WO2018180929A1 - Resin molded body and blue light cut laminated body - Google Patents

Resin molded body and blue light cut laminated body Download PDF

Info

Publication number
WO2018180929A1
WO2018180929A1 PCT/JP2018/011526 JP2018011526W WO2018180929A1 WO 2018180929 A1 WO2018180929 A1 WO 2018180929A1 JP 2018011526 W JP2018011526 W JP 2018011526W WO 2018180929 A1 WO2018180929 A1 WO 2018180929A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
general formula
protective layer
layer
resin molded
Prior art date
Application number
PCT/JP2018/011526
Other languages
French (fr)
Japanese (ja)
Inventor
健裕 笠原
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18775987.3A priority Critical patent/EP3603966A4/en
Priority to JP2019509684A priority patent/JP6851464B2/en
Priority to CN201880014458.9A priority patent/CN110383118B/en
Publication of WO2018180929A1 publication Critical patent/WO2018180929A1/en
Priority to US16/544,922 priority patent/US20190381773A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3442Polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/127Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from carbon dioxide, carbonyl halide, carboxylic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • This disclosure relates to a resin molded body and a blue light cut laminate.
  • Image display devices such as cathode ray tube display devices, plasma displays, electroluminescence displays, fluorescent display devices, field emission displays, and liquid crystal display devices (LCDs), or various displays such as smartphones and tablet terminals equipped with touch panels. Then, it is used by visually observing the screen of a display provided with a light source.
  • attention has been paid to the influence of ultraviolet rays and blue light on the retina when a small terminal equipped with an image display device or a touch panel is used for a long time. Further, in large displays and the like, it is desirable to reduce the influence on the retina by ultraviolet rays and blue light.
  • the light source is covered with a resin molded article containing an ultraviolet absorber, or an image is displayed.
  • a protective sheet containing an ultraviolet absorber By covering the surface of the device with a protective sheet containing an ultraviolet absorber, the influence of the ultraviolet rays on the retina can be reduced.
  • an attempt has been made to reduce the influence of ultraviolet rays or the like on the user's retina by absorbing ultraviolet rays with a spectacle lens that is worn when viewing the screen of a display equipped with a light source.
  • a UV-resistant polyester resin composition in which a UV-absorbing ability is maintained even when used for a long period of time by introducing a reactive group into the UV absorber and polymerizing with a base resin ( JP, 2016-259624, A).
  • a base resin JP, 2016-259624, A
  • elution from the resin composition of the UV absorber is suppressed by binding the UV absorber and the resin even when used for a long time, and UV absorption It is described that the performance is maintained for a long time.
  • the resin molded product described in Japanese Patent Application Laid-Open No. 2010-132646 is a resin having low compatibility with an ultraviolet absorber having an oxazinone skeleton when used for a long period of time.
  • the ultraviolet absorber contained in the resin molded product oozes out on the surface of the resin molded product, the resin molded product becomes white, and haze increases. Found that there is a case.
  • the resin molded product described in Japanese Patent Application Laid-Open No. 2010-132846 still has room for improvement in terms of durability in a high-humidity heat environment.
  • the polyester resin composition described in JP-A-2016-259624 is a resin composition mainly applied to a back sheet for a solar cell, and has a shorter wavelength, specifically, a wavelength of 350 nm or less. However, it is not suitable for blocking ultraviolet rays and blue light on the longer wavelength side of 400 nm to 420 nm. Further, according to the study by the present inventors, a reactive group was introduced into the ultraviolet absorber described in JP-A-2016-259624 to suppress the seepage of the ultraviolet absorber from the resin molded product. However, it has been found that the ultraviolet absorption ability is remarkably lowered due to the structural change.
  • the problem to be solved by one embodiment of the present invention is that long-wavelength ultraviolet and blue light blocking properties are good, and even when used for a long period of time, an increase in haze due to leaching of an ultraviolet absorber is suppressed.
  • Another object of the present invention is to provide a resin molded product that maintains the blocking property of long-wavelength ultraviolet light and blue light.
  • Another problem to be solved by another embodiment of the present invention is that, even when used for a long period of time, an increase in haze due to leaching of an ultraviolet absorber is suppressed, and long-wave ultraviolet and blue light blocking properties are suppressed. Is to provide a blue light cut laminate that is maintained for a long time.
  • Means for solving the problems include the following embodiments. ⁇ 1> A resin layer containing a resin and a compound represented by the following general formula (1), and at least one selected from the group consisting of a urethane resin, an acrylic resin and a polysiloxane on at least one surface of the resin layer. And a protective layer.
  • Het 1 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
  • X a , X b , X c and X d each independently represent a hetero atom.
  • Y a , Y b , Y c , Y d , Y e and Y f each independently represents a group containing a hetero atom or a carbon atom.
  • the ring bonded to Het 1 may have a double bond at any position.
  • the resin molded body according to ⁇ 1> wherein the content of the compound represented by the general formula (1) with respect to the total amount of the resin layer is more than 0% by mass and 5.0% by mass or less.
  • the protective layer contains a urethane resin or an acrylic resin, and the solubility parameter calculated by the Fedors method of the protective layer is 20 (J / cm 3 ) 1/2 to 28 (J / cm 3 ) 1 /
  • ⁇ 5> The resin molded body according to ⁇ 4>, further comprising an antireflection layer on the surface of the protective layer opposite to the side in contact with the resin layer.
  • Het 2 is synonymous with Het 1 in general formula (1).
  • X 2a , X 2b , X 2c and X 2d have the same meanings as X a , X b , X c and X d in the general formula (1), respectively.
  • Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in general formula (1), respectively.
  • L 1 and L 2 each independently represent an oxygen atom, a sulfur atom or NR a
  • R a represents a hydrogen atom or a monovalent substituent.
  • Z 1 and Z 2 each independently represents an atomic group necessary for bonding to Y 2b and Y 2c or Y 2e and Y 2f to form a 4-membered to 8-membered ring.
  • Het 3 is synonymous with Het 2 in general formula (2).
  • X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
  • Het 4 is synonymous with Het 3 in general formula (3).
  • R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are respectively R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , in general formula (3), Synonymous with R 3g and R 3h .
  • R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h are R 4a , R 4b , R 4c and R 4d in general formula (4), respectively.
  • R 4e , R 4f , R 4g and R 4h are independently represent a hydrogen atom or a monovalent substituent.
  • ⁇ 10> The resin molded product according to any one of ⁇ 1> to ⁇ 9>, which is a spectacle lens.
  • ⁇ 11> The resin molded product according to any one of ⁇ 1> to ⁇ 9>, which is a resin film.
  • ⁇ 12> The transparent substrate, the adhesive layer provided on at least one surface of the transparent substrate, and the surface of the adhesive layer on the surface opposite to the surface in contact with the transparent substrate, described in ⁇ 11> The blue light cut laminated body which has a resin film.
  • the blocking property of long-wavelength ultraviolet light and blue light is good, and even when used for a long period of time, an increase in haze due to leaching of the ultraviolet absorbent is suppressed, and It is possible to provide a resin molded product in which the blocking property of long wavelength ultraviolet light and blue light is maintained.
  • a blue light cut laminate in which an increase in haze due to leaching of an ultraviolet absorber is suppressed and a long wavelength ultraviolet ray and blue light blocking property is maintained for a long period of time. Can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the amount of each component in the sheet or composition is such that when there are a plurality of substances corresponding to each component in the sheet or composition, the amount present in the sheet or composition unless otherwise specified. It means the total amount of multiple substances.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
  • (meth) acryloyl group refers to one or both of “acryloyl group” and “methacryloyl group”
  • “(meth) acrylate” refers to any of “acrylate” and “methacrylate”.
  • (meth) acryl refers to one or both of “acryl” and “methacryl”.
  • room temperature means 25 ° C.
  • the blocking of the long wavelength ultraviolet light and the blue light is not only for completely blocking the long wavelength ultraviolet light and the blue light, but also through the resin molding or the blue light cut laminate, Including blocking at least a portion of the blue light and reducing the transmission of long wavelength ultraviolet light and blue light.
  • long wavelength ultraviolet light and blue light in this specification refer to light having a wavelength of 400 nm to 420 nm.
  • the resin molded body of the present disclosure includes a resin layer containing a resin and a compound represented by the general formula (1) described below (hereinafter sometimes referred to as a specific ultraviolet absorber), on at least one surface of the resin layer. And a protective layer containing at least one selected from the group consisting of urethane resin, acrylic resin and polysiloxane.
  • Het 1 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
  • X a , X b , X c and X d each independently represent a hetero atom.
  • Y a , Y b , Y c , Y d , Y e and Y f each independently represents a group containing a hetero atom or a carbon atom.
  • the ring bonded to Het 1 may have a double bond at any position.
  • ring A a ring formed by X a , X b , Y a , Y b and Y c bonded to Het 1 is referred to as ring A and X c , X d , Y d , Y e and Y f.
  • the rings formed by may be referred to as ring B, respectively.
  • the resin layer in the resin molded body of the present disclosure contains a resin.
  • resin resin that can be used for the resin layer
  • any resin that can be used as a resin molding material can be used without particular limitation.
  • the resin examples include polyolefin, poly-4-methylpentene, polyvinylcyclohexane, polystyrene, cycloolefin copolymer (COC), acrylic resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, polyether, polyacetal, polyamide, Polyimide, polyurethane, polyurea, polyester, polycarbonate (PC), phenol resin, melamine resin, cellulose ester, polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyethersulfone (PES), polysiloxane, and the like A copolymer etc. are mentioned.
  • thermoplastic resins are preferred from the viewpoints of handleability and moldability.
  • the thermoplastic resin include polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly ( ⁇ -methylstyrene), polyisoprene, Polybutadienes such as polybutadiene, polycyclopentene, polynorbornene, polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and poly (meth) acrylates such as polymethyl methacrylate (PMMA) , Acrylonitrile-butadiene-styrene resin (ABS), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol resin, ethylene vinyl acetate resin (EVA), polyester Terusuruhon resin (ABS
  • the resin molded body When the resin molded body is used as, for example, a spectacle lens or a blue light cut laminate, the resin is preferably transparent, that is, has a high light transmittance.
  • the resin molded body is transparent when the average transmittance of 430 nm to 700 nm of the resin molded body is 80% or more, and the transmittance is 75% in the wavelength range of 430 nm to 700 nm. That means that.
  • the average transmittance at 430 nm to 700 nm is preferably 85% or more, and more preferably 90% or more.
  • the average transmittance of the resin molded body from 430 nm to 700 nm is determined by measuring the spectral spectrum of the resin molded body using a UV / vis spectrum meter, for example, UV / vis spectrum meter UV3100 manufactured by Shimadzu Corporation, Can be obtained by calculating the average value of the measurement results of transmittance for each wavelength of 1 nm.
  • a UV / vis spectrum meter for example, UV / vis spectrum meter UV3100 manufactured by Shimadzu Corporation
  • the compound represented by the general formula (1) has almost no absorption in the visible light wavelength region. Accordingly, by measuring the transmittance and average transmittance of each wavelength of 430 nm to 700 nm of the resin molded body, the haze in the resin contained in the resin layer can be confirmed, and the resin resulting from the seepage of the ultraviolet absorber described later It is possible to confirm the haze increase suppressing effect of the resin contained in the layer.
  • suitable resins used for the transparent resin molding include cellulose esters such as diacetylcellulose, triacetylcellulose, propionylcellulose, butyrylcellulose, acetylpropionylcellulose, nitrocellulose, PA, PC, PET, PEN, PBT, Poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polystyrene such as syndiotactic polystyrene, polyolefin such as polyethylene, polypropylene, polymethylpentene, PMMA Acrylic resins such as polysulfone, polyethersulfone, polyvinyl butyral, ethylene vinyl acetate, polyether ketone, polyether imide and polyoxyethylene It is done. Of these, cellulose ester, PC, polyester, polyolefin, and acrylic resin are preferable, and PC and polyester are more preferable.
  • the spectacle lens resin may be a thermoplastic resin or a thermosetting resin as long as it satisfies the physical properties such as transparency, refractive index, workability, and strength after curing required for the spectacle lens. Good.
  • the refractive index of a resin can be further increased by introducing a halogen atom other than fluorine, an aromatic ring, a sulfur atom, or the like into the resin material.
  • the thermoplastic resin that can be used for forming the spectacle lens include one or more selected from acrylic resins such as PC and PMMA.
  • thermoplastic resin for the spectacle lens.
  • examples of commercially available products include polycarbonate resin compositions (Caliber 200-13: trade name, Sumitomo Dow Co., Ltd.), diethylene glycol bisallyl carbonate resin (CR-39: trade name, manufactured by PPG Industry).
  • the resin layer may contain only one type of resin or may contain two or more types. When the resin layer contains two or more kinds of resins, it may be contained in the form of a polymer blend or a polymer alloy.
  • the resin layer in the resin molded body of the present disclosure contains a compound (specific ultraviolet absorber) represented by the following general formula (1).
  • a compound represented by the general formula (1) represented by the following general formula (1).
  • the compound represented by the general formula (1) contained in the resin layer is an ultraviolet-absorbing compound, and is excellent in light absorption at a wavelength of 400 nm to 420 nm, that is, light blocking property at a wavelength of 400 nm to 420 nm.
  • Het 1 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue having at least one heteroatom.
  • the 5-membered or 6-membered aromatic heterocyclic residue in Het 1 may be condensed.
  • the hetero atom contained in Het 1 include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom, and a tellurium atom.
  • the hetero atom contained in Het 1 is preferably a nitrogen atom, an oxygen atom, or a sulfur atom, more preferably a nitrogen atom or a sulfur atom, and even more preferably a sulfur atom.
  • Het 1 may have two or more heteroatoms, and the plurality of heteroatoms may be the same atom or different atoms.
  • Two hydrogen atoms at any position of the 5- or 6-membered aromatic heterocycle are removed to form a divalent aromatic heterocyclic residue represented by Het 1 , and the two ring structures in the general formula (1) Combine with.
  • Examples of the aromatic heterocyclic ring in which two hydrogen atoms are bonded to the divalent aromatic heterocyclic residue represented by Het 1 include pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4- Triazole, pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, furan, thiophene, oxazole, isoxazole, thiazole, isothiazole, 1,2,3-oxadiazole, 1,3,4-thiadiazole, etc. Is mentioned.
  • aromatic heterocycle pyrrole, pyridine, furan or thiophene is preferable, pyridine or thiophene is more preferable, and thiophene is more preferable.
  • the position at which two hydrogen atoms are removed from the aromatic heterocycle described above may be any.
  • the bonding positions with ring A and ring B from which two hydrogen atoms have been removed are 2, 3 and 2 , 4th, 2nd, 5th, 3rd, 4th, 3rd, 5th.
  • Examples of the bonding position in the case of thiophene as a hetero 5-membered ring compound include the 2,3-position, 2,4-position, 2,5-position, 3,4-position, and 3,5-position.
  • the 2,5th, 2,4th, and 3rd, 4th positions are preferred, the 2,5th, 3rd, and 4th positions are more preferred, and the 2nd and 5th positions are even more preferred.
  • the bonding positions with ring A and ring B are 2, 3, 2, 4, 2, 5, , 6th, 3rd, 4th, 3rd, 5th, 3rd, 6th.
  • the 2,5th, 2,6th, and 3,5th positions are preferred, the 2,5th, 2,6th positions are more preferred, and the 2,5th positions are more preferred.
  • the heterocyclic residue represented by Het 1 may further have a substituent.
  • substituents that can be introduced into the heterocycle represented by Het 1 include monovalent substituents, such as a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), carbon An alkyl group having 1 to 20 carbon atoms (for example, methyl or ethyl), an aryl group having 6 to 20 carbon atoms (for example, phenyl or naphthyl), a cyano group, a carboxyl group, an alkoxycarbonyl group (for example, methoxycarbonyl), an aryloxycarbonyl group (for example, Phenoxycarbonyl), substituted or unsubstituted carbamoyl groups (eg carbamoyl, N-phenylcarbamoyl, N, N-dimethylcarbamoyl), alkylcarbonyl groups (e
  • the aforementioned substituent may further have a substituent.
  • the heterocyclic residue represented by Het 1 has a plurality of monovalent substituents, the plurality of monovalent substituents may be the same as or different from each other.
  • the substituent that can be further introduced into the monovalent substituent include the examples of the monovalent substituent described above.
  • a some substituent may couple
  • the monovalent substituent that can be introduced into the heterocyclic residue represented by Het 1 is preferably a substituent selected from an alkyl group, an alkoxy group, and an aryl group, more preferably an alkyl group and an aryl group, and an alkyl group. More preferred are groups.
  • X a , X b , X c and X d each independently represent a hetero atom.
  • the hetero atom in X a , X b , X c and X d include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom and a tellurium atom.
  • a hetero atom a nitrogen atom, an oxygen atom, and a sulfur atom are preferable, and a nitrogen atom and an oxygen atom are more preferable.
  • X a , X b , X c and X d may each further have a substituent. Examples of the substituent that can be introduced into X a , X b , X c, and X d include the same substituents exemplified as the monovalent substituent that can be introduced into Het 1 described above.
  • Y a , Y b , Y c , Y d , Y e and Y f each independently represents a group containing a hetero atom or a carbon atom.
  • Examples of the hetero atom in the case where Y a , Y b , Y c , Y d , Y e and Y f are hetero atoms include a nitrogen atom, an oxygen atom and a sulfur atom.
  • Y a , Y b , Y c , Y d , Y e and Y f are preferably a group containing a carbon atom, a nitrogen atom or an oxygen atom, more preferably a group containing a carbon atom or a nitrogen atom, Further preferred. Among these, it is more preferable that Y a , Y b , Y c , Y d , Y e and Y f are all carbon atoms or groups containing carbon atoms.
  • the group or hetero atom containing a carbon atom as Y a , Y b , Y c , Y d , Y e and Y f may further have a substituent, and when it has a plurality of substituents, The substituents may be bonded to each other to form a ring, and may further have a condensed ring structure.
  • substituents that can be introduced into Y a , Y b , Y c , Y d , Y e, and Y f include the same substituents exemplified as the monovalent substituent that can be introduced into Het 1 described above. be able to.
  • Ring A formed by X a , X b , Y a , Y b and Y c , and ring B formed by X c , X d , Y d , Y e and Y f are each in any position. It may have a double bond. It is preferable that at least one of the ring A and the ring B has a condensed ring structure. Moreover, it is preferable that at least one of the ring A and the ring B is not a perimidine ring.
  • Examples of the compound represented by the general formula (1) that can be used for the resin layer in the present disclosure include the following compound (A), compound (B), and compound (C).
  • the compound represented by the general formula (1) in the present disclosure is not limited to the following specific examples.
  • Examples of the compound represented by the general formula (1) include the compounds described in paragraph numbers [0046] to [0051] of JP 2010-132848 A, and the compound group described in the publication includes The present invention can be applied to the resin layer.
  • a method for synthesizing the compound represented by the general formula (1) is also described in detail in Japanese Patent Application Laid-Open No. 2010-132846, and these description items can be applied to the present disclosure.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
  • the compound represented by the general formula (2) will be described.
  • Het 2 in the general formula (2) is synonymous with Het 1 in the general formula (1), and the preferred embodiment is also the same.
  • X 2a , X 2b , X 2c and X 2d in general formula (2) have the same meanings as X a , X b , X c and X d in general formula (1), respectively, and preferred examples are also the same.
  • X 2a , X 2b , X 2c and X 2d may be different from each other, but X 2a and X 2b , and X 2c and X 2d are each preferably a combination of the same atoms, and X 2a and X 2c Is more preferably an oxygen atom and X 2b and X 2d represent a nitrogen atom.
  • Y 2b , Y 2c , Y 2e and Y 2f in the general formula (2) have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively, and preferred embodiments are also the same.
  • L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or NR a
  • R a represents a hydrogen atom or a monovalent substituent.
  • the monovalent substituent in the general formula (2) include the same monovalent substituents as those which can be introduced into the aforementioned Het 1 .
  • L 1 and L 2 are preferably an oxygen atom or NR a, and more preferably an oxygen atom.
  • L 1 and L 2 may be different from each other, but are preferably the same. Among these, it is more preferable that both L 1 and L 2 are oxygen atoms.
  • Z 1 and Z 2 each independently represent an atomic group necessary for bonding to Y 2b and Y 2c , or Y 2e and Y 2f to form a 4-membered ring to an 8-membered ring.
  • the formed 4-membered ring to 8-membered ring may further have a substituent and may have a condensed ring structure.
  • Examples of the formed 4-membered ring to 8-membered ring include aliphatic hydrocarbon rings such as cyclohexane and cyclopentane, aromatic hydrocarbon rings such as benzene ring and naphthalene ring, pyridine, pyrrole, pyridazine, thiophene, imidazole, Heterocycles such as furan, pyrazole, oxazole, triazole, thiazol or benzo condensed ring thereof can be mentioned.
  • an aromatic hydrocarbon ring or a hetero ring is preferable, an aromatic hydrocarbon ring is more preferable, and a benzene ring is further preferable.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (3).
  • the compound represented by the general formula (3) will be described.
  • Het 3 in the general formula (3) is synonymous with Het 2 in the general formula (2), and the preferred embodiment is also the same.
  • X 3a , X 3b , X 3c and X 3d in the general formula (3) have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively, and preferred embodiments are also the same.
  • X 3a , X 3b , X 3c and X 3d may be different from each other or the same.
  • X 3a and X 3b , and X 3c and X 3d are each preferably a combination of the same atoms, and X 3a and X 3c are oxygen atoms, and X 3b and X 3d are nitrogen atoms. More preferred.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
  • the monovalent substituent when R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h represent a monovalent substituent can be introduced into the aforementioned Het 1 Examples of monovalent substituents can be given as well.
  • R 3a , R 3b , R 3c , and R 3d may be bonded to each other to form a ring, and further a condensed ring You may have a structure.
  • R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, or a hydroxy group.
  • a hydrogen atom and an alkoxy group having 10 or less carbon atoms are more preferable, and a hydrogen atom is more preferable. Particularly preferred is the case where all of R 3a to R 3h represent hydrogen atoms.
  • the compound represented by the general formula (3) is preferably a compound represented by the following general formula (4).
  • the compound represented by Formula (4) will be described.
  • Het 4 in General formula (4) is synonymous with Het 3 in General formula (3), and its preferable aspect is also the same.
  • R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h in the general formula (4) are respectively R 3a , R 3b , R 3c , R 3d , It is synonymous with R ⁇ 3e> , R ⁇ 3f > , R ⁇ 3g> and R ⁇ 3h> , and a preferable aspect is also the same.
  • the compound represented by the general formula (4) is preferably a compound represented by the following general formula (5).
  • the compound represented by Formula (5) will be described.
  • Het 5 in the general formula (5) is synonymous with Het 4 in the general formula (4), and the preferred embodiment is also the same.
  • R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h in the general formula (5) are respectively R 4a , R 4b , R 4c , R 4d , in the general formula (4), It is synonymous with R ⁇ 4e> , R ⁇ 4f > , R ⁇ 4g> and R ⁇ 4h> , and a preferable aspect is also the same.
  • R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent.
  • Examples of the monovalent substituent in the case where R 5i and R 5j represent a monovalent substituent can similarly be given as examples of the monovalent substituent that can be introduced into Het 1 described above.
  • R 5i and R 5j may be bonded to each other to form a ring or may have a condensed ring structure.
  • R 5i and R 5j are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, or a hydroxy group, and more preferably a hydrogen atom or an alkoxy group having 10 or less carbon atoms. . More preferred is a hydrogen atom, and particularly preferred is a case where both R 5i and R 5j both represent a hydrogen atom.
  • the compound represented by any one of the general formulas (1) to (5) that can be used for the resin layer in the present disclosure include paragraph numbers [0070] to [ [0075] can be mentioned.
  • the compound represented by the general formula (1) is not limited to the examples of the compounds described in the above publication.
  • the compound represented by any one of the general formulas (1) to (5) can take a tautomer depending on the structure of the compound and the environment in which the compound is placed. In the resin layer in the present disclosure, tautomers of these resins described above can also be used.
  • the compound represented by the general formula (1) preferably has a light transmittance of 5% or less at a wavelength of 410 nm, and preferably has a light transmittance of 80% or more at a wavelength of 440 nm. More preferably, the light transmittance at a wavelength of 410 nm is 4% or less, the light transmittance at a wavelength of 440 nm is 80% or more, the light transmittance at a wavelength of 410 nm is 3% or less, and the wavelength The light transmittance at 440 nm is more preferably 80% or more, the light transmittance at wavelength 410 nm is 2% or less, and the light transmittance at wavelength 440 nm is most preferably 80% or more.
  • the light transmittance of the compound represented by the general formula (1) can be measured by the same method as described above.
  • the resin layer contains the resin described above and the compound represented by the general formula (1).
  • the resin layer may contain only one type of compound represented by the general formula (1), or may contain two or more types.
  • the content of the compound represented by the general formula (1) in the resin layer is preferably more than 0% by mass and 5% by mass or less, and preferably 0.1% by mass to 4% by mass with respect to the total amount of the resin layer. %, More preferably 0.3% by mass to 3% by mass.
  • the resin layer in the present disclosure in addition to the resin described above and the specific ultraviolet absorber described above, other components may be included depending on the purpose as long as the effects are not impaired.
  • Other components that can be included in the resin layer include fillers, plasticizers, nonionic surfactants, cationic surfactants, anionic surfactants and other surfactants, adhesion promoters, antioxidants, anti-aggregation agents, Examples include ultraviolet absorbers other than the specific ultraviolet absorber, colorants, and the like.
  • the resin layer contains an ultraviolet absorber other than the specific ultraviolet absorber, a colorant, and the like, the resin layer, and thus the resin molded body, can be given ultraviolet blocking properties with a shorter wavelength.
  • arbitrary hue can be provided to a resin molding by including a coloring agent.
  • the resin layer in the present disclosure can be obtained by mixing the above-described resin and the specific ultraviolet absorber by heating to the melting temperature of the resin and molding the mixture into a sheet having a desired thickness.
  • a thermoplastic resin used as the resin
  • the pellets of the thermoplastic resin are dried in advance, mixed with a specific ultraviolet absorber, and the resulting mixture is put into an extruder, heated, melt-kneaded.
  • a pellet (master badge) containing a specific ultraviolet absorber is obtained.
  • thermoplastic resin pellets are mixed with the master badge obtained in an amount such that the specific ultraviolet absorber becomes the target content, and further melt-kneaded in a melt extruder, through a die.
  • a resin layer can be obtained by forming into a film.
  • the protective layer in the resin molded body of the present disclosure contains at least one selected from the group consisting of urethane resins, acrylic resins, and polysiloxanes.
  • the urethane resin and acrylic resin contained in the protective layer have good compatibility with the specific ultraviolet absorber contained in the resin layer, and the specific ultraviolet absorber that oozes out from the resin layer is contained in the protective layer in the protective layer. Since the resin captures effectively, it is considered that the leaching of the specific ultraviolet absorber is effectively suppressed.
  • the protective layer since polysiloxane has low compatibility with the specific ultraviolet absorber, when the protective layer contains polysiloxane, the protective layer containing the polysiloxane effectively leaches out the specific ultraviolet absorber. It is thought to block. Therefore, in the resin molded body of the present disclosure, the presence of the protective layer effectively exudes the specific ultraviolet absorber from the resin layer even when used for a long period of time or in a high humidity heat environment. It is suppressed, and as a result, the haze fall in the resin layer is considered to be suppressed. Note that the present disclosure is not limited to the estimation mechanism.
  • the protective layer contains a urethane resin or an acrylic resin, and the solubility parameter (hereinafter sometimes referred to as SP value) of the protective layer calculated by the Fedors method is 20 (J / cm 3 ) 1/2 to 28 It is preferable to be in the range of (J / cm 3 ) 1/2 .
  • the protective layer containing a urethane resin or an acrylic resin may be referred to as a protective layer (A).
  • A As the SP value in this specification, a value calculated by the Fedors method is used. The Fedors method is described in D.A. W.
  • the SP value of the protective layer described above is a measure of compatibility with the specific ultraviolet absorber contained in the resin layer.
  • the SP value of the protective layer is within the above preferred range, the trapping effect of the specific ultraviolet absorber in the protective layer becomes better, and therefore the oozing-in suppressing effect of the specific ultraviolet absorber is further improved.
  • the protective layer (A) containing a urethane resin or an acrylic resin preferably further includes an antireflection layer on the surface opposite to the side in contact with the resin layer.
  • the antireflection layer there is no particular limitation on the antireflection layer.
  • a highly transparent antireflection layer is preferable.
  • high transparency of the antireflection layer means that the average transmittance of 430 nm to 700 nm in the antireflection layer is 80% or more and the transmittance of each wavelength in the wavelength region is 75% or more. means.
  • the average transmittance in the wavelength region of 430 nm to 700 nm can be obtained in the same manner as the method for measuring the average transmittance of 430 nm to 700 nm in the resin molded body described above.
  • the antireflection layer may be formed, for example, by coating a known antireflection layer such as silica or alumina on the surface of the protective layer by vacuum deposition or the like, and applying antireflection fine particles such as silica or plastic beads to the resin. You may form by apply
  • the antireflection layer is described in detail in paragraphs [0036] to [0038] of JP-A-2006-289627 and paragraphs [0010] to [0026] of JP-A-2015-129909. Can also be applied to the resin molded body of the present disclosure.
  • the protective layer (A) can be formed by a known method. For example, a coating liquid for forming a protective layer (A) containing a monomer serving as a precursor of a urethane resin or an acrylic resin, a solvent, and a polymerization catalyst or a polymerization initiator is prepared, and the surface of the resin layer described above is prepared.
  • the resin layer (A) can be formed by applying, drying and curing. Further, the protective layer (A) formed into a film shape can be transferred to the resin layer described above using the coating liquid for forming the protective layer (A). From the viewpoint of ease of production and better adhesion between the resin layer and the protective layer (A), a coating method is preferred. In addition, the detail of the formation method of a protective layer (A) is mentioned later.
  • a polyfunctional monomer having two or more polymerizable groups is preferable in that the mechanical strength of the protective layer (A) becomes better.
  • the polyfunctional monomer acts as a so-called crosslinking agent.
  • the number of polymerizable groups contained in the polyfunctional monomer is not particularly limited, and is preferably 2 to 10 from the viewpoint of better mechanical strength and handleability, and 2 to 6 is preferable. More preferred.
  • Examples of the polyfunctional monomer include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, dipentaerythritol hexaacrylate, pentaerythritol tetraacrylate, and the like.
  • a commercially available product can be used. Specifically, for example, as dipentaerythritol hexaacrylate, A-DPH (Shin Nakamura Chemical Co., Ltd.) can be mentioned.
  • a urethane resin used as the protective layer (A) in addition to a general urethane resin, a urethane resin obtained by subjecting a urethane resin obtained by reaction of diisocyanate and polyol to a chain extension treatment to increase the molecular weight is used. can do.
  • the diisocyanate that can be used for the synthesis of the urethane resin include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like.
  • Examples of the polyol that can be used for the synthesis of the urethane resin include ethylene glycol, propylene glycol, glycerin, hexanetriol, and the like.
  • the diisocyanate, polyol, and chain extension treatment are described in detail in, for example, “Polyurethane Handbook” (edited by Keiji Iwata, Nikkan Kogyo Shimbun, published in 1987), the urethane resin described in “Polyurethane Handbook” and its The description relating to the raw material can be applied to the present invention depending on the purpose.
  • a commercially available urethane resin may be used as the raw material resin for the protective layer.
  • Commercially available products include Superflex (registered trademark) 470, 210, 150HS, 150HF, Elastron (registered trademark) H-3 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Hydran (registered trademark) AP-20, AP -40F, WLS-210 (above, manufactured by DIC Corporation), Takelac (registered trademark) W-6061, WS-5100, WS-4000, WSA-5920, Olester (registered trademark) UD-350 (above, Mitsui) Chemical Co., Ltd.).
  • WS-5100 and WS-4000 are particularly preferable from the viewpoint of containing a silanol group.
  • a curable protective layer (A) forming composition is used.
  • energy is applied and cured to form the protective layer. To do. In applying the energy, it is sufficient to apply energy suitable for the polymerization initiator contained in the composition for forming the protective layer (A). That is, if the polymerization initiator contained in the composition for forming the protective layer (A) is a photopolymerization initiator, exposure is performed, and if it is a thermal polymerization initiator, heating is performed to form the composition for forming the protective layer (A).
  • a physical layer can be hardened and a protective layer (A) can be obtained.
  • the method for curing the protective layer is preferably light irradiation, more preferably ultraviolet irradiation.
  • the solvent contained in the composition for forming the protective layer (A) is dried in advance to reduce the amount of the solvent. It is preferable from the viewpoint.
  • a known method for example, a method of blowing warm air, a method of passing through a drying zone controlled to a predetermined temperature, a method of drying with a heater provided in a transport roll, and the like can be mentioned.
  • a method of drying with a heater provided in a transport roll, and the like can be mentioned.
  • limiting in particular in drying temperature It can select suitably in consideration of prescription of the composition for protective layer (A) formation, etc.
  • the composition layer for forming the protective layer (A) can be dried, for example, at 50 ° C. to 70 ° C.
  • energy application can be performed using, for example, an ultraviolet lamp.
  • the light irradiation amount is preferably in the range of 10 mJ / cm 2 to 1000 mJ / cm 2 .
  • Curing is suitably performed by irradiating ultraviolet rays with the above-mentioned irradiation amount.
  • the ultraviolet irradiation region (hereinafter sometimes referred to as a curing zone) is purged with an inert gas such as nitrogen gas for the purpose of suppressing the inhibition of curing by oxygen and further promoting the surface curing of the protective layer.
  • an inert gas such as nitrogen gas
  • the oxygen concentration when reducing the oxygen concentration in the curing zone is preferably 0.01% to 5%.
  • the temperature in the curing zone can be increased. From the viewpoint of promoting the curing reaction, the temperature in the curing zone is preferably 25 ° C. to 100 ° C., more preferably 30 ° C. to 80 ° C., and even more preferably 40 ° C. to 70 ° C.
  • the protective layer containing polysiloxane (hereinafter sometimes referred to as protective layer (B)) can be produced by a sol-gel method using a siloxane compound.
  • the protective layer (B) preferably contains at least one compound obtained by a condensation reaction of a siloxane oligomer.
  • a partial hydrolysis condensate obtained using one kind of silane compound and a partial cohydrolysis condensate obtained using two or more kinds of silane compounds can be used.
  • the silane compound is a compound having a hydrolyzable silyl group and / or a silanol group. The silyl group is hydrolyzed to become a silanol group, and the silanol group is dehydrated and condensed to produce a siloxane bond.
  • Such a partial (co) hydrolysis condensate may be a compound commercially available as a silicone alkoxy oligomer (for example, commercially available from Shin-Etsu Chemical Co., Ltd.). You may use what was manufactured by removing by-products, such as alcohol and hydrochloric acid, after making less than equivalent hydrolyzed water react with a hydrolysable silane compound based on the method. A commercially available product can be used as the siloxane compound.
  • siloxane compounds examples include MKC (registered trademark) silicate MS51, MKC silicate MS56, MKC silicate MS57, MKC silicate MS56S, MKC methyl silicate 53A, MKC ethyl silicate 40, MKC ethyl silicate 48 manufactured by Mitsubishi Chemical Corporation. , MKCEMS485 and the like.
  • the protective layer (B) specifically, for example, 3-glycidoxypropyltrimethoxysilane as a siloxane compound is dropped while stirring an acetic acid aqueous solution as a reaction catalyst. Add ethoxysilane to an acetic acid aqueous solution while stirring, continue stirring to advance the reaction between water and the siloxane compound, and add silica particles, a chelating agent, and a surfactant, if desired, sequentially.
  • a method for preparing a protective layer (B) -forming coating solution and using this to form the protective layer (B) can be mentioned.
  • the protective layer (B) can be obtained by applying the coating liquid for forming the protective layer (B) obtained as described above to the surface of the resin layer and curing it by heating.
  • compositions for forming a protective layer for forming the protective layer in addition to the monomer (polymerizable compound), polymerization initiator or reaction catalyst as the precursor of the resin described above, the effect of the present disclosure is not impaired.
  • various other components can be included.
  • surfactants such as solvents, fillers, non-curable binder resins, nonionic surfactants, cationic surfactants, and anionic surfactants.
  • the protective layer-forming composition contains a polymerization initiator, a sensitizer that improves the sensitivity of the photopolymerization initiator, a light stabilizer that contributes to the stability of the photopolymerization initiator, and a thermal polymerization inhibitor Etc. may be contained.
  • the composition for protective layer formation can contain a solvent.
  • a solvent water, an organic solvent, a mixture of water and an organic solvent, or the like is used.
  • the solvent is preferably selected in consideration of the solubility and dispersibility of each component contained in the protective layer-forming composition, and the coating surface properties and ease of handling of the prepared protective layer-forming composition.
  • Examples of the organic solvent include esters, ethers, ketones, and aromatic hydrocarbons.
  • Examples of the ester include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, alkyl oxyacetate (Examples: methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate (specific examples include methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)), 3- Oxypropionic acid alkyl esters (eg, methyl 3-oxypropionate, ethyl 3-oxypropionate and the
  • ether examples include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Monomethyl ether acetate (hereinafter sometimes referred to as PEGMEA), diethylene glycol monoethyl ether acetate (hereinafter sometimes referred to as ethyl carbitol acetate), diethylene glycol monobutyl ether acetate (hereinafter referred to as butyl carbitol acetate).
  • PEGMEA diethylene glycol monoethyl ether acetate
  • ethyl carbitol acetate diethylene glycol monobutyl ether acetate
  • propylene glycol monoethyl ether acetate propylene glycol monopropyl ether acetate, and the like.
  • the ketone include methyl ethyl ketone, cyclohexanone, 2-heptanone, and 3-heptanone.
  • Preferred examples of the aromatic hydrocarbon include toluene and xylene.
  • organic solvents may be used alone in the protective layer forming composition, or two or more of them may be used in combination from the viewpoints of solubility of each component, dispersibility, and improvement of the coating surface condition.
  • the content of the solvent is preferably such that the total solid concentration in the protective layer forming composition is 10% by mass to 80% by mass, preferably 15% by mass to 60%. The amount which becomes mass% is more preferable.
  • the thickness of the protective layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 8 ⁇ m, and even more preferably 3 ⁇ m to 6 ⁇ m.
  • the thickness of the protective layer is in the above range, the effect of suppressing the seepage of the compound represented by the general formula (1) from the resin layer becomes better.
  • the resin molded body of the present disclosure is suitably used as a spectacle lens, for example.
  • a spectacle lens to which the resin molded body of the present disclosure is applied has a lens-shaped resin layer and the above-described protective layer on at least one surface of the resin layer.
  • the resin molded body as the spectacle lens can be obtained by first forming the above-described resin layer into a spectacle lens shape, and providing the above-described protective layer on at least one surface of the lens-shaped resin layer. .
  • the resin molded body of the present disclosure that is a spectacle lens includes a compound represented by the general formula (1) described above, so that, for example, a communication terminal, an image display device, and the like can be connected via the spectacle lens.
  • the resin molded body of the present disclosure When visually observed, it is possible to reduce the influence on eyes by long-wavelength ultraviolet light, blue light, and the like.
  • the resin molded body of the present disclosure When used for a spectacle lens, the transparency of the resin molded body is good, so that the color reproducibility of an image, an article, or the like to be visually observed is good. Also has an effect.
  • the protective layer (B) obtained by hydrolysis and polycondensation of the silicon alkoxide compound is in close contact with the resin layer serving as the lens substrate. It is preferable in terms of good properties and good film strength. Further, the protective layer (B) made of a silicon alkoxide compound has an advantage that the surface is excellent in hydrophobicity and the surface of the spectacle lens is hardly stained.
  • the protective layer (B) containing polysiloxane that can be applied to the resin molded body of the present disclosure is described as, for example, a sol-gel film in paragraphs [0042] to [0054] of JP2013-225461A. By forming a film that does not contain the conductive material described in Japanese Unexamined Patent Publication No. 2013-225461, it can be applied to the protective layer (B) in the present disclosure.
  • thermoplastic resin suitable for the above-mentioned spectacle lens as resin contained in a resin layer.
  • a resin composition containing a raw material resin and a compound represented by the general formula (1) is molded into a pellet using a melt extruder and obtained.
  • a resin layer in the shape of a spectacle lens can be manufactured by applying a known molding method such as an injection molding method using the obtained pellet-shaped resin.
  • a resin composition containing a monomer that is usually a resin precursor, a compound represented by the general formula (1), and a polymerization initiator or a crosslinking agent A resin layer in the shape of a spectacle lens can be prepared by filling the resin composition obtained in a mold (molding die) and heating and curing.
  • the spectacle lenses described above may be attached to an appropriate spectacle frame. Since the resin molded product of the present disclosure has a good blue light blocking property, it can be expected to reduce eye fatigue when an operation of viewing the display of the image display device is performed for a long time. Also, even when used for a long period of time, since haze rise is suppressed, the blue light blocking property is good, and when an observer visually recognizes an object through a spectacle lens In addition, it is difficult to feel the change in the hue of the object through the spectacle lens, and the color reproducibility of the object to be observed is also good.
  • the resin molded body of the present disclosure can be applied to a resin film.
  • a resin film to which the resin molded body of the present disclosure is applied has a film-like resin layer and the protective layer described above on one surface of the resin layer.
  • the resin film has a blocking effect such as ultraviolet rays, and can be used as a blue light cut film.
  • the resin molded body as the resin film can be obtained by first forming the above-described resin layer into a film shape and laminating the above-described protective layer on one surface of the film-like resin layer.
  • the protective layer may be formed by a coating method, or may be formed by transferring a protective layer separately formed into a film shape onto the surface of the resin layer. Especially, it is preferable to form a protective layer with the application
  • the resin molded body as a resin film is excellent in flexibility and shape followability, it can be used as a protective film for blue light cut by being fixed at an arbitrary position.
  • a mobile terminal provided with a touch panel on the display for example, a display such as a smartphone or a tablet terminal has, for example, a cover glass as a transparent member for protecting the touch panel.
  • a display film for retrofitting On the surface of the transparent member, a display film for retrofitting may be attached for various purposes.
  • the resin film which is the resin molding of this indication can be used conveniently as a film for displays.
  • the resin film of the present disclosure it is possible to reduce the influence on the eyes such as ultraviolet rays and blue light when viewing the display in touch panel operation or the like.
  • the resin film suppresses an increase in haze over time, and the image visibility and color reproducibility on the display are improved.
  • the resin molded body of the present disclosure has curling suppressed, so that a purchaser of a mobile terminal or the like attaches the resin film of the present disclosure as a display film. Workability at the time is also improved.
  • the resin molding of this indication is used as a resin film, it is suitable as a display film used for the purpose of reducing the influence of ultraviolet rays or the like. That is, by providing a resin layer containing a specific ultraviolet absorber excellent in stability and a protective layer, an increase in haze is suppressed even when used for a long period of time, and an excellent ultraviolet absorbing ability is maintained.
  • the resin film can be suitably used as a display film by disposing an adhesive layer on the surface of the resin film having the resin layer.
  • it can be set as the aspect which apply
  • a release film may be provided on the protective layer side of the resin film in order to prevent contamination. Moreover, you may provide the above-mentioned antireflection layer if desired.
  • the display film is used, for example, by being attached to the surface of a transparent member such as a mobile terminal via an adhesive layer.
  • the pressure-sensitive adhesive layer can use the same pressure-sensitive adhesive layer as the pressure-sensitive adhesive layer in the blue light cut laminate described later, and the method for forming the pressure-sensitive adhesive layer is also the same.
  • the blue light cut laminate of the present disclosure includes a transparent substrate, an adhesive layer provided on at least one surface of the transparent substrate, and a surface of the adhesive layer opposite to the surface in contact with the transparent substrate. And a resin molded body as the above-described resin film.
  • the resin film is preferably provided with the resin layer side in contact with the pressure-sensitive adhesive layer. Since the blue light cut laminate of the present disclosure has a transparent base material, it is superior in strength and durability, and the transparent base material and the resin molded body as a resin film are in close contact with each other via an adhesive layer. The resin molded body is stably fixed to the transparent substrate, and the durability is good. For this reason, it can be used for various uses that require a blue light cut function.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PCT polycyclohexanedimethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • PE polyvinyl chloride
  • TAC tricellulose acetate
  • PET is preferable from the viewpoint of versatility.
  • the transparent substrate can be used by appropriately selecting a glass plate having necessary physical properties.
  • a resin base material it can be obtained by molding the above-described resin into a film by a conventional method.
  • a commercially available resin film can be used as a transparent base material.
  • the thickness of the transparent substrate can be appropriately selected according to the purpose of use, such as the application, size, and strength to which the blue light cut laminate is applied.
  • a blue light cut laminate is used as a protective sheet for an image display device, it is generally preferably 5 ⁇ m to 2500 ⁇ m, more preferably 20 ⁇ m to 500 ⁇ m.
  • a transparent substrate means an optically transparent support. That the substrate is transparent means that the average transmittance of the substrate from 430 nm to 700 nm is 85% or more, and in the wavelength region of 430 nm to 700 nm, all the transmittance is 80% or more. .
  • the average transmittance of 430 nm to 700 nm of the transparent substrate is preferably 90% or more, and more preferably 95% or more.
  • the average transmittance of 430 nm to 700 nm and the like can be obtained by the measurement method for the resin molded body described above.
  • the average transmittance of 430 nm to 700 nm of the transparent substrate can be obtained in the same manner as the method for measuring the average transmittance of 430 nm to 700 nm in the resin molded body described above.
  • the blue light cut laminate of the present embodiment has an adhesive layer between the resin film described above and the transparent substrate. That is, it has an adhesive layer on one side of a transparent substrate, and has a resin film on the opposite side of the adhesive layer that is in contact with the transparent substrate. It is preferable that the side which has the resin layer of the resin molding which is a resin film is arrange
  • the adhesive used for the adhesive layer and the type of the adhesive are not particularly limited. It does not restrict
  • the acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive containing a polymer of (meth) acrylic monomers ((meth) acrylic polymer).
  • the acrylic pressure-sensitive adhesive if the above-described polymer is a main component, that is, for example, if the content of the above-mentioned polymer with respect to the total amount of the pressure-sensitive adhesive is 50% by mass or more, other components, for example, A tackifier, a rubber component, etc. described later may be included.
  • pressure-sensitive adhesive examples include acrylic pressure-sensitive adhesives, UV curable pressure-sensitive adhesives described in Chapter 2 of “Characteristic evaluation of release paper / peelable film and pressure-sensitive adhesive tape and control technology thereof”, Information Organization, 2004, Chapter 2, A silicone adhesive or the like is also preferably used in this embodiment.
  • the adhesive examples include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, silicone adhesives, and the like, which have higher adhesive strength. From this viewpoint, a urethane resin adhesive or a silicone adhesive is preferable.
  • Commercially available products can be used as the adhesive. Examples of commercially available products include urethane resin adhesives (LIS-073-50U: trade name) manufactured by Toyo Ink Co., Ltd.
  • the adhesive is also preferably used in combination with a curing agent (CR-001: trade name, manufactured by Toyo Ink Co., Ltd.).
  • the thickness of the pressure-sensitive adhesive layer in the blue light cut laminate of the present embodiment is preferably in the range of 5 ⁇ m to 100 ⁇ m from the viewpoint of achieving both adhesive strength and handling properties.
  • the blue light cut laminate of the present disclosure may be provided with other layers as necessary.
  • the blue light cut laminate may further have a hard coat layer on the protective layer side surface of the resin molded body from the viewpoint of improving scratch resistance.
  • Example 1 (Formation of resin layer) A pellet of polyethylene terephthalate (PET) dried at 160 ° C. for 8 hours and a compound (A) having the following structure, which is a compound represented by the general formula (1), were mixed and put into an extruder.
  • the master badge which is a compound (A) containing pellet was prepared by melt-kneading at a melting temperature of 280 ° C. Thereafter, the PET pellet dried at 160 ° C. for 8 hours and the master badge which is the compound (A) -containing pellet obtained above have a content of the compound (A) in the resin layer of 0.7% by mass.
  • the mixture was mixed in an amount, melt kneaded at 280 ° C., and a resin layer as a film having a thickness of 100 ⁇ m was formed by a melt extrusion method.
  • urethane resin-containing protective layer 1 forming composition prepared by mixing according to the formulation shown in Table 1 below was applied, dried at 160 ° C. for 2 minutes, and a thickness of 4 8 ⁇ m of urethane resin-containing protective layer 1 was formed.
  • the A-1 solution prepared according to the formulation described in Table 2 below has an average thickness after drying.
  • the high refractive index layer was formed by applying in an amount of 30 nm, heating at 150 ° C. for 1 minute, drying and curing.
  • the B-1 solution prepared according to the following formulation was applied using a wire bar in an amount such that the average thickness after drying was 30 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and the low refractive index layer 1 was formed.
  • silver nanodisk dispersion b1 is prepared. Ion exchange water 13L (liter) is weighed in a reaction vessel made of NTKR-4 (stainless steel, Nisshin Steel Industry Co., Ltd.), and four NTKR-4 propellers are placed on a stainless steel (SUS316L) shaft. And 10 g / L aqueous solution of trisodium citrate (anhydride) with stirring at a speed of 400 rpm (rotations per minute) using a chamber equipped with an agitator equipped with four paddles made of NTKR-4 1.0 L was added and the mixture was kept warm at 35 ° C.
  • NTKR-4 stainless steel, Nisshin Steel Industry Co., Ltd.
  • the stirring speed was increased to 1200 rpm, and the entire amount of a silver sulfite white precipitate mixture described later was added to prepare a preparation.
  • the pH of the prepared solution was measured, and 5.0 L of 1N NaOH aqueous solution was added at 0.33 L / min when the pH change stopped.
  • aqueous gelatin solution 16.7 L of ion-exchanged water was weighed into a dissolution tank made of stainless steel (SUS316L). 1.4 kg of alkali-treated beef bone gelatin (GPC weight average molecular weight 200,000) subjected to deionization treatment was added while stirring at low speed with an agitator made of SUS316L. Furthermore, 0.91 kg of alkali-treated beef bone gelatin (GPC weight average molecular weight 21,000) subjected to deionization treatment, proteolytic enzyme treatment, and oxidation treatment with hydrogen peroxide was added. Thereafter, the temperature was raised to 40 ° C., and the gelatin was swollen and dissolved simultaneously to completely dissolve it, thereby obtaining an aqueous gelatin solution used for preparing the silver nanodisk dispersion b1 described above.
  • a 0.2 mM NaOH aqueous solution was added to the precipitated silver nanodisks to give a total of 400 g, and the mixture was stirred by hand with a stirring bar to obtain a coarse dispersion.
  • 24 coarse dispersions were prepared to a total of 9600 g, added to a SUS316L tank and mixed.
  • a C-1 solution prepared according to the formulation described in Table 4 below was applied onto the surface of the low refractive index layer 1 in such an amount that the average thickness after drying was 65 nm using a wire bar. After heating for 1 minute, the film was cured by irradiation with ultraviolet rays at an exposure amount of 200 mJ / cm 2 to form a low refractive index layer 2.
  • the following compound M-11 was prepared by the method described in paragraph numbers [0017] to [0025] of JP-A-2006-28280.
  • Example 1 By the method described above, a resin molded body of Example 1 having a protective layer, a high refractive index layer, a low refractive index layer 1 and a low refractive index layer 2 in this order on the surface of the resin layer was obtained.
  • the high refractive index layer, the low refractive index layer 1 and the low refractive index layer 2 in the resin laminate of Example 1 function as an antireflection layer.
  • Example 2 to 10 (Formation of resin layer)
  • the acrylic resin-containing protective layer 1 was formed by the following method.
  • the materials listed in Table 5 below were mixed in the amounts described in the column for the acrylic resin-containing protective layer 1 composition to prepare an acrylic resin-containing protective layer 1 forming composition.
  • the obtained composition for forming an acrylic resin-containing protective layer 1 was applied on the surface of the resin layer in an amount to be a film thickness described in Table 9 to Table 11, and dried at 60 ° C. for 2 minutes to obtain an acrylic resin.
  • a composition layer for forming the protective layer 1 was formed.
  • Example 11 In the same manner as in Example 1, a resin layer having a thickness of 100 ⁇ m was formed. A polysiloxane-containing protective layer was formed on the surface of the obtained resin layer by a sol-gel method. That is, first, the components shown in Table 6 below were mixed to prepare a polysiloxane-containing protective layer forming composition. Specifically, 3-glycidoxypropyltrimethoxysilane was dropped into the acetic acid aqueous solution over 3 minutes while stirring the acetic acid aqueous solution. Next, tetraethoxysilane was added to the aqueous acetic acid solution over 3 minutes with stirring. Subsequently, stirring was continued for 2 hours. Next, colloidal silica, a chelating agent, and a surfactant were sequentially added to prepare a polysiloxane-containing protective layer forming composition.
  • the surface of the resin layer was subjected to corona discharge treatment.
  • the aforementioned polysiloxane-containing protective layer forming composition is applied by a bar coating method, heated at 170 ° C. for 1 minute and dried to form a protective layer having a thickness of 5 ⁇ m. Formed.
  • the condensation reaction of the siloxane compound proceeds and is cured.
  • the resin molding of Example 11 which has a polysiloxane containing protective layer on the surface of a resin layer was obtained.
  • Example 12 In the same manner as in Example 1, a resin layer having a thickness of 100 ⁇ m was formed. On the surface of the obtained resin layer, it replaced with the composition for acrylic-containing protective layer 1 formation of the said Table 5, and except having used the composition for acrylic-containing protective layer 2 formation, it carried out similarly to Example 2. Then, the acrylic resin-containing protective layer 2 was formed to obtain a resin molded body of Example 12.
  • Example 13 and 14 In the same manner as in Example 1, a resin layer having a thickness of 100 ⁇ m was formed. On one surface of the obtained resin layer, a urethane resin-containing protective layer 1 coating solution composition or a urethane resin-containing protective layer 2 coating solution composition prepared according to the formulation described in Table 1 is dried, respectively, Bar coated in an amount of 5 ⁇ m thickness, dried at 160 ° C. for 2 minutes, urethane resin-containing protective layer 1 (Example 13) or urethane resin-containing protective layer 2 (Example 14) on one side of the resin layer The resin molded bodies of Example 13 and Example 14 were obtained.
  • Example 15 Instead of the compound (A) which is the compound represented by the general formula (1) used in Example 2, a compound (B) having the following structure was used, and the same procedure as in Example 2 was repeated. A resin molded body was obtained.
  • Example 16 instead of the compound (A) that is the compound represented by the general formula (1) used in Example 2, the compound (C) having the following structure was used, and the same procedure as in Example 2 was performed. A resin molded body was obtained.
  • the obtained resin layer for spectacle lenses was immersed in the composition for forming the acrylic resin-containing protective layer 1 shown in Table 5, and then pulled up, and the composition for forming the acrylic resin-containing protective layer 1 on both surfaces of the resin layer for spectacle lenses.
  • a physical layer was formed and temporarily dried at 60 ° C. for 2 minutes. Thereafter, the composition layer for forming the acrylic resin-containing protective layer 1 was cured by irradiating with ultraviolet rays, and the spectacle lenses having the acrylic resin-containing protective layer 1 having a thickness of 5 ⁇ m on both surfaces of the spectacle lens resin layer were used. 20 resin moldings were obtained.
  • Comparative Example 1 In the same manner as in Example 1, a resin layer having a thickness of 100 ⁇ m was formed. In Comparative Example 1, a protective layer was not formed, and a molded body having only a resin layer was obtained.
  • Comparative Example 2 It implemented except having replaced the compound (A) which is a compound represented by General formula (1) used in Example 2 with the comparative compound (D) of the following structure which is a comparative compound (comparative ultraviolet absorber). In the same manner as in Example 2, a resin molded product of Comparative Example 2 was obtained.
  • Example 4 In the same manner as in Example 1, a resin layer having a thickness of 100 ⁇ m was formed.
  • a polyethylene (PE) -containing protective layer-forming composition containing a modified polyethylene resin aqueous dispersion was prepared according to the formulation shown in Table 8 below, and the resulting PE-containing protective layer-forming composition was prepared.
  • the product was coated with a bar and dried at 130 ° C. for 2 minutes to form a PE-containing protective layer, whereby a resin molded product of Comparative Example 4 was obtained.
  • PE polyethylene
  • Blocking rate of light with a wavelength of 400 nm to 420 nm is 60% or more
  • Blocking rate of light with a wavelength of 400 nm to 420 nm is 30% to less than 60%
  • Blocking rate of light with a wavelength of 400 nm to 420 nm is less than 30%
  • each of the resin molded products of the examples has good blocking properties of long-wavelength ultraviolet light and blue light, and the specific UV absorber oozes out from the measurement result of haze.
  • the specific UV absorber oozes out from the measurement result of haze.
  • Example 17 to Example 20 even when the resin molded body of the present disclosure is applied to a spectacle lens, the blocking property of long-wavelength ultraviolet rays and blue light is good, and the ultraviolet absorber oozes out. It turns out that it is suppressed over a long period of time. Therefore, in the spectacle lenses of Examples 17 to 20, the increase in haze is suppressed, and when using spectacles with the spectacle lens attached, eyes using ultraviolet rays and blue light when viewing a display image on a display or the like are used. Reduction of fatigue can be expected.
  • the resin molded body of Comparative Example 1 having no protective layer and the resin molded bodies of Comparative Examples 3 and 4 having a protective layer containing a resin outside the scope of the present invention increased in haze after high temperature aging, and absorbed specific ultraviolet rays It can be seen that whitening due to leaching of the agent progressed and haze increased. Moreover, it turns out that it replaces with a specific ultraviolet absorber in a resin layer, and the resin molding of the comparative example 2 containing a comparative ultraviolet absorber (compound (D)) has remarkably low interruption
  • the specific ultraviolet absorber in the present disclosure is contained in a resin, and even when heat-molded, the ultraviolet-absorbing ability is maintained, whereas the comparative ultraviolet absorber is similarly contained in the resin and heat-molded. In this case, it can be seen that the ultraviolet absorber was damaged by heat and the ultraviolet absorbing ability was remarkably lowered.
  • the resin molded bodies of Example 1 and Example 2 were aged over 90 hours at 90 ° C. and a humidity of 3% RH, and the ultraviolet blocking rate of the resin molded body after the high temperature aging was determined as “2. It measured by the method similar to "420 nm ultraviolet-blocking rate", and calculated the fluctuation rate of the ultraviolet-blocking rate before and after high temperature aging. As a result, the rate of change of the ultraviolet blocking rate over time with high temperature was 3% or less in both Example 1 and Example 2. From this, it can be seen that the resin molded bodies of Example 1 and Example 2 maintain the ultraviolet blocking property even after high temperature aging.
  • Example 21 A light release separator (silicone-coated PET) of Panaclean PD-S1 (adhesive layer thickness 25 ⁇ m) manufactured by Panac Co., Ltd. on the surface opposite to the surface having the protective layer in the resin molded body prepared in Example 2 was peeled off, an adhesive layer was attached, and an adhesive layer was formed on the surface of the resin molded body on the resin layer side.
  • a blue light cut laminate comprising a pressure-sensitive adhesive layer and a resin molded body on a transparent base material, the glass substrate having a thickness of 3 mm, which is a transparent base material, bonded to the transparent base material through the pressure-sensitive adhesive layer.
  • Example 21 When the blue light cut laminated body of Example 21 was visually observed, it was a transparent laminated body. "4. Evaluation of increase in leaching of specific ultraviolet absorbent from resin molded article after high temperature aging" As a result, the increase rate of the haze value is 1.0% or less, and it is understood that the increase in haze due to the leaching of the specific ultraviolet absorber due to high temperature aging is suppressed. Further, the 400 nm to 420 nm ultraviolet blocking rate measured by the same method as “2. Ultraviolet blocking rate of wavelength 400 nm to 420 nm” was equivalent to that of the resin laminate of Example 2 and was evaluated as A rank.

Abstract

Provided are a resin molded body and applications thereof, wherein the resin molded body is provided with: a resin layer that contains a resin and a compound represented by general formula (1); and, on at least one of the surfaces of the resin layer, a protective layer that contains at least one substance selected from a group consisting of urethane resins, acrylic resins, and polysiloxane. In general formula (1), Het1 represents an aromatic heterocyclic residue having a bivalent five-membered or six-membered ring. Each of Xa, Xb, Xc, and Xd represents, independently of each other, a hetero atom, and each of Ya, Yb, Yc, Yd, Ye, and Yf represents, independently of each other, a hetero atom or a carbon atom. The ring bonded to Het1 may have a double bond at an arbitrary position.

Description

樹脂成形体、及びブルーライトカット積層体Resin molded body and blue light cut laminate
 本開示は、樹脂成形体、及びブルーライトカット積層体に関する。 This disclosure relates to a resin molded body and a blue light cut laminate.
 陰極管表示装置、プラズマディスプレイ、エレクトロルミネッセンスディスプレイ、蛍光表示ディスプレイ、フィールドエミッションディスプレイ、液晶表示装置(Liquid Crystal Display;LCD)の如き画像表示装置、或いは、タッチパネルを搭載したスマートフォン、タブレット端末等の各種ディスプレイでは、光源を備えるディスプレイの画面を目視して使用される。
 近年、画像表示装置、タッチパネルを搭載した小型端末等を長時間使用する場合における、紫外線およびブルーライトの網膜への影響が注目されている。また、大型ディスプレイ等においても紫外線およびブルーライトによる網膜への影響の低減が望ましいとされている。
 波長400nm~420nmの近紫外線及びブルーライト(以下、紫外線等と称することがある)の網膜への影響を低減する目的で、紫外線吸収剤を含有する樹脂成形体で光源を被覆したり、画像表示装置の表面を、紫外線吸収剤を含有する保護シートで被覆したり、することにより紫外線等の網膜への影響を低減し得る。
 また、他の方法として、光源を備えるディスプレイの画面を目視する際に装着する眼鏡レンズによって紫外線を吸収させ、使用者の網膜への紫外線等による影響を低減することなどの試みがなされている。
Image display devices such as cathode ray tube display devices, plasma displays, electroluminescence displays, fluorescent display devices, field emission displays, and liquid crystal display devices (LCDs), or various displays such as smartphones and tablet terminals equipped with touch panels. Then, it is used by visually observing the screen of a display provided with a light source.
In recent years, attention has been paid to the influence of ultraviolet rays and blue light on the retina when a small terminal equipped with an image display device or a touch panel is used for a long time. Further, in large displays and the like, it is desirable to reduce the influence on the retina by ultraviolet rays and blue light.
For the purpose of reducing the effect on the retina of near-ultraviolet rays and blue lights (hereinafter sometimes referred to as ultraviolet rays) having a wavelength of 400 nm to 420 nm, the light source is covered with a resin molded article containing an ultraviolet absorber, or an image is displayed. By covering the surface of the device with a protective sheet containing an ultraviolet absorber, the influence of the ultraviolet rays on the retina can be reduced.
In addition, as another method, an attempt has been made to reduce the influence of ultraviolet rays or the like on the user's retina by absorbing ultraviolet rays with a spectacle lens that is worn when viewing the screen of a display equipped with a light source.
 紫外線等の遮断効果が良好な樹脂成形物として、長波長紫外線の吸収能に優れたオキサジノン骨格を有する紫外線吸収剤を5g/m以下の量で含有する樹脂成形物及びポリマーフィルムが提案されている(特開2010-132846号公報参照)。特開2010-132846号公報に記載の紫外線吸収剤は、少量で高い紫外線吸収効果が得られるため、従来公知の紫外線吸収剤を、より多量に樹脂成形物に添加する場合と比較して、樹脂成形物の物性に対する紫外線吸収剤の添加による影響が出にくいことが記載されている。
 また、紫外線吸収剤に反応性基を導入し、基材樹脂と重合させることで、長期間に亘り使用した場合でも、紫外線吸収能が維持される耐紫外線ポリエステル樹脂組成物が提案されている(特開2016-259624号公報参照)。特開2016-259624号公報に記載のポリエステル樹脂組成物は、長期間使用しても紫外線吸収剤と樹脂とが結合することで、紫外線吸収剤の樹脂組成物からの溶出が抑制され、紫外線吸収性能が長期間維持されることが記載されている。
As a resin molded product having a good blocking effect for ultraviolet rays and the like, a resin molded product and a polymer film containing an ultraviolet absorber having an oxazinone skeleton having an excellent ability to absorb long wavelength ultraviolet rays in an amount of 5 g / m 2 or less have been proposed. (See Japanese Patent Application Laid-Open No. 2010-132846). Since the ultraviolet absorber described in JP-A-2010-132646 can obtain a high ultraviolet absorption effect even in a small amount, the resin can be compared with a case where a conventionally known ultraviolet absorber is added in a larger amount to a resin molded product. It is described that the influence of the addition of the ultraviolet absorber on the physical properties of the molded product is difficult to occur.
In addition, a UV-resistant polyester resin composition is proposed in which a UV-absorbing ability is maintained even when used for a long period of time by introducing a reactive group into the UV absorber and polymerizing with a base resin ( JP, 2016-259624, A). In the polyester resin composition described in JP-A-2016-259624, elution from the resin composition of the UV absorber is suppressed by binding the UV absorber and the resin even when used for a long time, and UV absorption It is described that the performance is maintained for a long time.
 しかしながら、本発明者らの検討によれば、特開2010-132846号公報に記載の樹脂成形物は、長期間使用した場合、或いは、オキサジノン骨格を有する紫外線吸収剤との相溶性が低い樹脂に添加した場合において、特に、高湿熱環境下で長期間使用した場合、樹脂成形物に含まれる紫外線吸収剤が樹脂成形物の表面に浸み出し、樹脂成形物が白化して、ヘイズが上昇する場合があることを見出した。このため、特開2010-132846号公報に記載の樹脂成形物は、高湿熱環境下における耐久性の点で、なお、改良の余地がある。 However, according to the study by the present inventors, the resin molded product described in Japanese Patent Application Laid-Open No. 2010-132646 is a resin having low compatibility with an ultraviolet absorber having an oxazinone skeleton when used for a long period of time. When added, particularly when used for a long period of time in a high-humidity heat environment, the ultraviolet absorber contained in the resin molded product oozes out on the surface of the resin molded product, the resin molded product becomes white, and haze increases. Found that there is a case. For this reason, the resin molded product described in Japanese Patent Application Laid-Open No. 2010-132846 still has room for improvement in terms of durability in a high-humidity heat environment.
 また、特開2016-259624号公報に記載のポリエステル樹脂組成物は、主として太陽電池用のバックシートに適用される樹脂組成物であり、より短波長の紫外線、具体的には、350nm以下の波長の紫外線には有効であるが、400nm~420nmのより長波長側の紫外線及びブルーライトの遮断には適さないという問題がある。
 また、本発明者らの検討によれば、特開2016-259624号公報に記載された紫外線吸収剤に反応性基を導入し、樹脂成形物からの紫外線吸収剤の浸み出し抑制を図ったところ、構造の変化に起因して紫外線吸収能が著しく低下することがわかった。
Further, the polyester resin composition described in JP-A-2016-259624 is a resin composition mainly applied to a back sheet for a solar cell, and has a shorter wavelength, specifically, a wavelength of 350 nm or less. However, it is not suitable for blocking ultraviolet rays and blue light on the longer wavelength side of 400 nm to 420 nm.
Further, according to the study by the present inventors, a reactive group was introduced into the ultraviolet absorber described in JP-A-2016-259624 to suppress the seepage of the ultraviolet absorber from the resin molded product. However, it has been found that the ultraviolet absorption ability is remarkably lowered due to the structural change.
 本発明の一実施形態が解決しようとする課題は、長波長紫外線及びブルーライトの遮断性が良好であり、長期間使用した場合でも、紫外線吸収剤の浸み出しに起因するヘイズの上昇が抑制され、かつ、長波長紫外線及びブルーライトの遮断性が維持される樹脂成形体を提供することにある。
 本発明の別の実施形態が解決しようとする課題は、長期間使用した場合でも、紫外線吸収剤の浸み出しに起因するヘイズの上昇が抑制され、かつ、長波長紫外線及びブルーライトの遮断性が長期間維持されるブルーライトカット積層体を提供することにある。
The problem to be solved by one embodiment of the present invention is that long-wavelength ultraviolet and blue light blocking properties are good, and even when used for a long period of time, an increase in haze due to leaching of an ultraviolet absorber is suppressed. Another object of the present invention is to provide a resin molded product that maintains the blocking property of long-wavelength ultraviolet light and blue light.
Another problem to be solved by another embodiment of the present invention is that, even when used for a long period of time, an increase in haze due to leaching of an ultraviolet absorber is suppressed, and long-wave ultraviolet and blue light blocking properties are suppressed. Is to provide a blue light cut laminate that is maintained for a long time.
 課題を解決するための手段は、以下の実施形態を含む。
<1> 樹脂及び下記一般式(1)で表される化合物を含む樹脂層と、樹脂層の少なくとも一方の面上に、ウレタン樹脂、アクリル樹脂及びポリシロキサンからなる群より選ばれる少なくとも1種を含有する保護層と、を備える樹脂成形体。
Means for solving the problems include the following embodiments.
<1> A resin layer containing a resin and a compound represented by the following general formula (1), and at least one selected from the group consisting of a urethane resin, an acrylic resin and a polysiloxane on at least one surface of the resin layer. And a protective layer.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(1)中、Hetは、2価の5員あるいは6員環の芳香族ヘテロ環残基を表す。
 X、X、X及びXはそれぞれ独立に、ヘテロ原子を表す。
 Y、Y、Y、Y、Y及びYは、それぞれ独立に、ヘテロ原子または炭素原子を含む基を表す。Hetに結合している環は、任意の位置に二重結合を有していてもよい。
In general formula (1), Het 1 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
X a , X b , X c and X d each independently represent a hetero atom.
Y a , Y b , Y c , Y d , Y e and Y f each independently represents a group containing a hetero atom or a carbon atom. The ring bonded to Het 1 may have a double bond at any position.
<2> 樹脂層の全量に対する一般式(1)で表される化合物の含有量が、0質量%を超え、5.0質量%以下である<1>に記載の樹脂成形体。
<3> 保護層の厚みが0.5μm~10μmである<1>または<2>に記載の樹脂成形体。
<4> 保護層が、ウレタン樹脂またはアクリル樹脂を含有し、保護層の、Fedors法によって算出した溶解性パラメーターが、20(J/cm1/2~28(J/cm1/2の範囲にある<1>~<3>のいずれか1つに記載の樹脂成形体。
<5> 保護層の、樹脂層と接する側とは反対側の面上に、さらに、反射防止層を備える<4>に記載の樹脂成形体。
<2> The resin molded body according to <1>, wherein the content of the compound represented by the general formula (1) with respect to the total amount of the resin layer is more than 0% by mass and 5.0% by mass or less.
<3> The resin molded product according to <1> or <2>, wherein the protective layer has a thickness of 0.5 μm to 10 μm.
<4> The protective layer contains a urethane resin or an acrylic resin, and the solubility parameter calculated by the Fedors method of the protective layer is 20 (J / cm 3 ) 1/2 to 28 (J / cm 3 ) 1 / The resin molded product according to any one of <1> to <3>, in the range of 2 .
<5> The resin molded body according to <4>, further comprising an antireflection layer on the surface of the protective layer opposite to the side in contact with the resin layer.
<6> 一般式(1)で表される化合物が、下記一般式(2)で表される化合物である<1>~<5>のいずれか1つに記載の樹脂成形体。 <6> The resin molded product according to any one of <1> to <5>, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(2)中、Hetは、一般式(1)におけるHetと同義である。
 X2a、X2b、X2c及びX2dは、それぞれ一般式(1)におけるX、X、X及びXと同義である。
 Y2b、Y2c、Y2e及びY2fは、それぞれ一般式(1)におけるY、Y、Y及びYと同義である。
 L及びLは、それぞれ独立に酸素原子、硫黄原子またはNRを表し、Rは、水素原子または1価の置換基を表す。
 Z及びZはそれぞれ独立にY2b及びY2cまたはY2e及びY2fと互いに結合して4員~8員環を形成するのに必要な原子群を表す。
In general formula (2), Het 2 is synonymous with Het 1 in general formula (1).
X 2a , X 2b , X 2c and X 2d have the same meanings as X a , X b , X c and X d in the general formula (1), respectively.
Y 2b , Y 2c , Y 2e and Y 2f have the same meanings as Y b , Y c , Y e and Y f in general formula (1), respectively.
L 1 and L 2 each independently represent an oxygen atom, a sulfur atom or NR a , and R a represents a hydrogen atom or a monovalent substituent.
Z 1 and Z 2 each independently represents an atomic group necessary for bonding to Y 2b and Y 2c or Y 2e and Y 2f to form a 4-membered to 8-membered ring.
<7> 一般式(2)で表される化合物が、下記一般式(3)で表される化合物である<6>に記載の樹脂成形体。 <7> The resin molded product according to <6>, wherein the compound represented by the general formula (2) is a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(3)中、Hetは、一般式(2)におけるHetと同義である。
 X3a、X3b、X3c及びX3dは、それぞれ一般式(2)におけるX2a、X2b、X2c及びX2dと同義である。
 R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hはそれぞれ独立に、水素原子または1価の置換基を表す。
In general formula (3), Het 3 is synonymous with Het 2 in general formula (2).
X 3a , X 3b , X 3c and X 3d have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively.
R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
<8> 一般式(3)で表される化合物が、下記一般式(4)で表される化合物である<7>に記載の樹脂成形体。 <8> The resin molded product according to <7>, wherein the compound represented by the general formula (3) is a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(4)中、Hetは、一般式(3)におけるHetと同義である。
 R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ一般式(3)におけるR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義である。
In general formula (4), Het 4 is synonymous with Het 3 in general formula (3).
R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h are respectively R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , in general formula (3), Synonymous with R 3g and R 3h .
<9> 一般式(4)で表される化合物が、下記一般式(5)で表される化合物である<8>に記載の樹脂成形体。 <9> The resin molded product according to <8>, wherein the compound represented by the general formula (4) is a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(5)中、R5a、R5b、R5c、R5d、R5e、R5f、R5g及びR5hは、それぞれ一般式(4)のR4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hと同義である。
 R5i及びR5jはそれぞれ独立に、水素原子または1価の置換基を表す。
In general formula (5), R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h are R 4a , R 4b , R 4c and R 4d in general formula (4), respectively. , R 4e , R 4f , R 4g and R 4h .
R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent.
<10> 眼鏡レンズである<1>~<9>のいずれか1つに記載の樹脂成形体。
<11> 樹脂フィルムである<1>~<9>のいずれか1つに記載の樹脂成形体。
<12> 透明基材と、透明基材の少なくとも一方の面上に備えられた粘着層と、粘着層の透明基材と接する面とは反対側の面上に備えられた<11>に記載の樹脂フィルムとを、有するブルーライトカット積層体。
<10> The resin molded product according to any one of <1> to <9>, which is a spectacle lens.
<11> The resin molded product according to any one of <1> to <9>, which is a resin film.
<12> The transparent substrate, the adhesive layer provided on at least one surface of the transparent substrate, and the surface of the adhesive layer on the surface opposite to the surface in contact with the transparent substrate, described in <11> The blue light cut laminated body which has a resin film.
 本発明の一実施形態によれば、長波長紫外線及びブルーライトの遮断性が良好であり、長期間使用した場合でも、紫外線吸収剤の浸み出しに起因するヘイズの上昇が抑制され、かつ、長波長紫外線及びブルーライトの遮断性が維持される樹脂成形体を提供することができる。
 本発明の別の実施形態によれば、紫外線吸収剤の浸み出しに起因するヘイズの上昇が抑制され、かつ、長波長紫外線及びブルーライトの遮断性が長期間維持されるブルーライトカット積層体を提供することができる。
According to one embodiment of the present invention, the blocking property of long-wavelength ultraviolet light and blue light is good, and even when used for a long period of time, an increase in haze due to leaching of the ultraviolet absorbent is suppressed, and It is possible to provide a resin molded product in which the blocking property of long wavelength ultraviolet light and blue light is maintained.
According to another embodiment of the present invention, a blue light cut laminate in which an increase in haze due to leaching of an ultraviolet absorber is suppressed and a long wavelength ultraviolet ray and blue light blocking property is maintained for a long period of time. Can be provided.
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態または具体例に基づいてなされることがあるが、本発明は以下に記載の如き実施形態に限定されない。
 本明細書において「~」を用いて表される数値範囲は「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 なお、本明細書においてシートまたは組成物中における各成分の量は、シートまたは組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、シートまたは組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
 本明細書において、「(メタ)アクリロイル基」は、「アクリロイル基」および「メタクリロイル基」のいずれか一方または双方を指し、「(メタ)アクリレート」とは、「アクリレート」および「メタクリレート」のいずれか一方または双方を指し、「(メタ)アクリル」は、「アクリル」および「メタクリル」のいずれか一方または双方を指す。
 本明細書においては、特に断らない限り、室温とは25℃を意味する。
Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments or specific examples, but the present invention is not limited to the embodiments described below.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, the amount of each component in the sheet or composition is such that when there are a plurality of substances corresponding to each component in the sheet or composition, the amount present in the sheet or composition unless otherwise specified. It means the total amount of multiple substances.
In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present specification, a combination of preferred embodiments is a more preferred embodiment.
In this specification, “(meth) acryloyl group” refers to one or both of “acryloyl group” and “methacryloyl group”, and “(meth) acrylate” refers to any of “acrylate” and “methacrylate”. Or “(meth) acryl” refers to one or both of “acryl” and “methacryl”.
In this specification, unless otherwise specified, room temperature means 25 ° C.
 本明細書において、長波長紫外線及びブルーライトの遮断とは、長波長紫外線及びブルーライトを完全に遮断する場合のみならず、樹脂成形体またはブルーライトカット積層体を介することで、長波長紫外線及びブルーライトの少なくとも一部を遮断し、長波長紫外線及びブルーライトの透過率を減少させることを包含する。
 なお、本明細書における長波長紫外線及びブルーライト(紫外線等)とは、波長400nm~420nmの波長の光を指す。
In the present specification, the blocking of the long wavelength ultraviolet light and the blue light is not only for completely blocking the long wavelength ultraviolet light and the blue light, but also through the resin molding or the blue light cut laminate, Including blocking at least a portion of the blue light and reducing the transmission of long wavelength ultraviolet light and blue light.
Note that long wavelength ultraviolet light and blue light (ultraviolet light or the like) in this specification refer to light having a wavelength of 400 nm to 420 nm.
[樹脂成形体]
 本開示の樹脂成形体は、樹脂及び後述する一般式(1)で表される化合物(以下、特定紫外線吸収剤と称することがある)を含む樹脂層と、樹脂層の少なくとも一方の面上に、ウレタン樹脂、アクリル樹脂及びポリシロキサンからなる群より選ばれる少なくとも1種を含有する保護層と、を備える。
[Resin molding]
The resin molded body of the present disclosure includes a resin layer containing a resin and a compound represented by the general formula (1) described below (hereinafter sometimes referred to as a specific ultraviolet absorber), on at least one surface of the resin layer. And a protective layer containing at least one selected from the group consisting of urethane resin, acrylic resin and polysiloxane.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(1)中、Hetは、2価の5員あるいは6員環の芳香族ヘテロ環残基を表す。
 X、X、X及びXはそれぞれ独立に、ヘテロ原子を表す。
 Y、Y、Y、Y、Y及びYは、それぞれ独立に、ヘテロ原子または炭素原子を含む基を表す。Hetに結合している環は、任意の位置に二重結合を有していてもよい。
 なお、以下、Hetに結合しているX、X、Y、Y及びYにより形成された環を、環Aと、X、X、Y、Y及びYにより形成された環を、環Bと、それぞれ称することがある。
In general formula (1), Het 1 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
X a , X b , X c and X d each independently represent a hetero atom.
Y a , Y b , Y c , Y d , Y e and Y f each independently represents a group containing a hetero atom or a carbon atom. The ring bonded to Het 1 may have a double bond at any position.
Hereinafter, a ring formed by X a , X b , Y a , Y b and Y c bonded to Het 1 is referred to as ring A and X c , X d , Y d , Y e and Y f. The rings formed by may be referred to as ring B, respectively.
 以下、樹脂成形体における層構成と、各層に含まれる成分について順次説明する。
<樹脂層>
 本開示の樹脂成形体における樹脂層は、樹脂を含む。
(樹脂)
 樹脂層に用い得る樹脂としては、樹脂成形材料として用い得る樹脂であれば特に制限なく用いることができる。
 樹脂としては、ポリオレフィン、ポリ4-メチルペンテン、ポリビニルシクロヘキサン、ポリスチレン、シクロオレフィンコポリマー(COC)、アクリル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリエーテル、ポリアセタール、ポリアミド、ポリイミド、ポリウレタン、ポリ尿素、ポリエステル、ポリカーボネート(PC)、フェノール樹脂、メラミン樹脂、セルロースエステル、ポリビニルブチラール(PVB)、エチレンビニルアセテート(EVA)、ポリエーテルスルホン(PES)、ポリシロキサン等、及びこれらの共重合体等が挙げられる。
Hereinafter, the layer configuration in the resin molded body and the components contained in each layer will be sequentially described.
<Resin layer>
The resin layer in the resin molded body of the present disclosure contains a resin.
(resin)
As the resin that can be used for the resin layer, any resin that can be used as a resin molding material can be used without particular limitation.
Examples of the resin include polyolefin, poly-4-methylpentene, polyvinylcyclohexane, polystyrene, cycloolefin copolymer (COC), acrylic resin, polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride, polyether, polyacetal, polyamide, Polyimide, polyurethane, polyurea, polyester, polycarbonate (PC), phenol resin, melamine resin, cellulose ester, polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyethersulfone (PES), polysiloxane, and the like A copolymer etc. are mentioned.
 なかでも、取り扱い性、成形性の観点から熱可塑性樹脂が好ましい。
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ4-メチルペンテン、ポリビニルシクロヘキサン、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(α-メチルスチレン)、ポリイソプレン、ポリブタジエン、ポリシクロペンテン、ポリノルボルネンなどのポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)などのポリエステル、ポリメタクリル酸メチル(PMMA)などのポリ(メタ)アクリル酸エステル、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)、エチレン-酢酸ビニル系共重合体、エチレン-ビニルアルコール樹脂、エチレンビニルアセテート樹脂(EVA)、ポリエーテルスルホン樹脂(PES)、液晶ポリエステル樹脂(LCP)、ポリアセタール樹脂(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリウレタン、ポリフェニレンサルファイド樹脂(PPS)等が挙げられる。
Of these, thermoplastic resins are preferred from the viewpoints of handleability and moldability.
Examples of the thermoplastic resin include polyethylene, polypropylene, polyisobutylene, poly (1-butene), poly-4-methylpentene, polyvinylcyclohexane, polystyrene, poly (p-methylstyrene), poly (α-methylstyrene), polyisoprene, Polybutadienes such as polybutadiene, polycyclopentene, polynorbornene, polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and poly (meth) acrylates such as polymethyl methacrylate (PMMA) , Acrylonitrile-butadiene-styrene resin (ABS), ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol resin, ethylene vinyl acetate resin (EVA), polyester Terusuruhon resin (PES), liquid crystal polyester resin (LCP), polyacetal resin (POM), polyamide (PA), polycarbonate (PC), polyurethane, polyphenylene sulfide resin (PPS) and the like.
 樹脂成形体を、例えば、眼鏡レンズ、ブルーライトカット積層体などとして用いる場合、樹脂は透明であること、即ち、光透過率が高いことが好ましい。
 本明細書において、樹脂成形体が透明であるとは、樹脂成形体の430nm~700nmの平均透過率が80%以上であり、かつ、430nm~700nmの波長域において、透過率がいずれも75%以上であることを意味する。430nm~700nmの平均透過率は、85%以上が好ましく、90%以上がより好ましい。
 樹脂成形体の430nm~700nmの平均透過率は、樹脂成形体を、UV/visスペクトルメーター、例えば、島津製作所社製、UV/visスペクトルメーターUV3100、を用いて分光スペクトルを測定し、上記波長域における波長1nm毎の透過率の測定結果の平均値を算出することで、得ることができる。また、波長1nm毎の透過率の各測定結果が75%以上であることで、430nm~700nmの波長域において、透過率がいずれも75%以上であるとの条件を満たすことが確認できる。
 樹脂成形体は、樹脂と以下に詳述する一般式(1)で表される化合物を含む樹脂層を有する。一般式(1)で表される化合物は、可視光の波長域には殆ど吸収を有しない。従って、樹脂成形体の430nm~700nmの各波長の透過率及び平均透過率を測定することで、樹脂層に含まれる樹脂におけるヘイズが確認でき、後述の紫外線吸収剤の浸み出しに起因する樹脂層に含まれる樹脂のヘイズの上昇抑制効果を確認することができる。
When the resin molded body is used as, for example, a spectacle lens or a blue light cut laminate, the resin is preferably transparent, that is, has a high light transmittance.
In this specification, the resin molded body is transparent when the average transmittance of 430 nm to 700 nm of the resin molded body is 80% or more, and the transmittance is 75% in the wavelength range of 430 nm to 700 nm. That means that. The average transmittance at 430 nm to 700 nm is preferably 85% or more, and more preferably 90% or more.
The average transmittance of the resin molded body from 430 nm to 700 nm is determined by measuring the spectral spectrum of the resin molded body using a UV / vis spectrum meter, for example, UV / vis spectrum meter UV3100 manufactured by Shimadzu Corporation, Can be obtained by calculating the average value of the measurement results of transmittance for each wavelength of 1 nm. In addition, when each measurement result of the transmittance for each wavelength of 1 nm is 75% or more, it can be confirmed that the condition that the transmittance is 75% or more in the wavelength region of 430 nm to 700 nm is confirmed.
A resin molding has a resin layer containing resin and the compound represented by General formula (1) explained in full detail below. The compound represented by the general formula (1) has almost no absorption in the visible light wavelength region. Accordingly, by measuring the transmittance and average transmittance of each wavelength of 430 nm to 700 nm of the resin molded body, the haze in the resin contained in the resin layer can be confirmed, and the resin resulting from the seepage of the ultraviolet absorber described later It is possible to confirm the haze increase suppressing effect of the resin contained in the layer.
 透明な樹脂成形体に用いる好適な樹脂の例としては、ジアセチルセルロース、トリアセチルセルロース、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ニトロセルロース等のセルロースエステル、PA、PC、PET、PEN、PBT、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレン-1,2-ジフェノキシエタン-4,4’-ジカルボキシレート、シンジオタクチックポリスチレン等のポリスチレン、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、PMMA等のアクリル樹脂、ポリスルホン、ポリエーテルスルホン、ポリビニルブチラール、エチレンビニルアセテート、ポリエーテルケトン、ポリエーテルイミド及びポリオキシエチレンなどが挙げられる。
 なかでも、セルロースエステル、PC、ポリエステル、ポリオレフィン、アクリル樹脂が好ましく、PC、ポリエステルがより好ましい。
Examples of suitable resins used for the transparent resin molding include cellulose esters such as diacetylcellulose, triacetylcellulose, propionylcellulose, butyrylcellulose, acetylpropionylcellulose, nitrocellulose, PA, PC, PET, PEN, PBT, Poly-1,4-cyclohexanedimethylene terephthalate, polyethylene-1,2-diphenoxyethane-4,4′-dicarboxylate, polystyrene such as syndiotactic polystyrene, polyolefin such as polyethylene, polypropylene, polymethylpentene, PMMA Acrylic resins such as polysulfone, polyethersulfone, polyvinyl butyral, ethylene vinyl acetate, polyether ketone, polyether imide and polyoxyethylene It is done.
Of these, cellulose ester, PC, polyester, polyolefin, and acrylic resin are preferable, and PC and polyester are more preferable.
 本開示の樹脂成形体を眼鏡レンズに適用する場合には、眼鏡レンズ用樹脂として、屈折率の高い樹脂を選択して用いることが好ましい。眼鏡レンズ用樹脂は、眼鏡レンズに必要な透明性、屈折率、加工性、硬化後の強度などの物性を満たす樹脂であれば、熱可塑性樹脂であっても、熱硬化性樹脂であってもよい。
 一般に、樹脂材料に、フッ素以外のハロゲン原子、芳香環、硫黄原子などを導入することで樹脂の屈折率をより高くすることができる。
 眼鏡レンズの形成に用い得る熱可塑性樹脂としては、PC、PMMA等のアクリル樹脂等から選ばれる1種以上が挙げられる。
 眼鏡レンズ用の熱可塑性樹脂は市販品を用いてもよい。市販品としては、例えば、ポリカーボネート樹脂組成物(カリバー200-13:商品名、住友ダウ(株))、ジエチレングリコールビスアリルカーボネート樹脂(CR-39:商品名、PPGインダストリー社製)等が挙げられる。
When the resin molded body of the present disclosure is applied to a spectacle lens, it is preferable to select and use a resin having a high refractive index as the spectacle lens resin. The spectacle lens resin may be a thermoplastic resin or a thermosetting resin as long as it satisfies the physical properties such as transparency, refractive index, workability, and strength after curing required for the spectacle lens. Good.
In general, the refractive index of a resin can be further increased by introducing a halogen atom other than fluorine, an aromatic ring, a sulfur atom, or the like into the resin material.
Examples of the thermoplastic resin that can be used for forming the spectacle lens include one or more selected from acrylic resins such as PC and PMMA.
A commercially available product may be used as the thermoplastic resin for the spectacle lens. Examples of commercially available products include polycarbonate resin compositions (Caliber 200-13: trade name, Sumitomo Dow Co., Ltd.), diethylene glycol bisallyl carbonate resin (CR-39: trade name, manufactured by PPG Industry).
 樹脂層は、樹脂を1種のみを含んでもよく、2種以上を含んでもよい。樹脂層が2種以上の樹脂を含む場合、ポリマーブレンドまたはポリマーアロイの形態で含んでもよい。 The resin layer may contain only one type of resin or may contain two or more types. When the resin layer contains two or more kinds of resins, it may be contained in the form of a polymer blend or a polymer alloy.
 本開示の樹脂成形体における樹脂層は、下記一般式(1)で表される化合物(特定紫外線吸収剤)を含む。
(一般式(1)で表される化合物)
 以下、一般式(1)で表される化合物について説明する。樹脂層に含まれる一般式(1)で表される化合物は、紫外線吸収性化合物であり、波長400nm~420nmにおける光吸収性、即ち、波長400nm~420nmの光の遮断性に優れる。
The resin layer in the resin molded body of the present disclosure contains a compound (specific ultraviolet absorber) represented by the following general formula (1).
(Compound represented by the general formula (1))
Hereinafter, the compound represented by the general formula (1) will be described. The compound represented by the general formula (1) contained in the resin layer is an ultraviolet-absorbing compound, and is excellent in light absorption at a wavelength of 400 nm to 420 nm, that is, light blocking property at a wavelength of 400 nm to 420 nm.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(1)中、Hetは、少なくとも一つのヘテロ原子を有する2価の5員あるいは6員環の芳香族ヘテロ環残基を表す。また、Hetにおける5員あるいは6員環の芳香族ヘテロ環残基は、縮環していてもよい。
 Hetが含むヘテロ原子としては、例えば、ホウ素原子、窒素原子、酸素原子、ケイ素原子、リン原子、硫黄原子、セレン原子、テルル原子などが挙げられる。Hetが含むヘテロ原子としては、窒素原子、酸素原子、又は硫黄原子が好ましく、窒素原子、又は硫黄原子がより好ましく、硫黄原子がさらに好ましい。Hetは、2以上のヘテロ原子を有していてもよく、複数のヘテロ原子は、同一原子であっても異なる原子であってもよい。
 5員あるいは6員環の芳香族ヘテロ環の任意の位置の2つの水素原子が除されてHetで示される2価の芳香族ヘテロ環残基となり、一般式(1)における2つの環構造と結合する。
 Hetで表される2価の芳香族ヘテロ環残基に2つの水素原子が結合した芳香族ヘテロ環としては、ピロール、ピラゾール、イミダゾール、1,2,3-トリアゾール、1,2,4-トリアゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、1,3,5-トリアジン、フラン、チオフェン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、1,2,3-オキサジアゾール、1,3,4-チアジアゾールなどが挙げられる。芳香族ヘテロ環としてピロール、ピリジン、フラン、又はチオフェンが好ましく、ピリジン、又はチオフェンがより好ましく、チオフェンがさらに好ましい。
In the general formula (1), Het 1 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue having at least one heteroatom. In addition, the 5-membered or 6-membered aromatic heterocyclic residue in Het 1 may be condensed.
Examples of the hetero atom contained in Het 1 include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom, and a tellurium atom. The hetero atom contained in Het 1 is preferably a nitrogen atom, an oxygen atom, or a sulfur atom, more preferably a nitrogen atom or a sulfur atom, and even more preferably a sulfur atom. Het 1 may have two or more heteroatoms, and the plurality of heteroatoms may be the same atom or different atoms.
Two hydrogen atoms at any position of the 5- or 6-membered aromatic heterocycle are removed to form a divalent aromatic heterocyclic residue represented by Het 1 , and the two ring structures in the general formula (1) Combine with.
Examples of the aromatic heterocyclic ring in which two hydrogen atoms are bonded to the divalent aromatic heterocyclic residue represented by Het 1 include pyrrole, pyrazole, imidazole, 1,2,3-triazole, 1,2,4- Triazole, pyridine, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, furan, thiophene, oxazole, isoxazole, thiazole, isothiazole, 1,2,3-oxadiazole, 1,3,4-thiadiazole, etc. Is mentioned. As the aromatic heterocycle, pyrrole, pyridine, furan or thiophene is preferable, pyridine or thiophene is more preferable, and thiophene is more preferable.
 既述の芳香族ヘテロ環において2つの水素原子を取り除く位置、即ち、環A及び環Bと結合する位置はいずれでもよい。
 例えば、Hetで表されるヘテロ環が、ヘテロ5員環化合物としてのピロールである場合における、2つの水素原子が取り除かれた環A及び環Bとの結合位置は、2,3位、2,4位、2,5位、3,4位、3,5位が挙げられる。また、ヘテロ5員環化合物としてのチオフェンである場合の結合位置は、2,3位、2,4位、2,5位、3,4位、3,5位が挙げられる。
 これらのうち、2,5位、2,4位、3,4位が好ましく、2,5位、3,4位がより好ましく、2,5位がさらに好ましい。
 Hetで表されるヘテロ環が、ヘテロ6員環化合物としてのピリジンである場合の、環A及び環Bとの結合位置は、2,3位、2,4位、2,5位、2,6位、3,4位、3,5位、3,6位が挙げられる。これらのうち、2,5位、2,6位、3,5位が好ましく、2,5位、2,6位がより好ましく、2,5位がさらに好ましい。
The position at which two hydrogen atoms are removed from the aromatic heterocycle described above, that is, the position where it is bonded to ring A and ring B may be any.
For example, when the heterocycle represented by Het 1 is pyrrole as a hetero 5-membered ring compound, the bonding positions with ring A and ring B from which two hydrogen atoms have been removed are 2, 3 and 2 , 4th, 2nd, 5th, 3rd, 4th, 3rd, 5th. Examples of the bonding position in the case of thiophene as a hetero 5-membered ring compound include the 2,3-position, 2,4-position, 2,5-position, 3,4-position, and 3,5-position.
Of these, the 2,5th, 2,4th, and 3rd, 4th positions are preferred, the 2,5th, 3rd, and 4th positions are more preferred, and the 2nd and 5th positions are even more preferred.
When the heterocycle represented by Het 1 is pyridine as a hetero 6-membered ring compound, the bonding positions with ring A and ring B are 2, 3, 2, 4, 2, 5, , 6th, 3rd, 4th, 3rd, 5th, 3rd, 6th. Of these, the 2,5th, 2,6th, and 3,5th positions are preferred, the 2,5th, 2,6th positions are more preferred, and the 2,5th positions are more preferred.
 Hetで表されるヘテロ環残基は、さらに置換基を有していてもよい。
 Hetで表されるヘテロ環に導入可能な置換基としては、1価の置換基が挙げられ、具体的には例えば、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1~20のアルキル基(例えばメチル、エチル)、炭素数6~20のアリール基(例えばフェニル、ナフチル)、シアノ基、カルボキシル基、アルコキシカルボニル基(例えばメトキシカルボニル)、アリールオキシカルボニル基(例えばフェノキシカルボニル)、置換又は無置換のカルバモイル基(例えばカルバモイル、N-フェニルカルバモイル、N,N-ジメチルカルバモイル)、アルキルカルボニル基(例えばアセチル)、アリールカルボニル基(例えばベンゾイル)、ニトロ基、置換または無置換のアミノ基(例えばアミノ、ジメチルアミノ、アニリノ)、アシルアミノ基(例えばアセトアミド、エトキシカルボニルアミノ)、スルホンアミド基(例えばメタンスルホンアミド)、イミド基(例えばスクシンイミド、フタルイミド)、イミノ基(例えばベンジリデンアミノ)、ヒドロキシ基、炭素数1~20のアルコキシ基(例えばメトキシ)、アリールオキシ基(例えばフェノキシ)、アシルオキシ基(例えばアセトキシ)、アルキルスルホニルオキシ基(例えばメタンスルホニルオキシ)、アリールスルホニルオキシ基(例えばベンゼンスルホニルオキシ)、スルホ基、置換または無置換のスルファモイル基(例えばスルファモイル、N-フェニルスルファモイル)、アルキルチオ基(例えばメチルチオ)、アリールチオ基(例えばフェニルチオ)、アルキルスルホニル基(例えばメタンスルホニル)、アリールスルホニル基(例えばベンゼンスルホニル)、炭素数6~20のヘテロ環基(例えばピリジル、モルホリノ)などを挙げることができる。
The heterocyclic residue represented by Het 1 may further have a substituent.
Examples of the substituent that can be introduced into the heterocycle represented by Het 1 include monovalent substituents, such as a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), carbon An alkyl group having 1 to 20 carbon atoms (for example, methyl or ethyl), an aryl group having 6 to 20 carbon atoms (for example, phenyl or naphthyl), a cyano group, a carboxyl group, an alkoxycarbonyl group (for example, methoxycarbonyl), an aryloxycarbonyl group (for example, Phenoxycarbonyl), substituted or unsubstituted carbamoyl groups (eg carbamoyl, N-phenylcarbamoyl, N, N-dimethylcarbamoyl), alkylcarbonyl groups (eg acetyl), arylcarbonyl groups (eg benzoyl), nitro groups, substituted or unsubstituted Substituted amino groups (eg amino, dimethylamino, Anilino), acylamino group (for example, acetamide, ethoxycarbonylamino), sulfonamide group (for example, methanesulfonamide), imide group (for example, succinimide, phthalimide), imino group (for example, benzylideneamino), hydroxy group, 1 to 20 carbon atoms Alkoxy group (for example, methoxy), aryloxy group (for example, phenoxy), acyloxy group (for example, acetoxy), alkylsulfonyloxy group (for example, methanesulfonyloxy), arylsulfonyloxy group (for example, benzenesulfonyloxy), sulfo group, substituted or unsubstituted Substituted sulfamoyl groups (eg sulfamoyl, N-phenylsulfamoyl), alkylthio groups (eg methylthio), arylthio groups (eg phenylthio), alkylsulfonyl groups (eg Methanesulfonyl), an arylsulfonyl group (e.g., benzenesulfonyl), and the like Hajime Tamaki having 6 to 20 carbon atoms (for example, pyridyl, morpholino).
 既述の置換基は、さらに置換基を有していてもよい。
 Hetで表されるヘテロ環残基が複数の1価の置換基を有する場合、複数の1価の置換基は互いに同じであっても異なっていてもよい。
 1価の置換基に、さらに導入することができる置換基の例としては、既述の1価の置換基の例を同様に挙げることができる。また、複数の置換基を有する場合、複数の置換基が互いに結合して環を形成してもよい。
 Hetで表されるヘテロ環残基に導入可能な1価の置換基としては、アルキル基、アルコキシ基、及びアリール基から選ばれる置換基が好ましく、アルキル基、及びアリール基がより好ましく、アルキル基がさらに好ましい。
The aforementioned substituent may further have a substituent.
When the heterocyclic residue represented by Het 1 has a plurality of monovalent substituents, the plurality of monovalent substituents may be the same as or different from each other.
Examples of the substituent that can be further introduced into the monovalent substituent include the examples of the monovalent substituent described above. Moreover, when it has a some substituent, a some substituent may couple | bond together and may form a ring.
The monovalent substituent that can be introduced into the heterocyclic residue represented by Het 1 is preferably a substituent selected from an alkyl group, an alkoxy group, and an aryl group, more preferably an alkyl group and an aryl group, and an alkyl group. More preferred are groups.
 X、X、X及びXは、それぞれ独立にヘテロ原子を表す。X、X、X及びXにおけるヘテロ原子としては、例えば、ホウ素原子、窒素原子、酸素原子、ケイ素原子、リン原子、硫黄原子、セレン原子、テルル原子などを挙げることができる。ヘテロ原子としては、窒素原子、酸素原子、硫黄原子が好ましく、窒素原子、酸素原子がより好ましい。また、X、X、X及びXは、それぞれ、さらに置換基を有していてもよい。X、X、X及びXに導入可能な置換基としては、既述のHetに導入可能な1価の置換基として例示した置換基を、同様に挙げることができる。 X a , X b , X c and X d each independently represent a hetero atom. Examples of the hetero atom in X a , X b , X c and X d include a boron atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom, a sulfur atom, a selenium atom and a tellurium atom. As a hetero atom, a nitrogen atom, an oxygen atom, and a sulfur atom are preferable, and a nitrogen atom and an oxygen atom are more preferable. X a , X b , X c and X d may each further have a substituent. Examples of the substituent that can be introduced into X a , X b , X c, and X d include the same substituents exemplified as the monovalent substituent that can be introduced into Het 1 described above.
 Y、Y、Y、Y、Y及びYは、それぞれ独立に、ヘテロ原子または炭素原子を含む基を表す。
 Y、Y、Y、Y、Y及びYがヘテロ原子である場合のヘテロ原子としては、窒素原子、酸素原子、硫黄原子などが挙げられる。
 Y、Y、Y、Y、Y及びYとしては、炭素原子を含む基、窒素原子、酸素原子が好ましく、炭素原子を含む基、または窒素原子がより好ましく、炭素原子がさらに好ましい。なかでも、Y、Y、Y、Y、Y及びYが全て炭素原子または炭素原子を含む基であることがさらに好ましい。
 また、Y、Y、Y、Y、Y及びYとしての炭素原子を含む基またはヘテロ原子は、さらに置換基を有していてもよく、複数の置換基を有する場合、置換基が互いに結合して環を形成してもよく、さらに縮環構造を有していてもよい。Y、Y、Y、Y、Y及びYに導入可能な置換基としては、既述のHetに導入可能な1価の置換基として例示した置換基を、同様に挙げることができる。
Y a , Y b , Y c , Y d , Y e and Y f each independently represents a group containing a hetero atom or a carbon atom.
Examples of the hetero atom in the case where Y a , Y b , Y c , Y d , Y e and Y f are hetero atoms include a nitrogen atom, an oxygen atom and a sulfur atom.
Y a , Y b , Y c , Y d , Y e and Y f are preferably a group containing a carbon atom, a nitrogen atom or an oxygen atom, more preferably a group containing a carbon atom or a nitrogen atom, Further preferred. Among these, it is more preferable that Y a , Y b , Y c , Y d , Y e and Y f are all carbon atoms or groups containing carbon atoms.
Moreover, the group or hetero atom containing a carbon atom as Y a , Y b , Y c , Y d , Y e and Y f may further have a substituent, and when it has a plurality of substituents, The substituents may be bonded to each other to form a ring, and may further have a condensed ring structure. Examples of the substituent that can be introduced into Y a , Y b , Y c , Y d , Y e, and Y f include the same substituents exemplified as the monovalent substituent that can be introduced into Het 1 described above. be able to.
 X、X、Y、Y及びYによって形成される環A、並びにX、X、Y、Y及びYによって形成される環Bは、それぞれ任意の位置に二重結合を有していてもよい。
 環A及び環Bのうち、少なくとも一方は、縮環構造を有していることが好ましい。また、環A及び環Bのうち、少なくとも一方は、ペリミジン環ではないことが好ましい。
Ring A formed by X a , X b , Y a , Y b and Y c , and ring B formed by X c , X d , Y d , Y e and Y f are each in any position. It may have a double bond.
It is preferable that at least one of the ring A and the ring B has a condensed ring structure. Moreover, it is preferable that at least one of the ring A and the ring B is not a perimidine ring.
 本開示における樹脂層に用いることができる一般式(1)で表される化合物としては、下記化合物(A)、化合物(B)及び化合物(C)を挙げることができる。しかし、本開示における一般式(1)で表される化合物は以下の具体例に限定されない。 Examples of the compound represented by the general formula (1) that can be used for the resin layer in the present disclosure include the following compound (A), compound (B), and compound (C). However, the compound represented by the general formula (1) in the present disclosure is not limited to the following specific examples.
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
 一般式(1)で表される化合物としては、例えば、特開2010-132846号公報の段落番号〔0046〕~〔0051〕に記載の化合物を挙げることができ、当該公報に記載の化合物群は、本開示における樹脂層に適用することができる。
 一般式(1)で表される化合物の合成方法なども、特開2010-132846号公報に詳細に記載され、これらの記載事項を本開示に適用することができる。
Examples of the compound represented by the general formula (1) include the compounds described in paragraph numbers [0046] to [0051] of JP 2010-132848 A, and the compound group described in the publication includes The present invention can be applied to the resin layer.
A method for synthesizing the compound represented by the general formula (1) is also described in detail in Japanese Patent Application Laid-Open No. 2010-132846, and these description items can be applied to the present disclosure.
 既述の一般式(1)で表される化合物は、下記一般式(2)で表される化合物であることが好ましい。
 以下、一般式(2)で表される化合物について説明する。
The compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
Hereinafter, the compound represented by the general formula (2) will be described.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(2)におけるHetは、一般式(1)のHetと同義であり、好ましい態様も同じである。 Het 2 in the general formula (2) is synonymous with Het 1 in the general formula (1), and the preferred embodiment is also the same.
 一般式(2)におけるX2a、X2b、X2c及びX2dは、それぞれ一般式(1)におけるX、X、X及びXと同義であり、好ましい例も同じである。
 X2a、X2b、X2c及びX2dはそれぞれ異なっていてもよいが、X2a及びX2b、並びにX2c及びX2dは、それぞれ同じ原子の組み合わせである場合が好ましく、X2a及びX2cが酸素原子であり、かつ、X2b及びX2dが窒素原子を表す場合がより好ましい。
X 2a , X 2b , X 2c and X 2d in general formula (2) have the same meanings as X a , X b , X c and X d in general formula (1), respectively, and preferred examples are also the same.
X 2a , X 2b , X 2c and X 2d may be different from each other, but X 2a and X 2b , and X 2c and X 2d are each preferably a combination of the same atoms, and X 2a and X 2c Is more preferably an oxygen atom and X 2b and X 2d represent a nitrogen atom.
 一般式(2)におけるY2b、Y2c、Y2e及びY2fは、それぞれ一般式(1)におけるY、Y、Y及びYと同義であり、好ましい態様も同じである。 Y 2b , Y 2c , Y 2e and Y 2f in the general formula (2) have the same meanings as Y b , Y c , Y e and Y f in the general formula (1), respectively, and preferred embodiments are also the same.
 L及びLは、それぞれ独立に、酸素原子、硫黄原子またはNRを表し、Rは、水素原子または1価の置換基を表す。
 一般式(2)における1価の置換基としては、既述のHetに導入可能な置換基として挙げた1価の置換基の例が同様に挙げられる。
 L及びLは、酸素原子またはNRが好ましく、酸素原子であることがより好ましい。L及びLは互いに異なっていてもよいが、同じであることが好ましい。なかでも、L及びLのいずれもが酸素原子であることがより好ましい。
L 1 and L 2 each independently represents an oxygen atom, a sulfur atom or NR a , and R a represents a hydrogen atom or a monovalent substituent.
Examples of the monovalent substituent in the general formula (2) include the same monovalent substituents as those which can be introduced into the aforementioned Het 1 .
L 1 and L 2 are preferably an oxygen atom or NR a, and more preferably an oxygen atom. L 1 and L 2 may be different from each other, but are preferably the same. Among these, it is more preferable that both L 1 and L 2 are oxygen atoms.
 Z及びZはそれぞれ独立に、Y2b及びY2c、若しくは、Y2e及びY2fと互いに結合して4員環~8員環を形成するのに必要な原子群を表す。形成された4員環~8員環は、さらに置換基を有していてもよく、縮環構造を有していてもよい。
 形成される4員環~8員環としては、例えば、シクロヘキサン、シクロペンタンなどの脂肪族炭化水素環、ベンゼン環、ナフタレン環などの芳香族炭化水素環、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、チアゾ-ルまたはこれらのベンゾ縮環体などのヘテロ環が挙げられる。
 なかでも、芳香族炭化水素環またはヘテロ環が好ましく、芳香族炭化水素環がより好ましく、ベンゼン環がさらに好ましい。
Z 1 and Z 2 each independently represent an atomic group necessary for bonding to Y 2b and Y 2c , or Y 2e and Y 2f to form a 4-membered ring to an 8-membered ring. The formed 4-membered ring to 8-membered ring may further have a substituent and may have a condensed ring structure.
Examples of the formed 4-membered ring to 8-membered ring include aliphatic hydrocarbon rings such as cyclohexane and cyclopentane, aromatic hydrocarbon rings such as benzene ring and naphthalene ring, pyridine, pyrrole, pyridazine, thiophene, imidazole, Heterocycles such as furan, pyrazole, oxazole, triazole, thiazol or benzo condensed ring thereof can be mentioned.
Among these, an aromatic hydrocarbon ring or a hetero ring is preferable, an aromatic hydrocarbon ring is more preferable, and a benzene ring is further preferable.
 一般式(2)で表される化合物は、下記一般式(3)で表される化合物であることが好ましい。
 以下、一般式(3)で表される化合物について説明する。
The compound represented by the general formula (2) is preferably a compound represented by the following general formula (3).
Hereinafter, the compound represented by the general formula (3) will be described.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(3)におけるHetは、一般式(2)におけるHetと同義であり、好ましい態様も同じである。 Het 3 in the general formula (3) is synonymous with Het 2 in the general formula (2), and the preferred embodiment is also the same.
 一般式(3)におけるX3a、X3b、X3c及びX3dは、それぞれ一般式(2)におけるX2a、X2b、X2c及びX2dと同義であり、好ましい態様も同じである。X3a、X3b、X3c及びX3dはそれぞれ互いに異なっていても同じでもよい。X3a及びX3b、並びにX3c及びX3dは、それぞれ同じ原子の組み合わせであることが好ましく、X3a及びX3cが酸素原子であり、かつ、X3b及びX3dが窒素原子である態様がより好ましい。 X 3a , X 3b , X 3c and X 3d in the general formula (3) have the same meanings as X 2a , X 2b , X 2c and X 2d in the general formula (2), respectively, and preferred embodiments are also the same. X 3a , X 3b , X 3c and X 3d may be different from each other or the same. X 3a and X 3b , and X 3c and X 3d are each preferably a combination of the same atoms, and X 3a and X 3c are oxygen atoms, and X 3b and X 3d are nitrogen atoms. More preferred.
 R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hは、それぞれ独立に、水素原子または1価の置換基を表す。R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hが1価の置換基を表す場合の1価の置換基としては、既述のHetに導入可能な1価の置換基の例を同様に挙げることができる。
 R3a、R3b、R3c、及びR3d、並びに、R3e、R3f、R3g及びR3hのうち任意の2つの置換基は互いに結合して環を形成してもよく、さらに縮環構造を有していてもよい。
 R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hとしては、水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、またはヒドロキシ基が好ましく、水素原子、炭素数10以下のアルコキシ基がより好ましく、水素原子がさらに好ましい。特に好ましくは、R3a~R3hの全てが水素原子を表す場合である。
R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent. The monovalent substituent when R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h represent a monovalent substituent can be introduced into the aforementioned Het 1 Examples of monovalent substituents can be given as well.
R 3a , R 3b , R 3c , and R 3d , and any two substituents of R 3e , R 3f , R 3g, and R 3h may be bonded to each other to form a ring, and further a condensed ring You may have a structure.
R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, or a hydroxy group. , A hydrogen atom and an alkoxy group having 10 or less carbon atoms are more preferable, and a hydrogen atom is more preferable. Particularly preferred is the case where all of R 3a to R 3h represent hydrogen atoms.
 さらに、一般式(3)で表される化合物は、下記一般式(4)で表される化合物であることが好ましい。
 以下、一般式(4)で表される化合物について説明する。
Furthermore, the compound represented by the general formula (3) is preferably a compound represented by the following general formula (4).
Hereinafter, the compound represented by Formula (4) will be described.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(4)におけるHetは、一般式(3)におけるHetと同義であり、好ましい態様も同じである。 Het 4 in General formula (4) is synonymous with Het 3 in General formula (3), and its preferable aspect is also the same.
 一般式(4)におけるR4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ一般式(3)におけるR3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hと同義であり、好ましい態様も同じである。 R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h in the general formula (4) are respectively R 3a , R 3b , R 3c , R 3d , It is synonymous with R < 3e> , R <3f > , R < 3g> and R <3h> , and a preferable aspect is also the same.
 一般式(4)で表される化合物は、下記一般式(5)で表される化合物であることが好ましい。
 以下、一般式(5)で表される化合物について説明する。
The compound represented by the general formula (4) is preferably a compound represented by the following general formula (5).
Hereinafter, the compound represented by Formula (5) will be described.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(5)におけるHetは、一般式(4)におけるHetと同義であり、好ましい態様も同じである。 Het 5 in the general formula (5) is synonymous with Het 4 in the general formula (4), and the preferred embodiment is also the same.
 一般式(5)におけるR5a、R5b、R5c、R5d、R5e、R5f、R5g及びR5hは、それぞれ一般式(4)におけるR4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hと同義であり、好ましい態様も同じである。 R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h in the general formula (5) are respectively R 4a , R 4b , R 4c , R 4d , in the general formula (4), It is synonymous with R < 4e> , R <4f > , R < 4g> and R <4h> , and a preferable aspect is also the same.
 R5i及びR5jはそれぞれ独立に、水素原子または1価の置換基を表す。R5i及びR5jが1価の置換基を表す場合の1価の置換基は、既述のHetに導入可能な1価の置換基の例を、同様に挙げることができる。
 R5i及びR5jは互いに結合して環を形成してもよく、縮環構造を有していてもよい。R5i及びR5jとして好ましくは、水素原子、炭素数10以下のアルキル基、炭素数10以下のアルコキシ基、またはヒドロキシ基であり、より好ましくは、水素原子、炭素数10以下のアルコキシ基である。さらに好ましくは、水素原子であり、特に好ましくは、R5i及びR5jの双方が共に水素原子を表す場合である。
R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent. Examples of the monovalent substituent in the case where R 5i and R 5j represent a monovalent substituent can similarly be given as examples of the monovalent substituent that can be introduced into Het 1 described above.
R 5i and R 5j may be bonded to each other to form a ring or may have a condensed ring structure. R 5i and R 5j are preferably a hydrogen atom, an alkyl group having 10 or less carbon atoms, an alkoxy group having 10 or less carbon atoms, or a hydroxy group, and more preferably a hydrogen atom or an alkoxy group having 10 or less carbon atoms. . More preferred is a hydrogen atom, and particularly preferred is a case where both R 5i and R 5j both represent a hydrogen atom.
 本開示における樹脂層に用いることができる一般式(1)~一般式(5)のいずれかで表される化合物の具体例としては、特開2010-132846号公報の段落番号〔0070〕~〔0075〕に記載の化合物を挙げることができる。しかし、一般式(1)で表される化合物は、上記公報に記載の化合物の例に限定されない。
 一般式(1)~一般式(5)のいずれかで表される化合物は、化合物の構造及び当該化合物が置かれた環境によって互変異性体を取り得る。本開示における樹脂層には、これら既述の樹脂の互変異性体も用い得る。
Specific examples of the compound represented by any one of the general formulas (1) to (5) that can be used for the resin layer in the present disclosure include paragraph numbers [0070] to [ [0075] can be mentioned. However, the compound represented by the general formula (1) is not limited to the examples of the compounds described in the above publication.
The compound represented by any one of the general formulas (1) to (5) can take a tautomer depending on the structure of the compound and the environment in which the compound is placed. In the resin layer in the present disclosure, tautomers of these resins described above can also be used.
 一般式(1)で表される化合物は、例えば、波長410nmにおける光透過率が5%以下であることが好ましく、かつ、波長440nmにおける光透過率が80%以上であることが好ましい。波長410nmでの光線透過率が4%以下であり、かつ、波長440nmでの光線透過率が80%以上であることがより好ましく、波長410nmでの光線透過率が3%以下であり、かつ波長440nmでの光線透過率が80%以上であることがさらに好ましく、波長410nmでの光線透過率が2%以下であり、かつ波長440nmでの光線透過率が80%以上であることが最も好ましい。
 一般式(1)で表される化合物の光透過率は、既述の方法と同様の方法で測定することができる。
For example, the compound represented by the general formula (1) preferably has a light transmittance of 5% or less at a wavelength of 410 nm, and preferably has a light transmittance of 80% or more at a wavelength of 440 nm. More preferably, the light transmittance at a wavelength of 410 nm is 4% or less, the light transmittance at a wavelength of 440 nm is 80% or more, the light transmittance at a wavelength of 410 nm is 3% or less, and the wavelength The light transmittance at 440 nm is more preferably 80% or more, the light transmittance at wavelength 410 nm is 2% or less, and the light transmittance at wavelength 440 nm is most preferably 80% or more.
The light transmittance of the compound represented by the general formula (1) can be measured by the same method as described above.
 樹脂層には、既述の樹脂と、一般式(1)で表される化合物とを含む。樹脂層には、一般式(1)で表される化合物を、1種のみ含んでいてもよく、2種以上を含んでいてもよい。
 樹脂層における一般式(1)で表される化合物の含有量は、樹脂層の全量に対して、0質量%を超え、5質量%以下であることが好ましく、0.1質量%~4質量%であることがより好ましく、0.3質量%~3質量%であることがさらに好ましい。
The resin layer contains the resin described above and the compound represented by the general formula (1). The resin layer may contain only one type of compound represented by the general formula (1), or may contain two or more types.
The content of the compound represented by the general formula (1) in the resin layer is preferably more than 0% by mass and 5% by mass or less, and preferably 0.1% by mass to 4% by mass with respect to the total amount of the resin layer. %, More preferably 0.3% by mass to 3% by mass.
(その他の成分)
 本開示における樹脂層には、既述の樹脂と、既述の特定紫外線吸収剤と、に加え、効果を損なわない限り、目的に応じて、その他の成分を含んでいてもよい。
 樹脂層に含まれ得るその他の成分としては、充填剤、可塑剤、ノニオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤等の界面活性剤、密着促進剤、酸化防止剤、凝集防止剤、特定紫外線吸収剤以外の紫外線吸収剤、着色剤等が挙げられる。
 樹脂層が、特定紫外線吸収剤以外の紫外線吸収剤、着色剤等を含むことで、樹脂層、ひいては、樹脂成形体に、より短波長の紫外線遮断性を与えることができる。また、着色剤を含むことで、樹脂成形体に任意の色相を付与することができる。
(Other ingredients)
In the resin layer in the present disclosure, in addition to the resin described above and the specific ultraviolet absorber described above, other components may be included depending on the purpose as long as the effects are not impaired.
Other components that can be included in the resin layer include fillers, plasticizers, nonionic surfactants, cationic surfactants, anionic surfactants and other surfactants, adhesion promoters, antioxidants, anti-aggregation agents, Examples include ultraviolet absorbers other than the specific ultraviolet absorber, colorants, and the like.
When the resin layer contains an ultraviolet absorber other than the specific ultraviolet absorber, a colorant, and the like, the resin layer, and thus the resin molded body, can be given ultraviolet blocking properties with a shorter wavelength. Moreover, arbitrary hue can be provided to a resin molding by including a coloring agent.
(樹脂層の形成)
 本開示における樹脂層は、既述の樹脂と、特定紫外線吸収剤とを、樹脂の溶融温度まで加熱して混合し、混合物を所望の厚みのシート状に成形することで得ることができる。
 例えば、まず、樹脂として熱可塑性樹脂を用いる場合には、熱可塑性樹脂のペレットを予め乾燥し、特定紫外線吸収剤を混合し、得られた混合物を押し出し機に投入して加熱し、溶融混練し、特定紫外線吸収剤を含有するペレット(マスターバッジ)を得る。
 その後、得られたマスターバッジに対し、熱可塑性樹脂のペレットを、特定紫外線吸収剤が目的の含有量となる量にて混合し、さらに、溶融押出し機にて溶融混練を行い、ダイを介してフィルム状に成形することで樹脂層を得ることができる。
(Formation of resin layer)
The resin layer in the present disclosure can be obtained by mixing the above-described resin and the specific ultraviolet absorber by heating to the melting temperature of the resin and molding the mixture into a sheet having a desired thickness.
For example, when a thermoplastic resin is used as the resin, the pellets of the thermoplastic resin are dried in advance, mixed with a specific ultraviolet absorber, and the resulting mixture is put into an extruder, heated, melt-kneaded. Then, a pellet (master badge) containing a specific ultraviolet absorber is obtained.
Thereafter, thermoplastic resin pellets are mixed with the master badge obtained in an amount such that the specific ultraviolet absorber becomes the target content, and further melt-kneaded in a melt extruder, through a die. A resin layer can be obtained by forming into a film.
<保護層>
 本開示の樹脂成形体における保護層は、ウレタン樹脂、アクリル樹脂及びポリシロキサンからなる群より選ばれる少なくとも1種を含有する。
 本開示の樹脂成形体における作用は明確ではないが、以下のように考えられる。
 保護層に含まれるウレタン樹脂及びアクリル樹脂は、樹脂層に含まれる特定紫外線吸収剤との相溶性が良好であり、樹脂層から浸み出す特定紫外線吸収剤を保護層中で、ウレタン樹脂またはアクリル樹脂が効果的に捕獲するため、特定紫外線吸収剤の浸み出しを効果的に抑制すると考えられる。
 一方、ポリシロキサンは、特定紫外線吸収剤との相溶性が低いために、保護層にポリシロキサンが含まれることにより、特定紫外線吸収剤の浸み出しを、ポリシロキサンを含む保護層が効果的にブロックすると考えられる。
 従って、本開示の樹脂成形体は、上記保護層が存在することにより、長期間の経時、或いは高湿熱環境下の使用においても、樹脂層からの特定紫外線吸収剤の浸み出しが効果的に抑制され、その結果、樹脂層におけるヘイズの低下が抑制されると考えている。
 なお、本開示は上記推定機構には何ら制限されない。
<Protective layer>
The protective layer in the resin molded body of the present disclosure contains at least one selected from the group consisting of urethane resins, acrylic resins, and polysiloxanes.
Although the effect | action in the resin molding of this indication is not clear, it thinks as follows.
The urethane resin and acrylic resin contained in the protective layer have good compatibility with the specific ultraviolet absorber contained in the resin layer, and the specific ultraviolet absorber that oozes out from the resin layer is contained in the protective layer in the protective layer. Since the resin captures effectively, it is considered that the leaching of the specific ultraviolet absorber is effectively suppressed.
On the other hand, since polysiloxane has low compatibility with the specific ultraviolet absorber, when the protective layer contains polysiloxane, the protective layer containing the polysiloxane effectively leaches out the specific ultraviolet absorber. It is thought to block.
Therefore, in the resin molded body of the present disclosure, the presence of the protective layer effectively exudes the specific ultraviolet absorber from the resin layer even when used for a long period of time or in a high humidity heat environment. It is suppressed, and as a result, the haze fall in the resin layer is considered to be suppressed.
Note that the present disclosure is not limited to the estimation mechanism.
 保護層は、ウレタン樹脂またはアクリル樹脂を含有し、保護層の、Fedors法によって算出した溶解性パラメーター(以下、SP値と称することがある)が、20(J/cm1/2~28(J/cm1/2の範囲にあることが好ましい。
 以下、ウレタン樹脂またはアクリル樹脂を含む保護層を、保護層(A)と称することがある。
 本明細書におけるSP値は、Fedors法によって算出した値を用いている。Fedors法は、D.W.VAN CREVELEN著、Properties of Polymer(ELSEVIER SCIENTIFIC PUBLISHING COMPANY、1976年)のTable7.4に記載されており、その文献の記載に従い算出することができる。
 既述の保護層のSP値は、樹脂層中に含有させる特定紫外線吸収剤との相溶性の目安となる。保護層のSP値が上記好ましい範囲において、保護層における特定紫外線吸収剤の捕獲効果がより良好となり、従って、特定紫外線吸収剤の浸み出し抑制効果がより改良される。
The protective layer contains a urethane resin or an acrylic resin, and the solubility parameter (hereinafter sometimes referred to as SP value) of the protective layer calculated by the Fedors method is 20 (J / cm 3 ) 1/2 to 28 It is preferable to be in the range of (J / cm 3 ) 1/2 .
Hereinafter, the protective layer containing a urethane resin or an acrylic resin may be referred to as a protective layer (A).
As the SP value in this specification, a value calculated by the Fedors method is used. The Fedors method is described in D.A. W. It is described in Table 7.4 of VAN CREVELEN, Properties of Polymer (ELSEVIER SCIENTIFIC PUBLISHING COMPANY, 1976), and can be calculated according to the description of the document.
The SP value of the protective layer described above is a measure of compatibility with the specific ultraviolet absorber contained in the resin layer. When the SP value of the protective layer is within the above preferred range, the trapping effect of the specific ultraviolet absorber in the protective layer becomes better, and therefore the oozing-in suppressing effect of the specific ultraviolet absorber is further improved.
 ウレタン樹脂またはアクリル樹脂を含有する保護層(A)は、樹脂層と接する側とは反対側の面上に、さらに、反射防止層を備えることが好ましい。
 保護層の面上にさらに反射防止層を備えることで、一般式(1)で表される化合物の浸み出しがより抑制され、得られる樹脂成形体のヘイズの上昇抑制効果がより良好となる。
The protective layer (A) containing a urethane resin or an acrylic resin preferably further includes an antireflection layer on the surface opposite to the side in contact with the resin layer.
By further providing an antireflection layer on the surface of the protective layer, the seepage of the compound represented by the general formula (1) is further suppressed, and the haze increase suppressing effect of the obtained resin molded body is further improved. .
 反射防止層には特に制限はない。樹脂成形体の用途を考慮すれば、透明性の高い反射防止層であることが好ましい。ここで、反射防止層の透明性が高いとは、反射防止層における430nm~700nmの平均透過率が80%以上であり、かつ、波長域における各波長の透過率が75%以上であることを意味する。なお、430nm~700nmの波長域における平均透過率は、既述の樹脂成形体における430nm~700nmの平均透過率の測定方法と同様にして得ることができる。
 反射防止層は、例えば、シリカ、アルミナ等の公知の反射防止層を保護層の面状にコーティングあるいは真空蒸着等により形成してもよく、樹脂に、シリカ、プラスティックビーズ等の反射防止用微粒子を含有する反射防止層形成組成物を塗布することで、形成してもよい。さらに、パラジウム、金、銀などの平板金属粒子を含む層を塗布により形成してもよい。
 反射防止層に関しては特開2006-289627号公報の段落番号〔0036〕~〔0038〕、及び特開2015-129909号公報の段落番号〔0010〕~〔0026〕に詳しく記載されており、この記載を本開示の樹脂成形体にも適用することができる。
There is no particular limitation on the antireflection layer. In consideration of the use of the resin molded body, a highly transparent antireflection layer is preferable. Here, high transparency of the antireflection layer means that the average transmittance of 430 nm to 700 nm in the antireflection layer is 80% or more and the transmittance of each wavelength in the wavelength region is 75% or more. means. The average transmittance in the wavelength region of 430 nm to 700 nm can be obtained in the same manner as the method for measuring the average transmittance of 430 nm to 700 nm in the resin molded body described above.
The antireflection layer may be formed, for example, by coating a known antireflection layer such as silica or alumina on the surface of the protective layer by vacuum deposition or the like, and applying antireflection fine particles such as silica or plastic beads to the resin. You may form by apply | coating the antireflection layer forming composition to contain. Furthermore, a layer containing flat metal particles such as palladium, gold, and silver may be formed by coating.
The antireflection layer is described in detail in paragraphs [0036] to [0038] of JP-A-2006-289627 and paragraphs [0010] to [0026] of JP-A-2015-129909. Can also be applied to the resin molded body of the present disclosure.
 保護層(A)は、公知の方法で形成することができる。
 例えば、ウレタン樹脂またはアクリル樹脂の前駆体となるモノマーと、溶剤と、重合触媒または重合開始剤とを含有する保護層(A)形成用塗布液を調製し、既述の樹脂層の面上に塗布し、乾燥、硬化させることで樹脂層(A)を形成することができる。
 また、保護層(A)形成用塗布液を用いて、フィルム状に成形した保護層(A)を、既述の樹脂層に転写して形成することができる。
 製造の簡易性、樹脂層と保護層(A)との密着性がより良好となるという観点からは、塗布法が好ましい。
 なお、保護層(A)の形成方法の詳細については、後述する。
The protective layer (A) can be formed by a known method.
For example, a coating liquid for forming a protective layer (A) containing a monomer serving as a precursor of a urethane resin or an acrylic resin, a solvent, and a polymerization catalyst or a polymerization initiator is prepared, and the surface of the resin layer described above is prepared. The resin layer (A) can be formed by applying, drying and curing.
Further, the protective layer (A) formed into a film shape can be transferred to the resin layer described above using the coating liquid for forming the protective layer (A).
From the viewpoint of ease of production and better adhesion between the resin layer and the protective layer (A), a coating method is preferred.
In addition, the detail of the formation method of a protective layer (A) is mentioned later.
 保護層(A)の形成に用いることができる重合性モノマーとしては、保護層(A)の機械的強度がより良好となる点で、重合性基を2個以上有する多官能モノマーが好ましい。多官能モノマーは、いわゆる架橋剤として作用する。
 多官能モノマー中に含まれる重合性基の数は特に制限されず、機械的強度がより良好となる点、および、取り扱い性の点から、2個~10個が好ましく、2個~6個がより好ましい。
 多官能モノマーとしては、例えば、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレートなどが挙げられる。
 このような多官能モノマーは、市販品を用いることができ、具体的には、例えば、ジペンタエリスリトールヘキサアクリレートとしては、A-DPH(新中村化学工業(株))が挙げられる。
As the polymerizable monomer that can be used for forming the protective layer (A), a polyfunctional monomer having two or more polymerizable groups is preferable in that the mechanical strength of the protective layer (A) becomes better. The polyfunctional monomer acts as a so-called crosslinking agent.
The number of polymerizable groups contained in the polyfunctional monomer is not particularly limited, and is preferably 2 to 10 from the viewpoint of better mechanical strength and handleability, and 2 to 6 is preferable. More preferred.
Examples of the polyfunctional monomer include trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, dipentaerythritol hexaacrylate, pentaerythritol tetraacrylate, and the like.
As such a polyfunctional monomer, a commercially available product can be used. Specifically, for example, as dipentaerythritol hexaacrylate, A-DPH (Shin Nakamura Chemical Co., Ltd.) can be mentioned.
 保護層(A)として用いられるウレタン樹脂としては、一般的なウレタン樹脂に加え、ジイソシアネートとポリオールの反応によって得られたウレタン樹脂に対し、鎖延長処理を施して分子量を増大させたウレタン樹脂を使用することができる。
 ウレタン樹脂の合成に用い得るジイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等が挙げられる。
 ウレタン樹脂の合成に用い得るポリオールとしては、エチレングリコール、プロピレングリコール、グリセリン、ヘキサントリオール等が挙げられる。
 ジイソシアネート、ポリオール、及び鎖延長処理については、例えば「ポリウレタンハンドブック」(岩田敬治編、日刊工業新聞社、昭和62年発行)に詳細に記載されており、「ポリウレタンハンドブック」に記載のウレタン樹脂及びその原料に係る記載は、目的に応じて本発明に適用し得る。
As a urethane resin used as the protective layer (A), in addition to a general urethane resin, a urethane resin obtained by subjecting a urethane resin obtained by reaction of diisocyanate and polyol to a chain extension treatment to increase the molecular weight is used. can do.
Examples of the diisocyanate that can be used for the synthesis of the urethane resin include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and the like. It is done.
Examples of the polyol that can be used for the synthesis of the urethane resin include ethylene glycol, propylene glycol, glycerin, hexanetriol, and the like.
The diisocyanate, polyol, and chain extension treatment are described in detail in, for example, “Polyurethane Handbook” (edited by Keiji Iwata, Nikkan Kogyo Shimbun, published in 1987), the urethane resin described in “Polyurethane Handbook” and its The description relating to the raw material can be applied to the present invention depending on the purpose.
 保護層の原料樹脂として市販品のウレタン樹脂を用いてもよい。市販品としては、スーパーフレックス(登録商標)470、210、150HS、150HF、エラストロン(登録商標)H-3(以上、第一工業製薬(株)製)、ハイドラン(登録商標)AP-20、AP-40F、WLS-210(以上、DIC(株)製)、タケラック(登録商標)W-6061、WS-5100、WS-4000、WSA-5920、オレスター(登録商標)UD-350(以上、三井化学(株)製)が挙げられる。
 なかでも、シラノール基含有の観点から、WS-5100、WS-4000が特に好ましい。
A commercially available urethane resin may be used as the raw material resin for the protective layer. Commercially available products include Superflex (registered trademark) 470, 210, 150HS, 150HF, Elastron (registered trademark) H-3 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Hydran (registered trademark) AP-20, AP -40F, WLS-210 (above, manufactured by DIC Corporation), Takelac (registered trademark) W-6061, WS-5100, WS-4000, WSA-5920, Olester (registered trademark) UD-350 (above, Mitsui) Chemical Co., Ltd.).
Of these, WS-5100 and WS-4000 are particularly preferable from the viewpoint of containing a silanol group.
(保護層の硬化)
 保護層、なかでも、保護層(A)を形成する際には、硬化性の保護層(A)形成用組成物が用いられる。保護層(A)形成用組成物を、既述の樹脂層の面上に塗布して保護層(A)形成用組成物層を形成した後、エネルギーを付与して硬化させ、保護層を形成する。エネルギーの付与に際しては、保護層(A)形成用組成物に含まれる重合開始剤に適合するエネルギーを付与すればよい。即ち、保護層(A)形成用組成物に含まれる重合開始剤が、光重合開始剤であれば露光を行ない、熱重合開始剤であれば加熱を行なって、保護層(A)形成用組成物層を硬化させ、保護層(A)を得ることができる。なかでも、硬化速度、作業性の観点から、保護層の硬化方法としては、光照射が好ましく、紫外線照射がより好ましい。
(Curing the protective layer)
When forming a protective layer, especially a protective layer (A), a curable protective layer (A) forming composition is used. After forming the protective layer (A) forming composition on the surface of the resin layer described above to form the protective layer (A) forming composition layer, energy is applied and cured to form the protective layer. To do. In applying the energy, it is sufficient to apply energy suitable for the polymerization initiator contained in the composition for forming the protective layer (A). That is, if the polymerization initiator contained in the composition for forming the protective layer (A) is a photopolymerization initiator, exposure is performed, and if it is a thermal polymerization initiator, heating is performed to form the composition for forming the protective layer (A). A physical layer can be hardened and a protective layer (A) can be obtained. Among these, from the viewpoint of curing speed and workability, the method for curing the protective layer is preferably light irradiation, more preferably ultraviolet irradiation.
 保護層(A)形成用組成物層に、例えば、光照射する前に、予め保護層(A)形成用組成物に含まれる溶媒を乾燥して溶媒量を減少させることが、硬化性向上の観点から好ましい。
 乾燥を行なう場合には、公知の方法、例えば、温風を吹き付ける方法、所定の温度に制御された乾燥ゾーンを通過させる方法、搬送ロールに備えられたヒータにて乾燥する方法などが挙げられる。乾燥温度には特に制限はなく、保護層(A)形成用組成物の処方などを考慮して適宜選択することができる。通常は、保護層(A)形成用組成物層を、例えば、50℃~70℃にて乾燥することができる。
For example, before the light-irradiated composition layer for forming the protective layer (A), the solvent contained in the composition for forming the protective layer (A) is dried in advance to reduce the amount of the solvent. It is preferable from the viewpoint.
In the case of performing drying, a known method, for example, a method of blowing warm air, a method of passing through a drying zone controlled to a predetermined temperature, a method of drying with a heater provided in a transport roll, and the like can be mentioned. There is no restriction | limiting in particular in drying temperature, It can select suitably in consideration of prescription of the composition for protective layer (A) formation, etc. Usually, the composition layer for forming the protective layer (A) can be dried, for example, at 50 ° C. to 70 ° C.
 エネルギー付与として光照射し、保護層を光硬化により形成する場合、エネルギー付与は、例えば、紫外線ランプを用いて行なうことができる。
 光照射量としては、10mJ/cm~1000mJ/cmの範囲であることが好ましい。既述の照射量で紫外線を照射することで、硬化が好適に行なわれる。
 紫外線照射を行なう際、酸素による硬化阻害を抑制し、保護層の表面硬化をより促進する目的で、紫外線照射領域(以下、硬化ゾーンと称することがある)を窒素ガス等の不活性ガスでパージして酸素濃度を低下することができる。硬化ゾーンの酸素濃度を低下させる際の酸素濃度は0.01%~5%が好ましい。
 硬化性の保護層(A)形成用組成物の硬化反応を促進する目的で、硬化ゾーン内の温度を高めることができる。硬化反応の促進の観点からは、硬化ゾーン内の温度を25℃~100℃とすることが好ましく、30℃~80℃がより好ましく、40℃~70℃がさらに好ましい。
When light irradiation is performed as energy application and the protective layer is formed by photocuring, energy application can be performed using, for example, an ultraviolet lamp.
The light irradiation amount is preferably in the range of 10 mJ / cm 2 to 1000 mJ / cm 2 . Curing is suitably performed by irradiating ultraviolet rays with the above-mentioned irradiation amount.
When performing ultraviolet irradiation, the ultraviolet irradiation region (hereinafter sometimes referred to as a curing zone) is purged with an inert gas such as nitrogen gas for the purpose of suppressing the inhibition of curing by oxygen and further promoting the surface curing of the protective layer. Thus, the oxygen concentration can be reduced. The oxygen concentration when reducing the oxygen concentration in the curing zone is preferably 0.01% to 5%.
In order to accelerate the curing reaction of the curable protective layer (A) forming composition, the temperature in the curing zone can be increased. From the viewpoint of promoting the curing reaction, the temperature in the curing zone is preferably 25 ° C. to 100 ° C., more preferably 30 ° C. to 80 ° C., and even more preferably 40 ° C. to 70 ° C.
 ポリシロキサンを含む保護層(以下、保護層(B)と称することがある)は、シロキサン化合物を用いたゾルゲル法により、製造することができる。
 保護層(B)は、シロキサンオリゴマーを縮合反応させて得られる化合物の少なくとも1種を含むことが好ましい。
 本開示におけるシロキサンオリゴマーとしては、1種のシラン化合物を用いて得られた部分加水分解縮合物、及び2種以上のシラン化合物を用いて得られた部分共加水分解縮合物を用いることができる。
 なお、シラン化合物とは、加水分解性シリル基及び/又はシラノール基を有する化合物であり、シリル基は加水分解してシラノール基となり、シラノール基は脱水縮合してシロキサン結合が生成する。
The protective layer containing polysiloxane (hereinafter sometimes referred to as protective layer (B)) can be produced by a sol-gel method using a siloxane compound.
The protective layer (B) preferably contains at least one compound obtained by a condensation reaction of a siloxane oligomer.
As the siloxane oligomer in the present disclosure, a partial hydrolysis condensate obtained using one kind of silane compound and a partial cohydrolysis condensate obtained using two or more kinds of silane compounds can be used.
The silane compound is a compound having a hydrolyzable silyl group and / or a silanol group. The silyl group is hydrolyzed to become a silanol group, and the silanol group is dehydrated and condensed to produce a siloxane bond.
 なお、このような部分(共)加水分解縮合物はシリコーンアルコキシオリゴマーとして市販されている化合物を使用してもよく(例えば、信越化学工業(株)などから市販されている。)、また、常法に基づき、加水分解性シラン化合物に対し当量未満の加水分解水を反応させた後に、アルコール、及び塩酸等の副生物を除去することによって製造したものを使用してもよい。
 なお、シロキサン化合物としては、市販品を用いることができる。
 シロキサン化合物の市販品の例としては、三菱化学(株)のMKC(登録商標)シリケートMS51、MKCシリケートMS56、MKCシリケートMS57、MKCシリケートMS56S、MKCメチルシリケート53A、MKCエチルシリケート40、MKCエチルシリケート48、MKCEMS485等が挙げられる。
Such a partial (co) hydrolysis condensate may be a compound commercially available as a silicone alkoxy oligomer (for example, commercially available from Shin-Etsu Chemical Co., Ltd.). You may use what was manufactured by removing by-products, such as alcohol and hydrochloric acid, after making less than equivalent hydrolyzed water react with a hydrolysable silane compound based on the method.
A commercially available product can be used as the siloxane compound.
Examples of commercially available siloxane compounds include MKC (registered trademark) silicate MS51, MKC silicate MS56, MKC silicate MS57, MKC silicate MS56S, MKC methyl silicate 53A, MKC ethyl silicate 40, MKC ethyl silicate 48 manufactured by Mitsubishi Chemical Corporation. , MKCEMS485 and the like.
 保護層(B)の形成方法としては、具体的には、例えば、反応触媒である酢酸水溶液を撹拌しながら、シロキサン化合物である3-グリシドキシプロピルトリメトキシシランを滴下し、次に、テトラエトキシシランを酢酸水溶液中に撹拌しながら添加し、撹拌を継続して水とシロキサン化合物との反応を進行させ、所望により含有させるシリカ粒子と、キレート剤と、界面活性剤とを順次添加し、保護層(B)形成用塗布液を調製し、これを用いて保護層(B)を形成する方法が挙げられる。
 既述のようにして得られた保護層(B)形成用塗布液を、樹脂層の表面に塗布し、加熱硬化させることで保護層(B)を得ることができる。
As a method for forming the protective layer (B), specifically, for example, 3-glycidoxypropyltrimethoxysilane as a siloxane compound is dropped while stirring an acetic acid aqueous solution as a reaction catalyst. Add ethoxysilane to an acetic acid aqueous solution while stirring, continue stirring to advance the reaction between water and the siloxane compound, and add silica particles, a chelating agent, and a surfactant, if desired, sequentially. A method for preparing a protective layer (B) -forming coating solution and using this to form the protective layer (B) can be mentioned.
The protective layer (B) can be obtained by applying the coating liquid for forming the protective layer (B) obtained as described above to the surface of the resin layer and curing it by heating.
(その他の成分)
 保護層を形成するための保護層形成用組成物には、既述の樹脂の前駆体としてのモノマー(重合性化合物)、重合開始剤または反応触媒に加え、本開示の効果を損なわない限りにおいて、目的に応じて種々のその他の成分を含むことができる。
 保護層形成用組成物が含むことができるその他の成分としては、例えば、溶媒、充填剤、硬化性を有しないバインダー樹脂、ノニオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤等の界面活性剤、密着促進剤、粘着剤、粘着付与剤、酸化防止剤、凝集防止剤等が挙げられる。また、保護層形成用組成物が重合開始剤を含有する場合には、光重合開始剤の感度を向上させる増感剤、光重合開始剤の安定性に寄与する光安定剤、熱重合禁止剤などを含有してもよい。
(Other ingredients)
In the composition for forming a protective layer for forming the protective layer, in addition to the monomer (polymerizable compound), polymerization initiator or reaction catalyst as the precursor of the resin described above, the effect of the present disclosure is not impaired. Depending on the purpose, various other components can be included.
Examples of other components that can be included in the protective layer forming composition include surfactants such as solvents, fillers, non-curable binder resins, nonionic surfactants, cationic surfactants, and anionic surfactants. Agents, adhesion promoters, pressure-sensitive adhesives, tackifiers, antioxidants, anti-aggregation agents and the like. Further, when the protective layer-forming composition contains a polymerization initiator, a sensitizer that improves the sensitivity of the photopolymerization initiator, a light stabilizer that contributes to the stability of the photopolymerization initiator, and a thermal polymerization inhibitor Etc. may be contained.
(溶媒)
 保護層を塗布法により形成する際には、保護層形成用組成物は、溶媒を含むことができる。
 溶媒としては、水、有機溶剤、及び水と有機溶媒の混合物などが使用される。溶媒は、保護層形成用組成物に含まれる各成分の溶解性、分散性、及び調製された保護層形成用組成物の塗布面状性、取り扱い容易性を考慮して選ばれることが好ましい。
(solvent)
When forming a protective layer by the apply | coating method, the composition for protective layer formation can contain a solvent.
As the solvent, water, an organic solvent, a mixture of water and an organic solvent, or the like is used. The solvent is preferably selected in consideration of the solubility and dispersibility of each component contained in the protective layer-forming composition, and the coating surface properties and ease of handling of the prepared protective layer-forming composition.
 有機溶剤としては、エステル、エーテル、ケトン、芳香族炭化水素等が挙げられる。
 エステルとしては、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、オキシ酢酸アルキルエステル類(例:オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル(具体的には、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等が挙げられる。))、3-オキシプロピオン酸アルキルエステル類(例:3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチル等(具体的には、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等が挙げられる。))、2-オキシプロピオン酸アルキルエステル類(例:2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル等(具体的には、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル等が挙げられる。))、2-オキシ-2-メチルプロピオン酸メチル、2-オキシ-2-メチルプロピオン酸エチル(具体的には、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等が挙げられる。)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル、酢酸シクロヘキシル、プロピオン酸1-メチル-2-メトキシエチル等が挙げられる。
Examples of the organic solvent include esters, ethers, ketones, and aromatic hydrocarbons.
Examples of the ester include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, alkyl oxyacetate (Examples: methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate (specific examples include methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)), 3- Oxypropionic acid alkyl esters (eg, methyl 3-oxypropionate, ethyl 3-oxypropionate and the like (specifically, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-Ethoxypropionic acid ethyl And 2-oxypropionic acid alkyl esters (eg, methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-oxypropionate, etc. (specifically, 2-methoxypropion) And methyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, etc.)), methyl 2-oxy-2-methylpropionate, 2 -Ethyl oxy-2-methylpropionate (specifically, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.), methyl pyruvate, ethyl pyruvate Propylpyruvate, methyl acetoacetate, ethyl acetoacetate, 2-oxobuta Methyl acid, 2-oxobutanoic acid ethyl, cyclohexyl acetic acid, propionic acid 1-methyl-2-methoxyethyl and the like.
 エーテルとしては、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(以下、PEGMEAと称することがある)、ジエチレングリコールモノエチルエーテルアセテート(以下、エチルカルビトールアセテートと称することがある)、ジエチレングリコールモノブチルエーテルアセテート(以下、ブチルカルビトールアセテートと称することがある)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が挙げられる。
 ケトンとしては、例えば、メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等が挙げられる。
 芳香族炭化水素としては、例えば、トルエン、キシレン等が好適に挙げられる。
Examples of the ether include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Monomethyl ether acetate (hereinafter sometimes referred to as PEGMEA), diethylene glycol monoethyl ether acetate (hereinafter sometimes referred to as ethyl carbitol acetate), diethylene glycol monobutyl ether acetate (hereinafter referred to as butyl carbitol acetate). Is), propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, and the like.
Examples of the ketone include methyl ethyl ketone, cyclohexanone, 2-heptanone, and 3-heptanone.
Preferred examples of the aromatic hydrocarbon include toluene and xylene.
 これらの有機溶剤は、保護層形成用組成物に1種のみ用いてもよく、各成分の溶解性、分散性、塗布面状の改良などの観点から、2種以上を併用してもよい。 These organic solvents may be used alone in the protective layer forming composition, or two or more of them may be used in combination from the viewpoints of solubility of each component, dispersibility, and improvement of the coating surface condition.
 保護層形成用組成物が溶媒を含む場合の溶媒の含有量としては、保護層形成用組成物中の全固形分濃度が10質量%~80質量%になる量が好ましく、15質量%~60質量%になる量がより好ましい。 When the protective layer forming composition contains a solvent, the content of the solvent is preferably such that the total solid concentration in the protective layer forming composition is 10% by mass to 80% by mass, preferably 15% by mass to 60%. The amount which becomes mass% is more preferable.
(保護層の厚み)
 保護層の厚みは、0.5μm~10μmであることが好ましく、1μm~8μmであることがより好ましく、3μm~6μmであることがさらに好ましい。
 保護層の厚みが上記の範囲において、一般式(1)で表される化合物の樹脂層からの浸み出し抑制効果がより良好になる。
(Thickness of protective layer)
The thickness of the protective layer is preferably 0.5 μm to 10 μm, more preferably 1 μm to 8 μm, and even more preferably 3 μm to 6 μm.
When the thickness of the protective layer is in the above range, the effect of suppressing the seepage of the compound represented by the general formula (1) from the resin layer becomes better.
(樹脂成形体の使用)
 本開示の樹脂成形体は、上記構成としたため、樹脂層に含まれる一般式(1)で表される化合物の浸み出しが長期に亘り抑制される。このため、一般式(1)で表される化合物の浸み出しに起因する樹脂成形体の白化、即ち、ヘイズの上昇が抑制され、長期間に亘り使用した場合でも、透明な外観と紫外線等の遮断効果とを維持することができる。
 このため、本開示の樹脂成形体は、画像表示装置、小型端末などのディスプレイ用保護シート、眼鏡レンズ、建築材料用ウィンドウフィルム等に好適に使用し得る。
(Use of resin moldings)
Since the resin molded body of the present disclosure has the above-described configuration, leaching of the compound represented by the general formula (1) included in the resin layer is suppressed for a long time. For this reason, the whitening of the resin molded product resulting from the leaching of the compound represented by the general formula (1), that is, the increase in haze is suppressed, and even when used for a long period of time, the transparent appearance, ultraviolet rays, etc. The blocking effect can be maintained.
For this reason, the resin molding of this indication can be used conveniently for display protection sheets, such as an image display device and a small terminal, a spectacle lens, a window film for building materials, etc.
<眼鏡レンズ>
 本開示の樹脂成形体は、例えば、眼鏡レンズとして好適に使用される。
 本開示の樹脂成形体を適用した眼鏡レンズは、レンズ形状の樹脂層と、樹脂層の少なくとも一方の面上に、既述の保護層とを有する。
 眼鏡レンズとしての樹脂成形体は、既述の樹脂層を、まず眼鏡レンズ状に成形し、レンズ状の樹脂層の少なくとも一方の面上に、既述の保護層を設けることにより得ることができる。
 眼鏡レンズである本開示の樹脂成形体は、眼鏡レンズが、既述の一般式(1)で表される化合物を含むことにより、例えば、通信端末、画像表示装置などを、眼鏡レンズを介して目視した場合、長波長紫外線、ブルーライトなどによる目への影響を低減することができる。
 本開示の樹脂成形体を眼鏡レンズに使用する場合には、樹脂成形体の透明性が良好であるために、目視の対象である画像、物品等の色再現性が良好となるという付加的な効果をも有する。
<Glasses lens>
The resin molded body of the present disclosure is suitably used as a spectacle lens, for example.
A spectacle lens to which the resin molded body of the present disclosure is applied has a lens-shaped resin layer and the above-described protective layer on at least one surface of the resin layer.
The resin molded body as the spectacle lens can be obtained by first forming the above-described resin layer into a spectacle lens shape, and providing the above-described protective layer on at least one surface of the lens-shaped resin layer. .
The resin molded body of the present disclosure that is a spectacle lens includes a compound represented by the general formula (1) described above, so that, for example, a communication terminal, an image display device, and the like can be connected via the spectacle lens. When visually observed, it is possible to reduce the influence on eyes by long-wavelength ultraviolet light, blue light, and the like.
When the resin molded body of the present disclosure is used for a spectacle lens, the transparency of the resin molded body is good, so that the color reproducibility of an image, an article, or the like to be visually observed is good. Also has an effect.
 なお、保護層としてポリシロキサンを含む保護層(B)を用いることで、ケイ素のアルコキシド化合物を加水分解および重縮合して得られる保護層(B)は、レンズ基材となる樹脂層との密着性が良好であり、且つ、膜強度が良好である点で好ましい。さらに、ケイ素のアルコキシド化合物を原料とする保護層(B)は、表面の疎水性に優れ、眼鏡レンズの表面に汚れが付き難くなるという利点をも有する。
 本開示の樹脂成形体に適用し得るポリシロキサンを含む保護層(B)は、例えば、特開2013-225461号公報の段落番号〔0042〕~〔0054〕にゾルゲル膜として記載されており、特開2013-225461号公報に記載の導電性材料を含有させない膜を形成することで、本開示における保護層(B)に適用することができる。
By using a protective layer (B) containing polysiloxane as the protective layer, the protective layer (B) obtained by hydrolysis and polycondensation of the silicon alkoxide compound is in close contact with the resin layer serving as the lens substrate. It is preferable in terms of good properties and good film strength. Further, the protective layer (B) made of a silicon alkoxide compound has an advantage that the surface is excellent in hydrophobicity and the surface of the spectacle lens is hardly stained.
The protective layer (B) containing polysiloxane that can be applied to the resin molded body of the present disclosure is described as, for example, a sol-gel film in paragraphs [0042] to [0054] of JP2013-225461A. By forming a film that does not contain the conductive material described in Japanese Unexamined Patent Publication No. 2013-225461, it can be applied to the protective layer (B) in the present disclosure.
 なお、本開示の樹脂成形体を眼鏡レンズに適用する場合には、樹脂層に含まれる樹脂として、既述の眼鏡レンズ用に好適な熱可塑性樹脂を用いることが好ましい。
 既述の熱可塑性樹脂を用いて眼鏡レンズを作製する場合、原料樹脂と一般式(1)で表される化合物とを含む樹脂組成物を、溶融押出し機を用いてペレット状に成形し、得られたペレット状の樹脂を用いて射出成形法などの公知の成形法を適用して眼鏡レンズの形状の樹脂層を作製することができる。
In addition, when applying the resin molding of this indication to a spectacle lens, it is preferable to use the thermoplastic resin suitable for the above-mentioned spectacle lens as resin contained in a resin layer.
In the case of producing a spectacle lens using the above-described thermoplastic resin, a resin composition containing a raw material resin and a compound represented by the general formula (1) is molded into a pellet using a melt extruder and obtained. A resin layer in the shape of a spectacle lens can be manufactured by applying a known molding method such as an injection molding method using the obtained pellet-shaped resin.
 熱硬化性樹脂を用いて眼鏡レンズを作製する場合、通常は樹脂の前駆体であるモノマーと、一般式(1)で表される化合物と、重合開始剤又は架橋剤とを含有する樹脂組成物を調製し、得られた樹脂組成物をモールド(成形型)内に充填して、加熱して硬化させることで眼鏡レンズの形状の樹脂層を作製することができる。 When producing a spectacle lens using a thermosetting resin, a resin composition containing a monomer that is usually a resin precursor, a compound represented by the general formula (1), and a polymerization initiator or a crosslinking agent A resin layer in the shape of a spectacle lens can be prepared by filling the resin composition obtained in a mold (molding die) and heating and curing.
(眼鏡)
 本開示の樹脂成形体を適用した眼鏡レンズを備える眼鏡を得るには、既述の眼鏡レンズを適切な眼鏡フレームに装着すればよい。
 本開示の樹脂成形体はブルーライト遮断性が良好であることから、画像表示装置のディスプレイを見る作業などを長時間行った場合の眼の疲労の軽減が期待できる。
 また、長期間使用した場合にも、ヘイズの上昇が抑制されることから、ブルーライト遮断性が良好であり、且つ、観察者が、眼鏡レンズを介して対象物を目視にて視認する際に、眼鏡レンズを介することによる対象物の色相の変化を感じ難く、観察する対象物の色再現性も良好となる。
(glasses)
In order to obtain spectacles including spectacle lenses to which the resin molded body of the present disclosure is applied, the spectacle lenses described above may be attached to an appropriate spectacle frame.
Since the resin molded product of the present disclosure has a good blue light blocking property, it can be expected to reduce eye fatigue when an operation of viewing the display of the image display device is performed for a long time.
Also, even when used for a long period of time, since haze rise is suppressed, the blue light blocking property is good, and when an observer visually recognizes an object through a spectacle lens In addition, it is difficult to feel the change in the hue of the object through the spectacle lens, and the color reproducibility of the object to be observed is also good.
<樹脂フィルム>
 本開示の樹脂成形体は、樹脂フィルムに適用することができる。
 本開示の樹脂成形体を適用した樹脂フィルムは、フィルム状の樹脂層と、樹脂層の一方の面上に、既述の保護層とを有する。このため、樹脂フィルムは紫外線等の遮断効果を有し、ブルーライトカットフィルムとして使用し得る。
 樹脂フィルムとしての樹脂成形体は、既述の樹脂層を、まずフィルム状に成形し、フィルム状の樹脂層の片方の面上に、既述の保護層を積層することにより得ることができる。
 保護層は、塗布法で形成してもよく、別にフィルム状に成形した保護層を、樹脂層の面上に転写して形成してもよい。なかでも、製造の簡易性、および樹脂層との密着性がより良好となるという観点から、保護層は塗布法で形成することが好ましい。また、既述の保護層(B)は、その特性から塗布法により形成される。
<Resin film>
The resin molded body of the present disclosure can be applied to a resin film.
A resin film to which the resin molded body of the present disclosure is applied has a film-like resin layer and the protective layer described above on one surface of the resin layer. For this reason, the resin film has a blocking effect such as ultraviolet rays, and can be used as a blue light cut film.
The resin molded body as the resin film can be obtained by first forming the above-described resin layer into a film shape and laminating the above-described protective layer on one surface of the film-like resin layer.
The protective layer may be formed by a coating method, or may be formed by transferring a protective layer separately formed into a film shape onto the surface of the resin layer. Especially, it is preferable to form a protective layer with the application | coating method from a viewpoint that manufacturing simplicity and adhesiveness with a resin layer become better. Moreover, the above-mentioned protective layer (B) is formed by the coating method from the characteristic.
 樹脂フィルムとしての樹脂成形体は、柔軟性、及び形状追従性に優れるため、任意の箇所に固定して、ブルーライトカット用保護フィルムとして使用することができる。 Since the resin molded body as a resin film is excellent in flexibility and shape followability, it can be used as a protective film for blue light cut by being fixed at an arbitrary position.
(樹脂フィルムの用途)
 ディスプレイにタッチパネルが設けられたモバイル端末、例えば、スマートフォン、タブレット端末などのディスプレイには、タッチパネルを保護するための透明部材として、例えば、カバーガラス等を有する。透明部材の表面上には、種々の目的で、後付けのディスプレイ用フィルムが貼付される場合がある。
 本開示の樹脂成形体である樹脂フィルムは、ディスプレイ用フィルムとして好適に使用できる。本開示の樹脂フィルムをディスプレイ用フィルムとして使用することで、タッチパネル操作等におけるディスプレイを目視する場合における、紫外線、ブルーライトなどの目への影響を低減することができる。
 樹脂フィルムは、経時によるヘイズの上昇が抑制され、ディスプレイ上における画像の視認性、色再現性が良好となる。また、以下の実施例における評価にて明らかなように、本開示の樹脂成形体は、カールが抑制されているため、モバイル端末の購入者等がディスプレイ用フィルムとして本開示の樹脂フィルムを貼付する際の作業性も良好となる。
(Use of resin film)
A mobile terminal provided with a touch panel on the display, for example, a display such as a smartphone or a tablet terminal has, for example, a cover glass as a transparent member for protecting the touch panel. On the surface of the transparent member, a display film for retrofitting may be attached for various purposes.
The resin film which is the resin molding of this indication can be used conveniently as a film for displays. By using the resin film of the present disclosure as a display film, it is possible to reduce the influence on the eyes such as ultraviolet rays and blue light when viewing the display in touch panel operation or the like.
The resin film suppresses an increase in haze over time, and the image visibility and color reproducibility on the display are improved. Further, as is apparent from the evaluation in the following examples, the resin molded body of the present disclosure has curling suppressed, so that a purchaser of a mobile terminal or the like attaches the resin film of the present disclosure as a display film. Workability at the time is also improved.
 本開示の樹脂成形体を樹脂フィルムとした場合、紫外線等の影響を低減する目的で使用されるディスプレイ用フィルムとして好適である。即ち、安定性に優れた特定紫外線吸収剤を含む樹脂層と、保護層とを備えることで、長期間使用してもヘイズの上昇が抑制され、かつ、優れた紫外線吸収能が維持される。樹脂フィルムは、例えば、樹脂フィルムにおける樹脂層を有する側の面上に粘着層を配置することで、ディスプレイ用フィルムとして好適に使用できる。
 樹脂フィルムをディスプレイ用フィルムに適用する場合には、樹脂フィルムの樹脂層側の面上に、公知の粘着剤を塗布し、粘着層を形成する態様とすることができる。
 なお、ディスプレイ用フィルムでは、樹脂フィルムの保護層側に、汚れを防ぐために離型フィルムを設けてもよい。また、所望により既述の反射防止層を設けてもよい。
 ディスプレイ用フィルムは、例えば、粘着層を介して、モバイル端末等の透明部材の表面上に貼り付けて使用される。
 粘着層は、後述するブルーライトカット積層体における粘着層と同様の粘着層を使用することができ、粘着層の形成方法も同様である。
When the resin molding of this indication is used as a resin film, it is suitable as a display film used for the purpose of reducing the influence of ultraviolet rays or the like. That is, by providing a resin layer containing a specific ultraviolet absorber excellent in stability and a protective layer, an increase in haze is suppressed even when used for a long period of time, and an excellent ultraviolet absorbing ability is maintained. For example, the resin film can be suitably used as a display film by disposing an adhesive layer on the surface of the resin film having the resin layer.
When applying a resin film to the film for a display, it can be set as the aspect which apply | coats a well-known adhesive on the surface by the side of the resin layer of a resin film, and forms an adhesion layer.
In the display film, a release film may be provided on the protective layer side of the resin film in order to prevent contamination. Moreover, you may provide the above-mentioned antireflection layer if desired.
The display film is used, for example, by being attached to the surface of a transparent member such as a mobile terminal via an adhesive layer.
The pressure-sensitive adhesive layer can use the same pressure-sensitive adhesive layer as the pressure-sensitive adhesive layer in the blue light cut laminate described later, and the method for forming the pressure-sensitive adhesive layer is also the same.
<ブルーライトカット用積層体>
 本開示のブルーライトカット積層体は、透明基材と、透明基材の少なくとも一方の面上に備えられた粘着層と、粘着層の透明基材と接する面とは反対側の面上に備えられた既述の樹脂フィルムとしての樹脂成形体と、を有する。樹脂フィルムは、樹脂層側が粘着剤層と接して設けられることが好ましい。
 本開示のブルーライトカット積層体は、透明基材を有するため、強度と耐久性とにより優れ、透明基材と、樹脂フィルムとしての樹脂成形体とが粘着層を介して密着しているため、透明基材に樹脂成形体が安定に固定化され、耐久性が良好である。このため、ブルーライトカット機能を必要とする種々の用途に使用することができる。
<Blue light cut laminate>
The blue light cut laminate of the present disclosure includes a transparent substrate, an adhesive layer provided on at least one surface of the transparent substrate, and a surface of the adhesive layer opposite to the surface in contact with the transparent substrate. And a resin molded body as the above-described resin film. The resin film is preferably provided with the resin layer side in contact with the pressure-sensitive adhesive layer.
Since the blue light cut laminate of the present disclosure has a transparent base material, it is superior in strength and durability, and the transparent base material and the resin molded body as a resin film are in close contact with each other via an adhesive layer. The resin molded body is stably fixed to the transparent substrate, and the durability is good. For this reason, it can be used for various uses that require a blue light cut function.
(透明基材)
 ブルーライトカット積層体に用い得る透明基材には、特に制限はなく、ガラス基材、透明な樹脂基材等が好適な例として挙げられる。
 透明基材に使用し得る樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンジメチレンテレフタレート(PCT)等のポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)、ポリ塩化ビニル(PVA)、トリセルロースアセテート(TAC)などが挙げられ、なかでも、汎用性の点で、PETが好ましい。
 透明基材は、ガラス基材の場合には、必要な物性を有するガラス板を適宜選択して使用することができる。樹脂基材の場合は、既述の樹脂を常法によりフィルム状に成形して得ることができる。また、市販の樹脂フィルムを透明基材として使用することができる。
(Transparent substrate)
There is no restriction | limiting in particular in the transparent base material which can be used for a blue light cut laminated body, A glass base material, a transparent resin base material, etc. are mentioned as a suitable example.
Examples of the resin that can be used for the transparent substrate include polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polycyclohexanedimethylene terephthalate (PCT), polypropylene (PP), polyethylene ( PE), polyvinyl chloride (PVA), tricellulose acetate (TAC), and the like. Among them, PET is preferable from the viewpoint of versatility.
In the case of a glass substrate, the transparent substrate can be used by appropriately selecting a glass plate having necessary physical properties. In the case of a resin base material, it can be obtained by molding the above-described resin into a film by a conventional method. Moreover, a commercially available resin film can be used as a transparent base material.
 透明基材の厚みは、ブルーライトカット積層体を適用する用途、サイズ、強度など、使用目的に応じて適宜選択することができる。
 例えば、ブルーライトカット積層体を画像表示装置の保護シートとして使用する場合には、一般的には、5μm~2500μmであることが好ましく、20μm~500μmであることがより好ましい。
 透明基材とは、光学的に透明な支持体であること意味する。基材が透明であるとは、基材の430nm~700nmの平均透過率が85%以上であり、かつ、430nm~700nmの波長域において、透過率がいずれも80%以上であることを意味する。透明基材の430nm~700nmの平均透過率は、90%以上が好ましく、95%以上がより好ましい。430nm~700nmの平均透過率等は、既述の樹脂成形体における測定方法により得ることができる。
 透明基材の430nm~700nmの平均透過率は、既述の樹脂成形体における430nm~700nmの平均透過率の測定方法と同様にして得ることができる。
The thickness of the transparent substrate can be appropriately selected according to the purpose of use, such as the application, size, and strength to which the blue light cut laminate is applied.
For example, when a blue light cut laminate is used as a protective sheet for an image display device, it is generally preferably 5 μm to 2500 μm, more preferably 20 μm to 500 μm.
A transparent substrate means an optically transparent support. That the substrate is transparent means that the average transmittance of the substrate from 430 nm to 700 nm is 85% or more, and in the wavelength region of 430 nm to 700 nm, all the transmittance is 80% or more. . The average transmittance of 430 nm to 700 nm of the transparent substrate is preferably 90% or more, and more preferably 95% or more. The average transmittance of 430 nm to 700 nm and the like can be obtained by the measurement method for the resin molded body described above.
The average transmittance of 430 nm to 700 nm of the transparent substrate can be obtained in the same manner as the method for measuring the average transmittance of 430 nm to 700 nm in the resin molded body described above.
(粘着層)
 本実施形態のブルーライトカット積層体は、既述の樹脂フィルムと透明基材との間に接着層を有する。即ち、透明基材の片面に粘着層を有し、粘着層の透明基材と接する側とは反対の面に樹脂フィルムを有する。樹脂フィルムである樹脂成形体の樹脂層を有する側が、粘着層と接する側に配置されることが好ましい。
 粘着層に用いる接着剤、及び粘着剤の種類は特に限定されない。
 粘着層に用いることができる粘着剤としては、特に制限されず、公知の粘着剤を使用することができる。
 粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤などが挙げられる。なお、アクリル系粘着剤とは、(メタ)アクリルモノマーの重合体((メタ)アクリルポリマー)を含む粘着剤である。アクリル系粘着剤には、既述の重合体が主成分であれば、即ち、例えば、粘着剤全量に対する既述の重合体の含有量が50質量%以上であれば、他の成分、例えば、後述する粘着付与剤、ゴム成分などが含まれていてもよい。
 粘着剤としては、例えば、「剥離紙・剥離フィルムおよび粘着テープの特性評価とその制御技術」、情報機構、2004年、第2章に記載されているアクリル系粘着剤、UV硬化型粘着剤、シリコーン粘着剤等が本実施形態にも好適に用いられる。
(Adhesive layer)
The blue light cut laminate of the present embodiment has an adhesive layer between the resin film described above and the transparent substrate. That is, it has an adhesive layer on one side of a transparent substrate, and has a resin film on the opposite side of the adhesive layer that is in contact with the transparent substrate. It is preferable that the side which has the resin layer of the resin molding which is a resin film is arrange | positioned in the side which contact | connects an adhesion layer.
The adhesive used for the adhesive layer and the type of the adhesive are not particularly limited.
It does not restrict | limit especially as an adhesive which can be used for an adhesion layer, A well-known adhesive can be used.
Examples of the pressure sensitive adhesive include acrylic pressure sensitive adhesive, rubber pressure sensitive adhesive, and silicone pressure sensitive adhesive. The acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive containing a polymer of (meth) acrylic monomers ((meth) acrylic polymer). In the acrylic pressure-sensitive adhesive, if the above-described polymer is a main component, that is, for example, if the content of the above-mentioned polymer with respect to the total amount of the pressure-sensitive adhesive is 50% by mass or more, other components, for example, A tackifier, a rubber component, etc. described later may be included.
Examples of the pressure-sensitive adhesive include acrylic pressure-sensitive adhesives, UV curable pressure-sensitive adhesives described in Chapter 2 of “Characteristic evaluation of release paper / peelable film and pressure-sensitive adhesive tape and control technology thereof”, Information Organization, 2004, Chapter 2, A silicone adhesive or the like is also preferably used in this embodiment.
 接着剤としては、例えば、ウレタン樹脂接着剤、ポリエステル接着剤、アクリル樹脂接着剤、エチレン酢酸ビニル樹脂接着剤、ポリビニルアルコール接着剤、ポリアミド接着剤、シリコーン接着剤等が挙げられ、接着強度がより高いという観点から、ウレタン樹脂接着剤またはシリコーン接着剤が好ましい。
 接着剤は市販品を使用することができ、市販品としては、たとえば、東洋インキ(株)製のウレタン樹脂系接着剤(LIS-073-50U:商品名)が挙げられる。接着剤は、硬化剤(CR-001:商品名、東洋インキ(株)製)と併用することも好ましい。
 本実施形態のブルーライトカット積層体における粘着層の厚みは、5μm~100μmの範囲であることが、粘着力とハンドリング性との両立の点で好ましい。
Examples of the adhesive include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, silicone adhesives, and the like, which have higher adhesive strength. From this viewpoint, a urethane resin adhesive or a silicone adhesive is preferable.
Commercially available products can be used as the adhesive. Examples of commercially available products include urethane resin adhesives (LIS-073-50U: trade name) manufactured by Toyo Ink Co., Ltd. The adhesive is also preferably used in combination with a curing agent (CR-001: trade name, manufactured by Toyo Ink Co., Ltd.).
The thickness of the pressure-sensitive adhesive layer in the blue light cut laminate of the present embodiment is preferably in the range of 5 μm to 100 μm from the viewpoint of achieving both adhesive strength and handling properties.
 本開示のブルーライトカット積層体には、透明基材、粘着層、及び樹脂層と保護層とを含む樹脂成形体に加え、必要に応じて他の層を設けてもよい。
 例えば、ブルーライトカット積層体には、耐傷性向上の観点から、樹脂成形体の保護層側の面上に、さらにハードコート層を有することができる。
In addition to the transparent base material, the pressure-sensitive adhesive layer, and the resin molded body including the resin layer and the protective layer, the blue light cut laminate of the present disclosure may be provided with other layers as necessary.
For example, the blue light cut laminate may further have a hard coat layer on the protective layer side surface of the resin molded body from the viewpoint of improving scratch resistance.
 以下に実施例と比較例を挙げて本開示の樹脂成形体、ブルーライトカット積層体についてさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本開示は、以下に示す具体例により限定的に解釈されない。 Hereinafter, the resin molded body and the blue light cut laminate of the present disclosure will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present disclosure. Therefore, this indication is not limitedly interpreted by the specific example shown below.
[実施例1]
(樹脂層の形成)
 160℃で8時間乾燥させたポリエチレンテレフタレート(PET)のペレットと、一般式(1)で表される化合物である下記構造の化合物(A)とを混合し、押し出し機に投入した。溶融温度280℃で溶融混練し、化合物(A)含有ペレットであるマスターバッジを調製した。
 その後、160℃で8時間乾燥させたPETペレットと、上記で得られた化合物(A)含有ペレットであるマスターバッジとを、樹脂層における化合物(A)の含有量が0.7質量%となる量にて混合し、280℃で溶融混練を行い、溶融押出し法により、厚さ100μmのフィルムとしての樹脂層を形成した。
[Example 1]
(Formation of resin layer)
A pellet of polyethylene terephthalate (PET) dried at 160 ° C. for 8 hours and a compound (A) having the following structure, which is a compound represented by the general formula (1), were mixed and put into an extruder. The master badge which is a compound (A) containing pellet was prepared by melt-kneading at a melting temperature of 280 ° C.
Thereafter, the PET pellet dried at 160 ° C. for 8 hours and the master badge which is the compound (A) -containing pellet obtained above have a content of the compound (A) in the resin layer of 0.7% by mass. The mixture was mixed in an amount, melt kneaded at 280 ° C., and a resin layer as a film having a thickness of 100 μm was formed by a melt extrusion method.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(保護層の形成)
 得られた樹脂層の片方の面上に、下記表1に記載の処方に従って混合して調製したウレタン樹脂含有保護層1形成用組成物を塗布し、160℃で2分乾燥させ、厚さ4.8μmのウレタン樹脂含有保護層1を形成した。
(Formation of protective layer)
On one surface of the obtained resin layer, a urethane resin-containing protective layer 1 forming composition prepared by mixing according to the formulation shown in Table 1 below was applied, dried at 160 ° C. for 2 minutes, and a thickness of 4 8 μm of urethane resin-containing protective layer 1 was formed.
Figure JPOXMLDOC01-appb-T000019

 
Figure JPOXMLDOC01-appb-T000019

 
(樹脂成形体の形成)
 既述の如くして樹脂層の面上に形成された保護層の面上に、下記表2に記載の処方に従い調製したA-1溶液を、ワイヤーバーを用いて、乾燥後の平均厚みが30nmとなる量で塗布し、150℃で1分間加熱し、乾燥させて硬化することにより高屈折率層を形成した。
(Formation of resin molding)
As described above, on the surface of the protective layer formed on the surface of the resin layer, the A-1 solution prepared according to the formulation described in Table 2 below, using a wire bar, has an average thickness after drying. The high refractive index layer was formed by applying in an amount of 30 nm, heating at 150 ° C. for 1 minute, drying and curing.
Figure JPOXMLDOC01-appb-T000020

 
Figure JPOXMLDOC01-appb-T000020

 
 上記で得た高屈折率層の面上に、下記処方に従い調製したB-1溶液を、ワイヤーバーを用いて乾燥後の平均厚みが30nmになる量で塗布した。その後、130℃で1分間加熱し、乾燥、固化し、低屈折率層1を形成した。 On the surface of the high refractive index layer obtained above, the B-1 solution prepared according to the following formulation was applied using a wire bar in an amount such that the average thickness after drying was 30 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and the low refractive index layer 1 was formed.
-銀ナノディスク分散液b2の調製-
1.銀ナノディスク分散液b1の調液
 まず、銀ナノディスク分散液b1を調液する。
 NTKR-4(ステンレス鋼、日新製鉄工業(株))製の反応容器に、イオン交換水13L(リットル)を計量し、ステンレス鋼(SUS316L)製のシャフトに、NTKR-4製のプロペラ4枚およびNTKR-4製のパドル4枚を取り付けたアジターを備えるチャンバーを用いて、撹拌速度400rpm(rotations per minute :回転/分)で撹拌しながら、10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lを添加し、混合液を35℃に保温した。得られた混合液に、8.0g/Lの濃度のポリスチレンスルホン酸水溶液0.68Lを添加し、更に0.04N(mol/L)の水酸化ナトリウム水溶液を用いて23g/Lに調製した水素化ホウ素ナトリウム水溶液0.041Lを添加した。さらに、0.10g/Lの硝酸銀水溶液13Lを5.0L/minで添加した。
-Preparation of silver nanodisk dispersion b2-
1. Preparation of silver nanodisk dispersion b1 First, silver nanodisk dispersion b1 is prepared.
Ion exchange water 13L (liter) is weighed in a reaction vessel made of NTKR-4 (stainless steel, Nisshin Steel Industry Co., Ltd.), and four NTKR-4 propellers are placed on a stainless steel (SUS316L) shaft. And 10 g / L aqueous solution of trisodium citrate (anhydride) with stirring at a speed of 400 rpm (rotations per minute) using a chamber equipped with an agitator equipped with four paddles made of NTKR-4 1.0 L was added and the mixture was kept warm at 35 ° C. To the resulting mixture, 0.68 L of polystyrene sulfonic acid aqueous solution having a concentration of 8.0 g / L was added, and hydrogen prepared to 23 g / L using 0.04 N (mol / L) aqueous sodium hydroxide solution. 0.041 L of sodium borohydride aqueous solution was added. Furthermore, 13 L of 0.10 g / L silver nitrate aqueous solution was added at 5.0 L / min.
 次に、10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lとイオン交換水11Lとを添加し、更に、80g/Lのヒドロキノンスルホン酸カリウム水溶液0.68Lを添加した。撹拌速度を800rpmに上げて、0.10g/Lの硝酸銀水溶液8.1Lを0.95L/minで添加した後、30℃に降温した。
 その後、44g/Lのメチルヒドロキノン水溶液8.0Lを添加し、次いで、後述する40℃のゼラチン水溶液を全量添加した。撹拌速度を1200rpmに上げて、後述する亜硫酸銀白色沈殿物混合液を全量添加し、調製液とした。
 調製液のpHを測定し、pH変化が止まった段階で、1NのNaOH水溶液5.0Lを0.33L/minで添加した。その後、2.0g/Lの1-(m-スルホフェニル)-5-メルカプトテトラゾールナトリウム水溶液(NaOHとクエン酸(無水物)を用いてpH=7.0±1.0に調整した水溶液)0.18Lを添加し、更に、70g/Lの1,2-ベンズイソチアゾリン-3-オン水溶液(NaOHの水溶液を用いて、アルカリ性に調整した水溶液)0.078Lを添加した。このようにして銀ナノディスク分散液b1を調製した。
Next, 1.0 L of 10 g / L trisodium citrate (anhydride) aqueous solution and 11 L of ion-exchanged water were added, and 0.68 L of 80 g / L potassium hydroquinone sulfonate aqueous solution was further added. The stirring speed was increased to 800 rpm, and 8.1 L of a 0.10 g / L silver nitrate aqueous solution was added at 0.95 L / min, and then the temperature was lowered to 30 ° C.
Thereafter, 8.0 g of a 44 g / L methylhydroquinone aqueous solution was added, and then a total amount of a 40 ° C. gelatin aqueous solution described later was added. The stirring speed was increased to 1200 rpm, and the entire amount of a silver sulfite white precipitate mixture described later was added to prepare a preparation.
The pH of the prepared solution was measured, and 5.0 L of 1N NaOH aqueous solution was added at 0.33 L / min when the pH change stopped. Thereafter, 2.0 g / L of 1- (m-sulfophenyl) -5-mercaptotetrazole sodium aqueous solution (aqueous solution adjusted to pH = 7.0 ± 1.0 using NaOH and citric acid (anhydride)) 0 .18 L was added, and 0.078 L of a 70 g / L 1,2-benzisothiazolin-3-one aqueous solution (an aqueous solution adjusted to be alkaline using an aqueous solution of NaOH) was further added. In this way, a silver nanodisk dispersion b1 was prepared.
2.ゼラチン水溶液の調製
 ステンレス(SUS316L)製の溶解タンクにイオン交換水16.7Lを計量した。SUS316L製のアジターで低速撹拌を行いながら、脱イオン処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量20万)1.4kgを添加した。
 更に、脱イオン処理、蛋白質分解酵素処理、および過酸化水素による酸化処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量2.1万)0.91kgを添加した。その後40℃に昇温し、ゼラチンの膨潤と溶解を同時に行って完全に溶解させ、既述の銀ナノディスク分散液b1の調液に用いるゼラチン水溶液を得た。
2. Preparation of aqueous gelatin solution 16.7 L of ion-exchanged water was weighed into a dissolution tank made of stainless steel (SUS316L). 1.4 kg of alkali-treated beef bone gelatin (GPC weight average molecular weight 200,000) subjected to deionization treatment was added while stirring at low speed with an agitator made of SUS316L.
Furthermore, 0.91 kg of alkali-treated beef bone gelatin (GPC weight average molecular weight 21,000) subjected to deionization treatment, proteolytic enzyme treatment, and oxidation treatment with hydrogen peroxide was added. Thereafter, the temperature was raised to 40 ° C., and the gelatin was swollen and dissolved simultaneously to completely dissolve it, thereby obtaining an aqueous gelatin solution used for preparing the silver nanodisk dispersion b1 described above.
3.亜硫酸銀白色沈殿物混合液の調製
 SUS316L製の溶解タンクにイオン交換水8.2Lを計量し、100g/Lの硝酸銀水溶液8.2Lを添加した。SUS316L製のアジターで高速撹拌を行いながら、140g/Lの亜硫酸ナトリウム水溶液2.7Lを短時間で添加して、亜硫酸銀の白色沈澱物を含む混合液、即ち、既述の銀ナノディスク分散液b1の調液に用いる亜硫酸銀白色沈殿物混合液を調製した。この亜硫酸銀白色沈殿物混合液は、使用する直前に調製した。
3. Preparation of silver sulfite white precipitate mixture liquid 8.2 L of ion-exchanged water was weighed in a dissolution tank made of SUS316L, and 8.2 L of a 100 g / L silver nitrate aqueous solution was added. While stirring at a high speed with an agitator made of SUS316L, 2.7 L of a 140 g / L sodium sulfite aqueous solution was added in a short time, and a mixed solution containing a white precipitate of silver sulfite, ie, the silver nanodisk dispersion described above A silver sulfite white precipitate mixed solution used for the preparation of b1 was prepared. This silver sulfite white precipitate mixture was prepared immediately before use.
4.銀ナノディスク分散液b2の調製
 既述で得た銀ナノディスク分散液b1を、遠沈管に800g採取して、1NのNaOHおよび1Nの硫酸の少なくとも1種を用いて、25℃における液のpHを、9.2±0.2の範囲に調整した。
 遠心分離機(日立工機(株)製、himacCR22GIII、アングルローターR9A)を用いて、液温を35℃に設定して、9000rpmにて60分間の遠心分離操作を行った後、上澄み液を784g分離除去した。沈殿した銀ナノディスクに0.2mMのNaOH水溶液を加えて合計400gとし、撹拌棒を用いて手撹拌して粗分散液にした。
 これと同様の操作で24本分の粗分散液を調製して合計9600gとし、SUS316L製のタンクに添加して混合した。
 更に、Pluronic31R1(BASF社製)の10g/L溶液(メタノール:イオン交換水=1:1(体積比)の混合液で希釈)を10ml(ミリリットル)添加した。
4). Preparation of silver nanodisk dispersion b2 800 g of the silver nanodisk dispersion b1 obtained as described above was collected in a centrifuge tube, and the pH of the liquid at 25 ° C. was used using at least one of 1N NaOH and 1N sulfuric acid. Was adjusted to a range of 9.2 ± 0.2.
Using a centrifuge (manufactured by Hitachi Koki Co., Ltd., himacCR22GIII, angle rotor R9A), the liquid temperature was set to 35 ° C., and after centrifugation at 9000 rpm for 60 minutes, 784 g of the supernatant was added. Separated and removed. A 0.2 mM NaOH aqueous solution was added to the precipitated silver nanodisks to give a total of 400 g, and the mixture was stirred by hand with a stirring bar to obtain a coarse dispersion.
In the same manner as this, 24 coarse dispersions were prepared to a total of 9600 g, added to a SUS316L tank and mixed.
Furthermore, 10 ml (milliliter) of a 10 g / L solution of Pluronic 31R1 (manufactured by BASF) (diluted with a mixed solution of methanol: ion exchanged water = 1: 1 (volume ratio)) was added.
 プライミクス(株)製、オートミクサー20型(撹拌部はホモミクサーMARKII)を用いて、タンク中の粗分散液と、既述のPluronic31R1の溶液との混合物に、9000rpmで120分間のバッチ式分散処理を施した。分散中の液温は50℃に保った。分散後、25℃に降温してから、プロファイルIIフィルター(日本ポール(株)製、製品型式MCY1001Y030H13)を用いてシングルパスの濾過を行って、銀ナノディスク分散液b2を得た。
 即ち、調液した銀ナノディスク分散液b1に、既述の手順にて脱塩処理および再分散処理を施して、銀ナノディスク分散液b2(表3に示す分散液b2)を調製した。
Using a mix made by Primix Co., Ltd., automixer 20 type (the stirring part is a homomixer MARKII), a batch dispersion treatment at 9000 rpm for 120 minutes is performed on the mixture of the crude dispersion in the tank and the previously described Pluronic 31R1 solution. gave. The liquid temperature during dispersion was kept at 50 ° C. After the dispersion, the temperature was lowered to 25 ° C., and then single-pass filtration was performed using a profile II filter (manufactured by Nippon Pole Co., Ltd., product type MCY1001Y030H13) to obtain a silver nanodisk dispersion b2.
That is, the prepared silver nanodisk dispersion b1 was subjected to desalting treatment and redispersion treatment according to the procedure described above to prepare a silver nanodisk dispersion b2 (dispersion b2 shown in Table 3).
Figure JPOXMLDOC01-appb-T000021

 
Figure JPOXMLDOC01-appb-T000021

 
 次に、低屈折率層1の面上に、下記表4に記載の処方に従い調製したC-1溶液を、ワイヤーバーを用いて乾燥後の平均厚みが65nmになる量で塗布し、60℃で1分間加熱後、露光量:200mJ/cmで紫外線を照射して硬化させ、低屈折率層2を形成した。なお、下記化合物M-11は特開2006-28280号公報の段落番号〔0017〕から〔0025〕に記載の方法により調製した。 Next, a C-1 solution prepared according to the formulation described in Table 4 below was applied onto the surface of the low refractive index layer 1 in such an amount that the average thickness after drying was 65 nm using a wire bar. After heating for 1 minute, the film was cured by irradiation with ultraviolet rays at an exposure amount of 200 mJ / cm 2 to form a low refractive index layer 2. The following compound M-11 was prepared by the method described in paragraph numbers [0017] to [0025] of JP-A-2006-28280.
Figure JPOXMLDOC01-appb-T000022

 
Figure JPOXMLDOC01-appb-T000022

 
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 既述の方法により、樹脂層の面上に、保護層、高屈折率層、低屈折率層1及び低屈折率層2を、この順に有する実施例1の樹脂成形体を得た。
 実施例1の樹脂積層体における高屈折率層、低屈折率層1及び低屈折率層2は反射防止層として機能する。
By the method described above, a resin molded body of Example 1 having a protective layer, a high refractive index layer, a low refractive index layer 1 and a low refractive index layer 2 in this order on the surface of the resin layer was obtained.
The high refractive index layer, the low refractive index layer 1 and the low refractive index layer 2 in the resin laminate of Example 1 function as an antireflection layer.
[実施例2~10]
(樹脂層の形成)
 160℃で8時間乾燥させたポリエチレンテレフタレート(PET)のペレットと、上記構造の化合物(A)とを混合し、押し出し機に投入した。溶融温度280℃で溶融混練し、化合物(A)含有ペレットであるマスターバッジ(化合物(A)含有マスターバッジペレット)を調製した。
 その後、160℃で8時間乾燥させたPETペレットと、化合物(A)含有ペレットであるマスターバッジとを、樹脂層における化合物(A)の含有量が、下記表5に記載の量となる比率にて混合し、280℃で溶融混練を行い、溶融押出し法により、厚さ100μmのフィルムとしての樹脂層を形成した。
[Examples 2 to 10]
(Formation of resin layer)
The pellets of polyethylene terephthalate (PET) dried at 160 ° C. for 8 hours and the compound (A) having the above structure were mixed and put into an extruder. A master badge (compound (A) -containing master badge pellet) which was a compound (A) -containing pellet was prepared by melt-kneading at a melting temperature of 280 ° C.
Thereafter, the PET pellets dried at 160 ° C. for 8 hours and the master badge that is the compound (A) -containing pellets are in a ratio such that the content of the compound (A) in the resin layer is the amount described in Table 5 below. Then, melt kneading was performed at 280 ° C., and a resin layer as a film having a thickness of 100 μm was formed by melt extrusion.
(保護層の形成)
 上記で得た樹脂層の面上に、以下の方法でアクリル樹脂含有保護層1を形成した。
 下記表5に記載の材料を、アクリル樹脂含有保護層1形成用組成物の欄に記載の量で混合し、アクリル樹脂含有保護層1形成用組成物を調製した。得られたアクリル樹脂含有保護層1形成用組成物を、下記表9~表11に記載した膜厚となる量で、樹脂層の面上に塗布し、60℃で2分乾燥させてアクリル樹脂含有保護層1形成用組成物層を形成した。その後、露光量:320mJ/cmで紫外線を照射して、アクリル樹脂含有保護層1形成用組成物層を硬化させ、樹脂層の面上に、表9~表11に記載の厚みのアクリル樹脂含有保護層1を有する実施例2~実施例10の樹脂成形体を得た。
(Formation of protective layer)
On the surface of the resin layer obtained above, the acrylic resin-containing protective layer 1 was formed by the following method.
The materials listed in Table 5 below were mixed in the amounts described in the column for the acrylic resin-containing protective layer 1 composition to prepare an acrylic resin-containing protective layer 1 forming composition. The obtained composition for forming an acrylic resin-containing protective layer 1 was applied on the surface of the resin layer in an amount to be a film thickness described in Table 9 to Table 11, and dried at 60 ° C. for 2 minutes to obtain an acrylic resin. A composition layer for forming the protective layer 1 was formed. Thereafter, ultraviolet rays are irradiated at an exposure amount of 320 mJ / cm 2 to cure the acrylic resin-containing protective layer 1 forming composition layer, and the acrylic resin having a thickness shown in Tables 9 to 11 is formed on the surface of the resin layer. Resin molded bodies of Examples 2 to 10 having the protective layer 1 were obtained.
Figure JPOXMLDOC01-appb-T000024

 
Figure JPOXMLDOC01-appb-T000024

 
[実施例11]
 実施例1と同様にして、厚み100μmの樹脂層を形成した。
 得られた樹脂層の面上にゾルゲル法により、ポリシロキサン含有保護層を形成した。
 即ち、まず、下記表6に示す成分を混合してポリシロキサン含有保護層形成用組成物を調製した。
 具体的には、酢酸水溶液を撹拌しながら、3-グリシドキシプロピルトリメトキシシランを、この酢酸水溶液中に3分間かけて滴下した。次に、テトラエトキシシランを酢酸水溶液中に撹拌しながら3分間かけて添加した。続いて、2時間撹拌を続けた。次に、コロイダルシリカと、キレート剤と、界面活性剤とを順次添加し、ポリシロキサン含有保護層形成用組成物を調製した。
[Example 11]
In the same manner as in Example 1, a resin layer having a thickness of 100 μm was formed.
A polysiloxane-containing protective layer was formed on the surface of the obtained resin layer by a sol-gel method.
That is, first, the components shown in Table 6 below were mixed to prepare a polysiloxane-containing protective layer forming composition.
Specifically, 3-glycidoxypropyltrimethoxysilane was dropped into the acetic acid aqueous solution over 3 minutes while stirring the acetic acid aqueous solution. Next, tetraethoxysilane was added to the aqueous acetic acid solution over 3 minutes with stirring. Subsequently, stirring was continued for 2 hours. Next, colloidal silica, a chelating agent, and a surfactant were sequentially added to prepare a polysiloxane-containing protective layer forming composition.
Figure JPOXMLDOC01-appb-T000025

 
Figure JPOXMLDOC01-appb-T000025

 
 樹脂層の表面をコロナ放電処理した。コロナ放電処理した樹脂層の面上に、既述のポリシロキサン含有保護層形成用組成物を、バーコート法により塗布し、170℃で1分間加熱して乾燥し、厚さ5μmの保護層を形成した。ポリシロキサン含有保護層形成用組成物を塗布後に加熱することにより、シロキサン化合物の縮合反応が進行し、硬化する。
 このようにして、樹脂層の面上にポリシロキサン含有保護層を有する実施例11の樹脂成形体を得た。
The surface of the resin layer was subjected to corona discharge treatment. On the surface of the resin layer subjected to the corona discharge treatment, the aforementioned polysiloxane-containing protective layer forming composition is applied by a bar coating method, heated at 170 ° C. for 1 minute and dried to form a protective layer having a thickness of 5 μm. Formed. By heating the composition for forming a polysiloxane-containing protective layer after application, the condensation reaction of the siloxane compound proceeds and is cured.
Thus, the resin molding of Example 11 which has a polysiloxane containing protective layer on the surface of a resin layer was obtained.
[実施例12]
 実施例1と同様にして、厚み100μmの樹脂層を形成した。
 得られた樹脂層の面上に、上記表5に記載のアクリル含有保護層1形成用組成物に代えて、アクリル含有保護層2形成用組成物を用いた以外は、実施例2と同様にしてアクリル樹脂含有保護層2を形成し、実施例12の樹脂成形体を得た。
[Example 12]
In the same manner as in Example 1, a resin layer having a thickness of 100 μm was formed.
On the surface of the obtained resin layer, it replaced with the composition for acrylic-containing protective layer 1 formation of the said Table 5, and except having used the composition for acrylic-containing protective layer 2 formation, it carried out similarly to Example 2. Then, the acrylic resin-containing protective layer 2 was formed to obtain a resin molded body of Example 12.
[実施例13、14]
 実施例1と同様にして、厚み100μmの樹脂層を形成した。
 得られた樹脂層の片方の面上に、表1に記載の処方に従い調製したウレタン樹脂含有保護層1塗布液組成物、またはウレタン樹脂含有保護層2塗布液組成物を、それぞれ乾燥後の膜厚が5μmとなる量でバー塗布し、160℃で2分乾燥させ、樹脂層の片方の面上にウレタン樹脂含有保護層1(実施例13)またはウレタン樹脂含有保護層2(実施例14)を形成し、実施例13及び実施例14の樹脂成形体を得た。
[Examples 13 and 14]
In the same manner as in Example 1, a resin layer having a thickness of 100 μm was formed.
On one surface of the obtained resin layer, a urethane resin-containing protective layer 1 coating solution composition or a urethane resin-containing protective layer 2 coating solution composition prepared according to the formulation described in Table 1 is dried, respectively, Bar coated in an amount of 5 μm thickness, dried at 160 ° C. for 2 minutes, urethane resin-containing protective layer 1 (Example 13) or urethane resin-containing protective layer 2 (Example 14) on one side of the resin layer The resin molded bodies of Example 13 and Example 14 were obtained.
[実施例15]
 実施例2において用いた一般式(1)で表される化合物である化合物(A)に代えて、下記構造の化合物(B)を用いた以外は実施例2と同様にして、実施例15の樹脂成形体を得た。
[Example 15]
Instead of the compound (A) which is the compound represented by the general formula (1) used in Example 2, a compound (B) having the following structure was used, and the same procedure as in Example 2 was repeated. A resin molded body was obtained.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[実施例16]
 実施例2において用いた一般式(1)で表される化合物である化合物(A)に代えて、下記構造の化合物(C)を用いた以外は実施例2と同様にして、実施例16の樹脂成形体を得た。
[Example 16]
Instead of the compound (A) that is the compound represented by the general formula (1) used in Example 2, the compound (C) having the following structure was used, and the same procedure as in Example 2 was performed. A resin molded body was obtained.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[実施例17~20]
(樹脂層の形成:眼鏡レンズ)
 チオウレタン樹脂の前駆体モノマーであるMR-8(登録商標)〔商品名、屈折率:1.60、三井化学(株)〕を100質量部、既述の化合物(A)を表9~表11に記載の量、及び重合触媒であるジブチルスズジクロリドを0.01質量部の含有比率で混合し、樹脂層形成用組成物を得た。得られた樹脂層形成用組成物を、成形金型(モールド)内に充填した後、130℃で2時間加熱し、硬化させることにより、厚さ2mmの眼鏡レンズ用の樹脂層を作製した。作製した眼鏡レンズ用の樹脂層は、目視にて確認したところ、透明であることが確認された。
[Examples 17 to 20]
(Formation of resin layer: spectacle lens)
MR-8 (registered trademark) [trade name, refractive index: 1.60, Mitsui Chemicals, Inc.] which is a precursor monomer of thiourethane resin is 100 parts by mass, and the compound (A) described above is shown in Tables 9 to 11 and a polymerization catalyst dibutyltin dichloride were mixed at a content of 0.01 parts by mass to obtain a resin layer forming composition. After filling the obtained resin layer forming composition in a molding die (mold), the resin layer for a spectacle lens having a thickness of 2 mm was prepared by heating and curing at 130 ° C. for 2 hours. When the produced resin layer for spectacle lenses was visually confirmed, it was confirmed to be transparent.
(保護層の形成)
 得られた眼鏡レンズ用樹脂層を、表5に記載のアクリル樹脂含有保護層1形成用組成物中に浸漬し、その後引き上げ、眼鏡レンズ用樹脂層の両面にアクリル樹脂含有保護層1形成用組成物層を形成し、60℃2分間、仮乾燥させた。その後、アクリル樹脂含有保護層1形成用組成物層に紫外線を照射して硬化させ、眼鏡レンズ用樹脂層の両面に厚さ5μmのアクリル樹脂含有保護層1を有する眼鏡レンズである実施例17~20の樹脂成形体を得た。
(Formation of protective layer)
The obtained resin layer for spectacle lenses was immersed in the composition for forming the acrylic resin-containing protective layer 1 shown in Table 5, and then pulled up, and the composition for forming the acrylic resin-containing protective layer 1 on both surfaces of the resin layer for spectacle lenses. A physical layer was formed and temporarily dried at 60 ° C. for 2 minutes. Thereafter, the composition layer for forming the acrylic resin-containing protective layer 1 was cured by irradiating with ultraviolet rays, and the spectacle lenses having the acrylic resin-containing protective layer 1 having a thickness of 5 μm on both surfaces of the spectacle lens resin layer were used. 20 resin moldings were obtained.
[比較例1]
 実施例1と同様にして、厚み100μmの樹脂層を形成した。
 比較例1では、保護層を形成せず、樹脂層のみの成形体とした。
[Comparative Example 1]
In the same manner as in Example 1, a resin layer having a thickness of 100 μm was formed.
In Comparative Example 1, a protective layer was not formed, and a molded body having only a resin layer was obtained.
[比較例2]
 実施例2において用いた一般式(1)で表される化合物である化合物(A)に代えて、比較化合物(比較紫外線吸収剤)である下記構造の比較化合物(D)を用いた以外は実施例2と同様にして、比較例2の樹脂成形体を得た。
[Comparative Example 2]
It implemented except having replaced the compound (A) which is a compound represented by General formula (1) used in Example 2 with the comparative compound (D) of the following structure which is a comparative compound (comparative ultraviolet absorber). In the same manner as in Example 2, a resin molded product of Comparative Example 2 was obtained.
Figure JPOXMLDOC01-appb-C000028

 
Figure JPOXMLDOC01-appb-C000028

 
[比較例3]
 実施例1と同様にして、厚み100μmの樹脂層を形成した。
 得られた樹脂層に対し、下記表7に記載の処方に従い、ポリビニルアルコール(PVA)含有保護層形成用組成物を調製し、得られたPVA含有保護層形成用組成物を、バー塗布し、130℃で2分間乾燥させてPVA含有保護層を形成して、比較例3の樹脂成形体を得た。
[Comparative Example 3]
In the same manner as in Example 1, a resin layer having a thickness of 100 μm was formed.
For the obtained resin layer, according to the formulation described in Table 7 below, a polyvinyl alcohol (PVA) -containing protective layer-forming composition was prepared, and the resulting PVA-containing protective layer-forming composition was applied with a bar, A PVA-containing protective layer was formed by drying at 130 ° C. for 2 minutes to obtain a resin molded body of Comparative Example 3.
Figure JPOXMLDOC01-appb-T000029

 
Figure JPOXMLDOC01-appb-T000029

 
[比較例4]
 実施例1と同様にして、厚み100μmの樹脂層を形成した。
 得られた樹脂層に対し、下記表8に記載の処方に従い、変性ポリエチレン樹脂水性分散体を含むポリエチレン(PE)含有保護層形成用組成物を調製し、得られたPE含有保護層形成用組成物を、バー塗布し、130℃で2分間乾燥させてPE含有保護層を形成して、比較例4の樹脂成形体を得た。
[Comparative Example 4]
In the same manner as in Example 1, a resin layer having a thickness of 100 μm was formed.
For the obtained resin layer, a polyethylene (PE) -containing protective layer-forming composition containing a modified polyethylene resin aqueous dispersion was prepared according to the formulation shown in Table 8 below, and the resulting PE-containing protective layer-forming composition was prepared. The product was coated with a bar and dried at 130 ° C. for 2 minutes to form a PE-containing protective layer, whereby a resin molded product of Comparative Example 4 was obtained.
Figure JPOXMLDOC01-appb-T000030

 
Figure JPOXMLDOC01-appb-T000030

 
[樹脂成形体の評価]
 得られた実施例、比較例の各樹脂成形体を以下の方法により評価した。
(1.SP値)
 保護層が含有する樹脂のSP値(溶解度パラメーター)を、Fedors法によって算出し、その値を表6に示す。
 Fedors法は、既述の文献であるProperties of PolymerのTable7.4に記載されており、算出方法は当該文献の記載に従った。
[Evaluation of molded resin]
Each resin molding of the obtained Example and the comparative example was evaluated with the following method.
(1. SP value)
The SP value (solubility parameter) of the resin contained in the protective layer was calculated by the Fedors method, and the value is shown in Table 6.
The Fedors method is described in Table 7.4 of the Properties of Polymer, which is the above-described document, and the calculation method was in accordance with the description of the document.
(2.波長400nm~420nmの紫外線遮断率)
 各実施例および比較例の樹脂成形体について、紫外可視近赤外分光計(UV3100、島津社製)を用い、保護層を有する面から光を入射させた際の、波長300nmから800nmにおける透過率の測定を行い、波長400nmから420nmの範囲における透過率の平均値を算出した。その平均値を100%から引いた値を400nm~420nmの波長の光の遮断率とした。下記評価基準で評価した結果を表9~表11に示す。
[評価基準]
A:波長400nm~420nmの光の遮断率60%以上
B:波長400nm~420nmの光の遮断率30%以上60%未満
C:波長400nm~420nmの光の遮断率30%未満
(2. UV blocking rate of wavelengths from 400 nm to 420 nm)
About the resin molding of each Example and a comparative example, the transmittance | permeability in wavelength 300nm to 800nm at the time of making light inject from the surface which has a protective layer using an ultraviolet visible near-infrared spectrometer (UV3100, Shimadzu Corporation make). The average value of the transmittance in the wavelength range of 400 nm to 420 nm was calculated. A value obtained by subtracting the average value from 100% was defined as a light blocking ratio of light having a wavelength of 400 nm to 420 nm. Tables 9 to 11 show the results of evaluation based on the following evaluation criteria.
[Evaluation criteria]
A: Blocking rate of light with a wavelength of 400 nm to 420 nm is 60% or more B: Blocking rate of light with a wavelength of 400 nm to 420 nm is 30% to less than 60% C: Blocking rate of light with a wavelength of 400 nm to 420 nm is less than 30%
(3.樹脂成形体からの特定紫外線吸収剤の浸み出し評価)
 樹脂成形体からの一般式(1)で表される化合物の浸み出しの状況をヘイズにより評価した。即ち、樹脂成形体から一般式(1)で表される化合物の浸み出した場合、浸み出した化合物により樹脂の白化が起こり、樹脂のヘイズが上昇する。樹脂のヘイズの上昇の程度により、一般式(1)で表される化合物の浸み出し抑制効果を評価した。
 ヘイズは、ヘイズメーター(NDH5000、日本電色工業製)を用いて測定し、下記評価基準で評価した。結果を表9~表11に示す。
[評価基準]
A:ヘイズ値 2.0%以下
B:ヘイズ値 2.0%を超え、3.0%以下
C:ヘイズ値 3.0%を超える
(3. Evaluation of leaching of specific UV absorbers from resin moldings)
The state of leaching of the compound represented by the general formula (1) from the resin molded body was evaluated by haze. That is, when the compound represented by the general formula (1) oozes out from the resin molded body, the leaching compound causes whitening of the resin and increases the haze of the resin. The leaching suppression effect of the compound represented by the general formula (1) was evaluated based on the degree of increase in the haze of the resin.
Haze was measured using a haze meter (NDH5000, manufactured by Nippon Denshoku Industries Co., Ltd.) and evaluated according to the following evaluation criteria. The results are shown in Tables 9 to 11.
[Evaluation criteria]
A: Haze value 2.0% or less B: Haze value exceeds 2.0%, 3.0% or less C: Haze value exceeds 3.0%
(4.高温経時後の、樹脂成形体からの特定紫外線吸収剤の浸み出し増加の評価)
 各実施例および比較例の樹脂成形体について、90℃、湿度3%RH雰囲気下で250時間にわたり経時し、経時試験前後のヘイズ値をヘイズメーター(NDH5000、日本電色工業製)を用いて測定し、経時後のヘイズ増加分を算出し、下記評価基準で評価した。結果を下記表9~表11に示す。
[評価基準]
A:ヘイズ値の増加が1.0%以下
B:ヘイズ値の増加が1.0%を超え、2.0%以下
C:ヘイズ値の増加が3.0%を超える
(4. Evaluation of leaching increase of specific UV absorber from resin molding after high temperature aging)
About the resin molding of each Example and a comparative example, it ages for 250 hours in 90 degreeC and humidity 3% RH atmosphere, and measures the haze value before and behind a time-lapse test using a haze meter (NDH5000, Nippon Denshoku Industries make). Then, the increase in haze over time was calculated and evaluated according to the following evaluation criteria. The results are shown in Tables 9 to 11 below.
[Evaluation criteria]
A: Increase in haze value is 1.0% or less B: Increase in haze value exceeds 1.0%, 2.0% or less C: Increase in haze value exceeds 3.0%
(5.樹脂成形体のカール性評価)
 各実施例及び比較例の、シート状の樹脂成形体を10cm×10cmの大きさに裁断して評価サンプルとした。得られた評価サンプルを、25℃、相対湿度60%の温度湿度環境に48時間以上置いた後、平面上に静置したときに最も平面から離れているところまでの距離をカール量とし、以下の基準にて評価した。結果を下記表9~表11に示す。
[評価基準]
A:カール量が±5mm未満である
B:カール量が±5mm以上±10mm未満である
C:カール量が±10mm以上である。
(5. Evaluation of curling properties of molded resin)
The sheet-like resin molded bodies of each Example and Comparative Example were cut into a size of 10 cm × 10 cm to obtain evaluation samples. The obtained evaluation sample is placed in a temperature and humidity environment of 25 ° C. and a relative humidity of 60% for 48 hours or more, and when left on a flat surface, the distance from the farthest plane to the farthest plane is defined as the curl amount. Evaluation based on the criteria. The results are shown in Tables 9 to 11 below.
[Evaluation criteria]
A: The curl amount is less than ± 5 mm. B: The curl amount is ± 5 mm or more and less than ± 10 mm. C: The curl amount is ± 10 mm or more.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表9~表11の評価結果より、実施例の各樹脂成形体は、いずれも長波長紫外線及びブルーライトの遮断性が良好であり、ヘイズの測定結果より、特定紫外線吸収剤の浸み出しが抑制され、製造直後のみならず、高温経時後においても、樹脂成形体からの特定紫外線吸収剤の浸み出しが抑制された結果、浸み出しに起因する白化が生じず、樹脂成形体はヘイズの上昇が抑制されていることがわかる。
 実施例1と、実施例2との対比より、樹脂成形体に反射防止層を形成しても、性能の低下は見られなかった。
 また、実施例17~実施例20の結果より、本開示の樹脂成形体は眼鏡レンズに適用した場合でも、長波長紫外線及びブルーライトの遮断性が良好であり、紫外線吸収剤の浸み出しが長期間に亘り抑制されることがわかる。従って、実施例17~実施例20の眼鏡レンズは、ヘイズの上昇が抑制され、かつ、眼鏡レンズを装着した眼鏡を用いた場合、ディスプレイ等の表示画像を目視した場合の紫外線及びブルーライトによる目の疲労の低減が期待できる。
From the evaluation results of Table 9 to Table 11, each of the resin molded products of the examples has good blocking properties of long-wavelength ultraviolet light and blue light, and the specific UV absorber oozes out from the measurement result of haze. As a result of suppression of leaching of the specific UV absorber from the resin molded body not only immediately after production but also after high temperature aging, whitening due to leaching does not occur, and the resin molded body has a haze. It can be seen that the rise of is suppressed.
From the comparison between Example 1 and Example 2, even when an antireflection layer was formed on the resin molded body, no deterioration in performance was observed.
Further, from the results of Example 17 to Example 20, even when the resin molded body of the present disclosure is applied to a spectacle lens, the blocking property of long-wavelength ultraviolet rays and blue light is good, and the ultraviolet absorber oozes out. It turns out that it is suppressed over a long period of time. Therefore, in the spectacle lenses of Examples 17 to 20, the increase in haze is suppressed, and when using spectacles with the spectacle lens attached, eyes using ultraviolet rays and blue light when viewing a display image on a display or the like are used. Reduction of fatigue can be expected.
 他方、保護層を有しない比較例1の樹脂成形体、本発明の範囲外の樹脂を含む保護層を有する比較例3、4の樹脂成形体は、高温経時後にヘイズが上昇し、特定紫外線吸収剤の浸み出しによる白化が進行し、ヘイズが上昇したことがわかる。また、樹脂層に特定紫外線吸収剤に代えて、比較紫外線吸収剤(化合物(D))を含有する比較例2の樹脂成形体は、紫外線等の遮断性が著しく低いことがわかる。このことから、本開示における特定紫外線吸収剤は、樹脂に含有させ、加熱成形した場合でも、紫外線吸収能が維持されるのに対し、比較紫外線吸収剤を、同様に樹脂に含有させ、加熱成形した場合には、紫外線吸収剤が熱により損なわれ、紫外線吸収能が著しく低下したことがわかる。 On the other hand, the resin molded body of Comparative Example 1 having no protective layer and the resin molded bodies of Comparative Examples 3 and 4 having a protective layer containing a resin outside the scope of the present invention increased in haze after high temperature aging, and absorbed specific ultraviolet rays It can be seen that whitening due to leaching of the agent progressed and haze increased. Moreover, it turns out that it replaces with a specific ultraviolet absorber in a resin layer, and the resin molding of the comparative example 2 containing a comparative ultraviolet absorber (compound (D)) has remarkably low interruption | blocking property, such as an ultraviolet-ray. From this, the specific ultraviolet absorber in the present disclosure is contained in a resin, and even when heat-molded, the ultraviolet-absorbing ability is maintained, whereas the comparative ultraviolet absorber is similarly contained in the resin and heat-molded. In this case, it can be seen that the ultraviolet absorber was damaged by heat and the ultraviolet absorbing ability was remarkably lowered.
 なお、実施例1及び実施例2の樹脂成形体について、90℃、湿度3%RH雰囲気下で250時間にわたり経時し、高温経時後の樹脂成形体の紫外線遮断率を、「2.波長400nm~420nmの紫外線遮断率」と同様の方法で測定し、高温経時前後の紫外線遮断率の変動率を算出した。
 その結果、紫外線遮断率の高温経時による変動率は、実施例1及び実施例2のいずれも3%以下であった。このことから、実施例1及び実施例2の樹脂成形体は、高温経時後も、紫外線遮断性が維持されていることがわかる。
The resin molded bodies of Example 1 and Example 2 were aged over 90 hours at 90 ° C. and a humidity of 3% RH, and the ultraviolet blocking rate of the resin molded body after the high temperature aging was determined as “2. It measured by the method similar to "420 nm ultraviolet-blocking rate", and calculated the fluctuation rate of the ultraviolet-blocking rate before and after high temperature aging.
As a result, the rate of change of the ultraviolet blocking rate over time with high temperature was 3% or less in both Example 1 and Example 2. From this, it can be seen that the resin molded bodies of Example 1 and Example 2 maintain the ultraviolet blocking property even after high temperature aging.
[実施例21]
 実施例2で調製した樹脂成形体において、保護層を有する面とは反対側の面に、パナック(株)製パナクリーンPD-S1(粘着層の厚み25μm)の軽剥離セパレータ(シリコーンコートPET)を剥がして、粘着層を貼り付け、樹脂成形体の樹脂層側の面上に粘着層を形成した。次に、粘着層を介して、透明基材である厚さ3mmのガラス板に樹脂成形体を貼り合わせて、透明基材上に、粘着層と、樹脂成形体とを備えるブルーライトカット積層体を得た。
 実施例21のブルーライトカット積層体は、目視にて観察したところ、透明な積層体であり、「4.高温経時後の、樹脂成形体からの特定紫外線吸収剤の浸み出し増加の評価」を実施したところ、ヘイズ値の増加率は1.0%以下であり、高温経時による特定紫外線吸収剤の浸み出しに起因したヘイズの上昇が抑制されていることがわかる。
 また、「2.波長400nm~420nmの紫外線遮断率」と同様の方法で測定した400nm~420nm紫外線遮断率は、実施例2の樹脂積層体と同等であり、評価Aランクであった。
[Example 21]
A light release separator (silicone-coated PET) of Panaclean PD-S1 (adhesive layer thickness 25 μm) manufactured by Panac Co., Ltd. on the surface opposite to the surface having the protective layer in the resin molded body prepared in Example 2 Was peeled off, an adhesive layer was attached, and an adhesive layer was formed on the surface of the resin molded body on the resin layer side. Next, a blue light cut laminate comprising a pressure-sensitive adhesive layer and a resin molded body on a transparent base material, the glass substrate having a thickness of 3 mm, which is a transparent base material, bonded to the transparent base material through the pressure-sensitive adhesive layer. Got.
When the blue light cut laminated body of Example 21 was visually observed, it was a transparent laminated body. "4. Evaluation of increase in leaching of specific ultraviolet absorbent from resin molded article after high temperature aging" As a result, the increase rate of the haze value is 1.0% or less, and it is understood that the increase in haze due to the leaching of the specific ultraviolet absorber due to high temperature aging is suppressed.
Further, the 400 nm to 420 nm ultraviolet blocking rate measured by the same method as “2. Ultraviolet blocking rate of wavelength 400 nm to 420 nm” was equivalent to that of the resin laminate of Example 2 and was evaluated as A rank.
 2017年3月31日に出願された日本国特許出願2017-071851の開示は参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-071851 filed on Mar. 31, 2017 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (12)

  1.  樹脂及び下記一般式(1)で表される化合物を含む樹脂層と、
     前記樹脂層の少なくとも一方の面上に、ウレタン樹脂、アクリル樹脂及びポリシロキサンからなる群より選ばれる少なくとも1種を含有する保護層と、を備える樹脂成形体。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)中、Hetは、2価の5員あるいは6員環の芳香族ヘテロ環残基を表す。
     X、X、X及びXはそれぞれ独立に、ヘテロ原子を表す。
     Y、Y、Y、Y、Y及びYは、それぞれ独立に、ヘテロ原子または炭素原子を含む基を表す。Hetに結合している環は、任意の位置に二重結合を有していてもよい。
    A resin layer containing a resin and a compound represented by the following general formula (1);
    A resin molded body comprising a protective layer containing at least one selected from the group consisting of urethane resin, acrylic resin and polysiloxane on at least one surface of the resin layer.
    Figure JPOXMLDOC01-appb-C000001

    In general formula (1), Het 1 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
    X a , X b , X c and X d each independently represent a hetero atom.
    Y a , Y b , Y c , Y d , Y e and Y f each independently represents a group containing a hetero atom or a carbon atom. The ring bonded to Het 1 may have a double bond at any position.
  2.  前記樹脂層の全量に対する前記一般式(1)で表される化合物の含有量が、0質量%を超え、5.0質量%以下である請求項1に記載の樹脂成形体。 The resin molded product according to claim 1, wherein the content of the compound represented by the general formula (1) with respect to the total amount of the resin layer is more than 0% by mass and 5.0% by mass or less.
  3.  前記保護層の厚みが0.5μm~10μmである請求項1または請求項2に記載の樹脂成形体。 3. The resin molded body according to claim 1, wherein the protective layer has a thickness of 0.5 μm to 10 μm.
  4.  前記保護層が、ウレタン樹脂またはアクリル樹脂を含有し、保護層の、Fedors法によって算出した溶解度パラメーターが、20(J/cm1/2~28(J/cm1/2の範囲にある請求項1~請求項3のいずれか1項に記載の樹脂成形体。 The protective layer contains a urethane resin or an acrylic resin, and the solubility parameter of the protective layer calculated by the Fedors method is in the range of 20 (J / cm 3 ) 1/2 to 28 (J / cm 3 ) 1/2 . The resin molded article according to any one of claims 1 to 3, wherein
  5.  前記保護層の、前記樹脂層と接する側とは反対側の面上に、さらに、反射防止層を備える請求項4に記載の樹脂成形体。 The resin molded body according to claim 4, further comprising an antireflection layer on the surface of the protective layer opposite to the side in contact with the resin layer.
  6.  前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物である請求項1~請求項5のいずれか1項に記載の樹脂成形体。
    Figure JPOXMLDOC01-appb-C000002

     一般式(2)中、Hetは、2価の5員あるいは6員環の芳香族ヘテロ環残基を表す。
     X2a、X2b、X2c及びX2dは、それぞれ独立に、ヘテロ原子を表す。
     Y2b、Y2c、Y2e及びY2fは、それぞれ独立に、ヘテロ原子または炭素原子を含む基を表す。Hetに結合している環は、任意の位置に二重結合を有していてもよい。
     L及びLは、それぞれ独立に酸素原子、硫黄原子またはNRを表し、Rは、水素原子または1価の置換基を表す。
     Z及びZはそれぞれ独立にY2b及びY2cまたはY2e及びY2fと互いに結合して4員~8員環を形成するのに必要な原子群を表す。
    The resin molded body according to any one of claims 1 to 5, wherein the compound represented by the general formula (1) is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002

    In the general formula (2), Het 2 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
    X 2a , X 2b , X 2c and X 2d each independently represent a hetero atom.
    Y 2b , Y 2c , Y 2e and Y 2f each independently represent a group containing a hetero atom or a carbon atom. The ring bonded to Het 2 may have a double bond at any position.
    L 1 and L 2 each independently represent an oxygen atom, a sulfur atom or NR a , and R a represents a hydrogen atom or a monovalent substituent.
    Z 1 and Z 2 each independently represents an atomic group necessary for bonding to Y 2b and Y 2c or Y 2e and Y 2f to form a 4-membered to 8-membered ring.
  7.  前記一般式(2)で表される化合物が、下記一般式(3)で表される化合物である請求項6に記載の樹脂成形体。
    Figure JPOXMLDOC01-appb-C000003

     一般式(3)中、Hetは、2価の5員あるいは6員環の芳香族ヘテロ環残基を表す。
     X3a、X3b、X3c及びX3dは、それぞれ独立に、ヘテロ原子を表す。
     R3a、R3b、R3c、R3d、R3e、R3f、R3g及びR3hはそれぞれ独立に、水素原子または1価の置換基を表す。
    The resin molded product according to claim 6, wherein the compound represented by the general formula (2) is a compound represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003

    In the general formula (3), Het 3 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
    X 3a , X 3b , X 3c and X 3d each independently represent a hetero atom.
    R 3a , R 3b , R 3c , R 3d , R 3e , R 3f , R 3g and R 3h each independently represent a hydrogen atom or a monovalent substituent.
  8.  前記一般式(3)で表される化合物が、下記一般式(4)で表される化合物である請求項7に記載の樹脂成形体。
    Figure JPOXMLDOC01-appb-C000004

     一般式(4)中、Hetは、2価の5員あるいは6員環の芳香族ヘテロ環残基を表す。
     R4a、R4b、R4c、R4d、R4e、R4f、R4g及びR4hは、それぞれ独立に、水素原子または1価の置換基を表す。
    The resin molded product according to claim 7, wherein the compound represented by the general formula (3) is a compound represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000004

    In the general formula (4), Het 4 represents a divalent 5-membered or 6-membered aromatic heterocyclic residue.
    R 4a , R 4b , R 4c , R 4d , R 4e , R 4f , R 4g and R 4h each independently represent a hydrogen atom or a monovalent substituent.
  9.  前記一般式(4)で表される化合物が、下記一般式(5)で表される化合物である請求項8に記載の樹脂成形体。
    Figure JPOXMLDOC01-appb-C000005

     一般式(5)中、R5a、R5b、R5c、R5d、R5e、R5f、R5g及びR5hは、それぞれ独立に、水素原子または1価の置換基を表す。
     R5i及びR5jはそれぞれ独立に、水素原子または1価の置換基を表す。
    The resin molded body according to claim 8, wherein the compound represented by the general formula (4) is a compound represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000005

    In general formula (5), R 5a , R 5b , R 5c , R 5d , R 5e , R 5f , R 5g and R 5h each independently represent a hydrogen atom or a monovalent substituent.
    R 5i and R 5j each independently represent a hydrogen atom or a monovalent substituent.
  10.  眼鏡レンズである請求項1~請求項9のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 9, which is a spectacle lens.
  11.  樹脂フィルムである請求項1~請求項9のいずれか1項に記載の樹脂成形体。 The resin molded body according to any one of claims 1 to 9, which is a resin film.
  12.  透明基材と、前記透明基材の少なくとも一方の面上に備えられた粘着層と、前記粘着層の透明基材と接する面とは反対側の面上に備えられた請求項11に記載の樹脂フィルムである樹脂成形体と、を有するブルーライトカット積層体。 The transparent substrate, the pressure-sensitive adhesive layer provided on at least one surface of the transparent substrate, and the surface of the pressure-sensitive adhesive layer provided on a surface opposite to the surface in contact with the transparent substrate. A blue light cut laminate having a resin molded body which is a resin film.
PCT/JP2018/011526 2017-03-31 2018-03-22 Resin molded body and blue light cut laminated body WO2018180929A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18775987.3A EP3603966A4 (en) 2017-03-31 2018-03-22 Resin molded body and blue light cut laminated body
JP2019509684A JP6851464B2 (en) 2017-03-31 2018-03-22 Resin molded body and blue light cut laminate
CN201880014458.9A CN110383118B (en) 2017-03-31 2018-03-22 Resin molded body and blue light cut-off laminate
US16/544,922 US20190381773A1 (en) 2017-03-31 2019-08-20 Resin molded body and blue light cut laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071851 2017-03-31
JP2017-071851 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/544,922 Continuation US20190381773A1 (en) 2017-03-31 2019-08-20 Resin molded body and blue light cut laminate

Publications (1)

Publication Number Publication Date
WO2018180929A1 true WO2018180929A1 (en) 2018-10-04

Family

ID=63675840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011526 WO2018180929A1 (en) 2017-03-31 2018-03-22 Resin molded body and blue light cut laminated body

Country Status (5)

Country Link
US (1) US20190381773A1 (en)
EP (1) EP3603966A4 (en)
JP (2) JP6851464B2 (en)
CN (1) CN110383118B (en)
WO (1) WO2018180929A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008293A (en) * 2017-06-27 2019-01-17 住友化学株式会社 Optical film
WO2021251433A1 (en) 2020-06-10 2021-12-16 富士フイルム株式会社 Composition and compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646398B (en) * 2020-12-15 2022-03-29 福耀玻璃工业集团股份有限公司 Ultraviolet-proof and blue-light-proof coating liquid, glass and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028280A (en) 2004-07-14 2006-02-02 Fuji Photo Film Co Ltd Fluorine containing polyfunctional monomer, fluorine containing polymer, antireflection membrane, antireflection film and image display device
JP2006289627A (en) 2005-04-06 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film and organic device using the same
JP2007017555A (en) * 2005-07-06 2007-01-25 Nitto Denko Corp Polarizer protective film, polarizing plate and image display apparatus
WO2009122968A1 (en) * 2008-03-30 2009-10-08 富士フイルム株式会社 Resin molded product and polymer film
JP2010259624A (en) 2009-05-07 2010-11-18 Hi-Lex Corporation Guide wire and manufacturing method thereof
JP2011065139A (en) * 2009-08-19 2011-03-31 Fujifilm Corp Light-diffusing sheet
JP2013194136A (en) * 2012-03-19 2013-09-30 Panasonic Corp Ultraviolet absorbing resin composition, translucent member and lighting equipment
JP2013225461A (en) 2011-04-28 2013-10-31 Fujifilm Corp Conductive member, method for producing the same, touch panel, and solar cell
JP2014223794A (en) * 2013-04-18 2014-12-04 東レ株式会社 Window film
JP2015129909A (en) 2013-12-03 2015-07-16 富士フイルム株式会社 Antireflective optical member
WO2016098713A1 (en) * 2014-12-16 2016-06-23 横浜ゴム株式会社 Ultraviolet radiation-curable resin composition, and laminate
JP2017071851A (en) 2016-09-21 2017-04-13 住友金属鉱山株式会社 Nickel powder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236969A (en) * 2002-02-20 2003-08-26 Teijin Dupont Films Japan Ltd Colored hard-coat film
JP4511877B2 (en) * 2004-05-07 2010-07-28 帝人化成株式会社 Polycarbonate resin composition and molded article thereof
JP4811701B2 (en) * 2004-12-28 2011-11-09 山本光学株式会社 Protective eyeglass lenses
JP4948022B2 (en) * 2006-04-13 2012-06-06 株式会社Adeka Optical filter
JP5261319B2 (en) * 2008-09-10 2013-08-14 富士フイルム株式会社 Lighting cover
JP5536697B2 (en) * 2011-03-15 2014-07-02 三菱樹脂株式会社 Laminated polyester film
JP2013208746A (en) * 2012-03-30 2013-10-10 Konica Minolta Inc Functional film
KR102031048B1 (en) * 2015-02-25 2019-10-15 동우 화인켐 주식회사 Hard Coating Composition and Hard Coating Film Using the Same
CN105295279A (en) * 2015-10-22 2016-02-03 袁敏华 Optical protecting material preventing ultraviolet light and blue light
EP3318920B1 (en) * 2016-11-04 2022-07-06 Essilor International Near infrared light-cutting optical articles with low residual color

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028280A (en) 2004-07-14 2006-02-02 Fuji Photo Film Co Ltd Fluorine containing polyfunctional monomer, fluorine containing polymer, antireflection membrane, antireflection film and image display device
JP2006289627A (en) 2005-04-06 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film and organic device using the same
JP2007017555A (en) * 2005-07-06 2007-01-25 Nitto Denko Corp Polarizer protective film, polarizing plate and image display apparatus
WO2009122968A1 (en) * 2008-03-30 2009-10-08 富士フイルム株式会社 Resin molded product and polymer film
JP2010132846A (en) 2008-03-30 2010-06-17 Fujifilm Corp Resin molded product and polymer film
JP2010259624A (en) 2009-05-07 2010-11-18 Hi-Lex Corporation Guide wire and manufacturing method thereof
JP2011065139A (en) * 2009-08-19 2011-03-31 Fujifilm Corp Light-diffusing sheet
JP2013225461A (en) 2011-04-28 2013-10-31 Fujifilm Corp Conductive member, method for producing the same, touch panel, and solar cell
JP2013194136A (en) * 2012-03-19 2013-09-30 Panasonic Corp Ultraviolet absorbing resin composition, translucent member and lighting equipment
JP2014223794A (en) * 2013-04-18 2014-12-04 東レ株式会社 Window film
JP2015129909A (en) 2013-12-03 2015-07-16 富士フイルム株式会社 Antireflective optical member
WO2016098713A1 (en) * 2014-12-16 2016-06-23 横浜ゴム株式会社 Ultraviolet radiation-curable resin composition, and laminate
JP2017071851A (en) 2016-09-21 2017-04-13 住友金属鉱山株式会社 Nickel powder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. W. VAN CREVELEN: "Properties of Polymer", 1976, ELSEVIER SCIENTIFIC PUBLISHING COMPANY
See also references of EP3603966A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019008293A (en) * 2017-06-27 2019-01-17 住友化学株式会社 Optical film
WO2021251433A1 (en) 2020-06-10 2021-12-16 富士フイルム株式会社 Composition and compound

Also Published As

Publication number Publication date
JP6851464B2 (en) 2021-03-31
JP2021088186A (en) 2021-06-10
JP7066021B2 (en) 2022-05-12
US20190381773A1 (en) 2019-12-19
EP3603966A1 (en) 2020-02-05
CN110383118A (en) 2019-10-25
EP3603966A4 (en) 2020-04-15
JPWO2018180929A1 (en) 2019-11-07
CN110383118B (en) 2021-11-09

Similar Documents

Publication Publication Date Title
JP7066021B2 (en) Resin molded body and blue light cut laminated body
CN110249242A (en) Optical component composition, optical component and image display device
KR101175511B1 (en) Thermoplastic resin composition, molded resin articles and polarizer protecting film made by using the same, and process for production of the articles
CN101937112B (en) Polarization plate and laminated optical component using the same
JP5272055B2 (en) Polarizer protective film, polarizing plate and image display device
EP2698664B1 (en) Photochromic lens for eye glasses
JPH10503786A (en) Photochromic substituted naphthopyran compounds
JP2015040895A (en) Optical filter, and apparatus using optical filter
WO2005075193A1 (en) Laminate and process for producing the same
WO2015111682A1 (en) Film
JP2007119722A (en) Near-infrared ray absorbing and color-correcting pressure-sensitive adhesive composition and film using the same
WO2020137819A1 (en) Light-resistant, heat-resistant, and durable uv absorbent
TW201738090A (en) Laminate and optical article using said laminate
WO2012133749A1 (en) Photochromic lens
TW200809280A (en) Polarizer protective film, polarizing plate, and image display device
JP4895290B2 (en) Optical film manufacturing method, optical film, polarizing plate, and image display device
KR101315512B1 (en) (meth)acrylic resin composition and optical film comprising the same
JP2012008557A (en) Polarizer protective film, polarizing plate and liquid crystal display element
JP2013014125A (en) Brightness enhancement film
WO2008035533A1 (en) Optical filter containing squarylium dye-metal complex compound and filter for display panel using the same
JP6536047B2 (en) Method of manufacturing film and method of manufacturing polarizing plate
EP3229061B1 (en) A lens with a functional sheet including polyester resin
KR20150031534A (en) Photocurable adhesive composition, and optical film and optical apparatus using the same
TW201934669A (en) Optical laminate and display device
JPH04219703A (en) Ultraviolet ray shutting-off polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018775987

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018775987

Country of ref document: EP

Effective date: 20191031