WO2018181562A1 - コレステリック液晶樹脂微粒子の製造方法 - Google Patents

コレステリック液晶樹脂微粒子の製造方法 Download PDF

Info

Publication number
WO2018181562A1
WO2018181562A1 PCT/JP2018/012951 JP2018012951W WO2018181562A1 WO 2018181562 A1 WO2018181562 A1 WO 2018181562A1 JP 2018012951 W JP2018012951 W JP 2018012951W WO 2018181562 A1 WO2018181562 A1 WO 2018181562A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
cholesteric liquid
carbon atoms
fine particles
Prior art date
Application number
PCT/JP2018/012951
Other languages
English (en)
French (fr)
Inventor
佑輔 小野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP18777858.4A priority Critical patent/EP3604347A4/en
Publication of WO2018181562A1 publication Critical patent/WO2018181562A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • C09K19/3861Poly(meth)acrylate derivatives containing condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used

Definitions

  • This disclosure relates to a method for producing cholesteric liquid crystal resin fine particles.
  • a liquid crystal resin having cholesteric regularity (hereinafter sometimes referred to as “cholesteric liquid crystal resin”) reflects circularly polarized light in a rotational direction that coincides with the spiral rotational direction of the cholesteric regularity (hereinafter referred to as “selected”). "Reflective characteristics").
  • the wavelength band showing this selective reflection characteristic depends on the period of cholesteric regularity. By widening the distribution width of the period of cholesteric regularity, the width of the wavelength band showing the selective reflection characteristics (hereinafter referred to as “selective reflection band”) can be increased.
  • Patent Document 1 discloses that the cholesteric liquid crystal having an ethylenically unsaturated double bond is radially aligned from the center, and the inter-helix distance is set so that the average particle diameter of the polymerized particles is 5 micrometers or less.
  • a method for producing polymer liquid crystal spherical fine particles comprising a step of adjusting, and a step of photopolymerizing the liquid crystal compound after the alignment / adjustment to fix the distance between the spirals with a hue to be developed.
  • the polymer liquid crystal spherical fine particles can be colored by selective reflection in all directions from its shape, the selective reflection band is narrow, and the color development intensity is high.
  • Patent Document 2 discloses an identification medium including a light reflection layer that reflects one of right circularly polarized light and left circularly polarized light and transmits other circularly polarized light in at least a part of the visible light region.
  • the light reflecting layer includes flakes that can reflect one of right circularly polarized light and left circularly polarized light and transmit the other circularly polarized light in at least a part of the visible light region, and the flakes have cholesteric regularity. There is a description that it is a crushed product of the resin layer.
  • Patent Document 3 includes a polymer bead comprising a linear or cross-linked side-chain cholesteric liquid crystal polymer having a helical twisted structure and having an average diameter of 1 ⁇ m to 20 ⁇ m. It is disclosed. This document describes that the polymer beads have selective reflection properties and that the polymer beads can be obtained by suspension polymerization of droplets containing a polymerizable chiral mesogenic liquid crystal material.
  • Patent Document 1 describes that an aqueous polyvinyl alcohol solution is used as a dispersant in the production of polymer liquid crystal spherical fine particles.
  • Patent Document 3 describes the use of an aqueous gum arabic solution as a dispersant in the production of polymer beads.
  • these organic polymer dispersants deteriorate in operability due to thickening, become unstable at high temperatures, and are difficult to remove easily and completely in the process of removing the dispersant. For these reasons, it is not suitable for a method for producing liquid crystal fine particles.
  • Patent Document 2 describes using flakes of resin crushed material, but it is difficult to finely control the particle size and particle size distribution of such crushed material.
  • An object of the present disclosure is to provide a method for producing cholesteric liquid crystal resin fine particles.
  • the present inventor has paid attention to the use of an inorganic colloid in a method for obtaining resin fine particles by suspension polymerization. From this knowledge, the present inventor has found that the physical properties of the obtained liquid crystal resin fine particles can be controlled to be uniform by using a different dispersant.
  • the production method of the present disclosure is a method of producing cholesteric liquid crystal resin fine particles, wherein the volume average particle diameter of the cholesteric liquid crystal resin fine particles is in the range of 1 ⁇ m to 30 ⁇ m, and the cholesteric liquid crystal compound, the inorganic colloid, and the aqueous It is a method for producing cholesteric liquid crystal resin fine particles, comprising a step of atomizing droplets containing the cholesteric liquid crystal compound by shearing a cholesteric liquid crystal mixture containing a medium with a disperser.
  • the cholesteric liquid crystal resin is heated by raising the temperature of the cholesteric liquid crystal mixture to the color development temperature region of the cholesteric liquid crystal compound and performing at least one of photopolymerization and thermal polymerization. You may further have the superposition
  • the cholesteric liquid crystal mixture may be a mixture of the cholesteric liquid crystal composition containing the cholesteric liquid crystal compound and an organic solvent, the inorganic colloid, and the aqueous medium.
  • the mass of the cholesteric liquid crystal compound when the total mass of the inorganic colloid and the aqueous medium is 100 parts by mass, the mass of the cholesteric liquid crystal compound may be in the range of 5 parts by mass to 60 parts by mass.
  • the present disclosure may further include a stripping step of removing the organic solvent from the cholesteric liquid crystal mixture by a stripping treatment after the atomization step and before the polymerization step.
  • a step of removing the inorganic colloid from the polymerization reaction mixture containing the cholesteric liquid crystal resin may be further included after the polymerization step.
  • cholesteric liquid crystal resin fine particles are easily and efficiently provided by atomizing droplets containing a cholesteric liquid crystal compound using an inorganic colloid.
  • the production method of the present disclosure is a method of producing cholesteric liquid crystal resin fine particles, wherein the cholesteric liquid crystal resin fine particles have a volume average particle size in the range of 1 ⁇ m to 30 ⁇ m, and the cholesteric liquid crystal compound, the inorganic colloid, and the aqueous medium
  • a method for producing cholesteric liquid crystal resin fine particles comprising a step of atomizing droplets containing the cholesteric liquid crystal compound by subjecting a cholesteric liquid crystal mixture containing spheroid to a shearing process using a disperser.
  • the cholesteric liquid crystal resin fine particles obtained by the present disclosure can be manufactured by a wet method in which particles are formed in a liquid such as an aqueous medium.
  • an inorganic colloid is used as a dispersant, and preferably a colloid of a poorly water-soluble metal compound that is soluble in an acid.
  • a removal step of removing the inorganic colloid from the polymerization reaction mixture a mixture containing cholesteric liquid crystal resin fine particles obtained after the polymerization step described later.
  • acid washing is performed by adding an acid to the polymerization reaction mixture to dissolve the inorganic colloid.
  • acid cleaning is performed by adjusting the pH of the polymerization reaction mixture to less than 6.5 by addition of acid.
  • this manufacturing method has the atomization process
  • the physical properties of the fine particles will be described.
  • a cholesteric liquid crystal composition is prepared.
  • the cholesteric liquid crystal composition is a composition containing a cholesteric liquid crystal compound and, if necessary, a polymerization initiator and an organic solvent.
  • Cholesteric liquid crystal compound examples include a polymerizable liquid crystal compound (iw) described below, a compound (i) described below, and other compounds described below. These will be described sequentially.
  • the polymerizable liquid crystal compound (iw) is a compound represented by the following formula (Iw).
  • the polymerizable liquid crystal compound (iw) is neither a polymerizable compound (iiw) described later nor a polymerizable chiral compound.
  • Y 1w to Y 6w are each independently a single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, — —O—C ( ⁇ O) —O—, —NR 1w —C ( ⁇ O) —, —C ( ⁇ O) —NR 1w —, —O—C ( ⁇ O) —NR 1w —, —NR 1w — It represents C ( ⁇ O) —O—, —NR 1w —C ( ⁇ O) —NR 1w —, —O—NR 1w —, or —NR 1w —O—.
  • R 1w represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 1w is preferably a hydrogen atom or a methyl group.
  • Particularly preferred as a combination of Y is Y 1w and Y 3w are —C ( ⁇ O) —O—, and Y 4w and Y 4w in terms of ease of synthesis and better expression of the desired effect of the present disclosure.
  • Y 6w is —O—C ( ⁇ O) — and Y 2w and Y 5w are —O—, or Y 1w to Y 3w are —C ( ⁇ O) —O—, Y 4w A combination in which Y 6w is —O—C ( ⁇ O) —.
  • G 1w and G 2w are each independently a divalent aliphatic group having 1 to 20 carbon atoms, preferably a divalent aliphatic group having 1 to 12 carbon atoms, which may have a substituent. It is.
  • the divalent aliphatic group having 1 to 20 carbon atoms of G 1w and G 2w is preferably a chain aliphatic group such as an alkylene group having 1 to 20 carbon atoms or an alkenylene group having 2 to 20 carbon atoms. From the viewpoint of better expressing the desired effect of the present disclosure, an alkylene group such as an ethylene group, a butylene group, a hexylene group, and an octylene group is preferable.
  • Examples of the substituent of the aliphatic group of G 1w and G 2w include a halogen atom and an alkoxy group having 1 to 6 carbon atoms.
  • the halogen atom is preferably a fluorine atom
  • the alkoxy group is preferably a methoxy group or an ethoxy group.
  • the aliphatic group includes —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, — NR 2w —C ( ⁇ O) —, —C ( ⁇ O) —NR 2w —, —NR 2w —, or —C ( ⁇ O) — may be present (provided that —O— and —S -Except when two or more intervening each other.)
  • R 2w represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 2w is preferably a hydrogen atom or a methyl group.
  • Z 1w and Z 2w each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • Specific examples of the alkenyl group having 2 to 10 carbon atoms of Z 1w and Z 2w include CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ CH—CH 2 —, CH 3 —CH ⁇ .
  • the alkenyl group preferably has 2 to 6 carbon atoms.
  • a halogen atom which is a substituent of the alkenyl group of Z1w and Z2w .
  • a chlorine atom is preferable.
  • Examples of the substituent when X 1w to X 8w are alkyl groups having a substituent include a halogen atom, a hydroxyl group, a methyl group, and an ethyl group.
  • R 3w and R 4w represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent, and in the case of an alkyl group, the alkyl group includes —O—, —S —, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, —NR 5w —C ( ⁇ O) —, —C ( ⁇ O ) —NR 5w —, —NR 5w —, or —C ( ⁇ O) — may be present (except when two or more of —O— and —S— are present adjacent to each other).
  • R 5w represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 3w and R 4w are alkyl groups having a substituent include a halogen atom, a hydroxyl group, a methyl group, and an ethyl group.
  • X 1w to X 8w are all hydrogen atoms
  • (2) X 1w to X 5w and X 7w are all hydrogen atoms
  • X 6w and X 8w is -OCH 3, -OCH 2 CH 3, or whether it is -CH 3
  • (4) X 1w to X 4w And X 6w to X 8w are all hydrogen atoms
  • X 5w is —C ( ⁇ O) —O—R 3w , —OCH 3 , —OCH 2 CH 3 , —CH 3 , —CH 2 CH 3
  • Y 2w or Y 5w is —C ( ⁇ O) —O—
  • G 1w or G 2w is a hexylene group
  • Y 1w or Y 6w is —O—C ( ⁇ O) —
  • Z 1w or Z 2w is Corresponds to vinyl group.
  • Y 2w or Y 5w corresponds to —C ( ⁇ O) —O—
  • Z 1w or Z 2w corresponds to a vinyl group.
  • a 1w and A 2w each independently represent a divalent organic group A having 1 to 30 carbon atoms.
  • the carbon number of the organic group A is preferably 6-20. Although it does not restrict
  • the polymerizable liquid crystal compound (iw) has a ⁇ n value of preferably 0.05 or more, more preferably 0.20 or more. By having such a high ⁇ n value, it is possible to provide a droplet cured product having high optical performance (for example, selective reflection function).
  • the upper limit of (DELTA) n is not specifically limited, For example, it can be set to 0.40, Preferably it is 0.35.
  • the polymerizable liquid crystal compound (iw) can be produced based on a known method described in a document such as WO2009 / 041512.
  • Polymerizable liquid crystal compound that can be used in combination with polymerizable liquid crystal compound (iw) may be used in combination with other polymerizable liquid crystal compounds.
  • Examples of the polymerizable liquid crystal compound that can be used in combination with the polymerizable liquid crystal compound (iw) include JP-A-11-130729, JP-A-8-104870, JP-A-2005-309255, and JP-A-2005-263789. Disclosed in Japanese Patent Laid-Open No. 2002-533742, Japanese Patent Laid-Open No. 2002-308832, Japanese Patent Laid-Open No. 2002-265421, Japanese Patent Laid-Open No. 62-070406, and Japanese Patent Laid-Open No. 11-100555. And known polymerizable liquid crystal compounds.
  • the above-described polymerizable liquid crystal compound (iw) and other polymerizable liquid crystal compounds may be used alone or in combination of two or more at any ratio.
  • the content of the polymerizable liquid crystal compound other than the polymerizable liquid crystal compound (iw) is 50% by mass in the total amount of the polymerizable liquid crystal compound. The following is preferable, and 30% by mass or less is more preferable.
  • the cholesteric liquid crystal composition may contain a polymerizable compound other than the polymerizable liquid crystal compound.
  • a polymerizable compound other than the polymerizable liquid crystal compound Preferable examples of such polymerizable compounds include achiral compounds represented by the following formula (IIw). Hereinafter, this compound may be referred to as a polymerizable compound (iiw).
  • Z 3w represents a hydrogen atom, an alkyl group having 1 to 2 carbon atoms which may have a substituent, a halogen atom, a hydroxyl group, a carboxyl group, an amino group, and a cyano group; Represents a group selected from the group consisting of A halogen atom can be mentioned as a substituent in case Z3w is an alkyl group which has a substituent.
  • Z 3w is preferably a cyano group.
  • MG represents 4,4′-biphenylene group, 4,4′-bicyclohexylene group, 2,6-naphthylene group, and 4,4′-benzaldehyde azine group (—C 6 H 4 —CH— ⁇ N—N). ⁇ CH—C 6 H 4 —, where —C 6 H 4 — represents a p-phenylene group.
  • MG is preferably a 4,4′-biphenylene group.
  • n 1w represents an integer of 0 to 6, preferably 0 to 2.
  • Y 11w represents a single bond, —O—, —S—, —CO—, —CS—, —OCO—, —CH 2 —, —OCH 2 —, —NHCO—, —OCOO—, —CH 2 COO—. And a group selected from the group consisting of —CH 2 OCO—. Y 11w is preferably —OCO—.
  • Z 4w represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom. Z 4w is preferably CH 2 ⁇ CH—.
  • ⁇ n of the polymerizable compound (iiw) is preferably 0.18 or more, more preferably 0.22 or more.
  • ⁇ n as a cholesteric liquid crystal material can be improved, and a cured liquid droplet having a broadband selective reflection function can be produced.
  • the upper limit of (DELTA) n is not specifically limited, For example, it can be 0.35, Preferably it can be 0.30.
  • the production method of the polymerizable compound (iiw) is not particularly limited, and may be synthesized by methods known in the art, for example, methods described in JP-A Nos. 62-70406 and 11-10055. Can do.
  • the cholesteric liquid crystal composition may further contain a polymerizable chiral compound.
  • a polymerizable chiral compound a compound having a chiral carbon atom in the molecule and capable of polymerizing with the polymerizable liquid crystal compound and not disturbing the orientation of the polymerizable liquid crystal compound can be appropriately selected and used.
  • the polymerizable liquid crystal compound (iw) described above can exhibit a cholesteric phase by mixing with the polymerizable chiral compound.
  • “polymerization” means a chemical reaction in a broad sense including a crosslinking reaction in addition to a normal polymerization reaction.
  • the polymerizable chiral compound can be used singly or in combination of two or more.
  • Examples of the polymerizable chiral compound include known compounds as described in JP-A-11-193287 and JP-A-2003-13787 in addition to commercially available products (for example, “LC756” manufactured by BASF). Things.
  • Compound (i) is a compound having liquid crystallinity and represented by the following formula (I).
  • Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, An n-hexyl group may be mentioned.
  • R 1 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 to Y 8 are each independently a chemical single bond, —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, or , —O—C ( ⁇ O) —O— is preferable.
  • G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
  • the divalent aliphatic group having 1 to 20 carbon atoms include a divalent aliphatic group having a chain structure such as an alkylene group having 1 to 20 carbon atoms and an alkenylene group having 2 to 20 carbon atoms; And divalent aliphatic groups such as a cycloalkanediyl group having 3 to 20 carbon atoms, a cycloalkenediyl group having 4 to 20 carbon atoms, and a divalent alicyclic fused ring group having 10 to 30 carbon atoms.
  • Examples of the substituent for the divalent aliphatic group represented by G 1 and G 2 include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, n-propoxy group, isopropoxy group
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
  • methoxy group, ethoxy group, n-propoxy group isopropoxy group
  • An alkoxy group having 1 to 6 carbon atoms such as an n-butoxy group, a sec-butoxy group, a t-butoxy group, an n-pentyloxy group and an n-hexyloxy group.
  • a fluorine atom, a methoxy group, and an ethoxy group are preferable.
  • the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
  • ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good. However, the case where two or more of —O— or —S— are adjacent to each other is excluded.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and is preferably a hydrogen atom or a methyl group.
  • the group intervening in the aliphatic group is preferably —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —C ( ⁇ O) —.
  • G 1 and G 2 are each independently an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or the like from the viewpoint of better expressing the desired effect of the present disclosure.
  • a divalent aliphatic group having a chain structure is preferable.
  • Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • the alkenyl group preferably has 2 to 6 carbon atoms.
  • Examples of the halogen atom that is a substituent of the alkenyl group of Z 1 and Z 2 include a fluorine atom, a chlorine atom, a bromine atom, and the like, and a chlorine atom is preferable.
  • alkenyl group having 2 to 10 carbon atoms of Z 1 and Z 2 include CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ CH—CH 2 —, CH 3 —CH ⁇ .
  • a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • “Aromatic ring” means a cyclic structure having a broad sense of aromaticity according to the Huckle rule, that is, a cyclic conjugated structure having (4n + 2) ⁇ electrons, and sulfur, oxygen, typified by thiophene, furan, benzothiazole, etc. It means a cyclic structure in which a lone electron pair of a hetero atom such as nitrogen is involved in the ⁇ -electron system and exhibits aromaticity.
  • the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x may have a plurality of aromatic rings. And having both an aromatic hydrocarbon ring and an aromatic heterocycle.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring.
  • aromatic heterocyclic ring examples include monocyclic aromatic heterocyclic rings such as a pyrrole ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a pyrazole ring, an imidazole ring, an oxazole ring, and a thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzimidazole ring, benzopyrazole ring, benzofuran ring, benzothiophene ring, thiazolopyridine ring, oxazolopyridine ring, thiazolopyrazine ring,
  • the aromatic ring of A x may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and carbon number 2 such as vinyl group and allyl group.
  • R 5 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms
  • R 6 is a carbon atom similar to R 4 described later. It represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • the aromatic ring within A x may have a plurality of identical or different substituents, bonded two adjacent substituents together may form a ring.
  • the ring formed may be a monocycle, a condensed polycycle, an unsaturated ring, or a saturated ring.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later). .
  • Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle of A x include, for example, a benzene ring group, a naphthalene ring group, an anthracene Aromatic hydrocarbon ring groups such as ring groups; pyrrole ring groups, furan ring groups, thiophene ring groups, pyridine ring groups, pyridazine ring groups, pyrimidine ring groups, pyrazine ring groups, pyrazole ring groups, imidazole ring groups, oxazole ring groups , Thiazole ring group, benzothiazole ring group, benzoxazole ring group, quinoline ring group, phthalazine ring group, benzimidazole ring group, benzopyrazole ring group, benzofuran ring group, benzothiophene ring group, thia
  • Ax is not limited to the following.
  • “-” represents a bond extending from any position of the ring (the same applies hereinafter).
  • E represents NR 6a , an oxygen atom or a sulfur atom.
  • R 6a represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • X and Y each independently represent NR 7 , oxygen atom, sulfur atom, —SO— or —SO 2 — (provided that oxygen atom, sulfur atom, —SO—, —SO 2) 2- except when adjacent to each other.)
  • R 7 represents the same hydrogen atom as R 6a ; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • X and Y each independently represent the same meaning as described above.
  • Z represents NR 7 , an oxygen atom, a sulfur atom, —SO—, or —SO 2.
  • - represents oxygen atom, sulfur atom, -SO-, -SO 2- are adjacent to each other.
  • D an alkyl group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring
  • an aromatic hydrocarbon ring group having 6 to 30 carbon atoms an aromatic heterocyclic group having 4 to 30 carbon atoms, or a combination of 4 to 30 carbon atoms including a combination of an aromatic hydrocarbon ring and a heterocyclic ring.
  • 30 groups are preferred, and any of the groups shown below is more preferred.
  • a x is more preferably any of the groups shown below.
  • Ring within A x may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and carbon number 2 such as vinyl group and allyl group.
  • substituent a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy having 1
  • the ring of A x may have a plurality of the same or different substituents, and two adjacent substituents may be bonded together to form a ring.
  • the ring formed may be a single ring or a condensed polycycle.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later).
  • a y is a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3 , —SO 2
  • R 3 has an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent. Or a cycloalkyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms.
  • R 4 represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • R 9 is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon. It represents a cycloalkyl group having 3 to 12 carbon atoms or an aromatic group having 5 to 20 carbon atoms which may have a substituent.
  • alkyl group having 1 to 20 carbon atoms alkyl group substituents to 1 carbon atoms which may have a 20, for example, a methyl group, an ethyl group, n- propyl group, an isopropyl radical, n -Butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n -Heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl
  • the alkenyl group having 2 to 20 carbon atoms alkenyl group substituents to 2 carbon atoms which may have a 20, for example, vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group Pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icocenyl group.
  • the carbon number of the alkenyl group having 2 to 20 carbon atoms which may have a substituent is preferably 2 to 12.
  • the cycloalkyl group having 3 to 12 carbon atoms a cycloalkyl group which has 1-3 carbon atoms which may 12 have a substituent, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, A cyclooctyl group is mentioned.
  • alkynyl group having 2 to 20 carbon atoms alkynyl group substituents to 2 carbon atoms which may have a 20, for example, ethynyl group, propynyl group, 2-propynyl group (propargyl group), Butynyl, 2-butynyl, 3-butynyl, pentynyl, 2-pentynyl, hexynyl, 5-hexynyl, heptynyl, octynyl, 2-octynyl, nonanyl, decanyl, 7-decanyl Is mentioned.
  • Examples of the substituent of the alkyl group having 1 to 20 carbon atoms that may have a substituent and the alkenyl group having 2 to 20 carbon atoms that may have a substituent of A y include, for example, a fluorine atom Halogen atom such as chlorine atom; cyano group; substituted amino group such as dimethylamino group; alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group, butoxy group; methoxymethoxy group, methoxyethoxy group An alkoxy group having 1 to 12 carbon atoms substituted by an alkoxy group having 1 to 12 carbon atoms, such as nitro group; an aryl group such as phenyl group or naphthyl group; a carbon number such as cyclopropyl group, cyclopentyl group, cyclohexyl group, etc.
  • a fluorine atom Halogen atom such as chlorine atom
  • a fluoroalkoxy group having 1 to 12 carbon atoms in which at least one is substituted with a fluorine atom, such as a group, —CH 2 CF 3 ; benzofuryl group; benzopyranyl group; benzodioxolyl group; benzodioxanyl group; ( O)
  • R 7a and R 10 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a 6 to 12 carbon atoms.
  • R 8a represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group, similar to R 4 described above.
  • Examples of the substituent of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent of A y include, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a substituted amino group such as a dimethylamino group Groups: alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, and propyl groups; alkoxy groups having 1 to 6 carbon atoms such as methoxy, ethoxy, and isopropoxy groups; nitro groups; phenyl groups, naphthyl groups, and the like A cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group; —C ( ⁇ O) —R 7a ; —C ( ⁇ O) —OR 7a ; —SO 2 R 8a A hydroxy
  • Examples of the substituent of the alkynyl group having 2 to 20 carbon atoms that may have a substituent of A y include, for example, an alkyl group having 1 to 20 carbon atoms that may have a substituent, and a substituent. Examples thereof include the same substituents as those of the alkenyl group having 2 to 20 carbon atoms which may have a group.
  • R 3 may have a C 1-20 alkyl group which may have a substituent, or may have a substituent. It represents a good alkenyl group having 2 to 20 carbon atoms, an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon ring group having 5 to 12 carbon atoms. Specific examples thereof include the alkyl group having 1 to 20 carbon atoms which may have a substituent, the alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent of the above Ay.
  • cycloalkyl group which has carbon atoms 3 be ⁇ 12 have a group; and, the same as the number of carbon atoms of the aromatic hydrocarbon ring group described in the a x is given as an example of from 5 to 12 Things.
  • R 4 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group To express.
  • Specific examples of the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in R 4 include the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in the above Ay . The thing similar to what was mentioned as an example is mentioned.
  • R 9 has an optionally substituted alkyl group having 1 to 20 carbon atoms and a substituent.
  • Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring for A y are the same as those described for A x above. Is mentioned.
  • a hydrogen atom an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent
  • a y includes a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • a hydrogen ring group, an optionally substituted aromatic heterocyclic group having 3 to 9 carbon atoms, an optionally substituted aromatic hydrocarbon ring and a combination of heterocyclic rings and 3 to 3 carbon atoms The group represented by the group 9, —C ( ⁇ O) —R 3 , —SO 2 —R 4 is more preferable.
  • R 3 and R 4 represent the same meaning as described above.
  • an alkyl group having 1 to 20 carbon atoms which may have a substituent an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and an optionally substituted carbon
  • substituent of the alkynyl group having 2 to 20 carbon atoms include a halogen atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms, phenyl Group, cyclohexyl group, C2-C12 cyclic ether group, C6-C14 aryloxy group, hydroxyl group, benzodioxanyl group, phenylsulfonyl group, 4-methylphenylsulfonyl group, benzoyl group, -SR 10 Is preferred.
  • R 10 represents the same meaning as described above.
  • a y has a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent, an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent, and a substituent.
  • substituent for the group having 3 to 9 carbon atoms which may include an aromatic heterocyclic group having 3 to 9 carbon atoms, and a combination of an aromatic hydrocarbon ring and a heterocyclic ring which may have a substituent, include fluorine An atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a cyano group are preferable.
  • a x and A y may be combined to form a ring.
  • a ring examples include an unsaturated heterocyclic ring having 4 to 30 carbon atoms and an unsaturated carbocyclic ring having 6 to 30 carbon atoms, which may have a substituent.
  • the unsaturated heterocyclic ring having 4 to 30 carbon atoms and the unsaturated carbocyclic ring having 6 to 30 carbon atoms are not particularly limited, and may or may not have aromaticity.
  • Examples of the ring formed by combining A x and A y include the rings shown below.
  • the ring shown below is the one in the formula (I).
  • the total number of ⁇ electrons contained in A x and A y is preferably 4 or more and 24 or less, more preferably 6 or more and 20 or less, from the viewpoint of better expressing the desired effect of the present disclosure. More preferably, it is 6 or more and 18 or less.
  • a x and A y include the following combination ( ⁇ ) and combination ( ⁇ ).
  • a x is a group containing 4 to 30 carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, or a combination of an aromatic hydrocarbon ring and a heterocyclic ring
  • a y is a hydrogen atom
  • a cycloalkyl group having 3 to 8 carbon atoms (a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms) as a substituent
  • An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have (halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, cyano group) as a substituent
  • optionally having an aromatic heterocyclic group having 3 to 9 carbon atoms (a halogen
  • 3 to 9 carbon atoms often containing a combination of aromatic hydrocarbon rings and heterocyclic rings A group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 1 to 20 carbon atoms which may have a substituent, or a substituent.
  • An alkynyl group having 2 to 20 carbon atoms, and the substituent is a halogen atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms Group, phenyl group, cyclohexyl group, cyclic ether group having 2 to 12 carbon atoms, aryloxy group having 6 to 14 carbon atoms, hydroxyl group, benzodioxanyl group, benzenesulfonyl group, benzoyl group and —SR 10 A combination.
  • R 10 represents the same meaning as described above.
  • Ax and A y include the following combination ( ⁇ ).
  • Ax is any of the groups having the following structure, and Ay is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, a (halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, a carbon number
  • An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent of an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms) (halogen atom, 1 to 6 carbon atoms)
  • An aromatic heterocyclic group having 3 to 9 carbon atoms which may have as a substituent, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group (halogen atom, alkyl group having 1 to 6 carbon atoms)
  • An alkyl group having 1 to 20 carbon atoms or a substituent May have an alkyl group having 1 to 20 carbon atoms or a substituent.
  • R 10 represents the same meaning as described above.
  • a particularly preferred combination of A x and A y includes the following combination ( ⁇ ).
  • a x is any of the groups having the following structure, and A y is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, a (halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon An aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent having an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms) (halogen atom, 1 to An aromatic heterocyclic group having 3 to 9 carbon atoms which may have a substituent such as an alkyl group having 6 alkyl groups, an alkoxy group having 1 to 6 carbon atoms, or a cyano group) (halogen atom, alkyl having 1 to 6 carbon atoms) Group, an al
  • It may have an alkyl group having 1 to 20 carbon atoms or a substituent.
  • X represents the same meaning as described above.
  • R 10 represents the same meaning as described above.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • the trivalent aromatic group may be a trivalent carbocyclic aromatic group or a trivalent heterocyclic aromatic group. From the viewpoint of better expressing the desired effect of the present disclosure, a trivalent carbocyclic aromatic group is preferable, a trivalent benzene ring group or a trivalent naphthalene ring group is more preferable, and a trivalent represented by the following formula: The benzene ring group or trivalent naphthalene ring group is more preferable.
  • the substituents Y 1 and Y 2 are described for convenience in order to clarify the bonding state (Y 1 and Y 2 represent the same meaning as described above, and the same applies hereinafter). .
  • a 1 groups represented by the following formulas (A11) to (A25) are more preferable.
  • A13 groups represented by the following formulas (A11), (A13), (A15), (A19), and (A23) are particularly preferred.
  • Examples of the substituent that the trivalent aromatic group of A 1 may have include the same groups as those described as the substituent of the aromatic ring of A x .
  • a 1 preferably has no substituent.
  • a 2 and A 3 each independently represent a C 3-30 divalent alicyclic hydrocarbon group which may have a substituent.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cycloalkanediyl group having 3 to 30 carbon atoms and a divalent alicyclic condensed ring group having 10 to 30 carbon atoms.
  • Examples of the cycloalkanediyl group having 3 to 30 carbon atoms include cyclopropanediyl group; cyclobutanediyl group such as cyclobutane-1,2-diyl group and cyclobutane-1,3-diyl group; cyclopentane-1,2- Cyclopentanediyl groups such as diyl groups, cyclopentane-1,3-diyl groups; cyclohexanediyl groups such as cyclohexane-1,2-diyl groups, cyclohexane-1,3-diyl groups, cyclohexane-1,4-diyl groups Groups: cycloheptane-1,2-diyl group, cycloheptane-1,3-diyl group, cycloheptanediyl group such as cycloheptane-1,4-diyl group; cyclo
  • Tandiyl group cyclodecane-1,2-diyl group, cyclodecane-1,3-diyl group, cyclodecane-1,4-diyl group, cyclodecane-1,5-diyl group, etc .
  • cyclodecane-1 Cyclododecanediyl groups such as 2-diyl, cyclododecane-1,3-diyl, cyclododecane-1,4-diyl, cyclododecane-1,5-diyl
  • Examples of the divalent alicyclic fused ring group having 10 to 30 carbon atoms include a decalindiyl group such as a decalin-2,5-diyl group and a decalin-2,7-diyl group; an adamantane-1,2-diyl group An adamantanediyl group such as an adamantane-1,3-diyl group; a bicyclo [2.2.1] heptane-2,3-diyl group, a bicyclo [2.2.1] heptane-2,5-diyl group And bicyclo [2.2.1] heptanediyl group such as bicyclo [2.2.1] heptane-2,6-diyl group.
  • a decalindiyl group such as a decalin-2,5-diyl group and a decalin-2,7-diyl group
  • These divalent alicyclic hydrocarbon groups may have a substituent at any position.
  • substituents include the same as those described as substituents of the aromatic ring of the A x.
  • a 2 and A 3 a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms is preferable, a cycloalkanediyl group having 3 to 12 carbon atoms is more preferable, and the following formula (A31) to A group represented by (A34) is more preferred, and a group represented by the following formula (A32) is particularly preferred.
  • the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms is based on a difference in configuration of carbon atoms bonded to Y 1 and Y 3 (or Y 2 and Y 4 ).
  • Stereoisomers can exist.
  • a cis-type isomer (A32a) and a trans-type isomer (A32b) may exist.
  • the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms may be cis, trans, or a mixture of cis and trans isomers.
  • the trans-type or cis-type is preferable because the orientation is good, and the trans-type is more preferable.
  • a 4 and A 5 each independently represents a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • the aromatic groups of A 4 and A 5 may be monocyclic or polycyclic.
  • Preferable specific examples of A 4 and A 5 include the following.
  • the divalent aromatic groups of A 4 and A 5 may have a substituent at any position.
  • the substituent include a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, and a —C ( ⁇ O) —OR 8b group; Can be mentioned.
  • R 8b is an alkyl group having 1 to 6 carbon atoms.
  • a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group are preferable.
  • the halogen atom is more preferably a fluorine atom
  • the alkyl group having 1 to 6 carbon atoms is more preferably a methyl group, an ethyl group or a propyl group
  • the alkoxy group is more preferably a methoxy group or an ethoxy group.
  • a 4 and A 5 may each independently have a substituent, and the following formulas (A41) and (A42) Or the group represented by (A43) is more preferable, and the group represented by the formula (A41) which may have a substituent is particularly preferable.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • the alkyl group having 1 to 6 carbon atoms which may have a substituent among the alkyl groups having 1 to 20 carbon atoms which may have a substituent described in the above Ay, 1 to 6 carbon atoms may be used. 6 are listed.
  • Q 1 is preferably a hydrogen atom and an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom and a methyl group.
  • n independently represents 0 or 1. Among these, m is preferably 1.
  • Compound (i) can be produced, for example, by a reaction between a hydrazine compound and a carbonyl compound described in International Publication No. 2012/147904.
  • the cholesteric liquid crystal composition may contain a polymerization initiator from the viewpoint of efficiently performing a polymerization reaction.
  • a polymerization initiator a photopolymerization initiator or a thermal polymerization initiator can be used.
  • photopolymerization initiator As the photopolymerization initiator, an appropriate one can be selected and used according to the type of polymerizable group present in the polymerizable liquid crystal compound used together. For example, a radical polymerization initiator is used if the polymerizable group is radical polymerizable, an anionic polymerization initiator is used if it is an anion polymerizable group, and a cationic polymerization initiator is used if it is a cationic polymerizable group. sell.
  • a radical polymerization initiator is used if the polymerizable group is radical polymerizable
  • an anionic polymerization initiator is used if it is an anion polymerizable group
  • a cationic polymerization initiator is used if it is a cationic polymerizable group. sell.
  • photopolymerization initiator known compounds that generate radicals or acids by ultraviolet rays or visible rays can be used. Specifically, benzoin, benzylmethyl ketal, benzophenone, biacetyl, acetophenone, Michler's ketone, benzyl, benzylisobutyl ether, tetramethylthiuram mono (di) sulfide, 2,2-azobisisobutyronitrile, 2,2-azobis -2,4-dimethylvaleronitrile, benzoyl peroxide, di-tert-butyl peroxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- (4 -Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-diethylthi
  • photo radical polymerization initiator examples include trade name Irgacure 907, trade name Irgacure 184, trade name Irgacure 369, trade name Irgacure 651, trade name Irgacure OXE02 and the like manufactured by Ciba Specialty Chemicals.
  • anionic polymerization initiator examples include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene, and pyrene; polyfunctional initiators such as dilithium salts and trilithium salts; and the like.
  • Examples of the cationic polymerization initiator include proton acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis acids such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride.
  • a cholesteric liquid crystal material includes an ultraviolet absorber, Functional compounds such as infrared absorbers and antioxidants can be contained.
  • the blending ratio of the photopolymerization initiator in the cholesteric liquid crystal material is usually 0.03 to 7 parts by mass with respect to 100 parts by mass of the cholesteric liquid crystal compound.
  • thermal polymerization initiator When a thermal polymerization initiator is used, it is preferable to add a thermal polymerization initiator to the cholesteric liquid crystal mixture immediately before the polymerization step described later in order to accurately control the polymerization reaction.
  • the thermal polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate; 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis [2-methyl-N- (2 -Hydroxyethyl) propionamide], 2,2'-azobis (2-amidinopropane) dihydrochloride, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyro Azo compounds such as nitriles; di-t-butyl peroxide, dicumyl peroxide, lauroyl peroxide, benzoyl peroxide, t-butyl peroxy-2-ethylhexano
  • thermal polymerization initiators it is usually preferable to select an oil-soluble thermal polymerization initiator that is soluble in the cholesteric liquid crystal composition, and if necessary, a water-soluble thermal polymerization initiator may be used in combination. You can also.
  • thermal polymerization initiator an organic peroxide having a molecular weight of 90 to 205 and a purity of 90% or more is preferable.
  • the molecular weight of the thermal polymerization initiator is more preferably 170 to 200, still more preferably 175 to 195.
  • the purity of the thermal polymerization initiator represents mass% of the main component thermal polymerization initiator, preferably 92% or more, and more preferably 95% or more.
  • the 1-hour half-life temperature of the organic peroxide is preferably not less than the coloring temperature unique to the composition in which the cholesteric liquid crystal compound has a regular structure and not more than 95 ° C.
  • the half-life temperature is an index representing the ease of cleavage of the thermal polymerization initiator.
  • the thermal polymerization initiator When the thermal polymerization initiator is held at a certain temperature, it decomposes and after a certain time 1 / of the original initiator amount. The temperature which becomes 2 is shown. For example, at a one-hour half-life temperature, this constant time is a half-life temperature of one hour.
  • the resulting cholesteric liquid crystal resin fine particles have a color development specific to the liquid crystal compound, and the unreacted cholesteric liquid crystal compound remaining in the fine particles and thermal polymerization start
  • the amount of by-products such as ether components by-produced by the agent can be reduced.
  • peroxyester As the organic peroxide of the thermal polymerization initiator, peroxyester is preferred because it has particularly high initiation efficiency and the amount of residual monomer can be reduced, and non-aromatic peroxyester (that is, has no aromatic ring). Peroxyester) is more preferred.
  • the thermal polymerization initiator is usually used at a ratio of 0.1 to 20 parts by mass, preferably 0.3 to 15 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the cholesteric liquid crystal compound. .
  • the thermal polymerization initiator can be added in advance to the cholesteric liquid crystal composition. However, in order to suppress premature polymerization, the thermal polymerization initiator is added to the suspension after the completion of the droplet formation process of the cholesteric liquid crystal composition or during the polymerization reaction. It can also be added directly.
  • the cholesteric liquid crystal composition may contain an organic solvent. By using an organic solvent, the viscosity of the cholesteric liquid crystal composition is lowered, so that the operability in the atomization step and the particle size controllability are improved.
  • the cholesteric liquid crystal compound is preferably dissolved in an organic solvent.
  • a general-purpose organic solvent can be used for the cholesteric liquid crystal composition, and preferably cyclopentanone, tetrahydrofuran (THF), methyl ethyl ketone (MEK), ethyl acetate, and a mixture thereof can be used. Can be used.
  • the cholesteric liquid crystal composition may contain a surfactant in order to adjust the surface tension.
  • the surfactant is not particularly limited, but a nonionic surfactant is usually preferable.
  • a commercially available product can be used as the nonionic surfactant.
  • a nonionic surfactant which is an oligomer having a molecular weight of about several thousand, for example, KH-40 manufactured by Seimi Chemical Co., Ltd. can be used.
  • the compounding ratio of the surfactant is usually 0.01 to 10 parts by mass, preferably 0.1 to 100 parts by mass of the cholesteric liquid crystal compound. ⁇ 2 parts by mass.
  • cholesteric liquid crystal compositions include metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, and antioxidants. Any additive such as a metal oxide such as an ion exchange resin or titanium oxide may be contained.
  • Preparation examples of the cholesteric liquid crystal composition are as follows.
  • a cholesteric liquid crystal composition is obtained by mixing a cholesteric liquid crystal compound, a polymerization initiator, and an organic solvent and stirring at a predetermined temperature.
  • an inorganic colloid (a colloid of an inorganic compound) is used as a dispersant.
  • a dispersion obtained by dispersing an inorganic colloid in an aqueous medium may be referred to as an “inorganic colloid aqueous dispersion”.
  • the inorganic colloid is stable even in a high temperature region where the cholesteric liquid crystal compound develops color, and can be easily removed in the step of removing the dispersant as compared with the organic dispersant.
  • the polymerization of the cholesteric liquid crystal compound is performed in an aqueous medium containing an inorganic colloid.
  • aqueous medium water such as ion-exchanged water is generally used, but an organic solvent compatible with water such as alcohols may be used in combination as necessary.
  • the inorganic colloid it is preferable to use a colloid of a poorly water-soluble metal compound.
  • the colloid of a hardly water-soluble metal compound can be suitably prepared by a method in which a polyvalent metal salt and a monovalent metal compound are reacted in an aqueous medium.
  • polyvalent metal salt examples include halides such as magnesium, aluminum, calcium, manganese, iron, nickel, copper and tin, sulfates, nitrates and acetates. More specifically, as polyvalent metal salts, magnesium salts such as magnesium chloride, magnesium sulfate, magnesium nitrate and magnesium acetate; aluminum salts such as aluminum chloride, aluminum sulfate, aluminum nitrate and aluminum acetate; calcium chloride, calcium sulfate and nitric acid And calcium salts such as calcium and calcium acetate. These polyvalent metal salts can be used alone or in combination of two or more.
  • the monovalent metal compound is a salt or hydroxide of a monovalent metal with an anion selected from phosphate ion, hydrogen phosphate ion, carbonate ion and hydroxide ion.
  • the monovalent metal of the monovalent metal compound is preferably at least one monovalent metal selected from the group consisting of lithium, sodium and potassium.
  • Specific examples of the monovalent metal compound include hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; phosphates such as lithium phosphate, sodium phosphate, and potassium phosphate; lithium carbonate, Examples thereof include carbonates such as sodium carbonate and potassium carbonate. Among these, hydroxides are preferable.
  • Monovalent metal compounds can be used alone or in combination of two or more.
  • the colloid of the poorly water-soluble metal compound is not limited by its production method, but the poorly water-soluble metal hydroxide colloid and the poorly water-soluble colloid obtained by adjusting the pH of the aqueous solution of the water-soluble polyvalent metal compound to 7 or more.
  • a colloid of a water-soluble metal phosphate is preferable.
  • a colloid of a poorly water-soluble metal hydroxide formed by a reaction in a water phase of a water-soluble polyvalent metal compound and an alkaline earth metal hydroxide A colloid of a poorly water-soluble metal phosphate produced by a reaction in a water phase of a valent metal compound and an alkaline earth metal phosphate is more preferable.
  • a magnesium hydroxide colloid and a calcium phosphate colloid are preferable.
  • the inorganic colloid is generally used at a ratio of 0.1 to 20 parts by mass with respect to 100 parts by mass of the cholesteric liquid crystal compound.
  • the proportion of the inorganic colloid is too small, it is difficult to obtain sufficient polymerization stability, and polymerized aggregates are easily generated.
  • the proportion of the inorganic colloid is too large, the viscosity of the aqueous solution increases and the polymerization stability decreases.
  • other inorganic colloids may be used in combination as necessary.
  • D50 50% cumulative value from the small particle size distribution of the number particle size distribution
  • D90 from the small particle size distribution of the number particle size distribution 90% cumulative value
  • cholesteric liquid crystal resin fine particles having a target particle size particle size in the range of 1 ⁇ m to 30 ⁇ m
  • the number particle size distribution of the inorganic colloid can be measured by, for example, a particle size distribution measuring device (manufactured by Shimadzu Corporation, product name SALD particle size distribution measuring device).
  • This step is a step of atomizing droplets containing a cholesteric liquid crystal compound by subjecting a cholesteric liquid crystal mixture containing a cholesteric liquid crystal compound, an inorganic colloid, and an aqueous medium to a shearing process using a disperser.
  • the above-described cholesteric liquid crystal composition is dispersed in an inorganic colloidal aqueous dispersion to prepare a cholesteric liquid crystal mixture, which is then sheared with a disperser to obtain uniform droplets (volume average) of the cholesteric liquid crystal composition.
  • Primary droplets having a particle size of about 50 to 1,000 ⁇ m are formed, and then the droplets are small droplets (volume average particle size is about 1 to 30 ⁇ m) close to the target cholesteric liquid crystal resin fine particles. It is preferable to carry out a shearing treatment until it becomes a secondary droplet.
  • the volume average particle size and particle size distribution of the fine droplets of the cholesteric liquid crystal composition affect the volume average particle size and particle size distribution of the target cholesteric liquid crystal resin fine particles. If the particle size of the droplets is not too large, the cholesteric liquid crystal resin fine particles that are produced are unlikely to become too large, and there is little risk of problems in the printing process, especially when used for printing ink. If the particle size of the droplets is not too small, the cholesteric liquid crystal resin fine particles that are produced are less likely to be too small, and there is little possibility that sufficient color development cannot be obtained. If the droplet size distribution is not too wide, both merits can be achieved when the droplet size is of an appropriate size.
  • the droplets of the cholesteric liquid crystal composition are desirably formed so as to have approximately the same size as the cholesteric liquid crystal resin fine particles to be generated.
  • the volume average particle size of the droplets of the cholesteric liquid crystal composition may be in the range of 1 ⁇ m to 30 ⁇ m, preferably in the range of 2 ⁇ m to 20 ⁇ m, more preferably in the range of 3 ⁇ m to 15 ⁇ m. More preferably, it is in the range of 4 ⁇ m or more and 9 ⁇ m or less.
  • the obtained cholesteric liquid crystal resin fine particles are used for printing ink, by making the volume average particle size of the droplets as small as possible, a printed matter that does not cause problems in the printing process and has no density unevenness is obtained. be able to.
  • the particle size distribution (volume average particle size / number average particle size) of droplets of the cholesteric liquid crystal composition is usually 1 to 3, preferably 1 to 2.5, more preferably 1 to 2.
  • a method in which the cholesteric liquid crystal composition is circulated through a gap between a rotor that rotates at high speed and a stator that surrounds the rotor and has small holes or comb teeth is suitable. .
  • the disperser that can be used in the present disclosure is not particularly limited as long as it can impart a certain shear force to the cholesteric liquid crystal mixture.
  • a high-speed shear stirrer manufactured by Eurotech, product name: Cavitron
  • the shearing conditions are preferably 10 seconds to 1 hour under conditions of 1,000 to 50,000 revolutions.
  • the mass of the cholesteric liquid crystal compound is preferably 5 parts by mass or more and 60 parts by mass or less, more preferably. Is from 15 parts by weight to 55 parts by weight, and more preferably from 25 parts by weight to 50 parts by weight. If the mass of the cholesteric liquid crystal compound is 5 parts by mass or more, a sufficient amount of cholesteric resin fine particles may be obtained. On the other hand, if the said mass of a cholesteric liquid crystal compound is 60 mass parts or less, a cholesteric liquid crystal compound may fully disperse
  • a stripping step for removing the organic solvent from the cholesteric liquid crystal mixture by a stripping treatment after the atomization step and before the polymerization step described later may be further included.
  • the stripping process is performed by a method of heating the cholesteric liquid crystal mixture and blowing an inert gas (nitrogen, argon, helium, etc.) or a method of blowing water vapor.
  • the temperature of the cholesteric liquid crystal mixture in the stripping treatment is usually 75 ° C. to 100 ° C., more preferably 80 ° C. to 98 ° C. or less, and further preferably 90 ° C. to 97 ° C.
  • the pressure in the gas phase is preferably controlled within the range of 5 to 70 kPa, more preferably 10 to 65 kPa, and particularly preferably 20 to 60 kPa.
  • the stripping treatment time varies depending on the scale of the treatment apparatus, the treatment amount, the specific treatment method, the desired level of the total volatile organic component content, etc., but usually 1 to 50 hours, preferably 2 to 40 hours, It is more preferably 3 to 30 hours, still more preferably 5 to 25 hours, particularly preferably 10 to 20 hours, and good results can be obtained.
  • the amount of organic solvent remaining in the cholesteric liquid crystal mixture after the stripping step is preferably 10,000 ppm or less, more preferably 1,000 ppm or less, and even more preferably 100 ppm or less. If the amount of residual organic solvent is 10,000 ppm or less, aggregation of cholesteric liquid crystal resin fine particles can be prevented. Examples of the method for measuring the amount of the organic solvent remaining in the cholesteric liquid crystal mixture include a general method for quantifying compounds using GC-MS or the like.
  • Polymerization step After the above-described atomization step, the polymerization step of generating a cholesteric liquid crystal resin by raising the temperature of the cholesteric liquid crystal mixture to the color development region of the cholesteric liquid crystal compound and performing at least one of photopolymerization and thermal polymerization. It is preferable to further have. Moreover, it is preferable to implement a superposition
  • the temperature of the cholesteric liquid crystal mixture it is preferable to raise the temperature of the cholesteric liquid crystal mixture to the color development region of the cholesteric liquid crystal compound immediately before the polymerization step.
  • the orientation of the cholesteric liquid crystal mixture can be increased, and the cholesteric liquid crystal mixture in which the aligned liquid crystal structure is maintained can be directly subjected to polymerization.
  • a photopolymerization reaction is carried out by irradiating the suspension containing droplets having a small particle diameter formed through the atomization step with ultraviolet rays.
  • the ultraviolet ray source is not particularly limited, and a mercury lamp or the like can be used.
  • Irradiation output, irradiation distance and irradiation time depend on the reaction scale. For example, the irradiation output can be 100 to 3,000 W, the irradiation distance from the suspension surface to the ultraviolet ray source can be 10 to 100 cm, and the irradiation time can be 10 seconds to 1 hour.
  • a suspension containing droplets having a small particle diameter formed through the atomization step is charged into a polymerization reactor, and polymerization is usually performed at a temperature of 60 to 100 ° C., preferably 80 to 95 ° C. If the polymerization temperature is too low, a color unique to liquid crystal cannot be obtained.
  • the above-described polymerization produces cholesteric liquid crystal resin fine particles in the cholesteric liquid crystal mixture.
  • a removal step of removing the inorganic colloid derived from the inorganic colloid aqueous dispersion from the polymerization reaction mixture containing the cholesteric liquid crystal resin may be further included.
  • the term “polymerization reaction mixture” as used herein means a mixture after the cholesteric liquid crystal mixture has undergone the above-described polymerization step to produce a cholesteric liquid crystal resin. Further, almost all of the “cholesteric liquid crystal resin” are fine particles described later.
  • the inorganic colloid present on the surface of the cholesteric liquid crystal resin fine particles that have undergone the polymerization step is dissolved and removed.
  • the inorganic colloid plays a role of stabilizing the droplet by surrounding the droplet of the cholesteric liquid crystal composition in the cholesteric liquid crystal mixture.
  • the inorganic colloid is attached to the surface of the cholesteric liquid crystal resin fine particles.
  • the remaining inorganic colloid affects the light absorption and reflection in the resin fine particles, so that the color of the resin fine particles becomes weak.
  • the inorganic colloid When a colloid of a poorly water-soluble metal compound is used as the inorganic colloid, it is preferable to perform acid cleaning in the removing step.
  • the colloid of the hardly water-soluble metal compound is dissolved by adding an acid to the polymerization reaction mixture containing the cholesteric liquid crystal resin fine particles and adjusting the pH to an acidic region.
  • the acid cleaning is performed by adding an acid to the polymerization reaction mixture so that the pH of the polymerization reaction mixture is 6.5 or lower.
  • the pH of the polymerization reaction mixture is preferably 4 to 6.5, more preferably 4.5 to 6.
  • inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid
  • organic acids such as acetic acid, citric acid, and oxalic acid
  • sulfuric acid is particularly preferable.
  • the acid washing is preferably performed after cooling the polymerization reaction mixture to about 25 ° C.
  • the acid washing can be performed by adding acid to the polymerization reaction mixture and adjusting the pH, followed by stirring for about 5 to 30 minutes.
  • the filtration dehydration and reslurry steps may be repeated several times as necessary, but are preferably 2 to 3 times from the viewpoint of efficiency. You may perform washing
  • the water-washed cholesteric liquid crystal resin fine particles are filtered off, they are dried according to a conventional method.
  • the drying method may be natural drying, but the wet cake containing the cholesteric liquid crystal resin fine particles may be dried by introducing a hot gas using a drier having a stirring tank, a rotating blade, or the like.
  • the cholesteric liquid crystal resin fine particles obtained by the present disclosure are fine particles having a volume average particle size in the range of 1 ⁇ m to 30 ⁇ m.
  • the fine particles may be collected on a member (blade or the like) of the printing apparatus. There is a merit that it is difficult to cause problems in printing.
  • the volume average particle size of the cholesteric liquid crystal resin fine particles is usually in the range of 1 ⁇ m to 30 ⁇ m, preferably in the range of 1 ⁇ m to 20 ⁇ m, more preferably in the range of 1 ⁇ m to 10 ⁇ m, Preferably, it is in the range of 1 ⁇ m or more and 5 ⁇ m or less.
  • the volume average particle diameter of the cholesteric liquid crystal resin fine particles is 30 ⁇ m or less, there is little risk of problems in the printing process, particularly when used for printing ink. If the volume average particle diameter of the cholesteric liquid crystal resin fine particles is 1 ⁇ m or more, sufficient color development may be obtained.
  • the volume average particle size is measured and calculated by measuring the particle size of 100 cholesteric liquid crystal resin fine particles by electron microscope observation and taking the average.
  • the particle size distribution (volume average particle size / number average particle size) of the cholesteric liquid crystal resin fine particles is usually 1 to 3, preferably 1 to 2.5, more preferably 1 to 2.
  • the color development of the cholesteric liquid crystal resin fine particles varies depending on the type of the cholesteric liquid crystal compound employed.
  • the cholesteric liquid crystal resin fine particles are irradiated with visible light against a black paper background, and the color that can be visually confirmed at that time is the color of the cholesteric liquid crystal resin fine particles.
  • cholesteric liquid crystal resin fine particles examples include various printing inks and anti-counterfeit printing toners. Further, by adjusting the type and combination of the cholesteric liquid crystal compound, cholesteric liquid crystal resin fine particles having circularly polarized light can be produced, and the use of such fine particles includes a circular polarizing filter.
  • Example 1 Production of liquid crystal resin fine particles
  • a cholesteric liquid crystal compound 450 g of compound (i) (compound of the following formula (A)) and 22.5 g of a polymerizable chiral compound (manufactured by BASF, trade name: LC756), photopolymerization initiator
  • a cholesteric liquid crystal composition was prepared by mixing 4.5 g of Ciba Specialty Chemicals Co., Ltd., trade name: Irgacure 184) and 450 g of cyclopentanone as an organic solvent and stirring at 60 ° C. for 1 hour.
  • Atomization process 909 g of the cholesteric liquid crystal composition was added to 900 g of the inorganic colloidal aqueous dispersion at 60 ° C., and the mixture was stirred with a stirring device equipped with a stirring blade. At this time, coarse droplets were generated at the beginning of stirring, but stirring was continued until the generation of the coarse droplets was stabilized. Further, using a high-speed shearing stirrer (product name: Cavitron, manufactured by Eurotech Co., Ltd.) as a disperser, shearing is performed at a rotational speed of 22,000 rpm for 1 minute to granulate cholesteric liquid crystal compound droplets, and a cholesteric liquid crystal mixture A suspension of was prepared. It was confirmed that the cholesteric liquid crystal compound was atomized in each generated droplet.
  • a high-speed shearing stirrer product name: Cavitron, manufactured by Eurotech Co., Ltd.
  • Example 2 In Example 1, “(1) Step of preparing cholesteric liquid crystal composition”, without adding a photopolymerization initiator, in “(5) Step of fixing liquid crystal structure of cholesteric liquid crystal compound”, thermal polymerization was performed at 60 ° C. Cholesteric liquid crystal resin fine particles as in Example 1 except that 9.0 g of an initiator (trade name: Perbutyl O, manufactured by NOF Corporation) was added and stirred for 1 hour, then heated to 90 ° C. and reacted for 1 hour. (Example 2). The obtained cholesteric liquid crystal resin fine particles had a volume average particle diameter of 12 ⁇ m and exhibited a green color (greenish liquid crystal color).
  • an initiator trade name: Perbutyl O, manufactured by NOF Corporation
  • cholesteric liquid crystal resin fine particles were obtained in the same manner as in Example 1 except that granulation was performed only by stirring with a stirring blade in “(3) Preparation of cholesteric liquid crystal mixture” in Example 1 (Comparative Example 1). .
  • the obtained cholesteric liquid crystal resin fine particles had a volume average particle diameter of 50 ⁇ m and exhibited a green color (greenish liquid crystal color).
  • Example 2 Fine particles were obtained by carrying out the same steps as in Example 1 except that the “(4) stripping step” in Example 1 was not performed (Comparative Example 2). Since the obtained fine particles agglomerated rapidly when the inorganic colloid was removed, the volume average particle diameter was not measured. Further, the obtained fine particles did not develop color and exhibited white.
  • Table 1 shows the measurement and evaluation results of the cholesteric liquid crystal resin fine particles of Examples 1 to 2 and Comparative Examples 1 to 3. As described above, since the cholesteric liquid crystal resin fine particles of Comparative Example 2 were aggregated, the volume average particle diameter was not measured.
  • the fine particles of Comparative Example 2 showed a white color without coloration and agglomerated. Therefore, it can be seen that the photopolymerization reaction does not proceed when UV treatment is performed without removing the organic solvent and post-treatment is performed. This is presumed to be because the organic solvent is present between the liquid crystal molecules, so that a regular structure cannot be taken. Therefore, it was demonstrated that such fine particles do not color as liquid crystals.
  • the fine particles of Comparative Example 3 had a volume average particle size of 8 ⁇ m, while showing no white color. Therefore, it was confirmed that fine particles containing a cholesteric liquid crystal compound were not colored as a liquid crystal without performing the polymerization step.
  • the cholesteric liquid crystal resin fine particles of Examples 1 and 2 had a volume average particle diameter of 6 ⁇ m or 12 ⁇ m, and both were colored green. Therefore, by performing an atomization step of atomizing a cholesteric liquid crystal compound by using an inorganic colloid as a dispersant and shearing with a disperser, cholesteric liquid crystal resin fine particles having a volume average particle size in the above specific range are obtained. It has been demonstrated that In particular, the cholesteric liquid crystal resin fine particles obtained have a volume average particle diameter in the range of 1 ⁇ m to 30 ⁇ m, regardless of whether the photopolymerization method (Example 1) or the thermal polymerization method (Example 2) is used. Has been demonstrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polarising Elements (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Liquid Crystal Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

コレステリック液晶樹脂微粒子の製造方法を提供する。前記コレステリック液晶樹脂微粒子の体積平均粒径が、1μm以上30μm以下の範囲内であり、コレステリック液晶化合物、無機コロイド、及び水系媒体を含有するコレステリック液晶混合物を分散機によりせん断処理することによって、当該コレステリック液晶化合物を含む液滴を微粒化する微粒化工程を有することを特徴とするコレステリック液晶樹脂微粒子の製造方法。

Description

コレステリック液晶樹脂微粒子の製造方法
 本開示は、コレステリック液晶樹脂微粒子の製造方法に関する。
 コレステリック規則性を持つ液晶樹脂(以下、「コレステリック液晶樹脂」ということがある。)は、コレステリック規則性の螺旋回転方向と一致する回転方向の円偏光を反射する特性(以下、この特性を「選択反射特性」という。)を有している。
 この選択反射特性を示す波長帯域はコレステリック規則性の周期に依存している。コレステリック規則性の周期の分布幅を広くすることによって、選択反射特性を示す波長帯域(以下、「選択反射帯域」という。)の幅を広くすることができる。
 コレステリック液晶樹脂の上記性質等を利用した新規材料が近年盛んに開発されている。
 例えば、特許文献1には、エチレン性不飽和二重結合を有するコレステリック液晶を中心部から放射状に配向し、重合後の粒子の平均粒子径が5マイクロメートル以下となる様に、らせん間距離を調節する工程と、該配向・調節後の液晶化合物を光重合させて、発色させるべき色相でらせん間距離を固定する工程とを含む高分子液晶球形微粒子の製造方法が開示されている。当該文献には、当該高分子液晶球形微粒子が、その形状から全方位において選択反射による発色が得られ、その選択反射帯域も狭く、発色強度が高いとの記載がある。
 また、特許文献2には、可視光領域の少なくとも一部において右円偏光及び左円偏光の一方を反射し、それ以外の円偏光を透過させうる光反射層を備える識別媒体が開示されている。当該文献には、光反射層が、可視光領域の少なくとも一部において右円偏光及び左円偏光の一方を反射しそれ以外の円偏光を透過させうるフレークを含み、このフレークがコレステリック規則性を有する樹脂層の破砕物である旨の記載がある。
 一方、選択反射帯域を近赤外線の波長域に持つコレステリック液晶樹脂を含んでなる円偏光分離シートを形成できれば、入射する赤外線のうち、特定方向の円偏光のみを反射することが可能になる。従来、選択反射帯域を可視光の波長域に持つコレステリック液晶樹脂を形成するために種々のキラル剤が検討されている。
 例えば、特許文献3には、螺旋状のねじれ構造を持つ直鎖状又は架橋された側鎖型コレステリック液晶ポリマーを含んでなり、平均直径が1μm以上20μm以下であることを特徴とするポリマービーズが開示されている。当該文献には、当該ポリマービーズが選択反射特性を有することや、重合性キラルメソゲン液晶材料を含む小滴を懸濁重合することにより当該ポリマービーズが得られる旨の記載がある。
特開2005-112945号公報 特開2014-174471号公報 特開2002-201222号公報
 特許文献1には、高分子液晶球形微粒子の製造に当たりポリビニルアルコール水溶液を分散剤として用いることが記載されている。また特許文献3には、ポリマービーズの製造に当たりアラビアゴム水溶液を分散剤として用いることが記載されている。しかし、これら有機ポリマーの分散剤は、増粘により操業性が悪化することや、高温で分散性が不安定となることや、分散剤を除去する工程において容易かつ完全に除去することは難しいこと等の理由から、液晶微粒子の製造方法には不向きである。
 一方、特許文献2には樹脂破砕物のフレークを用いることが記載されているが、このような破砕物においては、その粒径や粒径分布を細かく制御することは困難である。
 本開示の課題は、コレステリック液晶樹脂微粒子の製造方法を提供することにある。
 本発明者は、懸濁重合により樹脂微粒子を得る方法において、無機コロイドを用いることに着目した。この知見から、本発明者は、従来とは異なる分散剤を用いることにより、得られる液晶樹脂微粒子の物性が均一となるように制御出来ることを見出した。
 すなわち本開示の製造方法は、コレステリック液晶樹脂微粒子の製造方法であって、前記コレステリック液晶樹脂微粒子の体積平均粒径が、1μm以上30μm以下の範囲内であり、コレステリック液晶化合物、無機コロイド、及び水系媒体を含有するコレステリック液晶混合物を分散機によりせん断処理することによって、当該コレステリック液晶化合物を含む液滴を微粒化する微粒化工程を有することを特徴とするコレステリック液晶樹脂微粒子の製造方法である。
 本開示においては、前記微粒化工程後に、前記コレステリック液晶混合物を前記コレステリック液晶化合物の発色温度領域まで昇温し、かつ光重合及び熱重合の少なくともいずれか一方の重合を行うことにより、コレステリック液晶樹脂微粒子を生成させる重合工程をさらに有していてもよい。
 本開示においては、前記コレステリック液晶混合物は、前記コレステリック液晶化合物及び有機溶剤を含有するコレステリック液晶組成物と、前記無機コロイドと、前記水系媒体との混合物であってもよい。
 本開示においては、前記無機コロイド及び水系媒体の総質量を100質量部としたとき、前記コレステリック液晶化合物の質量が5質量部以上60質量部以下の範囲内であってもよい。
 本開示においては、前記微粒化工程後かつ前記重合工程前に、前記コレステリック液晶混合物から前記有機溶剤をストリッピング処理により除去するストリッピング工程をさらに有していてもよい。
 本開示においては、前記重合工程後に、コレステリック液晶樹脂を含む重合反応混合物から、前記無機コロイドを除去する除去工程をさらに有していてもよい。
 上記の如き本開示によれば、無機コロイドを用いてコレステリック液晶化合物を含む液滴を微粒化することにより、容易に効率よくコレステリック液晶樹脂微粒子が提供される。
 本開示の製造方法は、コレステリック液晶樹脂微粒子の製造方法であって、前記コレステリック液晶樹脂微粒子の体積平均粒径が、1μm以上30μm以下の範囲内であり、コレステリック液晶化合物、無機コロイド、及び水系媒体を含有するコレステリック液晶混合物を分散機によりせん断処理することによって、当該コレステリック液晶化合物を含む液滴を微粒化する微粒化工程を有することを特徴とするコレステリック液晶樹脂微粒子の製造方法である。
 本開示により得られるコレステリック液晶樹脂微粒子は、水系媒体等の液体中で粒子形成される湿式法により製造することができる。
 本開示では、分散剤として無機コロイドを使用し、好適には酸に可溶な難水溶性金属化合物のコロイドを使用する。
 本開示の製造方法では、重合反応混合物(後述する重合工程後に得られる、コレステリック液晶樹脂微粒子を含む混合物)から無機コロイドを除去する除去工程を実施するのが好ましい。好適には、重合反応混合物に酸を添加して、無機コロイドを溶解させる酸洗浄を実施する。この酸洗浄では、酸の添加によって、重合反応混合物のpHを6.5未満に調整して酸洗浄を行う。次いで、濾別したコレステリック液晶樹脂微粒子を水で洗浄し、濾別後、湿潤状態のコレステリック液晶樹脂微粒子を乾燥させるのが好ましい。
 本製造方法は微粒化工程を有するが、その前に、コレステリック液晶組成物の調製工程、及び無機コロイド水分散液の調製工程を実施してもよい。また、微粒化工程後に、ストリッピング工程、重合工程及び除去工程を実施してもよい。
 したがって、以下、コレステリック液晶組成物の調製工程、無機コロイド水分散液の調製工程、微粒化工程、ストリッピング工程、重合工程、除去工程及びその他の工程について順に説明し、最後に得られるコレステリック液晶樹脂微粒子の物性について述べる。
 1.コレステリック液晶組成物の調製工程
 まず、コレステリック液晶組成物を調製する。コレステリック液晶組成物は、コレステリック液晶化合物、及び必要な場合には重合開始剤や有機溶剤等を含有する組成物である。
 (1)コレステリック液晶化合物
 コレステリック液晶化合物としては、以下に述べる重合性液晶化合物(iw)、以下に述べる化合物(i)、及び以下に述べるその他の化合物が挙げられる。これらについて順次説明する。
 A.重合性液晶化合物(iw)
 重合性液晶化合物(iw)は、下記式(Iw)で示される化合物である。重合性液晶化合物(iw)は、後述する重合性化合物(iiw)でも、重合性キラル化合物でもないものである。
Figure JPOXMLDOC01-appb-C000001
 前記式(Iw)において、Y1w~Y6wはそれぞれ独立して、単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR1w-C(=O)-、-C(=O)-NR1w-、-O-C(=O)-NR1w-、-NR1w-C(=O)-O-、-NR1w-C(=O)-NR1w-、-O-NR1w-、または-NR1w-O-を表す。ここで、R1wは、水素原子または炭素数1~6のアルキル基を表す。R1wは、水素原子又はメチル基であることが好ましい。
 Yの組み合わせとして特に好ましいのは、合成しやすさ及び本開示の所望の効果をより良好に発現させる観点から、Y1wとY3wが-C(=O)-O-であり、Y4wとY6wが-O-C(=O)-であり、Y2wとY5wが-O-である組み合わせ、あるいは、Y1w~Y3wが-C(=O)-O-であり、Y4w~Y6wが-O-C(=O)-である組み合わせである。
 G1w及びG2wはそれぞれ独立して、置換基を有していてもよい、炭素数1~20の2価の脂肪族基であり、好ましくは炭素数1~12の2価の脂肪族基である。
 G1w及びG2wの炭素数1~20の2価の脂肪族基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状の脂肪族基が好ましい。
 本開示の所望の効果をより良好に発現させる観点から、エチレン基、ブチレン基、ヘキシレン基、オクチレン基等のアルキレン基が好ましい。
 G1w及びG2wの脂肪族基の置換基としては、ハロゲン原子、炭素数1~6のアルコキシ基;等が挙げられる。ハロゲン原子としてはフッ素原子が好ましく、アルコキシ基としては、メトキシ基、エトキシ基が好ましい。
 また、前記脂肪族基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR2w-C(=O)-、-C(=O)-NR2w-、-NR2w-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R2wは、水素原子または炭素数1~6のアルキル基を表す。R2wは、水素原子又はメチル基であることが好ましい。
 Z1w及びZ2wはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 Z1w及びZ2wの炭素数2~10のアルケニル基の具体例としては、CH=CH-、CH=C(CH)-、CH=CH-CH-、CH-CH=CH-、CH=CH-CH-CH-、CH=C(CH)-CH-CH-、(CHC=CH-CH-、(CHC=CH-CH-CH-、CH=C(Cl)-、CH=C(CH)-CH-、CH-CH=CH-CH-等が挙げられる。
 該アルケニル基の炭素数としては、2~6が好ましい。Z1w及びZ2wのアルケニル基の置換基であるハロゲン原子としては、塩素原子が好ましい。
 中でも、Z1w及びZ2wとしては、本開示の所望の効果をより良好に発現させる観点から、CH=CH-、CH=CH(CH)-、CH=C(Cl)-、CH=CH-CH-、CH=C(CH)-CH-、又はCH=C(CH)-CH-CH-であることがより好ましい。
 X1w~X8wはそれぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~10のアルキル基、シアノ基、ニトロ基、-OR3w、-O-C(=O)-R3w、-C(=O)-OR3w、-O-C(=O)-OR3w、-NR4w-C(=O)-R3w、-C(=O)-NR3w4w、または-O-C(=O)-NR3w4wを表す。X1w~X8wが置換基を有するアルキル基である場合の置換基としては、ハロゲン原子、ヒドロキシル基、メチル基、エチル基を挙げることができる。ここで、R3w及びR4wは、水素原子又は置換基を有してもよい炭素数1~10のアルキル基を表し、アルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR5w-C(=O)-、-C(=O)-NR5w-、-NR5w-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R5wは、水素原子または炭素数1~6のアルキル基を表す。R3w及びR4wが置換基を有するアルキル基である場合の置換基としては、それぞれ独立に、ハロゲン原子、ヒドロキシル基、メチル基、エチル基を挙げることができる。
 原料の入手しやすさの観点から、(1)X1w~X8wがいずれも水素原子であるか、(2)X1w~X5w及びX7wがいずれも水素原子であり、かつX6w及びX8wが-OCH、-OCHCH、若しくは-CHであるか、(3)X1w~X5w、X7w及びX8wがいずれも水素原子であり、かつX6wが-C(=O)-OR3w、-OCH、-OCHCH、-CH、-CHCH、-CHCHCH若しくはフッ素原子であるか、又は(4)X1w~X4w及びX6w~X8wがいずれも水素原子であり、かつX5wが-C(=O)-O-R3w、-OCH、-OCHCH、-CH、-CHCH、-CHCHCH若しくはフッ素原子であることが好ましい。
 また、前記式(Iw)において、A1w及びA2wにそれぞれ結合する、式:-Y2w-(G1w-Y1w)aw-Z1w及び式:-Y5w-(G2w-Y6w)bw-Z2wで表される基の具体例としては、以下のものが挙げられる。なお、前記aw及びbwはそれぞれ、(G1w-Y1w)単位及び(G2w-Y6w)単位の繰り返し数を表し、aw及びbwはそれぞれ独立して、0又は1である。aw、bwとして特に好ましい組み合わせとしては、合成しやすさ及び、本開示の所望の効果をより良好に発現させる観点からaw及びbwは共に1である。
 aw又はbwが1の凡例、即ち下記式(Cw)で表される構造について以下に言及する。
Figure JPOXMLDOC01-appb-C000002
 式中、Y2w又はY5wは-C(=O)-O-、G1w又はG2wはヘキシレン基、Y1w又はY6wは-O-C(=O)-、Z1w又はZ2wはビニル基に相当する。
 aw又はbw=0の凡例、即ち下記式(Dw)で表される構造について以下に言及する。
Figure JPOXMLDOC01-appb-C000003
 式中、Y2w又はY5wは-C(=O)-O-、Z1w又はZ2wはビニル基に相当する。
 A1w及びA2wはそれぞれ独立して、炭素数1~30の2価の有機基Aを表す。有機基Aの炭素数としては6~20が好ましい。A1w及びA2wの有機基Aとしては、特に制限されないが、芳香族環を有するものが好ましい。
 重合性液晶化合物(iw)は、そのΔn値が好ましくは0.05以上、より好ましくは0.20以上である。このような高いΔn値を有することにより、高い光学的性能(例えば、選択反射機能)を有する液滴硬化物を与えることができる。Δnの上限は、特に限定されないが、例えば、0.40、好ましくは0.35とすることができる。
 重合性液晶化合物(iw)は、WO2009/041512等の文献に記載される既知の方法に基づき製造しうる。
 B.重合性液晶化合物(iw)と組み合わせて用いうる重合性液晶化合物
 重合性液晶化合物(iw)は、それ以外の重合性液晶化合物と組み合わせて用いてもよい。重合性液晶化合物(iw)と組み合わせて用いうる重合性液晶化合物の例としては、特開平11-130729号公報、特開平8-104870号公報、特開2005-309255号公報、特開2005-263789号公報、特表2002-533742号公報、特開2002-308832号公報、特開2002-265421号公報、特開昭62-070406号公報、及び特開平11-100575号公報に記載されるもの等の既知の重合性液晶化合物が挙げられる。
 上に述べた、重合性液晶化合物(iw)及びその他の重合性液晶化合物は、1種類を単独で用いてもよく、2種類以上を任意の割合で組み合わせて用いてもよい。但し、重合性液晶化合物(iw)と、それ以外の重合性液晶化合物を用いる場合、重合性液晶化合物(iw)以外の重合性液晶化合物の含有量は、重合性液晶化合物全量中、50質量%以下が好ましく、30質量%以下がより好ましい。
 C.重合性化合物(iiw)
 コレステリック液晶組成物が重合性液晶化合物(iw)を含む場合において、コレステリック液晶組成物は、重合性液晶化合物以外の重合性化合物を含有し得る。かかる重合性化合物の好ましい例としては、下記式(IIw)で示されるアキラルな化合物が挙げられる。以下において、この化合物を重合性化合物(iiw)という場合がある。
 Z3w-MG-O(CH)n1w-Y11w-Z4w (IIw)
 前記式(IIw)において、Z3wは、水素原子、置換基を有してもよい炭素原子数1~2個のアルキル基、ハロゲン原子、ヒドロキシル基、カルボキシル基、アミノ基、及びシアノ基;からなる群より選択される基を表す。Z3wが置換基を有するアルキル基である場合の置換基としては、ハロゲン原子を挙げることができる。Z3wは好ましくはシアノ基である。
 MGは、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、2,6-ナフチレン基、及び4,4’-ベンズアルデヒドアジン基(-C-CH-=N-N=CH-C-,ここで-C-はp-フェニレン基)からなる群より選択されるメソゲン基を表す。MGは好ましくは4,4’-ビフェニレン基である。
 n1wは、0~6、好ましくは0~2の整数を表す。
 Y11wは、単結合、-O-、-S-、-CO-、-CS-、-OCO-、-CH-、-OCH-、-NHCO-、-OCOO-、-CHCOO-、及び-CHOCO-からなる群より選択される基を表す。Y11wは好ましくは-OCO-である。
 Z4wは、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。Z4wは好ましくはCH=CH-である。
 重合性化合物(iiw)のΔnは好ましくは0.18以上であり、より好ましくは0.22以上とすることができる。このように高いΔn値を有することにより、コレステリック液晶材料としてのΔnを向上させることができ、広帯域の選択反射機能を有する液滴硬化物を作製することができる。Δnの上限は、特に限定されないが、例えば、0.35、好ましくは0.30とすることができる。
 重合性化合物(iiw)の製造方法は、特に限定されず、当該技術分野において知られた方法、例えば特開昭62-70406号公報及び特開平11-100575号公報に記載の方法により合成することができる。
 D.重合性キラル化合物
 コレステリック液晶組成物が重合性液晶化合物(iw)を含む場合において、コレステリック液晶組成物は、さらに重合性キラル化合物を含有し得る。重合性キラル化合物としては、分子内にキラルな炭素原子を有し、重合性液晶化合物と重合可能な化合物であって、かつ重合性液晶化合物の配向を乱さないものを適宜選択して用いうる。上に述べた重合性液晶化合物(iw)は、重合性キラル化合物と混合することでコレステリック相を発現し得る。
 ここで、「重合」とは、通常の重合反応のほか、架橋反応を含む広い意味での化学反応を意味するものとする。
 コレステリック液晶組成物においては、重合性キラル化合物を一種単独で、あるいは二種以上を組み合わせて用いることができる。
 重合性キラル化合物の例としては、市販のもの(例えば、BASF社製「LC756」等)に加え、特開平11-193287号公報及び特開2003-137887号公報に記載されているような既知のものが挙げられる。
 E.化合物(i)
 化合物(i)は、下記式(I)で表される、液晶性を示す化合物である。
Figure JPOXMLDOC01-appb-C000004
 前記式(I)において、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。
 ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 Rの炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基が挙げられる。
 Rとしては、水素原子又は炭素数1~4のアルキル基が好ましい。
 化合物(i)においては、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-O-C(=O)-、-C(=O)-O-、又は、-O-C(=O)-O-であることが好ましい。
 前記式(I)において、G及びGは、それぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。
 炭素数1~20の二価の脂肪族基としては、例えば、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基;炭素数3~20のシクロアルカンジイル基、炭素数4~20のシクロアルケンジイル基、炭素数10~30の二価の脂環式縮合環基等の二価の脂肪族基;が挙げられる。
 G及びGの二価の脂肪族基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-へキシルオキシ基等の炭素数1~6のアルコキシ基;が挙げられる。なかでも、フッ素原子、メトキシ基及びエトキシ基が好ましい。
 また、前記脂肪族基には、1つの脂肪族基当たり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表し、水素原子又はメチル基であることが好ましい。
 前記脂肪族基に介在する基としては、-O-、-O-C(=O)-、-C(=O)-O-、-C(=O)-が好ましい。
 これらの基が介在する脂肪族基の具体例としては、例えば、-CH-CH-O-CH-CH-、-CH-CH-S-CH-CH-、-CH-CH-O-C(=O)-CH-CH-、-CH-CH-C(=O)-O-CH-CH-、-CH-CH-C(=O)-O-CH-、-CH-O-C(=O)-O-CH-CH-、-CH-CH-NR-C(=O)-CH-CH-、-CH-CH-C(=O)-NR-CH-、-CH-NR-CH-CH-、-CH-C(=O)-CH-が挙げられる。
 これらの中でも、本開示の所望の効果をより良好に発現させる観点から、G及びGは、それぞれ独立して、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基が好ましく、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基〔-(CH10-〕等の、炭素数1~12のアルキレン基がより好ましく、テトラメチレン基〔-(CH-〕、ヘキサメチレン基〔-(CH-〕、オクタメチレン基〔-(CH-〕、及び、デカメチレン基〔-(CH10-〕が特に好ましい。
 前記式(I)において、Z及びZは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 該アルケニル基の炭素数としては、2~6が好ましい。Z及びZのアルケニル基の置換基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子が好ましい。
 Z及びZの炭素数2~10のアルケニル基の具体例としては、CH=CH-、CH=C(CH)-、CH=CH-CH-、CH-CH=CH-、CH=CH-CH-CH-、CH=C(CH)-CH-CH-、(CHC=CH-CH-、(CHC=CH-CH-CH-、CH=C(Cl)-、CH=C(CH)-CH-、CH-CH=CH-CH-が挙げられる。
 なかでも、本開示の所望の効果をより良好に発現させる観点から、Z及びZとしては、それぞれ独立して、CH=CH-、CH=C(CH)-、CH=C(Cl)-、CH=CH-CH-、CH=C(CH)-CH-、又は、CH=C(CH)-CH-CH-が好ましく、CH=CH-、CH=C(CH)-、又は、CH=C(Cl)-がより好ましく、CH=CH-が特に好ましい。
 前記式(I)において、Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造、及びチオフェン、フラン、ベンゾチアゾール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示す環状構造を意味する。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基は、芳香環を複数個有するものであってもよく、芳香族炭化水素環及び芳香族複素環の両方を有するものであってもよい。
 前記芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環等の単環の芳香族複素環;ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、フタラジン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾフラン環、ベンゾチオフェン環、チアゾロピリジン環、オキサゾロピリジン環、チアゾロピラジン環、オキサゾロピラジン環、チアゾロピリダジン環、オキサゾロピリダジン環、チアゾロピリミジン環、オキサゾロピリミジン環等の縮合環の芳香族複素環;が挙げられる。
 Aが有する芳香環は置換基を有していてもよい。かかる置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R;-C(=O)-OR;-SO;等が挙げられる。ここで、Rは炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は、炭素数3~12のシクロアルキル基を表し、Rは後述するRと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 また、Aが有する芳香環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であってもよく、縮合多環であってもよく、不飽和環であってもよく、飽和環であってもよい。
 さらに、Aの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAにて同じである。)。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、例えば、ベンゼン環基、ナフタレン環基、アントラセン環基等の芳香族炭化水素環基;ピロール環基、フラン環基、チオフェン環基、ピリジン環基、ピリダジン環基、ピリミジン環基、ピラジン環基、ピラゾール環基、イミダゾール環基、オキサゾール環基、チアゾール環基、ベンゾチアゾール環基、ベンゾオキサゾール環基、キノリン環基、フタラジン環基、ベンゾイミダゾール環基、ベンゾピラゾール環基、ベンゾフラン環基、ベンゾチオフェン環基、チアゾロピリジン環基、オキサゾロピリジン環基、チアゾロピラジン環基、オキサゾロピラジン環基、チアゾロピリダジン環基、オキサゾロピリダジン環基、チアゾロピリミジン環基、オキサゾロピリミジン環基等の芳香族複素環基;芳香族炭化水素環及び複素環の組み合わせを含む基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~30のアルキル基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルケニル基;芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルキニル基;が挙げられる。
 Aの好ましい具体例を以下に示す。但し、Aは以下に示すものに限定されるものではない。なお、下記式中、「-」は環の任意の位置からのびる結合手を表す(以下にて同じである)。
 (A)芳香族炭化水素環基
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 (B)芳香族複素環基
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記式中、Eは、NR6a、酸素原子又は硫黄原子を表す。ここで、R6aは、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000009
 上記式中、X及びYは、それぞれ独立して、NR、酸素原子、硫黄原子、-SO-、又は、-SO-を表す(ただし、酸素原子、硫黄原子、-SO-、-SO-が、それぞれ隣接する場合を除く。)。Rは、前記R6aと同様の、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000010
 (上記式中、Xは前記と同じ意味を表す。)
 (C)芳香族炭化水素環及び複素環の組み合わせを含む基
Figure JPOXMLDOC01-appb-C000011
(上記式中、X、及びYは、それぞれ独立して、前記と同じ意味を表す。また、上記式中、Zは、NR、酸素原子、硫黄原子、-SO-、又は、-SO-を表す(ただし、酸素原子、硫黄原子、-SO-、-SO-が、それぞれ隣接する場合を除く。)。)
 (D)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルキル基
Figure JPOXMLDOC01-appb-C000012
 (E)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルケニル基
Figure JPOXMLDOC01-appb-C000013
 (F)芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、アルキニル基
Figure JPOXMLDOC01-appb-C000014
 上記したAの中でも、炭素数6~30の芳香族炭化水素環基、炭素数4~30の芳香族複素環基、又は、芳香族炭化水素環及び複素環の組み合わせを含む炭素数4~30の基であることが好ましく、下記に示すいずれかの基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 さらに、Aは、下記に示すいずれかの基であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000017
 Aが有する環は、置換基を有していてもよい。かかる置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R;-C(=O)-OR;-SO;が挙げられる。ここでRは、メチル基、エチル基等の炭素数1~6のアルキル基;又は、フェニル基等の炭素数6~14のアリール基;を表す。なかでも、置換基としては、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、及び炭素数1~6のアルコキシ基が好ましい。
 Aが有する環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は、単環であってもよく、縮合多環であってもよい。
 Aの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAにて同じである。)。
 前記式(I)において、Aは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、-C(=S)NH-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基の炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基が挙げられる。置換基を有してもよい炭素数1~20のアルキル基の炭素数は、1~12であることが好ましく、4~10であることが更に好ましい。
 Aの、置換基を有していてもよい炭素数2~20のアルケニル基の炭素数2~20のアルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基が挙げられる。置換基を有していてもよい炭素数2~20のアルケニル基の炭素数は、2~12であることが好ましい。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基の炭素数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基が挙げられる。
 Aの、置換基を有していてもよい炭素数2~20のアルキニル基の炭素数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、7-デカニル基が挙げられる。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基、及び置換基を有していてもよい炭素数2~20のアルケニル基の置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個がフッ素原子で置換された炭素数1~12のフルオロアルコキシ基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;-C(=O)-R7a;-C(=O)-OR7a;-SO8a;-SR10;-SR10で置換された炭素数1~12のアルコキシ基;水酸基;が挙げられる。ここで、R7a及びR10は、それぞれ独立して、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12の芳香族炭化水素環基を表す。R8aは、前記Rと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基の置換基としては、例えば、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;-C(=O)-R7a;-C(=O)-OR7a;-SO8a;水酸基;が挙げられる。ここでR7a及びR8aは、前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、例えば、置換基を有していてもよい炭素数1~20のアルキル基、及び、置換基を有していてもよい炭素数2~20のアルケニル基の置換基と同様な置換基が挙げられる。
 Aの、-C(=O)-Rで表される基において、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、炭素数5~12の芳香族炭化水素環基を表す。これらの具体例は、前記Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、及び、置換基を有していてもよい炭素数3~12のシクロアルキル基;並びに、前記Aで説明した芳香族炭化水素環基のうち炭素数が5~12のものの例として挙げたものと同様のものが挙げられる。
 Aの、-SO-Rで表される基において、Rは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。Rの、炭素数1~20のアルキル基、及び炭素数2~20のアルケニル基の具体例は、前記Aの、炭素数1~20のアルキル基、炭素数2~20のアルケニル基の例として挙げたものと同様のものが挙げられる。
 Aの、-C(=S)NH-Rで表される基において、Rは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、又は、置換基を有していてもよい炭素数5~20の芳香族基を表す。これらの具体例は、前記Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基;並びに、前記Aで説明した芳香族炭化水素環基及び芳香族複素環基等の芳香族基のうち炭素数が5~20のものの例として挙げたものと同様のものが挙げられる。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、前記Aで説明したのと同様のものが挙げられる。
 これらの中でも、Aとしては、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R、-SO-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基で表される基が好ましい。さらに、Aとしては、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有してもよい炭素数6~12の芳香族炭化水素環基、置換基を有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基、-C(=O)-R、-SO-Rで表される基が更に好ましい。ここで、R、Rは前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、フェニルスルホニル基、4-メチルフェニルスルホニル基、ベンゾイル基、-SR10が好ましい。ここで、R10は前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有してもよい炭素数6~12の芳香族炭化水素環基、置換基を有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基の置換基としては、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基が好ましい。
 また、AとAは、一緒になって、環を形成していてもよい。かかる環としては、例えば、置換基を有していてもよい、炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環が挙げられる。
 前記炭素数4~30の不飽和複素環、及び、炭素数6~30の不飽和炭素環は、特に制約はなく、芳香族性を有していても有していなくてもよい。
 AとAが一緒になって形成される環としては、例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
Figure JPOXMLDOC01-appb-C000018
 として表される部分を示すものである。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 (式中、X、Y、Zは、前記と同じ意味を表す。)
 また、これらの環は置換基を有していてもよい。かかる置換基としては、Aが有する芳香環の置換基として説明したのと同様のものが挙げられる。
 AとAに含まれるπ電子の総数は、本開示の所望の効果をより良好に発現させる観点から、4以上24以下であるのが好ましく、6以上20以下であるのがより好ましく、6以上18以下であるのが更により好ましい。
 AとAの好ましい組み合わせとしては、下記の組み合わせ(α)及び組み合わせ(β)が挙げられる。
 (α)Aが炭素数4~30の、芳香族炭化水素環基、芳香族複素環基、又は、芳香族炭化水素環及び複素環の組み合わせを含む基であり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基及び-SR10のいずれかである組み合わせ。
 (β)AとAが一緒になって不飽和複素環又は不飽和炭素環を形成している組み合わせ。
 ここで、R10は前記と同じ意味を表す。
 AとAのより好ましい組み合わせとしては、下記の組み合わせ(γ)が挙げられる。
 (γ)Axが下記構造を有する基のいずれかであり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10のいずれかである組み合わせ。
 ここで、R10は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 (式中、X、Yは、前記と同じ意味を表す。)
 AとAの特に好ましい組み合わせとしては、下記の組み合わせ(δ)が挙げられる。
 (δ)Aが下記構造を有する基のいずれかであり、Aが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよく芳香族炭化水素環及び複素環の組み合わせを含む炭素数3~9の基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、又は、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、及び、-SR10のいずれかである組み合わせ。
 下記式中、Xは前記と同じ意味を表す。ここで、R10は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000024
 前記式(I)において、Aは、置換基を有していてもよい三価の芳香族基を表す。三価の芳香族基としては、三価の炭素環式芳香族基であってもよく、三価の複素環式芳香族基であってもよい。本開示の所望の効果をより良好に発現させる観点から、三価の炭素環式芳香族基が好ましく、三価のベンゼン環基又は三価のナフタレン環基がより好ましく、下記式に示す三価のベンゼン環基又は三価のナフタレン環基がさらに好ましい。なお、下記式においては、結合状態をより明確にすべく、置換基Y、Yを便宜上記載している(Y、Yは、前記と同じ意味を表す。以下にて同じ。)。
Figure JPOXMLDOC01-appb-C000025
 これらの中でも、Aとしては、下記に示す式(A11)~(A25)で表される基がより好ましく、式(A11)、(A13)、(A15)、(A19)、(A23)で表される基がさらに好ましく、式(A11)、(A23)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000026
 Aの、三価の芳香族基が有していてもよい置換基としては、前記Aの芳香環の置換基として説明したのと同様のものが挙げられる。Aとしては、置換基を有さないものが好ましい。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。炭素数3~30の二価の脂環式炭化水素基としては、例えば、炭素数3~30のシクロアルカンジイル基、炭素数10~30の二価の脂環式縮合環基が挙げられる。
 炭素数3~30のシクロアルカンジイル基としては、例えば、シクロプロパンジイル基;シクロブタン-1,2-ジイル基、シクロブタン-1,3-ジイル基等のシクロブタンジイル基;シクロペンタン-1,2-ジイル基、シクロペンタン-1,3-ジイル基等のシクロペンタンジイル基;シクロヘキサン-1,2-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基等のシクロへキサンジイル基;シクロヘプタン-1,2-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基等のシクロへプタンジイル基;シクロオクタン-1,2-ジイル基、シクロオクタン-1,3-ジイル基、シクロオクタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等のシクロオクタンジイル基;シクロデカン-1,2-ジイル基、シクロデカン-1,3-ジイル基、シクロデカン-1,4-ジイル基、シクロデカン-1,5-ジイル基等のシクロデカンジイル基;シクロドデカン-1,2-ジイル基、シクロドデカン-1,3-ジイル基、シクロドデカン-1,4-ジイル基、シクロドデカン-1,5-ジイル基等のシクロドデカンジイル基;シクロテトラデカン-1,2-ジイル基、シクロテトラデカン-1,3-ジイル基、シクロテトラデカン-1,4-ジイル基、シクロテトラデカン-1,5-ジイル基、シクロテトラデカン-1,7-ジイル基等のシクロテトラデカンジイル基;シクロエイコサン-1,2-ジイル基、シクロエイコサン-1,10-ジイル基等のシクロエイコサンジイル基;が挙げられる。
 炭素数10~30の二価の脂環式縮合環基としては、例えば、デカリン-2,5-ジイル基、デカリン-2,7-ジイル基等のデカリンジイル基;アダマンタン-1,2-ジイル基、アダマンタン-1,3-ジイル基等のアダマンタンジイル基;ビシクロ[2.2.1]へプタン-2,3-ジイル基、ビシクロ[2.2.1]へプタン-2,5-ジイル基、ビシクロ[2.2.1]へプタン-2,6-ジイル基等のビシクロ[2.2.1]へプタンジイル基;が挙げられる。
 これらの二価の脂環式炭化水素基は、任意の位置に置換基を有していてもよい。置換基としては、前記Aの芳香環の置換基として説明したものと同様のものが挙げられる。
 これらの中でも、A及びAとしては、炭素数3~12の二価の脂環式炭化水素基が好ましく、炭素数3~12のシクロアルカンジイル基がより好ましく、下記式(A31)~(A34)で表される基がさらに好ましく、下記式(A32)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000027
 前記炭素数3~30の二価の脂環式炭化水素基は、Y及びY(又はY及びY)と結合する炭素原子の立体配置の相違に基づく、シス型及びトランス型の立体異性体が存在しうる。例えば、シクロヘキサン-1,4-ジイル基の場合には、下記に示すように、シス型の異性体(A32a)とトランス型の異性体(A32b)が存在し得る。
Figure JPOXMLDOC01-appb-C000028
 前記炭素数3~30の二価の脂環式炭化水素基は、シス型であってもよく、トランス型であってもよく、シス型及びトランス型の異性体混合物であってもよい。中でも、配向性が良好であることから、トランス型あるいはシス型であるのが好ましく、トランス型がより好ましい。
 前記式(I)において、A及びAは、それぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。A及びAの芳香族基は、単環のものであっても、多環のものであってもよい。A及びAの好ましい具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 上記A及びAの二価の芳香族基は、任意の位置に置換基を有していてもよい。当該置換基としては、例えば、ハロゲン原子、シアノ基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-OR8b基;が挙げられる。ここでR8bは、炭素数1~6のアルキル基である。なかでも、置換基としては、ハロゲン原子、炭素数1~6のアルキル基、アルコキシ基が好ましい。また、ハロゲン原子としては、フッ素原子がより好ましく、炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基がより好ましく、アルコキシ基としては、メトキシ基、エトキシ基がより好ましい。
 これらの中でも、本開示の所望の効果をより良好に発現させる観点から、A及びAは、それぞれ独立して、置換基を有していてもよい、下記式(A41)、(A42)又は(A43)で表される基がより好ましく、置換基を有していてもよい式(A41)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000030
 前記式(I)において、Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を示す。置換基を有していてもよい炭素数1~6のアルキル基としては、前記Ayで説明した置換基を有していてもよい炭素数1~20のアルキル基のうち、炭素数が1~6のものが挙げられる。これらの中でも、Qは、水素原子及び炭素数1~6のアルキル基が好ましく、水素原子及びメチル基がより好ましい。
 前記式(I)において、mは、それぞれ独立に、0又は1を表す。中でも、mは好ましくは1である。
 化合物(i)は、例えば、国際公開第2012/147904号に記載される、ヒドラジン化合物とカルボニル化合物との反応により製造しうる。
 (2)重合開始剤
 コレステリック液晶組成物は、重合反応を効率的に行う観点から、重合開始剤を含有しうる。重合開始剤としては、光重合開始剤、熱重合開始剤が使用できる。
 A.光重合開始剤
 光重合開始剤としては、共に用いる重合性液晶化合物に存在する重合性基の種類に応じて適宜なものを選択して使用しうる。例えば、重合性基が、ラジカル重合性であればラジカル重合開始剤を、アニオン重合性の基であればアニオン重合開始剤を、カチオン重合性の基であればカチオン重合開始剤を、それぞれ使用しうる。
 当該光重合開始剤としては、紫外線又は可視光線によってラジカル又は酸を発生させる既知の化合物が使用できる。具体的には、ベンゾイン、ベンジルメチルケタール、ベンゾフェノン、ビアセチル、アセトフェノン、ミヒラーケトン、ベンジル、ベンジルイソブチルエーテル、テトラメチルチウラムモノ(ジ)スルフィド、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、ベンゾイルパーオキサイド、ジ-tert-ブチルパーオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジエチルチオキサントン、メチルベンゾイルフォーメート、2,2-ジエトキシアセトフェノン、β-アイオノン、β-ブロモスチレン、ジアゾアミノベンゼン、α-アミルシンナミックアルデヒド、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、2-クロロベンゾフェノン、pp′-ジクロロベンゾフェノン、pp′-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインn-ブチルエーテル、ジフェニルスルフィド、ビス(2,6-メトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、アントラセンベンゾフェノン、α-クロロアントラキノン、ジフェニルジスルフィド、ヘキサクロルブタジエン、ペンタクロルブタジエン、オクタクロロブテン、1-クロルメチルナフタレン、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(o-ベンゾイルオキシム)]や1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(o-アセチルオキシム)などのカルバゾールオキシム化合物、(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]ヨードニウムヘキサフルオロフォスフェート、3-メチル-2-ブチニルテトラメチルスルホニウムヘキサフルオロアンチモネート、ジフェニル-(p-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート等が挙げられる。また、所望する物性に応じて2種以上の化合物を混合することができ、必要に応じて既知の光増感剤や重合促進剤としての三級アミン化合物を添加して硬化性をコントロールすることもできる。
 光ラジカル重合開始剤の具体例としては、例えば、チバスペシャルティーケミカルズ社製の商品名Irgacure907、商品名Irgacure184、商品名Irgacure369、商品名Irgacure651及び商品名IrgacureOXE02等が挙げられる。
 前記アニオン重合開始剤としては、例えば、アルキルリチウム化合物;ビフェニル、ナフタレン、ピレン等の、モノリチウム塩又はモノナトリウム塩;ジリチウム塩やトリリチウム塩等の多官能性開始剤;等が挙げられる。
 また、前記カチオン重合開始剤としては、例えば、硫酸、リン酸、過塩素酸、トリフルオロメタンスルホン酸等のプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、四塩化スズのようなルイス酸;芳香族オニウム塩又は芳香族オニウム塩と、還元剤との併用系;が挙げられる。
 これらの重合開始剤は一種単独で、又は二種以上を組み合わせて用いることができる。
 また、前記重合性液晶化合物、及び必要に応じて用いられる他の共重合可能な単量体等との(共)重合を行うために、コレステリック液晶材料は、必要に応じて、紫外線吸収剤、赤外線吸収剤、酸化防止剤等の機能性化合物を含有しうる。
 コレステリック液晶材料における光重合開始剤の配合割合は、コレステリック液晶化合物100質量部に対して、通常0.03~7質量部である。
 B.熱重合開始剤
 熱重合開始剤を用いる場合、重合反応を正確に制御するため、後述する重合工程直前にコレステリック液晶混合物へ熱重合開始剤を添加することが好ましい。
 熱重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;4,4′-アゾビス(4-シアノ吉草酸)、2,2′-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド〕、2,2′-アゾビス(2-アミジノプロパン)二塩酸塩、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビスイソブチロニトリル等のアゾ化合物;ジ-t-ブチルパーオキシド、ジクミルパーオキシド、ラウロイルパーオキシド、ベンゾイルパーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、ジ-イソプロピルパーオキシジカーボネート、ジ-t-ブチルパーオキシイソフタレート、1,1′,3,3′-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-2-エチルブタノエート、等の過酸化物類;等を挙げることができる。これらと還元剤とを組み合わせたレドックス開始剤を使用することもできる。
 これらの熱重合開始剤のなかでも、通常、コレステリック液晶組成物に可溶な油溶性の熱重合開始剤を選択することが好ましく、必要に応じて、水溶性の熱重合開始剤を併用することもできる。
 熱重合開始剤としては、分子量が90~205で、純度が90%以上の有機過酸化物が好ましい。熱重合開始剤の分子量は、より好ましくは170~200、さらに好ましくは175~195である。熱重合開始剤の純度は、主成分の熱重合開始剤の質量%を表し、好ましくは92%以上、さらに好ましくは95%以上である。
 有機過酸化物の1時間半減期温度は、コレステリック液晶化合物が規則構造をとる組成物固有の発色温度以上かつ95℃以下であることが好ましい。半減期温度とは、熱重合開始剤の開裂の起こり易さを表す指標であり、熱重合開始剤を一定温度下に保持したとき、これが分解して一定時間後に元の開始剤量の1/2となる温度を示す。例えば、1時間半減期温度では、この一定時間が1時間の半減期温度である。
 好ましい1時間半減期温度を有する熱重合開始剤を用いることにより、得られるコレステリック液晶樹脂微粒子が液晶化合物固有の発色を有すると共に、当該微粒子中に残留する未反応のコレステリック液晶化合物や、熱重合開始剤により副生するエーテル成分等の副生成物の量を少なくすることができる。
 熱重合開始剤の有機過酸化物としては、開始効率が特に高く、残留モノマー量を少なくすることができることから、パーオキシエステルが好ましく、非芳香族パーオキシエステル(すなわち、芳香族環を有しないパーオキシエステル)がより好ましい。
 熱重合開始剤は、コレステリック液晶化合物100質量部に対して、通常0.1~20質量部、好ましくは0.3~15質量部、より好ましくは0.5~10質量部の割合で用いられる。
 熱重合開始剤は、コレステリック液晶組成物中に予め添加することができるが、早期重合を抑制するために、コレステリック液晶組成物の液滴形成工程の終了後または重合反応の途中の懸濁液に直接添加することもできる。
 (3)有機溶剤
 コレステリック液晶組成物は有機溶剤を含んでいてもよい。有機溶剤を用いることにより、コレステリック液晶組成物は低粘度化するため、微粒化工程における操業性、及び粒径制御性が向上する。コレステリック液晶組成物中で、コレステリック液晶化合物は有機溶剤に溶解していることが好ましい。
 コレステリック液晶組成物には汎用の有機溶剤が使用でき、好適にはシクロペンタノン、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)、酢酸エチル、及びこれらの混合物が使用でき、より好適にはシクロペンタノンが使用できる。
 (4)コレステリック液晶組成物の他の成分
 コレステリック液晶組成物は、表面張力を調整するために、界面活性剤を含有しうる。当該界面活性剤としては、特に限定はないが、通常、ノニオン系界面活性剤が好ましい。当該ノニオン系界面活性剤としては、市販品を用いうる。例えば、分子量が数千程度のオリゴマーであるノニオン系界面活性剤、例えば、セイミケミカル(株)製KH-40等が挙げられる。コレステリック液晶組成物がコレステリック液晶化合物及び界面活性剤を含有する場合において、界面活性剤の配合割合は、コレステリック液晶化合物100質量部に対し、通常、0.01~10質量部、好ましくは0.1~2質量部である。
 コレステリック液晶組成物は、上記成分の他、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物などの任意の添加剤を含有しうる。
 コレステリック液晶組成物の調製例は以下の通りである。コレステリック液晶化合物、重合開始剤及び有機溶剤を混合し、所定の温度で攪拌することにより、コレステリック液晶組成物が得られる。
 2.無機コロイド水分散液の調製工程
 本開示では、無機コロイド(無機化合物のコロイド)を分散剤として用いる。本明細書では、無機コロイドが水系媒体に分散してなる分散液を、「無機コロイド水分散液」と称する場合がある。
 無機コロイドはコレステリック液晶化合物が発色する高温領域でも安定しており、有機系分散剤と比較して、分散剤を除去する工程において容易に除去可能である。
 コレステリック液晶化合物の重合は、無機コロイドを含有する水系媒体中で行う。水系媒体としては、一般に、イオン交換水等の水を使用するが、必要に応じて、アルコール類等の水と相溶性のある有機溶剤を併用してもよい。
 無機コロイドとしては、難水溶性金属化合物のコロイドを使用することが好ましい。難水溶性金属化合物のコロイドは、多価金属塩と一価金属化合物とを水系媒体中で反応させる方法により、好適に調製することができる。
 多価金属塩としては、マグネシウム、アルミニウム、カルシウム、マンガン、鉄、ニッケル、銅、スズ等のハロゲン化塩、硫酸塩、硝酸塩、酢酸塩等が挙げられる。より具体的に、多価金属塩として、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム等のマグネシウム塩;塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム等のアルミニウム塩;塩化カルシウム、硫酸カルシウム、硝酸カルシウム、酢酸カルシウム等のカルシウム塩;等が挙げられる。これらの多価金属塩は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 一価金属化合物としては、リン酸イオン、リン酸水素イオン、炭酸イオン、及び水酸化物イオンから選ばれる陰イオンと、一価金属との、塩または水酸化物である。一価金属化合物の一価金属としては、リチウム、ナトリウム、カリウムからなる群より選ばれる1種以上の一価金属であることが好ましい。一価金属化合物は、具体的には、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウム等の水酸化物;リン酸リチウム、リン酸ナトリウム、及びリン酸カリウム等のリン酸塩;炭酸リチウム、炭酸ナトリウム、及び炭酸カリウム等の炭酸塩;等が挙げられ、これらの中でも、水酸化物が好ましい。一価金属化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 難水溶性金属化合物のコロイドは、その製法による制限はないが、水溶性多価金属化合物の水溶液のpHを7以上に調整することによって得られる難水溶性の金属水酸化物のコロイド及び難水溶性の金属リン酸化物のコロイドが好ましく、水溶性多価金属化合物と水酸化アルカリ土類金属塩との水相中の反応により生成する難水溶性の金属水酸化物のコロイドや、水溶性多価金属化合物とリン酸アルカリ土類金属塩との水相中の反応により生成する難水溶性の金属リン酸化物のコロイドがより好ましい。このようなコロイドとしては、水酸化マグネシウムコロイド及びリン酸カルシウムコロイドが好ましい。
 無機コロイドは、コレステリック液晶化合物100質量部に対して、一般に、0.1~20質量部の割合で使用する。無機コロイドの割合が少なすぎると、十分な重合安定性を得ることが困難であり、重合凝集物が生成しやすくなる。逆に、無機コロイドの割合が多すぎると、水溶液粘度が大きくなって重合安定性が低くなる。本開示においては、必要に応じて、その他の無機コロイドを併用してもよい。
 無機コロイドの個数粒径分布において、D50(個数粒径分布の小粒径からの50%累積値)が0.01~0.50μmであり、かつD90(個数粒径分布の小粒径からの90%累積値)が0.10~1.50μmであることが好ましい。無機コロイドのD50及びD90が上記範囲内にあることにより、目的とする粒径(1μm以上30μm以下の範囲の粒径)のコレステリック液晶樹脂微粒子が得られる。
 無機コロイドの個数粒径分布は、例えば、粒径分布測定機(島津製作所製、製品名SALD粒径分布測定機)により測定できる。
 3.微粒化工程
 本工程は、コレステリック液晶化合物、無機コロイド、及び水系媒体を含有するコレステリック液晶混合物を分散機によりせん断処理することによって、コレステリック液晶化合物を含む液滴を微粒化する工程である。
 本工程においては、上述したコレステリック液晶組成物を無機コロイド水分散液中に分散させてコレステリック液晶混合物を調製し、分散機でせん断処理することにより、コレステリック液晶組成物の均一な液滴(体積平均粒径が50~1,000μm程度の一次液滴)を形成し、その後さらに、液滴が、目的とするコレステリック液晶樹脂微粒子に近い小粒径の液滴(体積平均粒径が1~30μm程度の二次液滴)となるまでせん断処理することが好ましい。
 コレステリック液晶組成物の微小な液滴の体積平均粒径及び粒径分布は、目的とするコレステリック液晶樹脂微粒子の体積平均粒径や粒径分布に影響する。液滴の粒径が大きすぎなければ、生成するコレステリック液晶樹脂微粒子が大きくなりすぎることも少なく、特に印刷用インクに使用した際に印刷プロセスに不具合が生じるおそれも少ない。液滴の粒径が小さすぎなければ、生成するコレステリック液晶樹脂微粒子が小さくなりすぎることも少なく、十分な発色が得られないおそれも少ない。液滴の粒径分布が広すぎなければ、液滴の粒径が適切な大きさである場合の両方のメリットが生じる可能性がある。コレステリック液晶組成物の液滴は、生成するコレステリック液晶樹脂微粒子とほぼ同じ大きさになるように形成することが望ましい。
 コレステリック液晶組成物の液滴の体積平均粒径は、1μm以上30μm以下の範囲内であってもよく、好適には2μm以上20μm以下の範囲内であり、より好適には3μm以上15μm以下の範囲内であり、さらに好適には4μm以上9μm以下の範囲内である。特に、得られるコレステリック液晶樹脂微粒子を印刷用インクに使用する場合には、液滴の体積平均粒径をできるだけ小さくすることにより、印刷プロセスに不具合を生じさせず、濃度ムラのない印字物を得ることができる。
 コレステリック液晶組成物の液滴の粒径分布(体積平均粒径/個数平均粒径)は、通常1~3、好ましくは1~2.5、より好ましくは1~2である。特に微細な液滴を形成する場合には、高速回転する回転子と、それを取り囲み、かつ小孔または櫛歯を有する固定子との間隙に、コレステリック液晶組成物を流通させる方法が好適である。
 本開示に使用できる分散機は、コレステリック液晶混合物に一定のせん断力を付与できるものであれば特に限定されない。分散機としては、例えば、高速せん断攪拌機(ユーロテック製、製品名:キャビトロン)を用いることができる。
 高速せん断攪拌機を用いる場合、せん断処理の条件は、回転数1,000~50,000の条件下、10秒間~1時間であることが好ましい。
 無機コロイド及び水系媒体の総質量(すなわち、無機コロイド水分散液の質量)を100質量部としたとき、コレステリック液晶化合物の質量は、好適には5質量部以上60質量部以下であり、より好適には15質量部以上55質量部以下であり、さらに好適には25質量部以上50質量部以下である。
 コレステリック液晶化合物の当該質量が5質量部以上であれば、十分な量のコレステリック樹脂微粒子が得られる可能性がある。一方、コレステリック液晶化合物の当該質量が60質量部以下であれば、コレステリック液晶化合物がコレステリック液晶混合物中において十分に分散する可能性がある。
 4.ストリッピング工程
 上記微粒化工程後、かつ後述する重合工程前に、コレステリック液晶混合物から有機溶剤をストリッピング処理により除去するストリッピング工程をさらに有していてもよい。
 ストリッピング処理の実施により重合反応に不要な有機溶剤を除くことによって、後述する実施例1-2と比較例2との対比に示すように、コレステリック液晶樹脂微粒子の凝集を防ぐことができる。
 ストリッピング処理は、コレステリック液晶混合物を加熱し、不活性ガス(窒素、アルゴン、ヘリウム等)を吹き込む方法や、水蒸気を吹き込む方法により行われる。また、これらの気体を吹き込みながら減圧してストリッピングを行う方法を採用してもよい。
 ストリッピング処理におけるコレステリック液晶混合物の温度は、通常75℃~100℃であり、より好ましくは80℃~98℃以下、さらに好ましくは90℃~97℃である。
 減圧してストリッピングを行う場合、気相部の圧力は、好ましくは5~70kPa、より好ましくは10~65kPa、特に好ましくは20~60kPaの範囲内に制御することが望ましい。
 ストリッピング処理時間は、処理装置の規模、処理量、具体的な処理法、所望の総揮発性有機成分含有量の水準等によって変動するが、通常1~50時間、好ましくは2~40時間、より好ましくは3~30時間であり、更に好ましくは5~25時間、特に好ましくは10~20時間のストリッピング処理によって、良好な結果を得ることができる。
 ストリッピング工程後のコレステリック液晶混合物に残留する有機溶剤量は、好適には10,000ppm以下であり、より好適には1,000ppm以下であり、さらに好適には100ppm以下である。残留有機溶剤量が10,000ppm以下であれば、コレステリック液晶樹脂微粒子の凝集を防ぐことができる。
 コレステリック液晶混合物に残留する有機溶剤量を測定する方法は、例えば、GC-MS等を用いた化合物の一般的な定量方法が挙げられる。
 5.重合工程
 上述した微粒化工程後に、コレステリック液晶混合物をコレステリック液晶化合物の発色領域まで昇温し、かつ光重合及び熱重合の少なくともいずれか一方の重合を行うことにより、コレステリック液晶樹脂を生成させる重合工程をさらに有することが好ましい。また、重合工程は、上述したストリッピング工程後に実施することが好ましい。
 この重合工程により、コレステリック液晶化合物の液晶構造が固定され、得られるコレステリック液晶樹脂微粒子に対し液晶化合物固有の発色をさせることができる。
 液晶固有の発色を得るためには、重合工程の直前に、コレステリック液晶混合物を、コレステリック液晶化合物の発色領域まで昇温することが好ましい。このように昇温することによって、コレステリック液晶混合物の配向性を高めることができ、その配向した液晶構造が維持されたコレステリック液晶混合物をそのまま重合に供することができる。
 光重合反応により重合する場合は以下の通りである。
 微粒化工程を経て形成された微小粒径の液滴を含有する懸濁液に対し、紫外線照射を行うことにより光重合反応を実施する。紫外線源は特に限定されず、水銀ランプ等が使用できる。照射出力、照射距離及び照射時間は、反応スケールによる。例えば、照射出力は100~3,000W、懸濁液面から紫外線源までの照射距離は10~100cm、照射時間は10秒間~1時間とすることができる。
 熱重合反応により重合する場合は以下の通りである。
 微粒化工程を経て形成された微小粒径の液滴を含有する懸濁液を重合反応器に仕込み、通常60~100℃、好ましくは80~95℃の温度で重合を行う。重合温度が低すぎると、液晶固有の発色が得られない。
 上述した重合により、コレステリック液晶混合物中において、コレステリック液晶樹脂微粒子が生成する。
 6.除去工程
 上述した重合工程後に、コレステリック液晶樹脂を含む重合反応混合物から、無機コロイド水分散液に由来する無機コロイドを除去する除去工程をさらに有していてもよい。
 ここでいう「重合反応混合物」とは、コレステリック液晶混合物が上記重合工程を経て、コレステリック液晶樹脂が生成した後の混合物を意味する。また、「コレステリック液晶樹脂」はそのほぼ全てが後述する微粒子となっている。
 本工程においては、上記重合工程を経たコレステリック液晶樹脂微粒子の表面に存在する無機コロイドを溶解して除去する。
 無機コロイドは、コレステリック液晶混合物中において、コレステリック液晶組成物の液滴の周りを囲むことにより、液滴を安定化させる役割を果たす。重合工程後には、無機コロイドはコレステリック液晶樹脂微粒子の表面に付着している。コレステリック液晶樹脂微粒子表面の無機コロイドを除去しない場合、残存した無機コロイドが当該樹脂微粒子における光の吸収及び反射に影響を及ぼすため、当該樹脂微粒子の発色が弱くなる。また特に、コレステリック液晶樹脂微粒子を印刷用インクに用いた場合、印字面の平滑性低下、機械的強度低下の原因となる。以上の理由により、コレステリック液晶樹脂微粒子の表面に付着した無機コロイドを除去する必要がある。
 無機コロイドとして難水溶性金属化合物のコロイドを用いた場合、除去工程において酸洗浄を実施することが好ましい。
 難水溶性金属化合物のコロイドは、コレステリック液晶樹脂微粒子を含有する重合反応混合物に酸を加えて、pHを酸性領域に調整することによって溶解する。一般に、酸洗浄においては、当該重合反応混合物に酸を加えて、当該重合反応混合物のpHを6.5以下とすることにより行う。当該重合反応混合物のpHは、好ましくは、4~6.5、更に好ましくは4.5~6である。
 使用できる酸としては、硫酸、塩酸、硝酸等の無機酸、酢酸、クエン酸、シュウ酸等の有機酸を使用することができるが、少量の添加でpHを調整することのできる無機酸が好ましく、無機酸の中でも硫酸が特に好ましい。
 酸洗浄は、重合反応混合物を25℃程度に冷却してから行うことが望ましい。酸洗浄は、重合反応混合物に酸を添加してpH調整を行った後、5~30分間程度、攪拌することによって行うことができる。
 7.その他の工程
 通常は、酸洗浄後に重合反応混合物を濾過して、コレステリック液晶樹脂微粒子を濾別する。次いで、コレステリック液晶樹脂微粒子に、新たにイオン交換水を加え、再度水に分散化(リスラリー工程)し、再度濾過脱水する等の洗浄操作を行って、コレステリック液晶樹脂微粒子を精製する。
 この濾過脱水とリスラリー工程は、必要に応じて、数回繰り返してもよいが、効率の点から2~3回が好ましい。水による洗浄は、濾布を配置したベルトコンベアを用いて、着色重合体粒子のウエットケーキに水を散布する方法により、連続的に行ってもよい。
 水洗浄後のコレステリック液晶樹脂微粒子を濾別した後、常法に従って乾燥させる。乾燥方法は、自然乾燥でもよいが、コレステリック液晶樹脂微粒子を含むウエットケーキを、攪拌槽、回転翼を有する乾燥機等を用い、熱ガスを導入して乾燥させてもよい。
 8.コレステリック液晶樹脂微粒子
 本開示により得られるコレステリック液晶樹脂微粒子は、体積平均粒径が1μm以上30μm以下の範囲内の微粒子である。このように、比較的微小な体積平均粒径を有することによって、コレステリック液晶樹脂微粒子を特にグラビア印刷や凸版印刷に供した場合にも、当該微粒子が印刷装置の部材(ブレード等)に溜まることが無く、印刷に不具合を生じさせ難いというメリットがある。
 コレステリック液晶樹脂微粒子の体積平均粒径は、通常1μm以上30μm以下の範囲内であり、好適には1μm以上20μm以下の範囲内であり、より好適には1μm以上10μm以下の範囲内であり、さらに好適には1μm以上5μm以下の範囲内である。コレステリック液晶樹脂微粒子の体積平均粒径が30μm以下であれば、特に印刷用インクに使用した際に印刷プロセスに不具合が生じるおそれが少ない。コレステリック液晶樹脂微粒子の体積平均粒径が1μm以上であれば、十分な発色が得られる可能性がある。
 体積平均粒径の測定及び算出は、電子顕微鏡観察により、コレステリック液晶樹脂微粒子100個について粒径を測定し、かつその平均をとることにより行う。
 コレステリック液晶樹脂微粒子の粒径分布(体積平均粒径/個数平均粒径)は、通常1~3、好ましくは1~2.5、より好ましくは1~2である。
 コレステリック液晶樹脂微粒子の発色は、採用したコレステリック液晶化合物等の種類によって様々である。
 発色の確認方法は、黒紙を背景としてコレステリック液晶樹脂微粒子に可視光を照射し、その際に目視により確認できた色を、そのコレステリック液晶樹脂微粒子の色とする。
 コレステリック液晶樹脂微粒子の用途としては、例えば、各種印刷用インク、偽造防止印刷用トナー等が挙げられる。
 また、コレステリック液晶化合物の種類や組み合わせを調節することにより、円偏光をもつコレステリック液晶樹脂微粒子を製造することもでき、そのような微粒子の用途としては、円偏光フィルター等が挙げられる。
 以下に、実施例及び比較例を挙げて、本開示を更に具体的に説明するが、本開示は、これらの実施例のみに限定されるものではない。なお、部及び%は、特に断りのない限り質量基準である。
 本実施例及び比較例において行った試験方法は以下のとおりである。
 1.液晶樹脂微粒子の製造
 [実施例1]
 (1)コレステリック液晶組成物の調製工程
 コレステリック液晶化合物として化合物(i)(下記式(A)の化合物)450g及び重合性キラル化合物(BASF製、商品名:LC756)22.5g、光重合開始剤(チバスペシャルティーケミカルズ社製、商品名:Irgacure184)4.5g、及び有機溶剤としてシクロペンタノン450gを混合し、60℃で1時間攪拌することにより、コレステリック液晶組成物を調製した。
Figure JPOXMLDOC01-appb-C000031
 (2)無機コロイド水分散液の調製工程
 25℃で、イオン交換水720gに塩化マグネシウム(水溶性多価金属塩)30gを溶解した水溶液を、攪拌しながら、イオン交換水135gに水酸化ナトリウム(水酸化アルカリ金属塩)15gを溶解した水溶液を、徐々に添加して、水酸化マグネシウムコロイド(難水溶性の金属水酸化物コロイド)の分散液(無機コロイド水分散液)900gを調製した。
 得られたコロイドの粒径分布を粒径分布測定機(島津製作所製、製品名:SALD粒径分布測定機)で測定したところ、D50(個数粒径分布の小粒径からの50%累積値)が0.36μm、D90(同90%累積値)が0.80μmであった。
 (3)微粒化工程
 上記無機コロイド水分散液900gに、60℃で、上記コレステリック液晶組成物909gを添加し、攪拌翼を備えた攪拌装置により攪拌した。この際、攪拌開始当初は粗い液滴が生成するが、この粗い液滴の生成が安定するまで攪拌した。
 さらに、分散機として高速せん断攪拌機(ユーロテック社製、製品名:キャビトロン)を用いて22,000rpmの回転数で1分間せん断処理を行い、コレステリック液晶化合物の液滴を造粒し、コレステリック液晶混合物の懸濁液を調製した。生成した各液滴中において、コレステリック液晶化合物が微粒化していることを確認した。
 (4)ストリッピング工程
 上記コレステリック液晶混合物に対し、95℃で12時間、窒素を吹き込むストリッピング処理を実施することにより、有機溶剤(シクロペンタノン)を除去した。
 (5)重合工程
 有機溶剤を除去した後の上記コレステリック液晶混合物に対し、1,500Wの高圧水銀ランプを用いて、照射距離20cmで紫外線照射を3分間行い、光重合を行った。その結果、コレステリック液晶混合物中のコレステリック液晶化合物が重合することによりコレステリック液晶樹脂微粒子が生成した。以下、コレステリック液晶樹脂微粒子を含む混合物を「重合反応混合物」という。
 (6)除去工程及び後処理
 上記重合反応混合物に対し、当該分散液の液性がpH=5となるまで希硫酸を添加し、コレステリック液晶樹脂微粒子表面の水酸化マグネシウムコロイドを溶解し、イオン交換水で洗浄を繰り返すことにより、水酸化マグネシウムコロイドを除去した。得られた混合物を脱水し乾燥させることにより、コレステリック液晶樹脂微粒子を得た(実施例1)。得られたコレステリック液晶樹脂微粒子は、体積平均粒径が6μmであり、緑色(緑味がかった液晶色)を呈していた。
 [実施例2]
 実施例1の「(1)コレステリック液晶組成物の調製工程」において、光重合開始剤を添加せずに、「(5)コレステリック液晶化合物の液晶構造を固定する工程」において、60℃で熱重合開始剤(日油社製、商品名:パーブチルO)9.0g添加し1時間攪拌した後に、90℃に昇温し1時間反応させたこと以外は、実施例1と同様にコレステリック液晶樹脂微粒子を得た(実施例2)。得られたコレステリック液晶樹脂微粒子は、体積平均粒径が12μmであり、緑色(緑味がかった液晶色)を呈していた。
 [比較例1]
 実施例1の「(3)コレステリック液晶混合物の調製工程」において、攪拌翼による攪拌のみで造粒を行ったこと以外は、実施例1と同様にコレステリック液晶樹脂微粒子を得た(比較例1)。得られたコレステリック液晶樹脂微粒子は体積平均粒径が50μmであり、緑色(緑味がかった液晶色)を呈していた。
 [比較例2]
 実施例1の「(4)ストリッピング工程」を行わなかったこと以外は、実施例1と同様の工程を実施することにより微粒子を得た(比較例2)。得られた微粒子は、無機コロイドを除去すると急激に凝集したため、体積平均粒径は測定しなかった。また、得られた微粒子は、発色せず白色を呈した。
 [比較例3]
 実施例1の「(1)コレステリック液晶組成物の調製工程」において、光重合開始剤を添加せず、かつ「(5)重合工程」を行わなかったこと以外は、実施例1と同様の工程を実施することにより微粒子を得た(比較例3)。得られた微粒子は体積平均粒径が8μmであり、発色せず白色を呈した。
 2.コレステリック液晶樹脂微粒子の評価
 実施例1~実施例2及び比較例1~比較例3の各コレステリック液晶樹脂微粒子について、粒径の測定、及び発色確認を行った。詳細は以下の通りである。
 (1)粒径の測定
 電子顕微鏡観察により、コレステリック液晶樹脂微粒子100個について粒径を測定し、その範囲を確定した。
 (2)発色確認
 黒紙を背景としてコレステリック液晶樹脂微粒子に可視光を照射し、その際に目視により確認できた色を、そのコレステリック液晶樹脂微粒子の色とした。
 実施例1~実施例2及び比較例1~比較例3の各コレステリック液晶樹脂微粒子の測定及び評価結果を下記表1に示す。なお上述したように、比較例2のコレステリック液晶樹脂微粒子については凝集が生じたため、体積平均粒径の測定は行わなかった。
Figure JPOXMLDOC01-appb-T000032
 3.考察
 以下、表1を参照しながら、コレステリック液晶樹脂微粒子の評価結果について検討する。
 表1より、比較例1のコレステリック液晶樹脂微粒子は、緑色に呈色した一方、その体積平均粒径は50μmである。したがって、微粒化工程において通常の攪拌方法を実施した場合、微粒子の粒径が大きくなりすぎることが分かる。
 表1より、比較例2の微粒子は、呈色せずに白色を示し、かつ凝集を起こした。したがって、有機溶剤を除去しないまま紫外線照射を行い、後処理を行った場合、光重合反応が進行しないことが分かる。その理由は、液晶分子間に有機溶剤が存在しているため規則構造をとれないためと推測される。したがって、このような微粒子は、液晶としては呈色しないことが実証された。
 表1より、比較例3の微粒子は、その体積平均粒径は8μmである一方、呈色せずに白色を示した。したがって、重合工程を実施せず、コレステリック液晶化合物を含む微粒子については、液晶としては呈色しないことが確認できた。
 一方、表1より、実施例1及び実施例2のコレステリック液晶樹脂微粒子は、その体積平均粒径が6μm又は12μmであり、かついずれも緑色に呈色した。
 したがって、無機コロイドを分散剤として用い、分散機によりせん断処理することによってコレステリック液晶化合物を微粒化する微粒化工程を実施することにより、上記特定の範囲の体積平均粒径を有するコレステリック液晶樹脂微粒子が得られることが実証された。特に、光重合法(実施例1)、熱重合法(実施例2)のいずれの重合法を用いても、得られるコレステリック液晶樹脂微粒子の体積平均粒径が1μm~30μmの範囲内となることが実証された。

Claims (6)

  1.  コレステリック液晶樹脂微粒子の製造方法であって、
     前記コレステリック液晶樹脂微粒子の体積平均粒径が、1μm以上30μm以下の範囲内であり、
     コレステリック液晶化合物、無機コロイド、及び水系媒体を含有するコレステリック液晶混合物を分散機によりせん断処理することによって、当該コレステリック液晶化合物を含む液滴を微粒化する微粒化工程を有することを特徴とするコレステリック液晶樹脂微粒子の製造方法。
  2.  前記微粒化工程後に、前記コレステリック液晶混合物を前記コレステリック液晶化合物の発色温度領域まで昇温し、かつ光重合及び熱重合の少なくともいずれか一方の重合を行うことにより、コレステリック液晶樹脂微粒子を生成させる重合工程をさらに有することを特徴とする請求項1に記載の製造方法。
  3.  前記コレステリック液晶混合物は、前記コレステリック液晶化合物及び有機溶剤を含有するコレステリック液晶組成物と、前記無機コロイドと、前記水系媒体との混合物であることを特徴とする請求項1又は2に記載の製造方法。
  4.  前記無機コロイド及び水系媒体の総質量を100質量部としたとき、前記コレステリック液晶化合物の質量が5質量部以上60質量部以下の範囲内であることを特徴とする請求項1乃至3のいずれか一項に記載の製造方法。
  5.  前記微粒化工程後かつ前記重合工程前に、前記コレステリック液晶混合物から前記有機溶剤をストリッピング処理により除去するストリッピング工程をさらに有することを特徴とする請求項3又は4に記載の製造方法。
  6.  前記重合工程後に、コレステリック液晶樹脂を含む重合反応混合物から、前記無機コロイドを除去する除去工程をさらに有することを特徴とする請求項2乃至5のいずれか一項に記載の製造方法。
PCT/JP2018/012951 2017-03-31 2018-03-28 コレステリック液晶樹脂微粒子の製造方法 WO2018181562A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18777858.4A EP3604347A4 (en) 2017-03-31 2018-03-28 MANUFACTURING PROCESS FOR FINE PARTICLES FROM CHOLESTERIC LIQUID CRYSTAL RESIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072426A JP6907654B2 (ja) 2017-03-31 2017-03-31 コレステリック液晶樹脂微粒子の製造方法
JP2017-072426 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181562A1 true WO2018181562A1 (ja) 2018-10-04

Family

ID=63676007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012951 WO2018181562A1 (ja) 2017-03-31 2018-03-28 コレステリック液晶樹脂微粒子の製造方法

Country Status (3)

Country Link
EP (1) EP3604347A4 (ja)
JP (1) JP6907654B2 (ja)
WO (1) WO2018181562A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019569A4 (en) 2019-08-22 2023-09-13 ENEOS Corporation LIQUID CRYSTAL POLYMER PARTICLES, HOME SETTING RESIN COMPOSITION AND MOLDED BODY

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270406A (ja) 1985-09-24 1987-03-31 Fuji Photo Film Co Ltd 配向フイルムの作成方法
JPH06211907A (ja) * 1992-12-03 1994-08-02 Kansai Paint Co Ltd ビニル系重合体粒子の水分散化物の製造方法及びビニル系重合体粒子粉末の製造方法
JPH08104870A (ja) 1994-09-12 1996-04-23 F Hoffmann La Roche Ag 光重合性液晶
JPH10221885A (ja) * 1997-01-31 1998-08-21 Nippon Zeon Co Ltd 静電荷像現像用トナーの製造方法
JPH11100575A (ja) 1997-07-31 1999-04-13 Asahi Glass Co Ltd 液晶組成物およびこれを重合した高分子液晶
JPH11130729A (ja) 1997-10-27 1999-05-18 Asahi Denka Kogyo Kk 3官能化合物および高分子液晶
JPH11193287A (ja) 1997-10-08 1999-07-21 Basf Ag 重合可能なキラルな化合物およびその使用
JPH11268912A (ja) * 1998-03-24 1999-10-05 Maruo Calcium Co Ltd 無機分散剤、懸濁重合用安定剤、重合体粒子、不飽和ポリエステル樹脂組成物及びトナー組成物
JP2002201222A (ja) 2000-09-19 2002-07-19 Merck Patent Gmbh ポリマービーズ、ポリマービーズの使用方法、反射フィルム、セキュリティマーク、有価証券、セキュリティ装置
JP2002226506A (ja) * 2000-12-28 2002-08-14 Roehm Gmbh パール重合体の製造法、および該パール重合体を有するpama−プラスチゾル、歯科材料、多孔性プラスチック金型、成形材料および成形体
JP2002265421A (ja) 2001-03-12 2002-09-18 Nitto Denko Corp 液晶性(メタ)アクリレート化合物、該化合物を含有する液晶組成物およびこれらを用いた光学フィルム
JP2002533742A (ja) 1998-12-22 2002-10-08 ビーエーエスエフ アクチェンゲゼルシャフト 光学素子を製造するための重合性液晶物質の使用
JP2002308832A (ja) 2001-04-12 2002-10-23 Nitto Denko Corp 重合性液晶化合物および光学フィルム
JP2003137887A (ja) 2001-07-02 2003-05-14 Merck Patent Gmbh キラル化合物
JP2005112945A (ja) 2003-10-06 2005-04-28 Toyota Motor Corp 高分子液晶球形微粒子の製造方法、高分子液晶球形微粒子からなる色材、及び塗料
JP2005263789A (ja) 2004-02-18 2005-09-29 Asahi Denka Kogyo Kk 重合性化合物及び該化合物を含有する重合性液晶組成物
JP2005309255A (ja) 2004-04-23 2005-11-04 Asahi Denka Kogyo Kk 配向性高分子
WO2009041512A1 (ja) 2007-09-28 2009-04-02 Zeon Corporation 液晶組成物及びその用途
WO2012147904A1 (ja) 2011-04-27 2012-11-01 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2014174471A (ja) 2013-03-12 2014-09-22 Nippon Zeon Co Ltd 識別媒体、物品の識別方法、及び積層構造体

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270406A (ja) 1985-09-24 1987-03-31 Fuji Photo Film Co Ltd 配向フイルムの作成方法
JPH06211907A (ja) * 1992-12-03 1994-08-02 Kansai Paint Co Ltd ビニル系重合体粒子の水分散化物の製造方法及びビニル系重合体粒子粉末の製造方法
JPH08104870A (ja) 1994-09-12 1996-04-23 F Hoffmann La Roche Ag 光重合性液晶
JPH10221885A (ja) * 1997-01-31 1998-08-21 Nippon Zeon Co Ltd 静電荷像現像用トナーの製造方法
JPH11100575A (ja) 1997-07-31 1999-04-13 Asahi Glass Co Ltd 液晶組成物およびこれを重合した高分子液晶
JPH11193287A (ja) 1997-10-08 1999-07-21 Basf Ag 重合可能なキラルな化合物およびその使用
JPH11130729A (ja) 1997-10-27 1999-05-18 Asahi Denka Kogyo Kk 3官能化合物および高分子液晶
JPH11268912A (ja) * 1998-03-24 1999-10-05 Maruo Calcium Co Ltd 無機分散剤、懸濁重合用安定剤、重合体粒子、不飽和ポリエステル樹脂組成物及びトナー組成物
JP2002533742A (ja) 1998-12-22 2002-10-08 ビーエーエスエフ アクチェンゲゼルシャフト 光学素子を製造するための重合性液晶物質の使用
JP2002201222A (ja) 2000-09-19 2002-07-19 Merck Patent Gmbh ポリマービーズ、ポリマービーズの使用方法、反射フィルム、セキュリティマーク、有価証券、セキュリティ装置
JP2002226506A (ja) * 2000-12-28 2002-08-14 Roehm Gmbh パール重合体の製造法、および該パール重合体を有するpama−プラスチゾル、歯科材料、多孔性プラスチック金型、成形材料および成形体
JP2002265421A (ja) 2001-03-12 2002-09-18 Nitto Denko Corp 液晶性(メタ)アクリレート化合物、該化合物を含有する液晶組成物およびこれらを用いた光学フィルム
JP2002308832A (ja) 2001-04-12 2002-10-23 Nitto Denko Corp 重合性液晶化合物および光学フィルム
JP2003137887A (ja) 2001-07-02 2003-05-14 Merck Patent Gmbh キラル化合物
JP2005112945A (ja) 2003-10-06 2005-04-28 Toyota Motor Corp 高分子液晶球形微粒子の製造方法、高分子液晶球形微粒子からなる色材、及び塗料
JP2005263789A (ja) 2004-02-18 2005-09-29 Asahi Denka Kogyo Kk 重合性化合物及び該化合物を含有する重合性液晶組成物
JP2005309255A (ja) 2004-04-23 2005-11-04 Asahi Denka Kogyo Kk 配向性高分子
WO2009041512A1 (ja) 2007-09-28 2009-04-02 Zeon Corporation 液晶組成物及びその用途
WO2012147904A1 (ja) 2011-04-27 2012-11-01 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2014174471A (ja) 2013-03-12 2014-09-22 Nippon Zeon Co Ltd 識別媒体、物品の識別方法、及び積層構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604347A4 *

Also Published As

Publication number Publication date
JP6907654B2 (ja) 2021-07-21
JP2018172572A (ja) 2018-11-08
EP3604347A1 (en) 2020-02-05
EP3604347A4 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
RU2686940C2 (ru) Композиция водных чернил
JP6206414B2 (ja) 重合性化合物、重合性組成物、高分子、及び光学異方体
TWI713553B (zh) 粉體混合物
JP5519659B2 (ja) 放射型液晶化合物、及びこれを含む光学フィルム及び液晶ディスプレイ装置
JP5522047B2 (ja) 重合性キラル化合物、重合性液晶組成物、液晶性高分子及び光学異方体
WO2018034215A1 (ja) 識別用表示媒体及びその製造方法
TW201026822A (en) Liquid-crystal display
CN109627658B (zh) 包含官能化聚乙烯醇和含有液晶介质的纳米胶囊的组合物
WO2008044519A1 (fr) PIGMENT DE α-DICÉTOPYRROLOPYRROLE, COMPOSITION COLORANTE CONTENANT CELUI-CI, ET FILM ROUGE
CN109072081A (zh) 包含液晶介质的用于纳米包封的组合物及纳米胶囊
CN109863226A (zh) 包含液晶介质的纳米胶囊
WO2018173778A1 (ja) 液晶組成物、液晶硬化フィルム及びその製造方法
JP2020196850A (ja) 偽造防止インク用組成物、偽造防止インク、偽造防止用印刷物
JPWO2016136921A1 (ja) 顔料微粒子、顔料分散体、感光性着色組成物及びカラーフィルター
WO2018181562A1 (ja) コレステリック液晶樹脂微粒子の製造方法
JP5621584B2 (ja) 重合性キラル化合物、重合性液晶組成物、液晶性高分子及び光学異方体
TWI613277B (zh) 液晶化合物、液晶組成物及使用此液晶化合物的液晶顯示裝置
JP5937885B2 (ja) フルオレン骨格を有する樹脂粒子を含むラテックス及びその製造方法
JP2005112945A (ja) 高分子液晶球形微粒子の製造方法、高分子液晶球形微粒子からなる色材、及び塗料
JP6989050B1 (ja) ハロゲン化亜鉛フタロシアニン顔料及びその製造方法
JP2010265356A (ja) ジオキサジンバイオレット顔料及びそれを含有する着色組成物
JP5712546B2 (ja) 重合性オキセタン誘導体
TW202120667A (zh) 一種可聚合化合物及應用
TW202130791A (zh) 可聚合化合物、液晶組合物、液晶顯示元件及液晶顯示器
CN113242887A (zh) 卤化锌酞菁颜料的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018777858

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018777858

Country of ref document: EP

Effective date: 20191031