WO2018188276A1 - 一种六自由度机器人末端空间曲线轨迹的误差建模方法 - Google Patents

一种六自由度机器人末端空间曲线轨迹的误差建模方法 Download PDF

Info

Publication number
WO2018188276A1
WO2018188276A1 PCT/CN2017/103080 CN2017103080W WO2018188276A1 WO 2018188276 A1 WO2018188276 A1 WO 2018188276A1 CN 2017103080 W CN2017103080 W CN 2017103080W WO 2018188276 A1 WO2018188276 A1 WO 2018188276A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
trajectory
error
joint
robot
Prior art date
Application number
PCT/CN2017/103080
Other languages
English (en)
French (fr)
Inventor
刘志峰
许静静
赵永胜
蔡力钢
杨聪彬
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US16/311,182 priority Critical patent/US20190176325A1/en
Publication of WO2018188276A1 publication Critical patent/WO2018188276A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0426Programming the control sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39055Correction of end effector attachment, calculated from model and real position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40457End effector position error

Definitions

  • the invention belongs to the field of industrial robot end tracking error analysis, and relates to an end error model reflecting the deviation between a planned trajectory and an ideal trajectory.
  • the model considers the influence of the interpolation algorithm and the joint link parameter error simultaneously, and can control the end tracking accuracy of the robot. Provide a certain theoretical basis.
  • end tracking accuracy has become an important research content.
  • the modern end error control mainly adopts the closed-loop control method.
  • the closed-loop control algorithm can effectively improve the positioning and repeat positioning accuracy, it relies heavily on the measurement accuracy of the joint sensor and the end sensor, and also seriously complicates the robot structure and makes the continuous
  • the tracking accuracy control problem of the trajectory becomes extremely difficult.
  • For the planning of the end continuous trajectory there are two types, one is to interpolate in the operating space, one is to interpolate in the joint space, and in order to ensure the flexibility of each joint, the researchers will mostly reflect the ideal continuous trajectory curve.
  • the invention aims to provide an error modeling method for a six-degree-of-freedom robot end space curve trajectory.
  • the main feature of this method is that it also considers the interpolation algorithm operation and structural error, and provides a simple and practical error model for the continuous trajectory tracking problem of the robot, which provides a theoretical basis for controlling the tracking accuracy.
  • the technical solution adopted by the present invention is an error modeling method for a six-degree-of-freedom robot end space curve trajectory, and the method comprises the following steps:
  • N is determined by the specific operation task, and the displacement or angular displacement of each joint line is obtained based on the inverse solution model.
  • Figure 1 is a schematic diagram of the space curve trajectory planning error.
  • the invention is characterized in that the interpolation algorithm operation and the influence of the joint link structure errors are considered at the same time, and a more realistic error model is established for the continuous trajectory tracking task of the six-degree-of-freedom industrial robot, thereby providing a theoretical basis for realizing trajectory tracking precision control. .
  • Figure 1 Schematic diagram of spatial curve trajectory planning error
  • N path points are uniformly taken on the curve, and the joint angular displacement ⁇ of the arm is obtained by inverse solution.
  • Step (2) Interpolation operation for each joint variable
  • An interpolation algorithm is used to interpolate the joint variables, and the relationship between the i-th joint variable and the motion time is obtained as follows.
  • a function value is taken every 20 ms on the function curve obtained according to the above formula, thereby obtaining M displacement values ⁇ i of each joint, and M corresponding trajectory points Q are calculated by the forward kinematics model.
  • Step (3) Calculate the robot end track point
  • the robot Since the end position of the robot is related to the displacement amount ⁇ i of each joint, and secondly, it is related to the parameters of the robot DH link, that is, the length a i of the member , the torsion angle ⁇ i of the member , the joint distance d i and the joint rotation angle ⁇ i , so the robot is
  • the positive kinematics model is expressed as follows.
  • the robot link parameters will produce errors during the manufacturing and assembly process, and this error will greatly affect the positioning accuracy of the robot end.
  • the actual link parameters are known as a i + ⁇ a i , ⁇ i + ⁇ i , d i + ⁇ d i , ⁇ i + ⁇ i , when considering the structural error of each joint of the robot, the robot end position can be expressed as
  • Pos(actual) g st ( ⁇ i , a i + ⁇ a i , ⁇ i + ⁇ i , d i + ⁇ d i , ⁇ i + ⁇ i )
  • point P be a point on the trajectory of the ideal space curve
  • point Q is on the normal line passing P point
  • P 1 point is on the tangent line passing point P
  • PQ ⁇ PP 1 the space coordinate of each point is P(x 0 , y 0 , z 0 ) and P 1 (x 1 , y 1 , z 1 ), which are true reflections of the deviation between the actual trajectory of the end and the ideal trajectory.
  • the trajectory error E defined by this patent is the distance between the points P and Q. (When E approaches infinity, the planned trajectory coincides with the ideal trajectory).

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种六自由度机器人末端空间曲线轨迹的误差建模方法,该方法包括以下步骤:1)在空间曲线上选取N个路径点,N由具体操作任务确定,基于逆解模型得到各关节线位移或角位移;2)选用一种插值算法进行插值运算得到各关节变量与时间的函数关系式,每隔20ms取一点,得到M个关节变量,设由插值算法得到的总运动时间为T(s),则M=T/0.02;3)考虑机器人各关节结构误差,正解得到机器人末端M个相应的轨迹点Q;4)在理想轨迹曲线上取点P,使得Q为过P点的法线上一点,从而定义轨迹误差E为点P与Q间的距离大小,将问题转化为已知理想空间轨迹曲线方程与Q点坐标,求取误差E;当E趋近于无穷小时,规划轨迹与理想轨迹重合;5)根据曲线方程求得过P点的切线方程,结合条件PQ⊥PP1(P1为该切线上任一点),计算P点坐标,从而得到误差E。这种方法同时考虑了插值算法运算和各关节连杆结构误差的影响,建立了简洁实际的误差模型。

Description

一种六自由度机器人末端空间曲线轨迹的误差建模方法 技术领域
本发明属于工业机器人末端追踪误差分析领域,涉及一种反映规划轨迹与理想轨迹间偏差的末端误差模型,该模型同时考虑了插值算法和关节连杆参数误差的影响,能够为控制机器人末端追踪精度提供一定的理论基础。
背景技术
末端追踪精度作为工业机器人的重要性能指标之一,已经成为重要研究内容。现代末端误差控制主要采用闭环控制方法,虽然采用闭环控制算法能够有效的改善定位及重复定位精度,但却严重依赖于关节传感器和末端传感器的测量精度,也使机器人结构严重复杂化,同时使连续轨迹的追踪精度控制问题变得异常困难。对于末端连续轨迹的规划,包括两种,一种是在操作空间内插值,一种是在关节空间内插值,而为了能够保证各关节的运动柔顺性,研究者们大多将反映理想连续轨迹曲线的特征路径点逆解到关节空间内进行插值运算,导致插值算法参数取值对末端追踪精度产生较大影响,其次在实际的工业机器人***中,由于加工制造与装配而造成的连杆参数误差对末端追踪精度也存在较大的影响,因此为控制机器人末端追踪精度,考虑这两种影响因素十分必要。为了能够对末端运动轨迹误差进行补偿以改善追踪精度,又避免实时测量实时补偿的复杂性及不确定性,需要在轨迹规划的过程中对追踪误差进行离线预测,因此建立机器人末端追踪误差模型十分重要。在建立误差模型的过程中,由于在规划得到的末端位置中一般是等时间取点的,如何在理想轨迹上取点并作差,才能真实反映规划轨迹和理想轨迹间的偏差,是本专利要解决的关键问题。
发明内容
本发明旨在提供一种六自由度机器人末端空间曲线轨迹的误差建模方法。该方法的主要特点是同时考虑了插值算法运算和结构误差,针对机器人末端连续轨迹追踪问题提供一种简洁实际的误差模型,从而为控制追踪精度提供理论基础。
本发明采用的技术方案为一种六自由度机器人末端空间曲线轨迹的误差建模方法,该方法包括以下步骤:
1)在空间曲线上选取N个路径点,N由具体操作任务确定,基于逆解模型得到各关节线位移或角位移。
2)选用一种插值算法进行插值运算得到各关节变量与时间的函数关系式,每隔20ms取一点,得到M个关节变量,设由插值算法得到的总运动时间为T(s),则M=T/0.02。
3)考虑机器人各关节结构误差,正解得到机器人末端M个相应的轨迹点Q。
4)在理想轨迹曲线上取点P,使得Q为过P点的法线上一点,从而定义轨迹误差E为点P与Q间的距离大小,将问题转化为已知理想空间轨迹曲线方程与Q点坐标,求取误差E;当E趋近于无穷小时,规划轨迹与理想轨迹重合。
5)根据曲线方程求得过P点的切线方程,结合条件PQ⊥PP1(P1为该切线上任一点),计算P点坐标,从而得到误差E。
图1为空间曲线轨迹规划误差示意图。
本发明的特点在于同时考虑了插值算法运算和各关节连杆结构误差的影响,针对六自由度工业机器人末端连续轨迹跟踪任务建立更接近实际的误差模型,从而为实现轨迹追踪精度控制提供理论基础。
附图说明
图1空间曲线轨迹规划误差示意图
具体实施方式
步骤(1)求取关节变量
设机器人末端操作空间任务曲线方程如下,
Figure PCTCN2017103080-appb-000001
在该曲线上均匀取N个路径点,通过逆解得到机械臂各关节角位移θ。
步骤(2)针对各关节变量进行插值运算
采用一种插值算法对关节变量进行插值计算,得到第i个关节变量与运动时间的函数关系式如下,
θi=fi(t)
在依据上式得到的函数曲线上每隔20ms取一个函数值,从而得到各关节的M个位移值θi,并通过正运动学模型计算得到M个相应的轨迹点Q。
步骤(3)计算机器人末端轨迹点
由于机器人末端位置与各关节位移量θi相关,其次也与机器人D-H连杆参数相关,即杆件长度ai,杆件扭角αi,关节距离di及关节转角θi,因此将机器人正运动学模型表示如下,
Pos=gsti,aii,dii)
实际上机器人连杆参数在制造和装配的过程中会产生误差,而这种误差会极大的影响机器人末端的定位精度,已知实际的连杆参数分别为ai+Δaii+Δαi,di+Δdii+Δθi,当考虑机器人各关节的结构误差时,机器人末端位置可表示为,
Pos(actual)=gsti,ai+Δaii+Δαi,di+Δdii+Δθi)
其中θi是由插值运算得到的,因此机器人末端实际位置也受到了插值算法的影响。通过将各关节的M个转角θi代入上式,可得到M个相应的末端位置点Q(X,Y,Z)。
步骤(4)计算误差E
设点P为理想空间曲线轨迹上一点,且Q点在过P点的法线上,P1点在过P点的切线上,则PQ⊥PP1,设各点空间坐标为P(x0,y0,z0)和P1(x1,y1,z1),为真实的反映末端实际轨迹与理想轨迹间的偏差,本专利定义轨迹误差E为点P与Q间的距离大小(当E趋近于无穷小时,规划轨迹与理想轨迹重合)。
由空间曲线函数可得曲线上过P点的切线方程如下,
Figure PCTCN2017103080-appb-000002
取x-x0=Δx,可由上式求得y-y0和z-z0,满足以下条件,
Figure PCTCN2017103080-appb-000003
最终由以上方程组可求得P点位置(x0,y0,z0),则误差E定义如下,
Figure PCTCN2017103080-appb-000004

Claims (2)

  1. 一种六自由度机器人末端空间曲线轨迹的误差建模方法,其特征在于:该方法包括以下步骤:
    1)在空间曲线上选取N个路径点,N由具体操作任务确定,基于逆解模型得到各关节线位移或角位移;
    2)选用一种插值算法进行插值运算得到各关节变量与时间的函数关系式,每隔20ms取一点,得到M个关节变量,设由插值算法得到的总运动时间为T(s),则M=T/0.02;
    3)考虑机器人各关节结构误差,正解得到机器人末端M个相应的轨迹点Q;
    4)在理想轨迹曲线上取点P,使得Q为过P点的法线上一点,从而定义轨迹误差E为点P与Q间的距离大小,将问题转化为已知理想空间轨迹曲线方程与Q点坐标,求取误差E;当E趋近于无穷小时,规划轨迹与理想轨迹重合;
    5)根据曲线方程求得过P点的切线方程,结合条件PQ⊥PP1(P1为该切线上任一点),计算P点坐标,从而得到误差E。
  2. 根据权利要求1所述的一种六自由度机器人末端空间曲线轨迹的误差建模方法,其特征在于:
    步骤(1)求取关节变量
    设机器人末端操作空间任务曲线方程如下,
    Figure PCTCN2017103080-appb-100001
    在该曲线上均匀取N个路径点,通过逆解得到机械臂各关节角位移θ;
    步骤(2)针对各关节变量进行插值运算
    采用一种插值算法对关节变量进行插值计算,得到第i个关节变量与运动时间的函数关系式如下,
    θi=fi(t)
    在依据上式得到的函数曲线上每隔20ms取一个函数值,从而得到各关节的M个位移值θi,并通过正运动学模型计算得到M个相应的轨迹点Q;
    步骤(3)计算机器人末端轨迹点
    由于机器人末端位置与各关节位移量θi相关,其次也与机器人D-H连杆参 数相关,即杆件长度ai,杆件扭角αi,关节距离di及关节转角θi,因此将机器人正运动学模型表示如下,
    Pos=gsti,aii,dii)
    实际上机器人连杆参数在制造和装配的过程中会产生误差,而这种误差会极大的影响机器人末端的定位精度,已知实际的连杆参数分别为ai+Δaii+Δαi,di+Δdii+Δθi,当考虑机器人各关节的结构误差时,机器人末端位置可表示为,
    Pos(actual)=gsti,ai+Δaii+Δαi,di+Δdii+Δθi)
    其中θi是由插值运算得到的,因此机器人末端实际位置也受到了插值算法的影响;通过将各关节的M个转角θi代入上式,可得到M个相应的末端位置点Q(X,Y,Z);
    步骤(4)计算误差E
    设点P为理想空间曲线轨迹上一点,且Q点在过P点的法线上,P1点在过P点的切线上,则PQ⊥PP1,设各点空间坐标为P(x0,y0,z0)和P1(x1,y1,z1),为真实的反映末端实际轨迹与理想轨迹间的偏差,定义轨迹误差E为点P与Q间的距离大小,当E趋近于无穷小时,规划轨迹与理想轨迹重合;
    由空间曲线函数可得曲线上过P点的切线方程如下,
    Figure PCTCN2017103080-appb-100002
    取x-x0=Δx,可由上式求得y-y0和z-z0,满足以下条件,
    Figure PCTCN2017103080-appb-100003
    最终由以上方程组可求得P点位置(x0,y0,z0),则误差E定义如下,
    Figure PCTCN2017103080-appb-100004
PCT/CN2017/103080 2017-04-09 2017-09-25 一种六自由度机器人末端空间曲线轨迹的误差建模方法 WO2018188276A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/311,182 US20190176325A1 (en) 2017-04-09 2017-09-25 An Error Modeling Method For End-Effector Space-Curve Trajectory Of Six Degree-of-Freedom Robots

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710226520.8A CN107053176B (zh) 2017-04-09 2017-04-09 一种六自由度机器人末端空间曲线轨迹的误差建模方法
CN201710226520.8 2017-04-09

Publications (1)

Publication Number Publication Date
WO2018188276A1 true WO2018188276A1 (zh) 2018-10-18

Family

ID=59602117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103080 WO2018188276A1 (zh) 2017-04-09 2017-09-25 一种六自由度机器人末端空间曲线轨迹的误差建模方法

Country Status (3)

Country Link
US (1) US20190176325A1 (zh)
CN (1) CN107053176B (zh)
WO (1) WO2018188276A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111985076A (zh) * 2020-07-07 2020-11-24 河北工程大学 一种机器人运动可靠度评估方法及装置
CN113967915A (zh) * 2021-11-17 2022-01-25 天津大学 基于统计距离的机器人重复定位精度预测方法
CN113985809A (zh) * 2021-10-17 2022-01-28 哈尔滨理工大学 一种干纤维压力容器机器人缠绕工作站控制***
CN115254537A (zh) * 2022-08-18 2022-11-01 浙江工业大学 一种喷胶机器人的轨迹修正方法
CN115752321A (zh) * 2022-11-09 2023-03-07 中山大学 医疗机器人运动轨迹测量比对方法及计算机可读存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107053176B (zh) * 2017-04-09 2019-07-12 北京工业大学 一种六自由度机器人末端空间曲线轨迹的误差建模方法
WO2019127361A1 (zh) * 2017-12-29 2019-07-04 深圳中兴力维技术有限公司 线路模型实现方法、装置和计算机可读存储介质
CN108227493B (zh) * 2018-01-04 2021-10-01 上海电气集团股份有限公司 一种机器人轨迹跟踪方法
US11458626B2 (en) * 2018-02-05 2022-10-04 Canon Kabushiki Kaisha Trajectory generating method, and trajectory generating apparatus
CN109015641B (zh) * 2018-08-16 2019-12-03 居鹤华 基于轴不变量的通用6r机械臂逆解建模与解算方法
CN109397293B (zh) * 2018-11-27 2022-05-31 上海机器人产业技术研究院有限公司 一种基于移动机器人的地面水平误差建模及补偿方法
CN109968358B (zh) * 2019-03-28 2021-04-09 北京工业大学 一种考虑运动平稳性的冗余机器人全关节避障轨迹优化方法
CN110421566B (zh) * 2019-08-08 2020-10-27 华东交通大学 一种基于近似度加权平均插值法的机器人精度补偿方法
CN111123951B (zh) * 2019-12-31 2024-02-06 深圳市优必选科技股份有限公司 一种双足机器人及其轨迹跟随方法和装置
CN111300406B (zh) * 2020-01-17 2021-06-15 浙江理工大学 基于运动学分析的工业机器人轨迹精度补偿***和方法
US11691283B2 (en) * 2020-05-27 2023-07-04 Intrinsic Innovation Llc Robot control parameter interpolation
CN111618864B (zh) * 2020-07-20 2021-04-23 中国科学院自动化研究所 基于自适应神经网络的机器人模型预测控制方法
CN111859576B (zh) * 2020-07-27 2024-02-02 大连交通大学 机器人用rv减速器含间隙机构传动误差计算方法
CN112222703B (zh) * 2020-09-30 2022-11-04 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) 一种焊接机器人能耗最优轨迹规划方法
CN112549019B (zh) * 2020-11-06 2022-04-22 北京工业大学 一种基于连续动态时间规整的工业机器人轨迹准确度分析方法
CN112861317B (zh) * 2021-01-11 2022-09-30 合肥工业大学 补偿旋转轴倾斜误差的关节式坐标测量机运动学建模方法
CN113177665B (zh) * 2021-05-21 2022-10-04 福建盛海智能科技有限公司 一种提高循迹路线精度的方法及终端
CN114034290B (zh) * 2021-11-09 2023-07-04 深圳海外装饰工程有限公司 放样机器人***的放样方法
CN114521960B (zh) * 2022-02-25 2023-04-07 苏州康多机器人有限公司 一种腹腔手术机器人的全自动实时标定方法、装置及***
CN114454177A (zh) * 2022-03-15 2022-05-10 浙江工业大学 一种基于双目立体视觉的机器人末端位置补偿方法
CN115729159B (zh) * 2023-01-09 2023-03-28 中汽研汽车工业工程(天津)有限公司 一种模拟机动车行人保护的人体模型发射装置的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120391A1 (en) * 2001-12-25 2003-06-26 National Inst. Of Advanced Ind. Science And Tech. Robot operation teaching method and apparatus
CN102962549A (zh) * 2012-11-26 2013-03-13 清华大学 一种沿立面内任意曲线轨迹焊接的机器人控制方法
CN105182906A (zh) * 2015-09-24 2015-12-23 哈尔滨工业大学 基于高阶s型运动轨迹的位置与速度控制方法
CN105773620A (zh) * 2016-04-26 2016-07-20 南京工程学院 基于倍四元数的工业机器人自由曲线的轨迹规划控制方法
CN106425181A (zh) * 2016-10-24 2017-02-22 南京工业大学 一种基于线结构光的曲线焊缝焊接技术
CN107053176A (zh) * 2017-04-09 2017-08-18 北京工业大学 一种六自由度机器人末端空间曲线轨迹的误差建模方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194395B2 (ja) * 1992-05-18 2001-07-30 日本電信電話株式会社 経路関数逐次生成方法
DE102015002994A1 (de) * 2015-03-09 2016-09-15 Kuka Roboter Gmbh Verändern einer initial vorgegebenen Roboterbahn
CN105773609A (zh) * 2016-03-16 2016-07-20 南京工业大学 一种基于视觉测量及距离误差模型的机器人运动学标定方法
CN106541419B (zh) * 2016-10-13 2019-01-25 同济大学 一种机器人轨迹误差的测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120391A1 (en) * 2001-12-25 2003-06-26 National Inst. Of Advanced Ind. Science And Tech. Robot operation teaching method and apparatus
CN102962549A (zh) * 2012-11-26 2013-03-13 清华大学 一种沿立面内任意曲线轨迹焊接的机器人控制方法
CN105182906A (zh) * 2015-09-24 2015-12-23 哈尔滨工业大学 基于高阶s型运动轨迹的位置与速度控制方法
CN105773620A (zh) * 2016-04-26 2016-07-20 南京工程学院 基于倍四元数的工业机器人自由曲线的轨迹规划控制方法
CN106425181A (zh) * 2016-10-24 2017-02-22 南京工业大学 一种基于线结构光的曲线焊缝焊接技术
CN107053176A (zh) * 2017-04-09 2017-08-18 北京工业大学 一种六自由度机器人末端空间曲线轨迹的误差建模方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111985076A (zh) * 2020-07-07 2020-11-24 河北工程大学 一种机器人运动可靠度评估方法及装置
CN111985076B (zh) * 2020-07-07 2024-05-31 新疆大学 一种机器人运动可靠度评估方法及装置
CN113985809A (zh) * 2021-10-17 2022-01-28 哈尔滨理工大学 一种干纤维压力容器机器人缠绕工作站控制***
CN113967915A (zh) * 2021-11-17 2022-01-25 天津大学 基于统计距离的机器人重复定位精度预测方法
CN113967915B (zh) * 2021-11-17 2022-11-29 天津大学 基于统计距离的机器人重复定位精度预测方法
CN115254537A (zh) * 2022-08-18 2022-11-01 浙江工业大学 一种喷胶机器人的轨迹修正方法
CN115254537B (zh) * 2022-08-18 2024-03-19 浙江工业大学 一种喷胶机器人的轨迹修正方法
CN115752321A (zh) * 2022-11-09 2023-03-07 中山大学 医疗机器人运动轨迹测量比对方法及计算机可读存储介质

Also Published As

Publication number Publication date
CN107053176A (zh) 2017-08-18
US20190176325A1 (en) 2019-06-13
CN107053176B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2018188276A1 (zh) 一种六自由度机器人末端空间曲线轨迹的误差建模方法
CN109848983B (zh) 一种高顺应性人引导机器人协同作业的方法
CN108297101B (zh) 多关节臂串联机器人末端位姿误差检测和动态补偿方法
CN108908327B (zh) 一种机器人定位误差分级补偿方法
CN105773622B (zh) 一种基于iekf的工业机器人绝对精度校准方法
CN110202575B (zh) 一种用于工业测量的机器人目标轨迹精度补偿方法
WO2021135405A1 (zh) 一种面向机械臂的无运动学模型轨迹跟踪方法及一种机械臂***
CN109895094B (zh) 一种工业机器人测量轨迹定位误差分析方法及***
CN111300406B (zh) 基于运动学分析的工业机器人轨迹精度补偿***和方法
CN108621162A (zh) 一种机械臂运动规划方法
JPS59107884A (ja) ロボツトの制御方式
CN107160401B (zh) 一种解决冗余度机械臂关节角偏移问题的方法
CN111975771A (zh) 一种基于偏差重定义神经网络的机械臂运动规划方法
CN112318498B (zh) 一种考虑参数耦合的工业机器人标定方法
CN108214476A (zh) 基于改进型径向基神经网络的机械臂绝对定位精度标定方法
CN110722562B (zh) 一种用于机器人参数辨识的空间雅克比矩阵构造方法
CN114147726B (zh) 一种几何误差与非几何误差相结合的机器人标定方法
CN108062071B (zh) 参数曲线轨迹伺服轮廓误差的实时测定方法
CN107443388A (zh) 一种基于泛克里金的机械臂绝对定位误差估计方法
Li et al. Real-time trajectory position error compensation technology of industrial robot
CN110802600A (zh) 一种六自由度关节型机器人的奇异性处理方法
Gao et al. Time-optimal trajectory planning of industrial robots based on particle swarm optimization
CN113342003A (zh) 基于开闭环pid型迭代学习的机器人轨迹跟踪控制方法
CN114800529A (zh) 一种基于定长记忆窗口增量学习和增量模型重构的工业机器人定位误差在线补偿方法
CN114833834A (zh) 一种基于多源误差建模的工业机器人精度补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905760

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17905760

Country of ref document: EP

Kind code of ref document: A1