细胞,获得的T细胞调整细胞浓度至1×10 6个/ml。
3.DC的制备
将纯度为99%的成熟DC离心,加入RPMI1640调整细胞浓度为1×10 5,4×10 4,2×10 4个/ml,加入96孔板中,每个浓度设置两孔,100μl/孔。分别加入化合物INCB024360和化合物 3047,共同培养2天。
4.T细胞增殖实验(MLR)
在上述各加药组DC中加入T细胞,100μl/孔。5%CO2,37℃培养箱中培养72小时,培养结束前6小时每孔轻轻吸出100μl培养液,加入MTT(5mg/ml)10μl,放入培养箱中继续培养6小时后,加入0.01mol/L HCl-10%SDS 100μl,放37℃过夜,用酶标仪测A570nm值示T细胞增殖水平。
5.实验结果及分析
表10化合物3047对DC刺激T细胞增殖作用的影响
Figure PCTCN2018084923-appb-000132
与对照组比较, #P<0.05, ##P<0.01,
与INCB024360组比较, P<0.05。
由表10可以看出,与对照组相比,化合物3047组及INCB024360组T细胞数量明显增加,具有显著性差异( #P<0.05, ##P<0.01),且化合物3047组与化合物INCB024360组相比对T细胞的增殖效果更加明显,具有显著性差异( P<0.05)。这表明本发明中的化合物具有显著的促进DC刺激T细胞增殖的作用,且效果明显优于化合物INCB024360,进而可用于肿瘤疾病、自身免疫性疾病、移植排斥反应以及感染性疾病的治疗。
用实施例58中的方法测定用下列化合物处理后DC刺激的T细胞增殖反应,具体结果如下表所示:
表11各化合物对DC刺激T细胞增殖作用的影响
Figure PCTCN2018084923-appb-000133
与对照组比较, ##P<0.01。
由表11可以看出,与对照组相比,各化合物组T细胞数量均明显增加,具有显著性差异( ##P<0.01),这表明本发明中的化合物具有显著的促进DC刺激T细胞增殖的作用,进而可用于肿瘤疾病、自身免疫性疾病、移植排斥反应以及感染性疾病等IDO相关疾病的治疗。

Claims (30)

  1. 式I 0化合物或其药学上可接受的盐:
    Figure PCTCN2018084923-appb-100001
    其中,R 1、R 2分别独立地选自以下取代基:H,取代或未取代的C1-10烷基,醛基,取代或未取代的羰基,氰基,CF 3,取代或未取代的C1-10烷氧基,取代或未取代的砜基,取代或未取代的C3-10环烷基,取代或未取代的C2-10烯基,取代或未取代的C6-20芳基,取代或未取代的C3-14杂芳基;
    R 3、R 4分别独立地选自以下单取代基:H,取代或未取代的C1-10烷基,取代或未取代的C3-10环烷基,氰基,取代或未取代的C1-10烷氧基,取代或未取代的砜基,取代或未取代的C6-20芳基,取代或未取代的C3-14杂芳基;
    或R 3、R 4分别独立地选双取代基,从而与a或b位C原子形成以下基团:C=O,C=NH或
    Figure PCTCN2018084923-appb-100002
    其中的C即a或b位C原子,m选自0-6的整数;
    n取0-6的整数。
  2. 如权利要求1所述化合物或其药学上可接受的盐,其特征在于,R 1、R 2分别独立地选自以下取代基:被一个或多个卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C1-6烷基、C3-12环烷基、C2-6烯基、C3-12环烯基取代的C1-6烷基、羰基、C1-6烷氧基、砜基、脒基或亚砜基;其中,作为C1-6烷基、羰基、C1-6烷氧基、砜基、脒基或亚砜基取代基的羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基被一个或多个H、卤素、C1-6烷基、羰基、C1-6烷氧基或亚砜基或砜基取代;所述的卤素选自F、Cl、Br、I。
  3. 如权利要求1所述化合物或其药学上可接受的盐,其特征在于,R 1、R 2分别独立 地选自以下取代基:H,甲基,乙基,丙基,异丙基,R 5C(O)-,R 5S(O)x-;R 5选自C1-10烷基,C3-12环烷基,被羟基、氰基、C1-6烷基、C3-12环烷基、C1-6烷氧基、芳基或杂芳基取代的C1-10烷基或C3-12环烷基;x选自1或2。
  4. 如权利要求3所述化合物或其药学上可接受的盐,其特征在于,R 1、R 2分别独立地选自以下取代基:H,甲基,乙基,丙基,异丙基,R 5C(O)-,R 5S(O) x-;R 5选自C1-10烷基,C3-12环烷基,被羟基、氰基、C1-6烷基、C3-12环烷基、C1-6烷氧基、芳基或杂芳基取代的C1-6烷基或C3-8环烷基;x是2;R 3、R 4均取H。
  5. 如权利要求1所述化合物或其药学上可接受的盐,其特征在于,在式I 0中的R 2、R 3、R 4分别取H时,则得式I化合物:
    Figure PCTCN2018084923-appb-100003
    其中,R 1选自以下取代基:H,氨基,砜基,硝基,羰基,脒基,C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代的脒基或C1-6烷基或C1-6烷氧基或羰基或砜基或亚砜基;n取0-6的整数。
  6. 如权利要求5所述化合物或其药学上可接受的盐,其特征在于,所述R 1选自H,氨基、C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代的C1-6烷基或C1-6烷氧基或羰基。
  7. 如权利要求5所述化合物或其药学上可接受的盐,其特征在于,所述R 1选自H,NH 2,CN,甲基,乙基,丙基,异丙基,丁基,环丙基,环丁基,环戊基,环己基,甲氧羰基,叔丁氧羰基,笏甲氧羰基,烯丙氧羰基,苄基,5-氮 甲羰基。
  8. 如权利要求5所述化合物或其药学上可接受的盐,其特征在于,所述n选自0或1或2或3或4。
  9. 如权利要求5所述化合物或其药学上可接受的盐,其特征在于,在式I中的R 1取 H时,得结构式II
    Figure PCTCN2018084923-appb-100004
  10. 如权利要求9所述化合物或其药学上可接受的盐,其特征在于,所述n取0,1,2或3。
  11. 如权利要求5所述化合物或其药学上可接受的盐,其特征在于,在式I中的R 1取被R 0取代的羰基,得结构式III:
    Figure PCTCN2018084923-appb-100005
    所述R 0选自H,C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代C1-6烷基或C1-6烷氧基。
  12. 如权利要求11所述化合物或其药学上可接受的盐,其特征在于,所述R 0选自C1-6烷基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、芳基、杂芳基、C3-12环烷基、C2-6烯基、C3-12环烯基取代C1-6烷基或C1-6烷氧基。
  13. 如权利要求1所述化合物或其药学上可接受的盐,其特征在于,在式I 0中的R 1取H时,则得式IV化合物:
    Figure PCTCN2018084923-appb-100006
    所述的R 2选自以下取代基:H,甲基,乙基,丙基,异丙基,R 5C(O)-,R 5S(O) m-;R 5 选自H,C1-10的烷基,C3-12的环烷基,被羟基、氰基、CF 3、C1-6烷基、C3-10环烷基、烷氧基、芳基或杂芳基取代的C1-10的烷基或C3-12的环烷基;m选自1或2;
    R 3、R 4分别独立选自以下取代基:H,C1-10的烷基,C3-12的环烷基,被羟基、氰基、卤素、C1-6烷基、C3-10环烷基、烷氧基、芳基或杂芳基取代的C1-10的烷基或C3-12的环烷基或C1-10烷氧基或砜基或C3-14杂芳基。
  14. 如权利要求13所述化合物或其药学上可接受的盐,其特征在于,所述的R 2选自以下取代基:H,R 5C(O)-,R 5S(O) m-;R 5选自H,C1-10的烷基,C3-12的环烷基,被羟基、氰基、CF 3、C1-6烷基、C3-10环烷基、C1-6烷氧基、芳基或杂芳基取代的C1-10的烷基或C3-12的环烷基;m选自1或2。
  15. 如权利要求1所述化合物或其药学上可接受的盐,其特征在于,所述化合物选自:
    Figure PCTCN2018084923-appb-100007
    Figure PCTCN2018084923-appb-100008
    Figure PCTCN2018084923-appb-100009
    Figure PCTCN2018084923-appb-100010
    Figure PCTCN2018084923-appb-100011
    Figure PCTCN2018084923-appb-100012
  16. 一种下式化合物的合成方法,
    Figure PCTCN2018084923-appb-100013
    其特征在于,步骤如下:
    2与3a反应以得I 0
    Figure PCTCN2018084923-appb-100014
    所述的 R 1、R 2、R 3、R 4以及n的定义如权利要求1中所述。
  17. 如权利要求16所述的合成方法,其特征在于,所述的2是由1与2a在碱性条件下反应而得
    Figure PCTCN2018084923-appb-100015
    所述的碱选自但不限于碱金属的氢氧化物,优选为氢氧化钠、氢氧化钾、氢氧化钡;所述的R 3、R 4以及n的定义如权利要求1中所述。
  18. 如权利要求17所述的合成方法,其特征在于,所述的2a是由1a氧化而得
    Figure PCTCN2018084923-appb-100016
  19. 一种下式化合物的合成方法,
    Figure PCTCN2018084923-appb-100017
    所述的n选自0或1或2或3或4;
    其特征在于,步骤如下:
    1)2与3a'反应得IIa;
    Figure PCTCN2018084923-appb-100018
    2)IIa在酸性条件下脱保护,然后在碱性条件反应得II,
    Figure PCTCN2018084923-appb-100019
  20. 一种下式化合物的合成方法,
    Figure PCTCN2018084923-appb-100020
    其特征在于,步骤如下:
    Figure PCTCN2018084923-appb-100021
    所述的n选自0或1或2或3或4;式IIa在酸性条件下反应得到式II'。
  21. 一种下式化合物的合成方法,
    Figure PCTCN2018084923-appb-100022
    其特征在于,步骤如下:
    1)II与4a反应生成IIIa,
    Figure PCTCN2018084923-appb-100023
    所述R 3选自H,OH,CN,CH 3-mX m,硝基,C1-9烷基,C1-9烷氧基,C3-9环烷氧基,C3-12环烷基,C1-6杂烷基,3-12元杂环烷基,芳基,杂芳基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、砜基、芳基、杂芳基、C3-12环烷基、C3-12环烯基取代C1-6烷基或C1-9烷氧基或芳基或杂芳基或羰基,m为1或2或3;
    2)IIIa在碱性条件下生成III,
    Figure PCTCN2018084923-appb-100024
    其中,上述的所有R 0的定义如权利要求11中所述。
  22. 如权利要求21所述的合成方法,其特征在于,所述R 3选自H,OH,CN,CH 3-mX m,硝基,C1-9烷基,C3-9环烷氧基,C3-12环烷基,C1-6杂烷基,3-12元杂环烷基,芳基,杂芳基,被卤素、羟基、羧基、羰基、醛基、氰基、氨基、砜基、芳基、杂芳基、C3-12环烷基、C3-12环烯基取代C1-6烷基或C1-9烷氧基或芳基或杂芳基,m为1或2或3。
  23. 如权利要求21所述的合成方法,其特征在于,所述R 3选自H,OH,CN,CF 3,CHCl 2,CH 2Cl,硝基,甲基,乙基,丙基,异丙基,丁基,异丁基,仲丁基,叔丁基,戊基,1-甲基丁基,2-甲基丁基,3-甲基丁基,1,1-二甲基丙基,2,2-二甲基丙基,1,2-二甲基丙基,1-乙基丙基,己基,戊基甲基,戊基乙基,戊基丙基,戊基丁基,己基甲基,己基乙基,己基丙基,环丙基,环丁基,环戊基,环己基,环丙甲基,环丙乙基,环丙基丙基,环丁甲基,环丁乙基,环丁丙基,环戊甲基,环戊乙基,环戊丙基,环己甲基,环己乙基,环己丙基,对甲氧基苄基(PMB),苄基(Bn),或R 3选自取代呋喃,吡咯,噻吩,吡唑,咪唑,噁唑,噻吩,异噁唑,异噻唑,吡啶,吡喃,噻喃,哒嗪,吡啶,吡嗪,哌嗪中的任意一种,与苯环成两位取代。
  24. 如权利要求21所述的合成方法,其特征在于,所述式4a中的基团
    Figure PCTCN2018084923-appb-100025
    选自咔 唑,吖啶,吩嗪或吩噻嗪。
  25. 一种药物组合物,包含权利要求1-15中任一项所述化合物或其药学上可接受的盐,和一种或多种药学上可接受的药用辅料。
  26. 如权利要求1-15中任一项所述化合物或其药学上可接受的盐或其药物组合物在制备药物中的用途,所述药物用于治疗具有吲哚胺2,3-双加氧酶介导的色氨酸代谢途径的病理学特征的疾病。
  27. 如权利要求1-15中任一项所述化合物或其药学上可接受的盐或其药物组合物在制备药物中的用途,所述药物用于治疗癌症、感染性疾病、神经退行性病变、抑郁症、焦虑症或与年龄相关的白内障。
  28. 如权利要求27的用途,其中所述癌症选自肺癌、肝癌、结肠癌、胰腺癌、乳腺癌、***癌、脑癌、卵巢癌、***、睾丸癌、肾癌、头颈癌、淋巴癌、黑色素瘤或白血病。
  29. 如权利要求28的用途,其中所述的神经退行性疾病指阿尔茨海默病。
  30. 如权利要求28的用途,其中所述的感染性疾病指由细菌、真菌、病毒或寄生虫引起的感染。
PCT/CN2018/084923 2017-04-27 2018-04-27 亚氨脲衍生物 WO2018196861A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/608,441 US20200325109A1 (en) 2017-04-27 2018-04-27 Imino-urea derivatives
EP18790575.7A EP3617198B1 (en) 2017-04-27 2018-04-27 Guanidine derivative
JP2019554358A JP7256130B2 (ja) 2017-04-27 2018-04-27 グアニジン誘導体
KR1020197032347A KR20190135038A (ko) 2017-04-27 2018-04-27 구아니딘 유도체
RU2019138156A RU2780118C2 (ru) 2017-04-27 2018-04-27 Производные иминомочевины
KR1020227015271A KR102542904B1 (ko) 2017-04-27 2018-04-27 구아니딘 유도체
ES18790575T ES2963054T3 (es) 2017-04-27 2018-04-27 Derivado de guanidina

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710288663.1 2017-04-27
CN201710288663.1A CN108794423B (zh) 2017-04-27 2017-04-27 亚氨脲衍生物

Publications (1)

Publication Number Publication Date
WO2018196861A1 true WO2018196861A1 (zh) 2018-11-01

Family

ID=63919493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084923 WO2018196861A1 (zh) 2017-04-27 2018-04-27 亚氨脲衍生物

Country Status (7)

Country Link
US (1) US20200325109A1 (zh)
EP (1) EP3617198B1 (zh)
JP (1) JP7256130B2 (zh)
KR (2) KR102542904B1 (zh)
CN (2) CN108794423B (zh)
ES (1) ES2963054T3 (zh)
WO (1) WO2018196861A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111320557B (zh) * 2018-12-14 2022-12-23 沈阳药科大学 缩氨基脲类化合物及其用途
CN112062732B (zh) * 2019-06-10 2023-10-24 鲁南制药集团股份有限公司 一种ido抑制剂及其组合物、制备方法和用途
CN115869305A (zh) * 2021-09-30 2023-03-31 山东新时代药业有限公司 一种治疗老年痴呆的药物组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119944A1 (en) * 2014-02-04 2015-08-13 Incyte Corporation Combination of a pd-1 antagonist and an ido1 inhibitor for treating cancer
WO2016155545A1 (zh) * 2015-03-31 2016-10-06 江苏恒瑞医药股份有限公司 含氨磺酰基的1,2,5-噁二唑类衍生物、其制备方法及其在医药上的应用
WO2018072697A1 (zh) * 2016-10-17 2018-04-26 上海医药集团股份有限公司 含噁二唑环化合物、制备方法、中间体、组合物及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386494B1 (ko) 2005-05-10 2014-04-24 인사이트 코포레이션 인돌아민 2,3-디옥시게나제의 조절제 및 이의 사용방법
JP5294874B2 (ja) * 2005-12-20 2013-09-18 インサイト・コーポレイション インドールアミン2,3−ジオキシゲナーゼのモジュレーターとしてのn−ヒドロキシアミジノヘテロ環
KR101649548B1 (ko) * 2008-07-08 2016-08-19 인사이트 홀딩스 코포레이션 인돌아민 2,3-디옥시게나아제의 억제제로서의 1,2,5-옥사디아졸
CN106565696B (zh) * 2015-10-09 2020-07-28 江苏恒瑞医药股份有限公司 噁二唑类衍生物、其制备方法及其在医药上的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119944A1 (en) * 2014-02-04 2015-08-13 Incyte Corporation Combination of a pd-1 antagonist and an ido1 inhibitor for treating cancer
WO2016155545A1 (zh) * 2015-03-31 2016-10-06 江苏恒瑞医药股份有限公司 含氨磺酰基的1,2,5-噁二唑类衍生物、其制备方法及其在医药上的应用
WO2018072697A1 (zh) * 2016-10-17 2018-04-26 上海医药集团股份有限公司 含噁二唑环化合物、制备方法、中间体、组合物及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIA YUNLONGWANG YU, CHINESE JOURNAL OF CANCER BIOTHERAPY, vol. 21, no. 6, 2004, pages 693 - 7
KONG LINGLEIKUANG CHUNXIANGYANG QING, CHINESE JOURNAL OF MEDICINAL CHEMISTRY, vol. 19, no. 2, 2009, pages 147 - 154
MUNN DHZHOU MATTWOOD JT ET AL.: "Prevention of allogeneic fetal rejection by tryptophan catabolism", SCIENICE, vol. 281, no. 5380, 1998, pages 1191 - 3, XP002147184, DOI: 10.1126/science.281.5380.1191
TAKIKAWA OKUROIWA TYAMAZAKI F ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 2041 - 2048

Also Published As

Publication number Publication date
KR20220066176A (ko) 2022-05-23
RU2019138156A3 (zh) 2021-05-27
RU2019138156A (ru) 2021-05-27
US20200325109A1 (en) 2020-10-15
ES2963054T3 (es) 2024-03-25
CN114920710A (zh) 2022-08-19
EP3617198C0 (en) 2023-10-25
CN108794423B (zh) 2022-07-19
EP3617198A4 (en) 2020-12-30
EP3617198A1 (en) 2020-03-04
EP3617198B1 (en) 2023-10-25
JP2020517585A (ja) 2020-06-18
CN108794423A (zh) 2018-11-13
JP7256130B2 (ja) 2023-04-11
KR102542904B1 (ko) 2023-06-13
KR20190135038A (ko) 2019-12-05

Similar Documents

Publication Publication Date Title
JP5662564B2 (ja) アリールアミノプリン誘導体、その調製方法および医薬としての使用
US7399754B2 (en) N2-quinoline or isoquinoline substituted purine derivatives
CN110256421A (zh) Kras-g12c抑制剂
CN110023311B (zh) 2-取代的氨基-萘并[1,2-d]咪唑-5-酮类化合物或其药学上可接受的盐
JP2011526294A (ja) ホスホジエステラーゼ10阻害剤としての二置換フェニル化合物
RU2730500C2 (ru) Производное хиназолинона, способ его получения, фармацевтическая композиция и применения
US20210139505A1 (en) PIKfyve Inhibitors
WO2018196861A1 (zh) 亚氨脲衍生物
CN102459242A (zh) 苯氧基甲基杂环化合物
WO2022135432A1 (zh) 作为egfr抑制剂的大环杂环类化合物及其应用
CN107383012B (zh) 含二环的咪唑醇衍生物
WO2007003765A1 (fr) DERIVES DE PYRIDO[2,3-d]PYRIMIDINE, LEUR PREPARATION, LEUR APPLICATION EN THERAPEUTIQUE
CN103664734B (zh) 杂环羟肟酸类化合物及其药用组合物和应用
CN107556316B (zh) 含桥环的咪唑衍生物
CN104974108B (zh) 一类2,2’‑串联双噻唑类化合物及其制备方法和用途
RU2780118C2 (ru) Производные иминомочевины
CN107556315B (zh) 含四元环的咪唑衍生物
JP2018087173A (ja) 悪性脳腫瘍治療薬
CN109836356B (zh) 一种芳甲醚衍生物及其应用
WO2017198159A1 (zh) 含桥环的咪唑衍生物
CN106986874A (zh) (1H-吡唑[3,4-d]嘧啶)-4-氨基衍生物及其作为IDO抑制剂在药物制备中的用途
CN108948003B (zh) 作为mTOR抑制剂的吡嗪并[2,3-c]喹啉-2(1H)-酮类化合物的制备及用途
CN108976139B (zh) 一种芳乙烯衍生物及其应用
CA2881110A1 (fr) Pyrido[3,2-d]pyrimidines trisubstituees, leurs procedes de preparation et leurs utilisations en therapeutique
CN116768903A (zh) 一种吡咯并嘧啶衍生物及其制备方法、药物组合物和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032347

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018790575

Country of ref document: EP

Effective date: 20191127