WO2018180331A1 - 運転者状態検知装置 - Google Patents

運転者状態検知装置 Download PDF

Info

Publication number
WO2018180331A1
WO2018180331A1 PCT/JP2018/008944 JP2018008944W WO2018180331A1 WO 2018180331 A1 WO2018180331 A1 WO 2018180331A1 JP 2018008944 W JP2018008944 W JP 2018008944W WO 2018180331 A1 WO2018180331 A1 WO 2018180331A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
vehicle
movement amount
gravity
sensor
Prior art date
Application number
PCT/JP2018/008944
Other languages
English (en)
French (fr)
Inventor
佐藤 寧
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to US16/497,940 priority Critical patent/US20210101604A1/en
Priority to CN201880021907.2A priority patent/CN110476194A/zh
Priority to JP2019509131A priority patent/JP6831605B2/ja
Publication of WO2018180331A1 publication Critical patent/WO2018180331A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/037Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for occupant comfort, e.g. for automatic adjustment of appliances according to personal settings, e.g. seats, mirrors, steering wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/01516Passenger detection systems using force or pressure sensing means
    • B60R21/01526Passenger detection systems using force or pressure sensing means using piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • B60W2040/0827Inactivity or incapacity of driver due to sleepiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0872Driver physiology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • B60W2050/0056Low-pass filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/10Transducer, e.g. piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/60Doppler effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/221Physiology, e.g. weight, heartbeat, health or special needs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/223Posture, e.g. hand, foot, or seat position, turned or inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/229Attention level, e.g. attentive to driving, reading or sleeping

Definitions

  • the present invention relates to a driver condition detection device.
  • the fluctuation component contained in the pulse wave is extracted by analyzing the frequency of pulse wave data at RR intervals defining the heart rate, and the extracted fluctuation component is analyzed, whereby the subject's fatigue, sleepiness (sleeping onset timing), etc.
  • a method of detecting For example, in Patent Document 1, the subject's sleep onset timing is detected based on the information on the presence or absence of body movement of the subject, and the information on the ratio of the sympathetic nerve component to the fluctuation component of the subject's heartbeat and the ratio of the parasympathetic nerve component.
  • Technology is disclosed. Such a technology for detecting fatigue and sleepiness of a subject is expected to be utilized also in the technical field of safe driving support of a driver who drives a vehicle such as a car or a train.
  • a pressure sensor is disposed on a seat on which the driver is seated, and based on the information on time change of the body pressure distribution of the driver obtained from the output signal of this pressure sensor.
  • a technique for detecting a degree of alertness or fatigue of a driver is disclosed.
  • the center of gravity of the body pressure distribution of the driver is determined, and the movement of the center of gravity is detected from the movement amount of the center of gravity. Then, when no change in body movement is detected for a first predetermined time or more after the detection of body movement, it is determined that the driver's fatigue is accumulated. In addition, when the body movement is detected a predetermined number of times within a second predetermined time shorter than the first predetermined time, it is determined that the awakening degree of the driver is low.
  • the technology described in Patent Document 2 for example, even if the driver is driving for a long time while maintaining the same posture in a state of high alertness, it is erroneously determined that a drowsy driving is performed. There is a possibility. Therefore, in the technical field of the driver's safe driving support, it has been required to provide a technology for accurately detecting the driver's condition such as fatigue and sleepiness.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a driver state detection device that detects a driver's state such as fatigue or a nap at a high accuracy.
  • a driver state detection device of the present invention is provided with an acceleration sensor attached to vehicles, a gravity center movement amount detection part, and a driver state judgment part.
  • the center-of-gravity movement amount detection unit is attached to a component that constitutes the vehicle and detects the center-of-gravity movement amount of the body of the driver who is in the vehicle.
  • the driver state determination unit determines the driver state based on the magnitude of the difference between the acceleration of the vehicle obtained by the acceleration sensor and the gravity center movement amount of the driver's body detected by the gravity center movement amount detection unit. Determine
  • the driver state detection device of the present invention the driver's state such as fatigue and sleepiness can be detected with high accuracy.
  • FIG. 1 is a block diagram showing a schematic configuration of a driver state detection device 100 of the present embodiment.
  • the driver state detection device 100 includes an acceleration sensor 1, an attitude sensor 2 (an example of a gravity center movement amount detection unit), a gravity center movement amount calculation unit 3 (an example of a gravity center movement amount detection unit), an error signal A generation unit 4 and a driver state determination unit 5 (an example of a driver state determination unit) are provided.
  • the acceleration sensor 1 is attached to the vehicle V (see FIG. 2), and outputs the accelerations Gx and Gy of the vehicle V obtained by measurement to the error signal generation unit 4.
  • the acceleration Gx is an acceleration applied in the X direction which is the vehicle width direction of the vehicle V
  • the acceleration Gy is an acceleration applied in the Y direction which is the longitudinal direction of the vehicle V.
  • the acceleration sensor 1 can be configured by, for example, a six-axis acceleration sensor, but may be configured by a three-axis acceleration sensor. In the following description, the acceleration Gx in the X direction and the acceleration Gy in the Y direction are simply referred to as the acceleration G when it is not necessary to distinguish them individually.
  • the posture sensor 2 is a sensor disposed on the upper surface of a seat St1 (an example of a driver's seat, see FIG. 2) on which a driver (an example of a driver) driving the vehicle V is seated. See FIG. 3).
  • the posture sensor 2 generates an output signal according to the pressure applied by the driver sitting on the seat St 1, and outputs the output signal to the gravity center movement amount calculation unit 3.
  • the posture sensor 2 will be described in detail with reference to FIG. 3 described later.
  • the center-of-gravity movement amount calculation unit 3 calculates the amount of movement of the body (hereinafter referred to as the center-of-gravity movement amount) generated with the movement of the driver's center of gravity based on the output signal from the posture sensor 2.
  • the gravity center moving amount calculation unit 3 calculates the gravity center moving amount gx in the X direction and the gravity center moving amount gy in the Y direction as the gravity center moving amount.
  • the center-of-gravity movement amount calculation unit 3 will be described in detail with reference to FIG. 3 showing an example of the configuration of the posture sensor 2. In the following description, when it is not necessary to distinguish the gravity center movement amount gx in the X direction and the gravity center movement amount gy in the Y direction, it is simply referred to as the gravity center movement amount g.
  • the error signal generator 4 includes an X-direction error signal generator 40x and a Y-direction error signal generator 40y.
  • the X-direction error signal generation unit 40 x generates an X-direction error signal Ox based on the acceleration Gx input from the acceleration sensor 1 and the gravity center movement amount gx of the driver input from the gravity center movement calculation unit 3.
  • the Y-direction error signal generation unit 40 y generates a Y-direction error signal Oy based on the acceleration Gy input from the acceleration sensor 1 and the gravity center movement amount gy of the driver input from the gravity center movement calculation unit 3.
  • the error signal generator 4 will be described in detail with reference to FIG. 4 described later.
  • the driver state determination unit 5 adds the X-direction error signal Ox and the Y-direction error signal Oy to generate an error signal O, and compares the generated error signal O with a preset threshold value to obtain a driver. Determine the state of The driver state determination unit 5 will be described in detail with reference to FIG. 5 described later.
  • FIG. 2 is a top view of the inside of the vehicle showing an example of mounting the acceleration sensor 1 and the attitude sensor 2 on the vehicle V.
  • the vehicle V is provided with a seat St1 on which a driver D operating a steering wheel Sw is seated, a seat St2 for a passenger seat, and a seat St3 for a rear seat.
  • An acceleration sensor 1 for detecting an acceleration G of the vehicle V is installed at a position forward of the seat St1 and the seat St2 in the longitudinal direction (Y direction) of the vehicle V.
  • the installation position of the acceleration sensor 1 shown in FIG. 2 is an example, and the acceleration sensor 1 may be installed at another position inside the vehicle V.
  • An attitude sensor 2 is disposed on the seat surface of the seat St1 on which the driver D is seated.
  • the posture sensor 2 is formed in a flat plate-like shape like a cushion, and on the upper surface thereof, the buttocks of the driver D seated on the sheet St1 is disposed.
  • FIG. 3 is a schematic view showing a configuration example of the posture sensor 2.
  • the posture sensor 2 is composed of four film type piezoelectric sensors 2a to 2d.
  • the four piezoelectric sensors 2a to 2d are respectively disposed in respective regions obtained by dividing the coordinate plane of the seat surface of the seat St1 (an example of the component constituting the vehicle) on which the driver D is seated into four.
  • the position of the center surrounded by the four piezoelectric sensors 2a to 2d is the origin in the coordinate plane, the vertical direction in the figure corresponds to the X axis (the vehicle width direction of the vehicle V), and the horizontal direction is the Y axis (vehicle Corresponding to V).
  • the piezoelectric sensor 2a is disposed at a position corresponding to the first quadrant of the coordinate plane, the piezoelectric sensor 2b is disposed at a position corresponding to the second quadrant, and the piezoelectric sensor 2c is disposed at a position corresponding to the third quadrant.
  • the piezoelectric sensor 4d is disposed at a position corresponding to four quadrants.
  • the positive direction of the X axis in the figure corresponds to the right direction for the driver D
  • the negative direction corresponds to the left direction
  • the positive direction of the Y axis in the figure corresponds to the forward direction for the driver D (the direction in which the handle Sw is positioned)
  • the negative directions corresponds to the backward direction for the driver D.
  • the gravity center movement amount calculation unit 3 calculates the gravity center movement amount g using information on the arrangement position of the piezoelectric sensors 4a to 4d in the coordinate plane and the value of the output signal from the piezoelectric sensors 4a to 4d. Specifically, the gravity center movement amount calculation unit 3 outputs the output signals from the piezoelectric sensors 2a and 2d disposed in the region on the plus side of the X axis, and the piezoelectric sensor 2b disposed in the region on the minus side of the X axis The difference with the output signal from 2c is calculated as the center of gravity movement amount gx of the driver D in the X direction.
  • the center-of-gravity shift amount gx calculated in this manner is output from the center-of-gravity shift amount calculation unit 3 as a waveform indicating the magnitude of swing of the body in the lateral (left and right) direction of the driver D and the direction of swing.
  • the center-of-gravity movement calculation unit 3 outputs signals from the piezoelectric sensors 2a and 2b disposed in the region on the plus side of the Y axis, and the piezoelectric sensors 2c and 2d disposed in the region on the minus side of the Y axis.
  • the difference with the output signal is calculated as the gravity center movement amount gy of the driver D in the Y direction.
  • the center-of-gravity shift amount gy calculated in this manner is output from the center-of-gravity shift amount calculation unit 3 as a waveform indicating the magnitude of swing of the body in the vertical (back and forth) direction of the driver D and the direction of swing.
  • the buttocks of the driver D seated on the sheet St1 on which the posture sensor 2 is arranged is arranged at a position Cp near the center of the posture sensor 2.
  • pressure from the body of the driver D is uniformly applied to each of the four piezoelectric sensors 2a to 2d constituting the posture sensor 2.
  • the gravity center movement amount gx and the gravity center movement amount gy calculated by the gravity center movement amount calculation unit 3 are "0". It becomes a value close to
  • the body of the driver D swings left and right so as to follow the direction in which the acceleration Gx is applied. That is, the output value of the gravity center movement amount gx is larger than the output value of the gravity center movement amount gy.
  • the driver D is in a normal (awake state) in which the driver D does not sleep, etc., the driver D is reverse to the direction in which the acceleration Gx is applied based on the position control based on the human sense of balance. Unconsciously move the body in the direction (step on the body).
  • the driver D in a state in which fatigue is accumulated in the driver D, in a state in which the driver sleeps, etc., in the case where such a position control does not work and the lateral acceleration Gx is applied to the vehicle V, the driver D The body of the subject shakes largely in the direction in which the acceleration Gx is applied. Therefore, the waveform indicating the center-of-gravity shift amount gx is largely deviated from the waveform indicating the acceleration Gx of the vehicle V in the vertical axis direction of the graph. That is, it can be considered that the amount of shift between the gravity center movement amount g of the driver D and the acceleration V of the vehicle V represents the transfer characteristic of position control performed based on human balance.
  • the driver state detection device 100 detects the state of the driver D such as the degree of fatigue or dozing based on the magnitude of the amount of shift between the gravity center moving amount g of the driver D and the acceleration V of the vehicle V. I do. Specifically, the error signal generation unit 4 generates an error signal according to the deviation amount between the gravity center movement amount g of the driver D and the acceleration V of the vehicle V, and the driver state determination unit 5 calculates the value of the error signal The state of the driver D is determined by comparing the state of the driver D with the previously associated threshold value.
  • FIG. 4 is a block diagram showing a configuration example of the X-direction error signal generation unit 40x.
  • the X-direction error signal generation unit 40x includes an adaptive filter 41x, a delay circuit unit 42x, a subtractor 43x, a peak hold circuit unit 44x, and an average value calculation unit 45x.
  • the two input terminals of the adaptive filter 41x are respectively connected to the output terminal (not shown) of the acceleration sensor 1 (see FIG. 1) and the output terminal of the subtractor 43x.
  • the output terminal of the adaptive filter 41x is connected to the "-" input terminal of the subtractor 43x.
  • the input terminal of the delay circuit unit 42x is connected to the gravity center movement amount calculating unit 3 (see FIG. 1), and the output terminal of the delay circuit unit 42x is connected to the "+" input terminal of the subtractor 43x.
  • the output terminal of the subtractor 43x is connected to one input terminal of the adaptive filter 41x and the input terminal of the peak hold circuit unit 44x.
  • the output terminal of the peak hold circuit unit 44x is connected to the input terminal of the average value calculation unit 45x.
  • the adaptive filter 41x is configured by, for example, an LMS (least mean square) filter.
  • the adaptive filter 41x is configured such that the value of the error signal gx indicating the difference between the output from the own filter (hereinafter referred to as “filter output”) and the acceleration Gx of the vehicle V input from the acceleration sensor 1 is minimized.
  • Update the filter coefficients Update the filter coefficients. Then, a convolution operation is performed between the updated filter coefficient and the gravity center movement amount gx input from the gravity center movement amount calculation unit 3, and the calculation result is output as a filter output.
  • the filter output from the adaptive filter 41x is input to the "-" input terminal of the subtractor 43x.
  • the delay circuit unit 42 x adds, to the acceleration Gx input from the acceleration sensor 1, a delay corresponding to the time taken for calculation by the adaptive filter 41 x.
  • the delayed acceleration Gx is input to the "+" input terminal of the subtractor 43x.
  • the subtractor 43x subtracts the filter output input from the adaptive filter 41x from the acceleration Gx input from the delay circuit unit 42x to generate an error signal ex.
  • the error signal ex is a signal indicating the difference between the acceleration Gx input from the delay circuit unit 42x and the center-of-gravity shift amount gx on which the adaptive filter 41x has performed the convolution operation with the filter coefficient. Therefore, the value of the error signal ex becomes a larger value as the difference between the gravity center moving amount gx and the acceleration Gx is larger.
  • the error signal ex generated by the subtractor 43x is input to the input terminal of the adaptive filter 41x and the input terminal of the peak hold circuit unit 44x.
  • the peak hold circuit unit 44x holds the peak value of the error signal ex output from the subtractor 43x, and outputs the held peak value to the average value calculation unit 45x.
  • the average value calculation unit 45x holds the peak value output from the peak hold circuit unit 44x for a predetermined time such as one second, calculates the average value thereof, and outputs the calculated average value as the error signal Ox. . That is, the peak hold circuit unit 44x and the average value calculation unit 45x in the present embodiment have a function as an LPF (Low Pass Fileter) that removes noise components included in the error signal ex.
  • LPF Low Pass Fileter
  • the value of the error signal Ox (or error signal Oy) output from the error signal generation unit 4 becomes smaller in a state where the driver D is awake and the position control is working, and fatigue is accumulated in the driver D, or It becomes large in the state of falling asleep.
  • the error signal Ox (error signal ey to error signal Oy) is generated from the error signal ex output from the subtractor 43 has been described, but the present invention is not limited to this.
  • the error signal Ox (or Oy) may be generated by inputting the filter output of the adaptive filter 41x (or 41y (not shown)) to the peak hold circuit unit 44x (or 44y (not shown)).
  • FIG. 5 is a block diagram showing a configuration example of the driver state determination unit 5.
  • the driver state determination unit 5 includes an X direction gain adjustment unit 51x, a Y direction gain adjustment unit 51y, an adder 52, and a threshold comparison unit 53.
  • the input terminal of the X direction gain adjustment unit 51x is connected to the output terminal of the average value calculation unit 45x of the X direction error signal generation unit 40x (see FIG. 1), and the output terminal of the X direction gain adjustment unit 51x is an adder 52.
  • Connected to one of the input terminals of The input terminal of the Y direction gain adjustment unit 51y is connected to the output terminal of the average value calculation unit (not shown) of the Y direction error signal generation unit 40y (see FIG. 1), and the output terminal of the Y direction gain adjustment unit 51y is The other input terminal of the adder 52 is connected.
  • the output terminal of the adder 52 is connected to the input terminal of the threshold value comparing unit 53.
  • the X-direction gain adjustment unit 51x adds a predetermined gain to the error signal Ox output from the average value calculation unit 45x of the X-direction error signal generation unit 40x, and outputs the result.
  • the Y direction gain adjustment unit 51y adds a predetermined gain to the error signal Oy output from (the average value calculation unit of) the Y direction error signal generation unit 40y, and outputs the result.
  • Each gain set in the X direction gain adjustment unit 51 x and the Y direction gain adjustment unit 51 y is set to an arbitrary value by the user who uses the driver state detection device 100. The user can set more gains with respect to the gain adjustment unit 51 corresponding to the direction in which the information on the state of the driver D in the X direction or the Y direction is to be determined more intensively.
  • the adder 52 adds the error signal Ox whose gain is adjusted by the X-direction gain adjustment unit 51x and the error signal Oy whose gain is adjusted by the X-direction gain adjustment unit 51x, and adds the error signal O Are output to the threshold value comparing unit 53.
  • the threshold comparison unit 53 compares the error signal O output from the adder 52 with a threshold set in advance in association with the state of the driver D, and determines the state of the driver D based on the result of the comparison. . For example, when the value of the error signal O exceeds a threshold that can be determined that fatigue of the driver D is accumulated, the threshold comparison unit 53 determines that fatigue of the driver D is accumulated. In addition, when the value of the error signal O exceeds the threshold that can be determined that the driver D is in the sleep state, the threshold comparison unit 53 determines that the driver D is in the sleep state.
  • the threshold value set in the threshold value comparing unit 53 can be set to an optimal value obtained by an experiment or the like.
  • the amount of deviation between the acceleration G of the vehicle V obtained by the acceleration sensor 1 and the gravity center movement amount g of the driver D detected by the posture sensor 2 and the gravity center movement calculation unit 3 The state determination unit 5 determines the state of the driver D by comparing with the threshold value.
  • the error signal O indicating the shift amount between the acceleration G of the vehicle V and the movement amount g of the center of gravity of the body of the driver D is a value representing the transfer characteristic of position control performed based on human balance as described above. It is considered to be. That is, according to the above-described embodiment, the state of the driver D such as fatigue and sleepiness can be accurately detected based on the magnitude of the value of the error signal O indicating the transfer characteristic of position control of human beings.
  • the error signal generation unit 4 is configured to include the adaptive filter 41.
  • the adaptive filter 41 updates the filter coefficient to minimize the value of the error signal e indicating the difference between the filter output obtained by the convolution of the center of gravity shift amount g of the driver D and the filter coefficient and the acceleration G of the vehicle V Do. Then, based on the value of the error signal O which is a signal obtained by removing the noise component from the error signal e indicating the difference between the filter output of the adaptive filter 41 and the acceleration G of the vehicle V, The state is determined. Therefore, according to the above-described embodiment, the state of the driver D such as fatigue and dozing can be accurately detected with a simple configuration.
  • the driver D is awake and the position control based on the sense of balance is in effect, after the acceleration G is applied to the vehicle V (after the brain detects the acceleration), the driver D is actually A predetermined delay occurs until the position of the body is controlled.
  • the adaptive filter 41 can absorb this delay, the state of the driver D can be detected with high accuracy.
  • the gravity center movement amount g of the driver D is calculated based on the output value of the posture sensor 2 having the piezoelectric sensors 2a to 2d provided on the seat surface of the seat St1 which is the driver's seat of the vehicle V. Be done. Then, the state of the driver D is determined based on the amount of shift between the gravity center movement amount g and the acceleration G of the vehicle V. Therefore, according to the above-described embodiment, it is possible to detect the state of the driver D with high accuracy and without contact without attaching a sensor or the like to the body of the driver D.
  • the error signal generator 4 includes the X-direction error signal generator 40X and the Y-direction error signal generator 40Y, and separately generates the error signal Ox in the X direction and the error signal Oy in the Y direction.
  • the gravity center movement amount calculation unit 3 adds the gravity center movement amount gx and the gravity center movement amount gy to generate a gravity center movement amount g ′, and the error signal generation unit 4 generates an error signal O based on the gravity center movement amount g ′. May be configured to generate
  • the gravity center moving amount g ′ can be calculated, for example, by the following equation 1.
  • the driver state determination unit 5 detects the state of the driver D.
  • the posture sensor for detecting the movement amount g of the center of gravity of the body of the driver D to be compared with the acceleration G of the vehicle V detected by the acceleration sensor 1 may be configured by another sensor.
  • the posture sensor may be configured of a radio wave sensor such as a Doppler sensor.
  • a Doppler sensor An example in which the posture sensor is configured by a Doppler sensor will be described with reference to FIG.
  • FIG. 6 is an explanatory view showing a state in which the Doppler sensor 6 is attached to a seat belt Sb worn by the driver D.
  • the Doppler sensor 6 is attached at a position corresponding to the chest of the driver D in the seat belt Sb worn by the driver D.
  • the Doppler sensor 6 emits radio waves (microwaves) toward the body of the driver D, and the frequency of the radio wave reflected back to the body of the driver D and the frequency of the emitted radio wave are compared with each other.
  • the body movement of driver D is detected (by Doppler sensing).
  • the driver D detected by the Doppler sensor 6 The polarity of the movement speed of the body becomes positive. Then, the frequency of the radio wave reflected and returned to the body of the driver D detected by the Doppler sensor 6 becomes high.
  • the polarity of the moving speed of the body of the driver D detected by the Doppler sensor 6 is negative. become. Then, the frequency of the radio wave reflected and returned to the body of the driver D, which is detected by the Doppler sensor 6, becomes low.
  • the distance between the seat belt Sb on which the Doppler sensor 6 is attached and the body of the driver D, and the movement direction of the body of the driver D in the longitudinal direction (Y direction) Contains information on travel speed.
  • the output value of the Doppler sensor 6 can be input to the Y-direction error signal generation unit 40y (see FIG. 1). Accordingly, the output value of the Doppler sensor 6 and the acceleration Gy in the Y direction of the vehicle V obtained by the acceleration sensor 1 are compared by the Y direction error signal generation unit 40y. Then, an error signal ey (not shown) indicating the magnitude of the error between the two values is output from the Y-direction error signal generation unit 40y to the driver state determination unit 5 (see FIG. 1). In the driver state determination unit 5, the state of the driver D is determined by comparing the error signal Oy obtained by removing the noise component from the error signal ey with the threshold value.
  • the posture sensor may be configured by a pressure sensor such as a polymer thick film sensor or a minute vibration detection microphone.
  • a pressure sensor such as a polymer thick film sensor or a minute vibration detection microphone.
  • FIG. 7 is an explanatory view showing a state in which the polymer thick film sensor 7 or the minute vibration detection microphone 8 is attached to a seat belt Sb worn by the driver D.
  • the polymer thick film sensor 7 or the minute vibration detection microphone 8 is attached to a position corresponding to the abdomen of the driver D on the seat belt Sb worn by the driver D.
  • the polymer thick film sensor 7 is a sensor having a characteristic that the electrical resistance value decreases as the pressure applied to the sensor increases. Therefore, for example, when the pressure of the body of the driver D is applied to the polymer thick film sensor 7 on the seat belt Sb due to the body of the driver D being inclined in the direction of the handle Sw, the resistance value of the polymer thick film sensor 7 becomes Decrease.
  • the resistance value of the polymer thick film sensor 7 also increases accordingly. That is, the output value of the polymer thick film sensor 7 shown in FIG. 7 includes information on the movement direction and movement amount of the driver D in the front-rear direction (Y direction) of the body.
  • the minute vibration detection microphone 8 is a sensor that detects the magnitude of the sound pressure of the collected sound as the magnitude of the vibration. For example, when the body of the driver D is pressed against the seat belt Sb by, for example, the body of the driver D tilting in the direction of the handle Sw, the level of vibration detected by the minute vibration detection microphone 8 increases. On the other hand, when the body of the driver D moves away from the steering wheel Sw and the body of the driver D moves away from the seat belt Sb, the level of vibration detected by the minute vibration detection microphone 8 decreases. That is, the output value of the minute vibration detection microphone 8 shown in FIG. 7 also includes information on the movement direction and movement amount of the driver D in the front-rear direction (Y direction) of the body.
  • the sensor for acquiring information on the movement of the body of the driver D is attached to a part of the vehicle V such as the seat St1 or the seat belt Sb of the vehicle V.
  • the invention is not limited to this.
  • an acceleration sensor is directly attached to the body of the driver D, and the driver state detection device is configured to compare the output value from the acceleration sensor with the output value from the acceleration sensor 1 attached to the vehicle V. May be
  • SYMBOLS 1 ... Acceleration sensor, 2 ... Attitude sensor, 2a-2d ... Piezoelectric sensor, 3 ... Center of gravity movement calculation part, 4 ... Error signal generation part, 5 ... Driver state judgment part, 6 ... Doppler sensor, 7 ... Polymer thick film Sensor 8 small vibration detection microphone 40x X direction error signal generation unit 40y Y direction error signal generation unit 41, 41x adaptive filter 42x delay circuit unit 43x subtractor 44x peak hold circuit unit 45x ... average value calculation unit, 51x ... X direction gain adjustment unit, 51y ... Y direction gain adjustment unit, 52 ... adder, 53 ... threshold comparison unit, 100 ... driver state detection device

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Psychology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

疲労や居眠り等の運転者の状態を精度良く検知する運転者状態検知装置を提供する。本発明の運転者状態検知装置は、車両に取り付けられた加速度センサと、車両を構成する部品に取り付けられ、車両に搭乗している運転者の体の重心移動量を検出する重心移動量検出部と、加速度センサで得られた車両の加速度と重心移動量検出部で検出された運転者の体の重心移動量とのずれ量の大きさに基づいて、運転者の状態を判定する運転者状態判定部と、を備える。

Description

運転者状態検知装置
 本発明は、運転者状態検知装置に関する。
 従来、心拍数を規定するRR間隔の脈波データを周波数解析することにより脈波に含まれるゆらぎ成分を抽出し、抽出したゆらぎ成分を解析することにより、被験者の疲労や居眠り(入眠タイミング)等を検知する手法が知られている。例えば、特許文献1には、被験者の体動の有無の情報、並びに、被験者の心拍のゆらぎ成分に占める交感神経成分の割合及び副交感神経成分の割合の情報に基づいて、被験者の入眠タイミングを検知する技術が開示されている。このような被験者の疲労や居眠り等を検知する技術は、自動車や電車等の車両を運転する運転者の安全運転支援の技術分野においても、その活用が期待されている。
 しかしながら、車両の運転中等の、人体に常に振動が発生している状況下においては、脈波の波形に崩れが生じ易く、それゆえ、脈波データからゆらぎ成分を検出することが難しくなる。つまり、特許文献1に記載の技術等を用いた、脈波データを周波数解析することにより被験者の状態を検知する従来の手法により、車両を運転する運転者の疲労度や居眠り等状態を精度良く検知することは、決して易しくはなかった。
 この課題を解決する技術として、例えば特許文献2には、ドライバが着席するシートに圧力センサを配置し、この圧力センサの出力信号から得たドライバの体圧分布の時間変化の情報に基づいて、ドライバの覚醒度や疲労度を検出する技術が開示されている。
特開平2012-020117号公報 特開平10-129016号公報
 上記特許文献2に記載の技術は、ドライバの体圧分布の重心点を求め、重心点の移動量からドライバの体動を検知している。そして、体動の検知時から第1の所定時間以上体動の変化が検出されない場合に、ドライバの疲労が蓄積されていると判定する。また、体動が、第1の所定時間より短い第2の所定時間以内に所定の回数検知された場合には、ドライバの覚醒度が低いと判定する。しかしながら、上記特許文献2に記載の技術では、例えば、ドライバが覚醒度の高い状態で同一の姿勢を保ちながら長時間運転をしている場合であっても、居眠り運転をしていると誤判定される可能性がある。したがって、運転者の安全運転支援の技術分野においては、疲労や居眠り等の運転者の状態を精度良く検知する技術の提供が求められていた。
 本発明は、上記状況を鑑みなされたものであり、本発明の目的は、疲労や居眠り等の運転者の状態を精度良く検知する運転者状態検知装置を提供することにある。
 上記課題を解決するために、本発明の運転者状態検知装置は、車両に取り付けられた加速度センサと、重心移動量検出部と、運転者状態判定部とを備える。重心移動量検出部は、車両を構成する部品に取り付けられ、車両に搭乗している運転者の体の重心移動量を検出する。運転者状態判定部は、加速度センサで得られた車両の加速度と、重心移動量検出部で検出された運転者の体の重心移動量とのずれ量の大きさに基づいて、運転者の状態を判定する。
 本発明の運転者状態検知装置によれば、疲労や居眠り等の運転者の状態を精度良く検知することができる。
本発明の一実施形態に係る運転者状態検知装置の概略構成を示すブロック図である。 本発明の一実施形態に係る加速度センサ及び姿勢センサの車両への実装例を示す車両内部の上面図である。 本発明の一実施形態に係る姿勢センサの構成例を示す概略図である。 本発明の一実施形態に係るX方向誤差信号生成部の構成例を示すブロック図である。 本発明の一実施形態に係るドライバ状態判定部の構成例を示すブロック図である。 変形例に係るドプラーセンサを、ドライバが着用するシートベルトに取り付けた状態を示す説明図である。 変形例に係る高分子厚膜センサ又は微小振動検出マイクを、ドライバが着用するシートベルトに取り付けた状態を示す説明図である。
 以下、本発明の一実施形態に係る運転者状態検知装置の内容について、図面を参照して具体的に説明する。
[運転者状態検知装置の概要構成]
 まず、図1を参照して、本実施形態に係る運転者状態検知装置の概略構成について説明する。図1は、本実施形態の運転者状態検知装置100の概略構成を示すブロック図である。運転者状態検知装置100は、図1に示すように、加速度センサ1、姿勢センサ2(重心移動量検出部の一例)、重心移動量算出部3(重心移動量検出部の一例)、誤差信号生成部4及びドライバ状態判定部5(運転者状態判定部の一例)を備える。
 加速度センサ1は、車両V(図2参照)に取り付けられ、測定して得た車両Vの加速度Gx及びGyを誤差信号生成部4に出力する。加速度Gxは、車両Vの車幅方向であるX方向にかかる加速度であり、加速度Gyは、車両Vの長さ方向であるY方向にかかる加速度である。加速度センサ1は、例えば6軸加速度センサで構成することができるが、3軸加速度センサで構成してもよい。なお、以下の説明において、X方向の加速度GxとY方向の加速度Gyとを個別に区別する必要がない場合には、単に加速度Gと称する。
 姿勢センサ2は、車両Vを運転するドライバ(運転者の一例)が着席するシートSt1(運転席の一例、図2参照)の上面に配置されるセンサであり、内部にフィルム型の圧電センサ(図3参照)を有する。姿勢センサ2は、ドライバがシートSt1に着座することにより加えられる圧力の強さに応じた出力信号を生成して、重心移動量算出部3に出力する。姿勢センサ2については、後述の図3を参照して詳述する。
 重心移動量算出部3は、姿勢センサ2からの出力信号に基づいて、ドライバの重心移動に伴い発生する体の動き量(以下、重心移動量と称する)を算出する。重心移動量算出部3は、重心移動量として、X方向における重心移動量gx及びY方向における重心移動量gyを算出する。重心移動量算出部3については、姿勢センサ2の構成例を示した図3を参照して詳述する。なお、以下の説明において、X方向の重心移動量gxとY方向の重心移動量gyとを個別に区別する必要が無い場合には、単に重心移動量gと称する。
 誤差信号生成部4は、X方向誤差信号生成部40x及びY方向誤差信号生成部40yを備える。X方向誤差信号生成部40xは、加速度センサ1から入力される加速度Gxと、重心移動量算出部3から入力されるドライバの重心移動量gxとに基づいて、X方向誤差信号Oxを生成する。Y方向誤差信号生成部40yは、加速度センサ1から入力される加速度Gyと、重心移動量算出部3から入力されるドライバの重心移動量gyとに基づいて、Y方向誤差信号Oyを生成する。誤差信号生成部4については、後述の図4を参照して詳述する。
 ドライバ状態判定部5は、X方向誤差信号Ox及びY方向誤差信号Oyを加算して誤差信号Oを生成し、生成した誤差信号Oと予め設定された閾値とを比較した結果に基づいて、ドライバの状態を判定する。ドライバ状態判定部5については、後述の図5を参照して詳述する。
[加速度センサ及び姿勢センサの実装例]
 次に、図2を参照して、加速度センサ1及び姿勢センサ2の車両Vへの実装例について説明する。図2は、加速度センサ1及び姿勢センサ2の車両Vへの実装例を示す車両内部の上面図である。図2に示すように、車両Vには、ハンドルSwを操作するドライバDが着席するシートSt1、助手席のシートSt2及び後部座席のシートSt3が設けられる。
 シートSt1及びシートSt2の、車両Vの長さ方向(Y方向)における前方の位置には、車両Vの加速度Gを検出するための加速度センサ1が設置される。なお、図2に示した加速度センサ1の設置位置は一例であり、加速度センサ1は、車両V内部の他の位置に設置されてもよい。
 ドライバDが着座するシートSt1の座面には、姿勢センサ2が配置される。姿勢センサ2は、座布団のような平板状の形状に形成され、その上面には、シートSt1に着座したドライバDの臀部が配置される。
[姿勢センサの構成例]
 次に、図3を参照して、姿勢センサ2の構成例について説明する。図3は、姿勢センサ2の構成例を示す概略図である。姿勢センサ2は、フィルム型の4つの圧電センサ2a~2dで構成される。4つの圧電センサ2a~2dは、それぞれ、ドライバDが着座するシートSt1(車両を構成する部品の一例)の座面の座標平面を4つに分割して得られる各領域に配置される。
 4つの圧電センサ2a~2dによって囲まれた中心の位置が、座標平面における原点であり、図中の縦方向がX軸(車両Vの車幅方向)に対応し、横方向がY軸(車両Vの長さ方向)に対応する。この座標平面の第1象限に対応する位置に圧電センサ2aが配置され、第2象限に対応する位置に圧電センサ2bが配置され、第3象限に対応する位置に圧電センサ2cが配置され、第4象限に対応する位置に圧電センサ4dが配置される。図中のX軸のプラス方向(圧電センサ2a及び2dが配置された方向)がドライバDにとっての右方向に対応し、マイナス方向(圧電センサ2b及び2cが配置された方向)が左方向に対応する。また、図中のY軸のプラス方向(圧電センサ2a及び2bが配置された方向)がドライバDにとっての前方向(ハンドルSwの位置する方向)に対応し、マイナス方向(圧電センサ2c及び2dが配置された方向)がドライバDにとっての後ろ方向に対応する。
 重心移動量算出部3は、圧電センサ4a~4dの座標平面における配置位置の情報と、圧電センサ4a~4dからの出力信号の値とを用いて、重心移動量gを算出する。具体的には、重心移動量算出部3は、X軸のプラス側の領域に配置された圧電センサ2a及び2dからの出力信号と、X軸のマイナス側の領域に配置された圧電センサ2b及び2cからの出力信号との差分を、ドライバDのX方向の重心移動量gxとして算出する。このように算出される重心移動量gxは、ドライバDの横(左右)方向の体の揺れの大きさ及び揺れの方向を示す波形として、重心移動量算出部3から出力される。
 また、重心移動量算出部3は、Y軸のプラス側の領域に配置された圧電センサ2a及び2bからの出力信号と、Y軸のマイナス側の領域に配置された圧電センサ2c及び2dからの出力信号との差分を、ドライバDのY方向の重心移動量gyとして算出する。このように算出される重心移動量gyは、ドライバDの縦(前後)方向の体の揺れの大きさ及び揺れの方向を示す波形として、重心移動量算出部3から出力される。
 図3に示す例では、姿勢センサ2が配置されたシートSt1に着座したドライバDの臀部が、姿勢センサ2の中央近辺の位置Cpに配置されている。この場合、姿勢センサ2を構成する4つの圧電センサ2a~2dのそれぞれに対して、ドライバDの体による圧力が均一に加わる。この状態で、車両Vに加速度Gがかからなければ、ドライバDの体の揺れは殆ど発生しないため、重心移動量算出部3で算出される重心移動量gx及び重心移動量gyは“0”に近い値となる。
 これに対して、例えば車両Vに横(X)方向の加速度Gxがかかった状態においては、ドライバDの体は、加速度Gxがかかっている方向に追従するように左右に揺れる。つまり、重心移動量gyの出力値よりも重心移動量gxの出力値の方が大きくなる。このとき、ドライバDが居眠り等を行っていない通常の(覚醒した)状態であれば、人間が有する平衡感覚に基づく位置制御に基づいて、ドライバDは加速度Gxが加わっている方向とは逆の方向に無意識に体を移動させる(体を踏ん張る)。したがって、例えば、重心移動量gx及び車両Vの加速度Gxを、縦軸が車両VのX方向で横軸が時間を示すグラフにプロットした場合、重心移動量gxを示す波形と、車両Vの加速度Gxを示す波形との上記グラフの縦軸方向における差は小さくなる。
 一方、ドライバDに疲労が蓄積している状態や、居眠りをしている状態等においては、このような位置制御が効かず、車両Vに横方向の加速度Gxがかかった場合には、ドライバDの体は加速度Gxがかかった方向に大きく振れてしまう。したがって、重心移動量gxを示す波形は、車両Vの加速度Gxを示す波形に対して、上記グラフの縦軸方向において大きくずれたものとなる。つまり、ドライバDの重心移動量gと車両Vの加速度Vとのずれ量は、人間の平衡感覚に基づいて行われる位置制御の伝達特性を表したものであると考えることができる。
 本実施形態の運転者状態検知装置100は、ドライバDの重心移動量gと車両Vの加速度Vとのずれ量の大きさに基づいて、疲労度又は居眠り等のドライバDの状態を検知することを行う。具体的には、誤差信号生成部4がドライバDの重心移動量gと車両Vの加速度Vとのずれ量に応じた誤差信号を生成し、ドライバ状態判定部5が、誤差信号の値と、ドライバDの状態と予め対応づけられた閾値とを比較することにより、ドライバDの状態を判定する。
[誤差信号生成部の構成例]
 次に、誤差信号生成部4の構成例について説明する。誤差信号生成部4は、X方向誤差信号生成部40x及びY方向誤差信号生成部40yを有するが、いずれも構成は同じであるため、ここではX方向誤差信号生成部40xを例に挙げて説明する。図4は、X方向誤差信号生成部40xの構成例を示すブロック図である。図4に示すように、X方向誤差信号生成部40xは、適応フィルタ41x、遅延回路部42x、減算器43x、ピークホールド回路部44x及び平均値算出部45xを備える。
 適応フィルタ41xの2つの入力端子は、それぞれ加速度センサ1(図1参照)の出力端子(図示略)及び減算器43xの出力端子に接続される。適応フィルタ41xの出力端子は、減算器43xの「-」入力端子に接続される。遅延回路部42xの入力端子は、重心移動量算出部3(図1参照)に接続され、遅延回路部42xの出力端子は、減算器43xの「+」入力端子に接続される。減算器43xの出力端子は、適応フィルタ41xの一方の入力端子及びピークホールド回路部44xの入力端子に接続される。ピークホールド回路部44xの出力端子は、平均値算出部45xの入力端子に接続される。
 適応フィルタ41xは、例えばLMS(最小平均二乗)フィルタで構成される。適応フィルタ41xは、自フィルタからの出力(以下、「フィルタ出力」と称する)と、加速度センサ1から入力される車両Vの加速度Gxとの差分を示す誤差信号gxの値が最小になるように、フィルタ係数を更新する。そして、更新後のフィルタ係数と、重心移動量算出部3から入力される重心移動量gxとの畳み込み演算を行い、演算の結果をフィルタ出力として出力する。適応フィルタ41xからのフィルタ出力は、減算器43xの「-」入力端子に入力される。
 遅延回路部42xは、加速度センサ1から入力される加速度Gxに対して、適応フィルタ41xでの演算時間に相当する時間分の遅延を加える。遅延が加えられた加速度Gxは、減算器43xの「+」入力端子に入力される。
 減算器43xは、遅延回路部42xから入力される加速度Gxから、適応フィルタ41xから入力されるフィルタ出力を減算して誤差信号exを生成する。この誤差信号exは、遅延回路部42xから入力される加速度Gxと、適応フィルタ41xでフィルタ係数との畳み込み演算が行われた重心移動量gxとの差分を示す信号である。したがって、誤差信号exの値は、重心移動量gxと加速度Gxとの差分が大きいほど大きな値となる。
 減算器43xで生成された誤差信号exは、適応フィルタ41xの入力端子及びピークホールド回路部44xの入力端子に入力される。ピークホールド回路部44xは、減算器43xから出力された誤差信号exのピーク値を保持する処理を行い、保持したピーク値を平均値算出部45xに出力する。平均値算出部45xは、ピークホールド回路部44xから出力されたピーク値を、例えば1秒間等の所定の時間分保持してその平均値を算出し、算出した平均値を誤差信号Oxとして出力する。つまり、本実施形態におけるピークホールド回路部44x及び平均値算出部45xは、誤差信号exに含まれる雑音成分を除去するLPF(Low Pass Fileter)としての機能を有する。
 誤差信号生成部4から出力される誤差信号Ox(又は誤差信号Oy)の値は、ドライバDが覚醒していて位置制御が働いている状態においては小さくなり、ドライバDに疲労が蓄積していたり居眠りしたりしている状態においては大きくなる。
 なお、本実施形態では、減算器43から出力される誤差信号exから誤差信号Ox(誤差信号eyから誤差信号Oy)を生成する例を挙げたが、本発明はこれに限定されない。適応フィルタ41x(又は41y(図示略))のフィルタ出力をピークホールド回路部44x(又は44y(図示略))に入力することにより、誤差信号Ox(又はOy)を生成するようにしてもよい。
[ドライバ状態判定部の構成例]
 次に、図5を参照して、ドライバ状態判定部5の構成例について説明する。図5は、ドライバ状態判定部5の構成例を示すブロック図である。ドライバ状態判定部5は、図5に示すように、X方向ゲイン調整部51x、Y方向ゲイン調整部51y、加算器52及び閾値比較部53を備える。
 X方向ゲイン調整部51xの入力端子は、X方向誤差信号生成部40x(図1参照)の平均値算出部45xの出力端子に接続され、X方向ゲイン調整部51xの出力端子は、加算器52の一方の入力端子に接続される。Y方向ゲイン調整部51yの入力端子は、Y方向誤差信号生成部40y(図1参照)の平均値算出部(図示略)の出力端子に接続され、Y方向ゲイン調整部51yの出力端子は、加算器52の他方の入力端子に接続される。加算器52の出力端子は、閾値比較部53の入力端子に接続される。
 X方向ゲイン調整部51xは、X方向誤差信号生成部40xの平均値算出部45xから出力される誤差信号Oxに対して、予め定められたゲインを加えて出力する。Y方向ゲイン調整部51yは、Y方向誤差信号生成部40y(の平均値算出部)から出力される誤差信号Oyに対して、予め定められたゲインを加えて出力する。X方向ゲイン調整部51x及びY方向ゲイン調整部51yに設定される各ゲインは、運転者状態検知装置100を使用するユーザーによって任意の値に設定される。ユーザーは、X方向又はY方向のうちの、ドライバDの状態に関する情報をより重点的に判定したい方向対応するゲイン調整部51に対して、より多くのゲインを設定することができる。
 加算器52は、X方向ゲイン調整部51xでゲインが調整された誤差信号Oxと、X方向ゲイン調整部51xでゲインが調整された誤差信号Oyとを加算し、加算して得た誤差信号Oを閾値比較部53に出力する。
 閾値比較部53は、加算器52から出力された誤差信号Oと、予めドライバDの状態と対応付けて設定された閾値とを比較し、該比較の結果に基づいてドライバDの状態を判定する。例えば、誤差信号Oの値が、ドライバDの疲労が蓄積していると判定可能な閾値を超えていた場合、閾値比較部53は、ドライバDの疲労が蓄積していると判定する。また、誤差信号Oの値が、ドライバDが居眠り状態にあると判定可能な閾値を超えていた場合、閾値比較部53は、ドライバDが居眠り状態にあると判定する。閾値比較部53に設定する閾値は、実験等によって求まる最適な値を設定できるものとする。
[各種効果]
 上記実施形態では、加速度センサ1で得られた車両Vの加速度Gと、姿勢センサ2及び重心移動量算出部3で検出されたドライバDの重心移動量gとのずれ量の大きさを、ドライバ状態判定部5が閾値と比較することによって、ドライバDの状態を判定する。車両Vの加速度Gと、ドライバDの体の重心の移動量gとのずれ量を示す誤差信号Oは、上述したように、人間の平衡感覚に基づいて行われる位置制御の伝達特性を表す値であると考えられる。つまり、上記実施形態によれば、人間の位置制御の伝達特性を示す誤差信号Oの値の大きさに基づいて、疲労や居眠り等のドライバDの状態を精度良く検知することができる。
 また、上記実施形態によれば、位置制御の伝達特性から判断できるドライバDの状態であれば、例えば、病気等にかかっている状態等、他の状態も判定することができる。位置制御の効き方は、ドライバDの運転の熟練度によっても変わるものであるため、上記実施形態によれば、ドライバDの運転の熟練度(上手さ)も判定することができる。
 また、上記実施形態では、誤差信号生成部4は適応フィルタ41を含んで構成される。適応フィルタ41は、ドライバDの重心移動量gとフィルタ係数との畳み込みにより得られるフィルタ出力と、車両Vの加速度Gとの差分を示す誤差信号eの値を最小とするためにフィルタ係数を更新する。そして、適応フィルタ41のフィルタ出力と、車両Vの加速度Gとの差分を示す誤差信号eから雑音成分を除去した信号である誤差信号Oの値に基づいて、ドライバ状態判定部5によってドライバDの状態が判定される。それゆえ、上記実施形態によれば、疲労や居眠り等のドライバDの状態を、容易な構成で精度良く検知することができる。
 また、ドライバDが覚醒していて、平衡感覚に基づく位置制御が効いている状態であっても、車両Vに加速度Gがかかってから(脳が加速度を検知してから)実際にドライバDの体の位置が制御されるまでの間には、所定のディレイが生ずる。上記実施形態では、適応フィルタ41がこのディレイを吸収できるため、ドライバDの状態を精度よく検知することができる。
 また、上記実施形態では、車両Vの運転席であるシートSt1の座面に設けられた、圧電センサ2a~2dを有する姿勢センサ2の出力値に基づいて、ドライバDの重心移動量gが算出される。そして、重心移動量gと車両Vの加速度Gとのずれ量の大きさに基づいて、ドライバDの状態が判定される。それゆえ、上記実施形態によれば、ドライバDの体にセンサ等を貼り付けたりすることなく非接触で、かつ、精度良くドライバDの状態を検知することができる。
[各種変形例]
 上記実施形態では、誤差信号生成部4がX方向誤差信号生成部40X及びY方向誤差信号生成部40Yを備え、それぞれがX方向における誤差信号OxとY方向における誤差信号Oyとを別々に生成する例を挙げたが、本発明はこれに限定されない。例えば、重心移動量算出部3において、重心移動量gx及び重心移動量gyを加算して重心移動量g′を生成し、この重心移動量g′に基づいて誤差信号生成部4が誤差信号Oを生成するように構成してもよい。重心移動量g′は、例えば下記の式1により算出することができる。
 重心移動量g′=A・Sin(θ)…式1
 上記式1における“A”は、極座標における“r”(動径)を示し、“θ”は偏角を示す。上記式1における“A”は、下記の式2によって求めることができ、“θ”は、下記の式3によって求めることができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 重心移動量算出部が重心移動量g′を算出する手法によれば、適応フィルタ41を重心移動量g′に対応して一つだけ設ければよいため、上記実施形態と比較して演算量を削減することができる。
 また、上記実施形態では、加速度センサ1が検知した車両Vの加速度Gと、姿勢センサ2及び重心移動量算出部3が検出したドライバDの重心移動量gとのずれ量の情報に基づいて、ドライバ状態判定部5がドライバDの状態を検知する例を挙げた。しかしながら、本発明はこの例に限定されない。加速度センサ1が検知した車両Vの加速度Gと比較するドライバDの体の重心移動量gを検出するための姿勢センサは、他のセンサで構成してもよい。
 例えば、姿勢センサを、ドプラーセンサ等の電波センサで構成してもよい。姿勢センサをドプラーセンサで構成した場合の例を、図6を参照して説明する。図6は、ドプラーセンサ6を、ドライバDが着用するシートベルトSbに取り付けた状態を示す説明図である。
 図6に示す例では、ドプラーセンサ6は、ドライバDが着用するシートベルトSbにおけるドライバDの胸部と対応する位置に取り付けられる。ドプラーセンサ6は、ドライバDの体の方向に向けて電波(マイクロ波)を発射し、ドライバDの体に反射して戻ってきた電波の周波数と、発射した電波の周波数とを比較することにより(ドプラーセンシングにより)、ドライバDの体の動きを検出する。
 例えば、ドライバDの体がハンドルSw(図2及び図3参照)の方向に傾く等によって、ドプラーセンサ6とドライバDの体との間の距離が短くなると、ドプラーセンサ6によって検出されるドライバDの体の移動速度の極性はプラスになる。そして、ドプラーセンサ6によって検出される、ドライバDの体に反射して戻ってきた電波の周波数は高くなる。一方、ドライバDの体がハンドルSwから離れる方向に移動して、ドプラーセンサ6とドライバDの体との距離が遠くなると、ドプラーセンサ6によって検出されるドライバDの体の移動速度の極性はマイナスになる。そして、ドプラーセンサ6によって検出される、ドライバDの体に反射して戻ってきた電波の周波数は低くなる。
 つまり、図6に示すドプラーセンサ6の出力値には、ドプラーセンサ6が取り付けられたシートベルトSbとドライバDの体との距離、及びドライバDの体の前後方向(Y方向)における移動方向及び移動速度の情報が含まれる。
 ドプラーセンサ6の出力値は、Y方向誤差信号生成部40y(図1参照)に入力することができる。これにより、Y方向誤差信号生成部40yによって、ドプラーセンサ6の出力値と、加速度センサ1で得られた車両VのY方向の加速度Gyとが比較される。そして、Y方向誤差信号生成部40yからドライバ状態判定部5(図1参照)に対して、両値の誤差の大きさを示す誤差信号ey(図示略)が出力される。ドライバ状態判定部5では、誤差信号eyから雑音成分が取り除かれた誤差信号Oyと閾値とが比較されることにより、ドライバDの状態が判定される。
 また、姿勢センサを、高分子厚膜センサ等の圧力センサや、微小振動検出マイク等で構成してもよい。姿勢センサを、高分子厚膜センサ又は微小振動検出マイクで構成した場合の例を、図7を参照して説明する。図7は、高分子厚膜センサ7又は微小振動検出マイク8を、ドライバDが着用するシートベルトSbに取り付けた状態を示す説明図である。
 図7に示す例では、高分子厚膜センサ7又は微小振動検出マイク8が、ドライバDが着用するシートベルトSbにおけるドライバDの腹部と対応する位置に取り付けられる。まず、シートベルトSbに高分子厚膜センサ7を取り付けた場合の例について説明する。高分子厚膜センサ7は、自センサに加わる圧力の増加に伴って、電気的抵抗値が減少する特性を有するセンサである。したがって、例えば、ドライバDの体がハンドルSwの方向に傾く等によって、シートベルトSb上の高分子厚膜センサ7にドライバDの体による圧力が加わると、高分子厚膜センサ7の抵抗値は減少する。一方、ドライバDの体がハンドルSwから離れる方向に移動して、シートベルトSbに加わるドライバDの体による圧力が減少すると、高分子厚膜センサ7の抵抗値もその分高くなる。つまり、図7に示す高分子厚膜センサ7の出力値には、ドライバDの体の前後方向(Y方向)における移動方向及び移動量の情報が含まれる。
 次に、シートベルトSbに微小振動検出マイク8を取り付けた場合の例について説明する。微小振動検出マイク8は、集音した音の音圧の大きさを振動の大きさとして検出するセンサである。例えば、ドライバDの体がハンドルSwの方向に傾く等によって、シートベルトSbにドライバDの体が押しつけられると、微小振動検出マイク8により検出される振動のレベルは大きくなる。一方、ドライバDの体がハンドルSwから離れる方向に移動して、ドライバDの体がシートベルトSbから離れると、微小振動検出マイク8により検出される振動のレベルは小さくなる。つまり、図7に示す微小振動検出マイク8の出力値にも、ドライバDの体の前後方向(Y方向)における移動方向及び移動量の情報が含まれる。
 また、上述した実施形態及び変形例では、ドライバDの体の動きに関する情報を取得するセンサを、車両VのシートSt1又はシートベルトSb等の車両Vの部品に取り付けた例を挙げたが、本発明はこれに限定されない。例えば、ドライバDの体に直接加速度センサを装着し、該加速度センサからの出力値と、車両Vに取り付けられた加速度センサ1からの出力値とを比較するように運転者状態検知装置を構成してもよい。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。例えば、上記した実施形態は本発明をわかりやすく説明するために装置(運転者状態検知装置)の構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 1…加速度センサ、2…姿勢センサ、2a~2d…圧電センサ、3…重心移動量算出部、4…誤差信号生成部、5…ドライバ状態判定部、6…ドプラーセンサ、7…高分子厚膜センサ、8…微小振動検出マイク、40x…X方向誤差信号生成部40y…Y方向誤差信号生成部41,41x…適応フィルタ、42x…遅延回路部、43x…減算器、44x…ピークホールド回路部、45x…平均値算出部、51x…X方向ゲイン調整部、51y…Y方向ゲイン調整部、52…加算器、53…閾値比較部、100…運転者状態検知装置

Claims (8)

  1.  車両に取り付けられた加速度センサと、
     前記車両を構成する部品に取り付けられ、前記車両に搭乗している運転者の体の重心移動量を検出する重心移動量検出部と、
     前記加速度センサで得られた前記車両の加速度と、前記重心移動量検出部で検出された前記運転者の体の重心移動量とのずれ量の大きさに基づいて、前記運転者の状態を判定する運転者状態判定部と、を備える
     運転者状態検知装置。
  2.  前記重心移動量検出部は、
     前記車両の運転席の座面に設けられて、前記運転者が前記運転席に着座することにより加わる圧力に応じた電圧を出力する姿勢センサと、
     前記姿勢センサの出力値から、前記運転者の前記重心移動量を算出する重心移動量算出部と、を有する
     請求項1に記載の運転者状態検知装置。
  3.  前記姿勢センサは、
     前記運転席の座面の座標平面を4つに分割した各領域に配置される4つのフィルム型の圧電センサであり、前記座標平面におけるX軸は前記車両の車幅方向に対応し、前記座標平面におけるY軸は前記車両の長さ方向に対応し、
     前記重心移動量算出部は、前記圧電センサの前記座標平面における配置位置の情報及び前記圧電センサの出力値を用いて、前記運転者の重心移動量を算出する
     請求項2に記載の運転者状態検知装置。
  4.  前記重心移動量検出部で検出された前記運転者の重心移動量とフィルタ係数との畳み込みにより得られるフィルタ出力と、前記加速度センサで得られた前記車両の加速度との差分を示す誤差信号の値が小さくなるようにフィルタ係数を更新する適応フィルタを含んだ誤差信号生成部をさらに備え、
     前記車両の加速度と前記運転者の重心移動量とのずれ量は、前記適応フィルタのフィルタ出力又は前記誤差信号の値によって示される
     請求項1~3のいずれか一項に記載の運転者状態検知装置。
  5.  前記重心移動量検出部は、
     前記運転者が着用するシートベルトに設けられ、前記運転者の体の動きをドプラーセンシングによって検出する電波センサを備える
     請求項1に記載の運転者状態検知装置。
  6.  前記重心移動量検出部は、
     前記運転者が着用するシートベルトに設けられ、前記運転者の体により加わる圧力の増加に伴い電気的抵抗値が減少する特性を有する高分子厚膜センサを備える
     請求項1に記載の運転者状態検知装置。
  7.  前記重心移動量検出部は、
     前記運転者が着用するシートベルトに設けられ、前記運転者の体の動きを振動の大きさとして検出する微小振動検出マイクを備える
     請求項1に記載の運転者状態検知装置。
  8.  前記重心移動量検出部は、
     前記運転者の体に装着される加速度センサを備える
     請求項1に記載の運転者状態検知装置。
PCT/JP2018/008944 2017-03-28 2018-03-08 運転者状態検知装置 WO2018180331A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/497,940 US20210101604A1 (en) 2017-03-28 2018-03-08 Driver state detection device
CN201880021907.2A CN110476194A (zh) 2017-03-28 2018-03-08 驾驶员状态探测装置
JP2019509131A JP6831605B2 (ja) 2017-03-28 2018-03-08 運転者状態検知装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017063540 2017-03-28
JP2017-063540 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180331A1 true WO2018180331A1 (ja) 2018-10-04

Family

ID=63675655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008944 WO2018180331A1 (ja) 2017-03-28 2018-03-08 運転者状態検知装置

Country Status (4)

Country Link
US (1) US20210101604A1 (ja)
JP (1) JP6831605B2 (ja)
CN (1) CN110476194A (ja)
WO (1) WO2018180331A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146235A (ja) * 2019-03-13 2020-09-17 日本電産モビリティ株式会社 生体情報出力装置、生体情報出力方法、生体情報出力プログラムおよび記録媒体
WO2022034772A1 (ja) * 2020-08-11 2022-02-17 株式会社デンソー 物体検出装置および物体検出方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113967014B (zh) * 2021-12-22 2022-04-08 成都航空职业技术学院 基于大数据的学生行为分析装置、***及方法
CN114537323A (zh) * 2022-03-04 2022-05-27 浙江吉利控股集团有限公司 一种安全带及其安全带佩戴识别方法和装置
CN116129409B (zh) * 2023-04-11 2023-06-27 钧捷智能(深圳)有限公司 一种基于运动分析的驾驶员监测方法及***
CN116616721B (zh) * 2023-07-24 2023-10-13 北京中科心研科技有限公司 一种基于ppg信号的作息信息确定方法、装置及可穿戴设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326084A (ja) * 1998-05-12 1999-11-26 Isuzu Motors Ltd ドライバ状態検出装置
JP3090782U (ja) * 2002-06-17 2002-12-26 コスモシステム開発株式会社 動作解析装置
WO2004082479A1 (ja) * 2003-02-24 2004-09-30 Electronic Navigation Research Institute, Independent Administrative Institution 心身状態判定システム
JP2009213636A (ja) * 2008-03-10 2009-09-24 Denso Corp 状態推定装置
JP2012166579A (ja) * 2011-02-09 2012-09-06 Aisin Seiki Co Ltd 状態判定装置、状態判定方法及びプログラム
JP2012252632A (ja) * 2011-06-06 2012-12-20 Nippon Seiki Co Ltd 運転者監視装置
WO2013042530A1 (ja) * 2011-09-22 2013-03-28 Necカシオモバイルコミュニケーションズ株式会社 表示装置、表示制御方法およびプログラム
JP2018032338A (ja) * 2016-08-26 2018-03-01 マツダ株式会社 運転者体調検知装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090174560A1 (en) * 2008-01-03 2009-07-09 General Electric Company Systems, Apparatuses And Methods For Monitoring Physical Conditions Of A Vehicle Driver
JP4591541B2 (ja) * 2008-05-14 2010-12-01 横浜ゴム株式会社 車両の走行条件評価方法及びその評価装置
CN102407805A (zh) * 2010-09-20 2012-04-11 天津职业技术师范大学 汽车驾驶员状态实时监测***
JP2013069184A (ja) * 2011-09-26 2013-04-18 Nippon Seiki Co Ltd 車両運転者状態判定装置及び車両運転者状態判定方法
CN104952210B (zh) * 2015-05-15 2018-01-05 南京邮电大学 一种基于决策级数据融合的疲劳驾驶状态检测***和方法
CN105405253B (zh) * 2015-12-18 2017-05-24 中交第一公路勘察设计研究院有限公司 一种驾驶员疲劳状态的监测方法及监测装置
CN205541297U (zh) * 2016-04-07 2016-08-31 深圳市云传智联技术有限公司 疲劳驾驶预警***及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326084A (ja) * 1998-05-12 1999-11-26 Isuzu Motors Ltd ドライバ状態検出装置
JP3090782U (ja) * 2002-06-17 2002-12-26 コスモシステム開発株式会社 動作解析装置
WO2004082479A1 (ja) * 2003-02-24 2004-09-30 Electronic Navigation Research Institute, Independent Administrative Institution 心身状態判定システム
JP2009213636A (ja) * 2008-03-10 2009-09-24 Denso Corp 状態推定装置
JP2012166579A (ja) * 2011-02-09 2012-09-06 Aisin Seiki Co Ltd 状態判定装置、状態判定方法及びプログラム
JP2012252632A (ja) * 2011-06-06 2012-12-20 Nippon Seiki Co Ltd 運転者監視装置
WO2013042530A1 (ja) * 2011-09-22 2013-03-28 Necカシオモバイルコミュニケーションズ株式会社 表示装置、表示制御方法およびプログラム
JP2018032338A (ja) * 2016-08-26 2018-03-01 マツダ株式会社 運転者体調検知装置及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146235A (ja) * 2019-03-13 2020-09-17 日本電産モビリティ株式会社 生体情報出力装置、生体情報出力方法、生体情報出力プログラムおよび記録媒体
WO2022034772A1 (ja) * 2020-08-11 2022-02-17 株式会社デンソー 物体検出装置および物体検出方法

Also Published As

Publication number Publication date
JP6831605B2 (ja) 2021-02-17
JPWO2018180331A1 (ja) 2020-02-06
CN110476194A (zh) 2019-11-19
US20210101604A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2018180331A1 (ja) 運転者状態検知装置
EP3159891B1 (en) Noise and vibration sensing
WO2010107092A1 (ja) 生物学的パラメータを監視する方法、コンピュータプログラム、および生物学的パラメータの監視装置
WO2010107091A1 (ja) 生物学的パラメータを監視する方法、コンピュータプログラム、および生物学的パラメータの監視装置
WO2010107093A1 (ja) 生物学的パラメータを監視する方法、コンピュータプログラム、および生物学的パラメータの監視装置
JP2007182209A (ja) 車両物理量推定装置及びプロブラム
JP5919722B2 (ja) 生体信号推定装置及びプログラム
US20150158494A1 (en) Method and apparatus for determining carelessness of driver
US11738773B2 (en) System for controlling autonomous vehicle for reducing motion sickness
JP2018165070A (ja) 乗員状態推定装置及び乗員状態推定方法
WO2010091464A1 (en) Method and system for monitoring an operator of machinery
US9330306B2 (en) 3D gesture stabilization for robust input control in mobile environments
JP6303681B2 (ja) 乗員姿勢制御装置
JP5982894B2 (ja) 車両制御装置及びプログラム
JP2018117740A (ja) 生体情報検出装置
CN113212437B (zh) 车辆弯道行驶时晕动症估计方法
JP2004053459A (ja) 乗員判定装置
JP2009227075A (ja) 乗員姿勢補助装置、及びプログラム
US10759248B2 (en) Traveling control system for vehicle
CN111933103B (zh) 车辆主动降噪***、主动降噪方法及计算机存储介质
JPH04129847A (ja) 車両用アクティブシート装置
JP2004182005A (ja) 乗員判定装置
KR20210158525A (ko) 자율주행차 주행 시 멀미 저감 시스템
JP2009067169A (ja) 車両の乗員姿勢制御装置
JPH09309373A (ja) 在席判定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776360

Country of ref document: EP

Kind code of ref document: A1