WO2018192195A1 - 一种半导体级丙二醇甲醚醋酸酯的制备方法 - Google Patents

一种半导体级丙二醇甲醚醋酸酯的制备方法 Download PDF

Info

Publication number
WO2018192195A1
WO2018192195A1 PCT/CN2017/105710 CN2017105710W WO2018192195A1 WO 2018192195 A1 WO2018192195 A1 WO 2018192195A1 CN 2017105710 W CN2017105710 W CN 2017105710W WO 2018192195 A1 WO2018192195 A1 WO 2018192195A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene glycol
methyl ether
ether acetate
glycol methyl
resin
Prior art date
Application number
PCT/CN2017/105710
Other languages
English (en)
French (fr)
Inventor
吴义彪
陈忠平
徐平
Original Assignee
江苏华伦化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华伦化工有限公司 filed Critical 江苏华伦化工有限公司
Publication of WO2018192195A1 publication Critical patent/WO2018192195A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/16Acetic acid esters of dihydroxylic compounds

Definitions

  • the invention relates to a method for preparing an electronic grade organic chemical, in particular to a method for preparing a semiconductor grade propylene glycol methyl ether acetate.
  • Semiconductor manufacturing is largely a chemical-related process. Up to 20% of the process steps are cleaning and wafer surface processing. The purity and cleanliness of the chemicals involved in semiconductor device yield, electrical performance and long-term Reliability and so on have a very important impact. With the development of microelectronics technology to a very large scale and a large scale, the integration of chips is getting higher and higher, and the lithography lines on the wafer surface are getting more and more fine. At present, the high-end lithography processing technology has reached 22 nm, which is proposed for electronic chemicals. With extremely high requirements, the indicators must meet the SEMI-C12 standard set by the International Semiconductor Equipment and Materials Organization.
  • Semiconductor grade propylene glycol methyl ether acetate is one of the electronic chemicals used in the manufacturing process of semiconductor devices. It is a multifunctional organic solvent with good safety, environmental protection and excellent performance. It is mainly used in manufacturing processes such as liquid crystal displays and photoresists. There are also related patent reports on propylene glycol methyl ether acetate electronic chemicals in China.
  • CN101993360A mentioned that propylene glycol methyl ether acetate passed the process of deionization tower, 13 kinds of metal ions can be reduced to below 5ppb; CN102617345A and CN20251918U also mentioned In the deuterium column process, the metal ions in the propylene glycol methyl ether acetate such as sodium, potassium, calcium, magnesium, lead, zinc, iron and the like are less than 10 ppb.
  • the object of the present invention is to provide a method for preparing a semiconductor grade propylene glycol methyl ether acetate, which solves the problems of low weight content, high water content, high acidity, high impurity ion content and the like in the prior art.
  • the invention discloses a preparation method of a semiconductor grade propylene glycol methyl ether acetate, which is prepared by using industrial grade propylene glycol methyl ether acetate as a raw material, by rectifying and purifying, dehydrating molecular sieve, deacidifying by resin, removing propylene glycol methyl ether acetate by cation and anion exchange resin.
  • the metal ion and the non-metal ion are finally subjected to ultrafiltration to obtain a semiconductor grade propylene glycol methyl ether acetate.
  • the specific preparation method is as follows:
  • Rectification and purification propylene glycol methyl ether acetate with an industrial grade content of 99.0% or more is firstly subjected to high-efficiency decolorization and rectification, and then by weight fractionation, the weight content of propylene glycol methyl ether acetate after rectification and purification ⁇ 99.99%;
  • anion exchange removing the metal ion-containing propylene glycol methyl ether acetate through the anion exchange resin exchange bed to remove non-metal ions, the anion exchanged propylene glycol methyl ether acetate in the individual non-metal ions controlled below 100 ppb;
  • Step (1) In the rectification and purification process, the degassing tower used for the high-efficiency delighting distillation and the de-weighting tower used for the high-efficiency de-removing distillation are selected from the group consisting of BX500, CY700, CY700S, and DY1000, and are highly efficient.
  • the de-lighting column for light rectification is preferably CY700S
  • the de-weighting column for high-efficiency de-condensing rectification is preferably CY700.
  • the reflux ratio in the high-efficiency decolorization distillation operation is in the range of (1 to 50):1, preferably in the range of (2 to 45):1; Ratio range (0.5 to 3.0): 1, preferred range (0.8 to 2.5): 1.
  • the molecular sieve is used 3 4 Or 5
  • One of the aluminosilicate molecular sieves preferably 4 Aluminosilicate molecular sieves.
  • the aluminosilicate molecular sieve particle diameter is one of 0.5 to 1.0, 1.6 to 2.5 mm, and 3 to 5 mm, and preferably the particle diameter is 1.6 to 2.5 mm.
  • the resin used in the resin adsorption bed is any one of a large pore size basic styrene anion exchange resin, preferably any one of a large pore size weakly basic styrene anion exchange resin. .
  • the flow rate of the propylene glycol methyl ether acetate when the propylene glycol methyl ether acetate passes through the resin adsorption bed is (1 to 50) BV/h, preferably (5 to 45) BV/h.
  • the cation exchange resin is any one of a large pore size acidic styrene cation exchange resin, preferably any of strongly acidic cation exchange resins.
  • the flow rate of the propylene glycol methyl ether acetate when passing through the cation exchange resin exchange bed is (1 to 80) BV/h, preferably (5 to 70) BV/h.
  • the anion exchange resin is any one of a large pore size basic styrene anion exchange resin, preferably any of a strongly basic anion exchange resin.
  • the filter membrane used in the ultrafilter is a hollow fiber ultrafiltration membrane, and the material thereof is one of polyamide, polyethersulfone, and polyvinylidene fluoride, preferably polyvinylidene fluoride.
  • the hollow fiber ultrafiltration membrane has a pore size of ⁇ 0.5 ⁇ m, preferably 0.05 ⁇ m.
  • the present invention has the following advantages:
  • a small amount of low-weight propylene glycol methyl ether acetate is produced during the de-lighting and de-weighting process, and can be sold as a coating-grade solvent after treatment, and the preparation process is green and environmentally friendly;
  • the delight rectification according to the present invention refers to the removal of light component impurities in the propylene glycol methyl ether product by rectification; the retort rectification refers to the removal of the recombination impurities in the propylene glycol methyl ether product by rectification; It means that a certain proportion of cation and anion exchange resin are mixed and loaded in the same exchange device to exchange and remove ions in the fluid.
  • FIG. 1 is a schematic view showing a process flow for preparing a semiconductor grade propylene glycol methyl ether acetate.
  • 1 is a high-efficiency de-light distillation column
  • 2 is a high-efficiency de-reduction distillation tower
  • 3 is a molecular sieve dehydration tower
  • 4 is a resin deacidification tower
  • 5 is a cationic resin exchange tower
  • 6 is an anion resin exchange tower
  • 7 is super filter.
  • the industrial grade propylene glycol methyl ether acetate having a weight content of 99.0% or more is preheated at a flow rate of 115 L/h, and then enters 1 light-off: the dewaxing tower packing type is CY700S, atmospheric pressure operation, reflux ratio 10:1, the temperature of the tower is 150.0 ⁇ 1.0°C; the tower liquid enters 2 de-weighting: the packing type of the de-weighting tower is CY700, the operating pressure is 30KPa, the reflux ratio is 1.2:1, the top temperature is 85.0 ⁇ 0.5°C, and the tower temperature is 116.0.
  • the control flow rate is 100L/h
  • the weight content is ⁇ 99.99%
  • the top of the production liquid enters the 3 molecular sieve dehydration: the molecular sieve model is 4 Aluminosilicate, particle size 1.6 ⁇ 2.5mm, control moisture less than 50ppm; dehydrated into 4 resin deacidification: resin model D301R, adjusted flow rate is 16BV / h, control acidity is less than 20ppm; deacidification into 5 cation exchange resin
  • Remove metal ions resin model is D001 ⁇ 1, adjust flow rate is 20BV/h, control metal ion weight content is less than 0.1ppb; remove metal ions and enter 6 anion exchange resin to remove non-metal ions: resin model is D201, adjust flow rate to 12BV /h, control the weight content of each non-metal ion less than 100ppb; finally enter 7 ultrafiltration to remove dust particles: filter membrane is
  • the industrial grade propylene glycol methyl ether acetate having a weight content of 99.0% or more is preheated at a flow rate of 165 L/h, and then enters 1 light-off:
  • the dewaxing tower packing type is CY700, atmospheric pressure operation, reflux ratio 15:1, the temperature of the tower is 150.0 ⁇ 1.0°C;
  • the tower liquid enters 2 de-weighting:
  • the packing type of the de-weighting tower is CY700S, the operating pressure is 30KPa, the reflux ratio is 1.5:1, the temperature at the top of the tower is 85.0 ⁇ 0.5°C, and the temperature of the tower is 116.0.
  • the control flow rate is 150L/h, the weight content is ⁇ 99.99%;
  • the top of the production liquid enters the 3 molecular sieve dehydration: the molecular sieve model is 3 Aluminosilicate, particle size 3 ⁇ 5mm, control moisture less than 50ppm; dehydrated into 4 resin deacidification: resin model D301G, adjusted flow rate is 24BV / h, control acidity is less than 20ppm; deacidification into 5 cation exchange resin removal Metal ion: the resin model is D001 ⁇ 2, the flow rate is adjusted to 30BV/h, the weight of the controlled metal ion is less than 0.1ppb; after removing the metal ions, it enters the 6 anion exchange resin to remove the non-metal ions: the resin model is D201 ⁇ 4, and the flow rate is adjusted.
  • filter membrane is hollow fiber ultrafiltration membrane
  • material is polyvinylidene fluoride
  • control dust particles (particle size>0.5 ⁇ m) below 5pcs/ml
  • the target product semiconductor grade propylene glycol methyl ether acetate is obtained, and the quality test results are shown in Table 1.
  • the industrial grade propylene glycol methyl ether acetate having a weight content of 99.0% or more is preheated at a flow rate of 215 L/h, and then enters 1 light-off: the light-weight tower packing type is DY1000, atmospheric pressure operation, reflux ratio 25:1, the temperature of the tower is 150.0 ⁇ 1.0°C; the tower liquid enters 2 de-weighting: the de-weighting tower packing type is BX500, the operating pressure is 30KPa, the reflux ratio is 2.0:1, the tower top temperature is 85.0 ⁇ 0.5°C, and the tower temperature is 116.0.
  • the preparation method of the semiconductor grade propylene glycol methyl ether acetate of the invention can produce weight content ⁇ 99.99%, color APHA ⁇ 10, moisture ⁇ 50 ppm, acidity ⁇ 20 ppm, and individual metal ions ⁇ 0.1 Ppb, each of the semiconductor non-metal ions ⁇ 100 ppb, dust particles (particle size > 0.5 ⁇ m) ⁇ 5pcs / ml of semiconductor grade propylene glycol methyl ether acetate product.
  • the main analytical methods are: gas weight analysis of product weight, moisture content by Karl Fischer moisture analyzer, anion analysis by liquid phase ion chromatography (IC), metal ion weight content using inductively coupled plasma mass spectrometer (ICP-MS) )analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种半导体级丙二醇甲醚醋酸酯(简称PMA)的制备方法,以工业级丙二醇甲醚醋酸酯为原料,先通过高效精馏提纯,分子筛脱水,再通过树脂脱酸,阳、阴离子交换树脂去除丙二醇甲醚醋酸酯中的金属离子和非金属离子离子,最后通过超滤得到半导体级丙二醇甲醚醋酸酯。本发明产品重量含量≥99.99%、色度A PHA≤10、水分≤50ppm、酸度≤20ppm、各单项金属离子<0.1ppb、各单项非金属离子<100ppb、尘埃颗粒(粒径>0.5μm)<5pcs/ml,满足半导体器件制作工艺的要求。本发明工艺简洁,绿色环保,易实现连续化,操作安全,产品质量稳定,适合工业化、规模化生产。

Description

一种半导体级丙二醇甲醚醋酸酯的制备方法 技术领域
本发明涉及一种电子级有机化学品的制备方法,具体涉及一种半导体级丙二醇甲醚醋酸酯的制备方法。
背景技术
半导体制造在很大程度上是一种与化学有关的工艺过程,高达20%工艺步骤是清洗和晶圆表面的处理,所涉及化学品纯度和洁净度对半导体器件的成品率、电学性能和长期可靠性等有着非常重要的影响。随着微电子技术向超大规模、极大规模发展,芯片集成度越来越高,晶圆表面光刻线条越来越精细,目前,高端光刻加工技术已经达到22nm,这对电子化学品提出了极高的要求,各项指标必须达到国际半导体设备和材料组织制定的SEMI-C12标准要求。
半导体级丙二醇甲醚醋酸酯为半导体器件制造工艺用电子化学品之一,是一种安全、环保、性能优良的多功能有机溶剂,主要用于液晶显示器、光刻胶等制造工艺。国内也有丙二醇甲醚醋酸酯电子化学品的相关专利报道,如CN101993360A中提到丙二醇甲醚醋酸酯通过脱离子塔这道工序,13种金属离子能降低到5ppb以下;CN102617345A和CN20251918U也提到通过脱离子塔工序将丙二醇甲醚醋酸酯中的金属离子如:钠、钾、钙、镁、铅、锌、铁等重量含量小于10ppb。以上专利均是采用相同的工艺和方法,所述的脱离子塔去除金属离子实际上就是一种常规的精馏方法,属初级提纯工艺;同时,均未提及电子级丙二醇甲醚醋酸酯其它各项质量指标等信息,满足不了电子级化学品的技术规范和质量要求。
综上所述,还未见有关半导体级丙二醇甲醚醋酸酯的制备方法的公开报道。
发明内容
本发明的目的在于提供一种半导体级丙二醇甲醚醋酸酯的制备方法,以解决现有技术中产品重量含量低、水分高、酸度高、杂质离子重量含量高等问题。
本发明所采用的技术方案如下:
一种半导体级丙二醇甲醚醋酸酯的制备方法,以工业级丙二醇甲醚醋酸酯为原料,通过精馏提纯,分子筛脱水,再通过树脂脱酸,阳、阴离子交换树脂去除丙二醇甲醚醋酸酯中的金属离子和非金属离子,最后经过超滤得到半导体级丙二醇甲醚醋酸酯,具体制备方法如下:
(1)精馏提纯:将工业级重量含量在99.0%以上的丙二醇甲醚醋酸酯先通过高效脱轻精馏,再通过高效脱重精馏,精馏提纯后丙二醇甲醚醋酸酯的重量含量≥99.99%;
(2)脱水:将精馏提纯后的丙二醇甲醚醋酸酯通过分子筛脱水,脱水后的丙二醇甲醚醋酸酯中水分控制在50ppm以下;
(3)脱酸:将脱水后的丙二醇甲醚醋酸酯通过树脂吸附床脱除丙二醇甲醚醋酸酯中的醋酸,脱除醋酸后的丙二醇甲醚醋酸酯中酸度控制在20ppm以下;
(4)阳离子交换:将脱酸后的丙二醇甲醚醋酸酯通过阳离子交换树脂交换床去除金属离子,阳离子交换后的丙二醇甲醚醋酸酯中各单项金属离子控制在0.1ppb以下;
(5)阴离子交换:将去除金属离子的丙二醇甲醚醋酸酯通过阴离子交换树脂交换床去除非金属离子,阴离子交换后的丙二醇甲醚醋酸酯中各单项非金属离子控制在100ppb以下;
(6)超滤:将去除非金属离子后的丙二醇甲醚醋酸酯通过超滤器降低丙二醇甲醚醋酸酯中的尘埃颗粒,超滤后的丙二醇甲醚醋酸酯中粒径>0.5μm的尘埃颗粒控制在5pcs/ml以下。
步骤(1)精馏提纯工序中,高效脱轻精馏所用的脱轻塔和高效脱重精馏所用的脱重塔选用的填料型号为BX500、CY700、CY700S、DY1000中的一种,高效脱轻精馏所用的脱轻塔优选CY700S,高效脱重精馏所用的脱重塔优选CY700。
步骤(1)精馏提纯工序中,所述的高效脱轻精馏操作中回流比范围为(1~50):1,优选范围(2~45):1;高效脱重精馏操作中回流比范围(0.5~3.0):1,优选范围(0.8~2.5):1。
步骤(2)脱水工序中,所述的分子筛选用3
Figure PCTCN2017105710-appb-000001
4
Figure PCTCN2017105710-appb-000002
或5
Figure PCTCN2017105710-appb-000003
的硅铝酸盐分子筛中的一种,优选4
Figure PCTCN2017105710-appb-000004
的硅铝酸盐分子筛。
步骤(2)脱水工序中,所述的硅铝酸盐分子筛选用颗粒直径为0.5~1.0、1.6~2.5mm、3~5mm中的一种,优选颗粒直径1.6~2.5mm。
步骤(3)脱酸工序中,所述树脂吸附床所用树脂选用大孔径碱性苯乙烯系阴离子交换树脂中的任何一种,优选大孔径弱碱性苯乙烯系阴离子交换树脂中的任何一种。
步骤(3)脱酸工序中,丙二醇甲醚醋酸酯通过树脂吸附床时丙二醇甲醚醋酸酯的流速为(1~50)BV/h,优选(5~45)BV/h。
步骤(4)阳离子交换工序中,所述的阳离子交换树脂为大孔径酸性苯乙烯系阳离子交换树脂的任何一种,优选强酸性阳离子交换树脂中的任何一种。
步骤(4)阳离子交换工序中,所述的通过阳离子交换树脂交换床时丙二醇甲醚醋酸酯的流速为(1~80)BV/h,优选(5~70)BV/h。
步骤(5)阴离子交换工序中,所述的阴离子交换树脂为大孔径碱性苯乙烯系阴离子交换树脂的任何一种,优选强碱性阴离子交换树脂中的任何一种。
步骤(5)阴离子交换工序中,所述的通过阴离子交换树脂交换床时丙二醇甲醚醋酸酯的流速为(1~50)BV/h,优选BV=(5~45)BV/h。
步骤(6)超滤工序中,所述的超滤器所用的过滤膜为中空纤维超滤膜,其材质为聚酰胺、聚醚砜、聚偏氟乙烯中的一种,优选聚偏氟乙烯;所述的中空纤维超滤膜的孔径<0.5μm,优选0.05μm。
与现有技术相比,本发明具有以下几方面优点:
(1)以工业级丙二醇甲醚醋酸酯为原料,采用多种相结合的纯化工艺,产品质量达到半导体级电子化学品SEMI-C12的标准要求。
(2)所采用的技术方案科学合理,操作简单,易实现连续化,产品质量稳定,适于工业化、规模化生产。
(3)脱轻和脱重过程中有少量低重量含量的丙二醇甲醚醋酸酯产生,经处理可作涂料级溶剂销售,制备工艺绿色环保;
本发明所述的脱轻精馏是指通过精馏脱除丙二醇甲醚产品中的轻组分杂质;脱重精馏是指通过精馏脱除丙二醇甲醚产品中的重组份杂质;混床是指把一定比例的阳、阴离子交换树脂混合装填于同一交换装置中,对流体中的离子进行交换、脱除。
附图说明
图1为制备半导体级丙二醇甲醚醋酸酯的工艺流程示意图。
其中:1为高效脱轻精馏塔,2为高效脱重精馏塔,3为分子筛脱水塔,4为树脂脱酸塔,5为阳离子树脂交换塔,6为阴离子树脂交换塔,7为超滤器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。
实施例1
结合工艺流程图1,将工业级重量含量在99.0%以上的丙二醇甲醚醋酸酯以115L/h的流量经预热后进入1脱轻:脱轻塔填料型号为CY700S,常压操作,回流比10:1,塔釜温度150.0±1.0℃;塔釜液进入2脱重:脱重塔填料型号为CY700,操作压力30KPa,回流比1.2:1,塔顶温度85.0±0.5℃,塔釜温度116.0±1.0℃,塔顶采出高纯度丙二醇甲醚醋酸酯,控制流量100L/h、重量含量≥99.99%;塔顶采出液进入3分子筛脱水:分子筛型号为4
Figure PCTCN2017105710-appb-000005
硅铝酸盐,粒径1.6~2.5mm,控制 水分小于50ppm;脱水后进入4树脂脱酸:树脂型号为D301R,调整流速为16BV/h,控制酸度小于20ppm;脱酸后进入5阳离子交换树脂去除金属离子:树脂型号为D001×1,调整流速为20BV/h,控制金属离子重量含量小于0.1ppb;去除金属离子后进入6阴离子交换树脂去除非金属离子:树脂型号为D201,调整流速为12BV/h,控制各非金属离子重量含量小于100ppb;最后进入7超滤去除尘埃颗粒:过滤膜为中空纤维超滤膜,材质为聚偏氟乙烯,孔径0.05,控制尘埃颗粒(粒径>0.5μm)在5pcs/ml以下,得到目标产物半导体级丙二醇甲醚醋酸酯,质量检测结果见表1。
实施例2
结合工艺流程图1,将工业级重量含量在99.0%以上的丙二醇甲醚醋酸酯以165L/h的流量经预热后进入1脱轻:脱轻塔填料型号为CY700,常压操作,回流比15:1,塔釜温度150.0±1.0℃;塔釜液进入2脱重:脱重塔填料型号为CY700S,操作压力30KPa,回流比1.5:1,塔顶温度85.0±0.5℃,塔釜温度116.0±1.0℃,塔顶采出高纯度丙二醇甲醚醋酸酯,控制流量150L/h、重量含量≥99.99%;塔顶采出液进入3分子筛脱水:分子筛型号为3
Figure PCTCN2017105710-appb-000006
硅铝酸盐,粒径3~5mm,控制水分小于50ppm;脱水后进入4树脂脱酸:树脂型号为D301G,调整流速为24BV/h,控制酸度小于20ppm;脱酸后进入5阳离子交换树脂去除金属离子:树脂型号为D001×2,调整流速为30BV/h,控制金属离子重量含量小于0.1ppb;去除金属离子后进入6阴离子交换树脂去除非金属离子:树脂型号为D201×4、调整流速为18BV/h,控制各非金属离子重量含量小于100ppb;最后进入7超滤去除尘埃颗粒:过滤膜为中空纤维超滤膜,材质为聚偏氟乙烯,孔径0.2,控制尘埃颗粒(粒径>0.5μm)在5pcs/ml以下,得到目标产物半导体级丙二醇甲醚醋酸酯,质量检测结果见表1。
实施例3
结合工艺流程图1,将工业级重量含量在99.0%以上的丙二醇甲醚醋酸酯以215L/h的流量经预热后进入1脱轻:脱轻塔填料型号为DY1000,常压操作,回流比25:1,塔釜温度150.0±1.0℃;塔釜液进入 2脱重:脱重塔填料型号为BX500,操作压力30KPa,回流比2.0:1,塔顶温度85.0±0.5℃,塔釜温度116.0±1.0℃,塔顶采出高纯度丙二醇甲醚醋酸酯,控制流量200L/h、重量含量≥99.99%;塔顶采出液进入3分子筛脱水:分子筛型号为5
Figure PCTCN2017105710-appb-000007
硅铝酸盐,粒径0.5~1.0mm,控制水分小于50ppm;脱水后进入4树脂脱酸:树脂型号为D301T,调整流速为32BV/h,控制酸度小于20ppm;脱酸后进入5阳离子交换树脂去除金属离子:树脂型号为D001×3,调整流速为40BV/h,控制金属离子重量含量小于0.1ppb;去除金属离子后进入6阴离子交换树脂去除非金属离子:树脂型号为D201×7,调整流速为24BV/h,控制各非金属离子重量含量小于100ppb;最后进入7超滤去除尘埃颗粒:过滤膜为中空纤维超滤膜,材质为聚偏氟乙烯,孔径0.02,控制尘埃颗粒(粒径>0.5μm)在5pcs/ml以下,得到目标产物半导体级丙二醇甲醚醋酸酯,质量检测结果见表1。
表1实施例1~3半导体级丙二醇甲醚醋酸酯质量检测结果
Figure PCTCN2017105710-appb-000008
Figure PCTCN2017105710-appb-000009
Figure PCTCN2017105710-appb-000010
从表1可以看出,本发明的半导体级丙二醇甲醚醋酸酯的制备方法,可生产出重量含量≥99.99%、色度APHA≤10、水分≤50ppm、酸度≤20ppm、各单项金属离子<0.1ppb、各单项非金属离子<100ppb、尘埃颗粒(粒径>0.5μm)<5pcs/ml的半导体级丙二醇甲醚醋酸酯产品。
其中主要分析方法:产品重量含量采用气相色谱分析,水分重量含量采用卡尔费休水分测定仪分析,阴离子采用液相离子色谱(IC)分析,金属离子重量含量采用电感耦合等离子质谱仪(ICP-MS)分析。
尽管已经详细描述了本发明的实施方式,但是应该理解的是,在不偏离本发明的精神和范围的情况下,可以对本发明的实施方式做出各种改变、替换和变更。
Figure PCTCN2017105710-appb-000011

Claims (10)

  1. 一种半导体级丙二醇甲醚醋酸酯的制备方法,其特征在于:以工业级丙二醇甲醚醋酸酯为原料,先通过精馏提纯,分子筛脱水,再通过树脂脱酸,阳、阴离子交换树脂去除丙二醇甲醚醋酸酯中的金属离子和非金属离子,最后通过超滤得到半导体级丙二醇甲醚醋酸酯。
  2. 根据权利要求1所述的制备方法,其特征在于:具体制备方法包括以下步骤:
    (1)精馏提纯:将工业级重量含量在99.0%以上的丙二醇甲醚醋酸酯先通过高效脱轻精馏,再通过高效脱重精馏,精馏提纯后的丙二醇甲醚醋酸酯重量含量≥99.99%;
    (2)脱水:将精馏提纯后的丙二醇甲醚醋酸酯通过分子筛脱水,脱水后的丙二醇甲醚醋酸酯中水分控制在50ppm以下;
    (3)脱酸:将脱水后的丙二醇甲醚醋酸酯通过树脂吸附床脱除丙二醇甲醚醋酸酯中的醋酸,脱除醋酸后的丙二醇甲醚醋酸酯中酸度控制在20ppm以下;
    (4)阳离子交换:将脱酸后的丙二醇甲醚醋酸酯通过阳离子交换树脂交换床去除金属离子,阳离子交换后的丙二醇甲醚醋酸酯中单项金属离子控制在0.1ppb以下;
    (5)阴离子交换:将去除金属离子的丙二醇甲醚醋酸酯通过阴离子交换树脂交换床去除非金属离子,阴离子交换后的丙二醇甲醚醋酸酯中单项非金属离子在100ppb以下;
    (6)超滤:将去除非金属离子后的丙二醇甲醚醋酸酯通过超滤器降低丙二醇甲醚醋酸酯中的尘埃颗粒,超滤后的丙二醇甲醚醋酸酯中粒径>0.5μm的尘埃颗粒控制在5pcs/ml以下。
  3. 根据权利要求2所述的制备方法,其特征在于:步骤(1)精馏提纯工序中,高效脱轻精馏所用的脱轻塔和高效脱重精馏所用的脱重塔选用的填料型号为BX500、CY700、CY700S和DY1000中的一种。
  4. 根据权利要求2所述的制备方法,其特征在于:步骤(1)精馏提纯工序中,所述的高效脱轻精馏操作中回流比为1~50:1;高效脱重精馏操作中回流比为0.5~3.0:1。
  5. 根据权利要求2所述的制备方法,其特征在于:步骤(2)脱水工序中,所述的分子筛选用
    Figure PCTCN2017105710-appb-100001
    Figure PCTCN2017105710-appb-100002
    Figure PCTCN2017105710-appb-100003
    的硅铝酸盐分子筛中的一种;所述的硅铝酸盐分子筛选用颗粒直径为0.5~1.0、1.6~2.5mm或3~5mm。
  6. 根据权利要求2所述的制备方法,其特征在于:步骤(3)脱酸工序中,所述树脂吸附床所用树脂选用大孔径碱性苯乙烯系阴离子交换树脂。
  7. 根据权利要求2所述的制备方法,其特征在于:步骤(3)脱酸工序中,丙二醇甲醚醋酸酯通过树脂吸附床时丙二醇甲醚醋酸酯的流速为1~50BV/h。
  8. 根据权利要求2所述的制备方法,其特征在于:步骤(4)阳离子交换工序中,所述的阳离子交换树脂为大孔径酸性苯乙烯系阳离子交换树脂;所述的通过阳离子交换树脂交换床时丙二醇甲醚醋酸酯的流速为1~80BV/h。
  9. 根据权利要求2所述的制备方法,其特征在于:步骤(5)阴离子交换工序中,所述的阴离子交换树脂为大孔径碱性苯乙烯系阴离子交换树脂;所述的通过阴离子交换树脂交换床时丙二醇甲醚醋酸酯的流速为1~50BV/h。
  10. 根据权利要求2所述的制备方法,其特征在于:步骤(6)超滤工序中,超滤器所用的过滤膜为中空纤维超滤膜,其材质为聚酰胺、聚醚砜和聚偏氟乙烯中的一种,所述的中空纤维超滤膜的孔径<0.5μm。
PCT/CN2017/105710 2017-04-20 2017-10-11 一种半导体级丙二醇甲醚醋酸酯的制备方法 WO2018192195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710261566.3 2017-04-20
CN201710261566.3A CN108727191A (zh) 2017-04-20 2017-04-20 一种半导体级丙二醇甲醚醋酸酯的制备方法

Publications (1)

Publication Number Publication Date
WO2018192195A1 true WO2018192195A1 (zh) 2018-10-25

Family

ID=63855479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105710 WO2018192195A1 (zh) 2017-04-20 2017-10-11 一种半导体级丙二醇甲醚醋酸酯的制备方法

Country Status (2)

Country Link
CN (1) CN108727191A (zh)
WO (1) WO2018192195A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023048153A (ja) * 2021-09-27 2023-04-06 載元産業株式會社 フォトレジスト工程に使用される高純度アルキレングリコールモノアルキルエーテルカルボン酸エステルの精製方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204442A (zh) * 2019-05-23 2019-09-06 安徽京控环境技术服务有限公司 一种从废有机溶剂回收提纯丙二醇甲醚醋酸酯的方法
CN110305012A (zh) * 2019-08-16 2019-10-08 南通百川新材料有限公司 一种半导体级丙二醇甲醚乙酸酯的合成工艺
CN115806472B (zh) * 2021-09-13 2024-07-23 中国石油化工股份有限公司 一种电子级异丙醇的制备方法以及一种制备电子级异丙醇的***
CN114262269B (zh) * 2021-12-30 2023-09-26 宁波南大光电材料有限公司 一种丙二醇甲醚醋酸酯的制备方法
CN114702386A (zh) * 2022-03-29 2022-07-05 晶瑞电子材料股份有限公司 一种半导体级丙二醇甲醚醋酸酯的制备方法
CN114656339B (zh) * 2022-04-25 2023-12-29 北京袭明科技有限公司 一种高纯电子级丙二醇单甲醚生产方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544453A (en) * 1983-03-17 1985-10-01 Atlantic Richfield Company Stripping of unreacted glycol ethers and acids from an esterification reaction mixture
EP0119833B1 (en) * 1983-03-17 1988-11-17 Arco Chemical Technology, Inc. Preparation of carboxylic acid esters of alkylene glycol monoalkyl ethers
CN1699327A (zh) * 2005-04-22 2005-11-23 江苏华伦化工有限公司 合成丙二醇甲醚醋酸酯(pma)的工艺
CN101993360A (zh) * 2009-08-21 2011-03-30 江苏瑞佳化学有限公司 电子级丙二醇甲醚醋酸酯的制备方法
CN202519181U (zh) * 2012-03-17 2012-11-07 江苏怡达化工有限公司 连续化生产电子级丙二醇甲醚醋酸酯的装置
CN104370742A (zh) * 2014-10-16 2015-02-25 惠州Tcl环境科技有限公司 一种从pgmea废液中提纯pgmea的方法
CN104498640A (zh) * 2014-12-19 2015-04-08 成都连接流体分离科技有限公司 一种以植物废弃物为原料联产木糖、微晶纤维素和木质素磺酸钠的工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924242B (zh) * 2012-08-17 2015-08-26 上海泰坦科技股份有限公司 纯化丙二醇醚类化合物的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544453A (en) * 1983-03-17 1985-10-01 Atlantic Richfield Company Stripping of unreacted glycol ethers and acids from an esterification reaction mixture
EP0119833B1 (en) * 1983-03-17 1988-11-17 Arco Chemical Technology, Inc. Preparation of carboxylic acid esters of alkylene glycol monoalkyl ethers
CN1699327A (zh) * 2005-04-22 2005-11-23 江苏华伦化工有限公司 合成丙二醇甲醚醋酸酯(pma)的工艺
CN101993360A (zh) * 2009-08-21 2011-03-30 江苏瑞佳化学有限公司 电子级丙二醇甲醚醋酸酯的制备方法
CN202519181U (zh) * 2012-03-17 2012-11-07 江苏怡达化工有限公司 连续化生产电子级丙二醇甲醚醋酸酯的装置
CN104370742A (zh) * 2014-10-16 2015-02-25 惠州Tcl环境科技有限公司 一种从pgmea废液中提纯pgmea的方法
CN104498640A (zh) * 2014-12-19 2015-04-08 成都连接流体分离科技有限公司 一种以植物废弃物为原料联产木糖、微晶纤维素和木质素磺酸钠的工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023048153A (ja) * 2021-09-27 2023-04-06 載元産業株式會社 フォトレジスト工程に使用される高純度アルキレングリコールモノアルキルエーテルカルボン酸エステルの精製方法
JP7441286B2 (ja) 2021-09-27 2024-02-29 載元産業株式會社 フォトレジスト工程に使用される高純度アルキレングリコールモノアルキルエーテルカルボン酸エステルの精製方法

Also Published As

Publication number Publication date
CN108727191A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2018192195A1 (zh) 一种半导体级丙二醇甲醚醋酸酯的制备方法
JP5791262B2 (ja) 高純度n−メチル−2−ピロリドンの製造方法
CN102198937B (zh) 静态多级熔融结晶法制备电子级磷酸
CN108727164A (zh) 一种半导体级丙二醇甲醚的制备方法
CN108794371A (zh) 一种n-甲基吡咯烷酮产品的精制方法
CN113429329A (zh) 一种半导体级n-甲基吡咯烷酮的纯化方法
CN103601624B (zh) 一种丙酮的制备方法
CN103086822B (zh) 一种间戊二烯的分离方法
CN111574326A (zh) 一种半导体级异丙醇的纯化方法
CN114890889A (zh) 一种电子级柠檬酸的提纯方法
CN112920048A (zh) 一种高纯1,3-丁二醇二甲基丙烯酸酯的制备方法
CN110668935B (zh) 一种树脂回收废水中3,4,5-三甲氧基苯甲酸的方法
CN109912636B (zh) 一种高纯正硅酸乙酯的生产方法
CN114702385B (zh) 一种高纯电子级丙二醇甲醚醋酸酯生产方法及装置
CN113121346A (zh) 一种电子级碳酸二甲酯的提纯方法
CN106588641B (zh) 一种古龙酸一次结晶母液的回收方法
CN113121583B (zh) 电子级正硅酸乙酯的制备装置及制备方法
CN110422853B (zh) 一种利用高镁低硼溶液制备高纯硼酸的方法
CN115872839B (zh) 一种高纯度丙三醇的制备方法
KR102549766B1 (ko) 폐에탄올 정제방법
CN1974516A (zh) 3,5-二甲酚的生产方法
CN115010098B (zh) 一种高效制备超净高纯硫酸的方法
CN105217674A (zh) 一种优级纯硝酸钙的制备方法
CN219058854U (zh) 一种高纯电子级甲苯生产装置
CN218686447U (zh) 提纯电子级二甲基亚砜的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906098

Country of ref document: EP

Kind code of ref document: A1