WO2018179031A1 - 車両用電力変換装置 - Google Patents

車両用電力変換装置 Download PDF

Info

Publication number
WO2018179031A1
WO2018179031A1 PCT/JP2017/012290 JP2017012290W WO2018179031A1 WO 2018179031 A1 WO2018179031 A1 WO 2018179031A1 JP 2017012290 W JP2017012290 W JP 2017012290W WO 2018179031 A1 WO2018179031 A1 WO 2018179031A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
base
conversion device
power converter
power conversion
Prior art date
Application number
PCT/JP2017/012290
Other languages
English (en)
French (fr)
Inventor
宏和 高林
良介 中川
一法師 茂俊
健 篠▲崎▼
裕之 牛房
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/496,645 priority Critical patent/US11348850B2/en
Priority to DE112017007329.4T priority patent/DE112017007329T5/de
Priority to PCT/JP2017/012290 priority patent/WO2018179031A1/ja
Priority to JP2019508332A priority patent/JP6710320B2/ja
Publication of WO2018179031A1 publication Critical patent/WO2018179031A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/049Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being perpendicular to the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • This invention relates to a vehicle power conversion device provided with a cooling device.
  • the semiconductor element included in the power converter generates heat during the switching operation.
  • the power converter is provided with a cooling device.
  • the heat sink provided with the heat pipe disclosed in Patent Document 1 is configured by burying the heat pipe almost over the entire length of the base plate.
  • the heat pipe is inserted into an embedding groove formed in the base plate and then embedded with solder.
  • the power converter disclosed in Patent Document 2 is provided under the floor of a railway vehicle.
  • a power semiconductor module is installed on one surface of the heat receiving member, and a heat pipe is embedded on the other surface.
  • the heat pipe is thermally connected to the heat receiving member by soldering.
  • the thermal resistance is increased by the solder provided between the base plate and the heat pipe.
  • the thermal resistance is increased by the solder provided between the heat receiving member and the heat pipe.
  • the present invention has been made in view of the above circumstances, and an object thereof is to improve the cooling performance of a vehicular power conversion device.
  • a vehicle power converter includes an electronic component housed therein, an opening formed therein, a housing attached to the vehicle, a base attached to the housing, and a plurality of heat radiating portions.
  • the base is a plate-like member having a first main surface and a second main surface facing each other.
  • a groove is formed in the base so as to extend along the first main surface and the second main surface and enclose the refrigerant.
  • the base closes the opening so that the first main surface faces the inside of the housing.
  • An electronic component is attached to the first main surface.
  • the plurality of heat radiating portions are joined to the second main surface at intervals.
  • the cooling performance of the vehicular power conversion device is improved by joining the plurality of heat dissipating portions at intervals to the surface of the base in which the groove into which the refrigerant is sealed is formed. It is possible.
  • FIG. 1 Side view of cooling apparatus according to Embodiment 1 of the present invention.
  • Sectional drawing of the cooling device concerning Embodiment 1 Sectional drawing of the cooling device concerning Embodiment 1 Sectional drawing of the power converter device which concerns on Embodiment 1.
  • FIG. Sectional drawing of the power converter device which concerns on Embodiment 1.
  • FIG. The figure which shows the example in which the power converter device which concerns on Embodiment 1 is mounted in the vehicle.
  • Sectional drawing of the cooling device which concerns on Embodiment 2 of this invention Sectional drawing of the cooling device which concerns on Embodiment 2.
  • FIG. Sectional drawing of the cooling device which concerns on Embodiment 2.
  • FIG. 1 is a side view of a cooling device according to Embodiment 1 of the present invention.
  • the cooling device 1 includes a base 10 that is a plate-like member and a plurality of heat radiating portions 20 that are attached to the base 10.
  • the number of the heat radiation parts 20 is arbitrary.
  • the heat radiating part 20 is a fin.
  • the base 10 has a first main surface 11 to which electronic components are attached, and a second main surface 12 that faces the first main surface 11.
  • the heat radiating unit 20 is attached to the second main surface 12.
  • the cooling device 1 cools electronic components attached to the first main surface 11.
  • FIG. 2 is a cross-sectional view of the cooling device according to the first embodiment.
  • a groove 13 extending along the first main surface 11 and the second main surface 12 is formed in the base 10.
  • a coolant 14 is sealed in the groove 13.
  • the refrigerant 14 is a gas-liquid two-phase state in which the refrigerant 14 in a gas state and the refrigerant 14 in a liquid state are mixed.
  • the refrigerant is, for example, pure water, ethanol, acetone or the like.
  • FIG. 3 is a cross-sectional view of the cooling device according to the first embodiment. 3 is a cross-sectional view taken along line AA in FIG.
  • a plurality of grooves 13 each extending in the horizontal direction are formed side by side in the vertical direction along the first main surface 11 and the second main surface 12.
  • the heat radiation unit 20 is a fin extending in the vertical direction, but the direction in which the heat radiation unit 20 is attached is arbitrary.
  • the heat radiation part 20 may be a fin extending in the horizontal direction.
  • a part indicated by a broken line is a part on the first main surface 11 that faces a part where an electronic component described later is attached. That is, in FIG. 3, the part shown with a broken line is a part where temperature rises by the heat_generation
  • the temperature of the refrigerant 14 sealed in each of the grooves 13 is made uniform in the horizontal direction by the convection of the refrigerant 14. Therefore, the temperature of an electronic component, which will be described later, attached to the first main surface 11 is made uniform in the horizontal direction.
  • FIG. 4 is a cross-sectional view of the power conversion apparatus according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the power conversion device according to the first embodiment.
  • FIG. 5 is a sectional view taken along line BB in FIG.
  • FIG. 6 is a diagram illustrating an example in which the vehicle power conversion device according to the first embodiment is mounted on a vehicle.
  • the vehicle power conversion device 2 includes a housing 3 and a cooling device 1.
  • An electronic component 6 is stored inside the housing 3.
  • An opening 7 is formed in the housing 3.
  • the housing 3 of the vehicle power conversion device 2 is attached under the floor of the vehicle 100.
  • the cooling device 1 is attached to the housing 3.
  • the base 10 of the cooling device 1 closes the opening 7.
  • the first main surface 11 of the base 10 faces the inside of the housing 3.
  • the electronic component 6 is attached to the first main surface 11. Since the groove 10 is formed in the base 10, the thickness of the base 10 in the direction in which the first main surface 11 and the second main surface 12 face each other is larger than the thickness of the housing 3.
  • the cooling device 1 is covered with a cover 4.
  • a vent 5 is formed in the cover 4. Air flowing in from the vent 5 flows while contacting the heat radiating portion 20.
  • the electronic component 6 is cooled by transferring heat from the heat radiating unit 20 to the air.
  • the cooling of the electronic component 6 by the cooling device 1 will be described. Heat generated in the electronic component 6 is transmitted to the refrigerant 14 via the first main surface 11 of the base 10. Due to the heat transferred from the electronic component 6, the temperature of the liquid refrigerant 14 rises and the refrigerant 14 changes to a gas. The refrigerant 14 that has been changed to gas flows inside the groove 13 to a location where the temperature is lower. While the refrigerant 14 flows through the groove 13 toward a location where the temperature is low, heat is transferred from the refrigerant 14 to the heat radiating unit 20 via the second main surface 12. The temperature of the refrigerant 14 that has transmitted heat to the heat radiating unit 20 decreases, and the refrigerant 14 changes to a liquid.
  • the heat radiating unit 20 to which heat is transmitted from the refrigerant 14 transmits heat to the flowing air while being in contact with the heat radiating unit 20.
  • the heat radiating portion 20 is cooled by transferring heat to the air. As described above, the heat generated in the electronic component 6 is transmitted to the air via the refrigerant 14 and the heat radiating unit 20, and the electronic component 6 is cooled.
  • the inner surface of the groove 13 is provided with a structure that promotes the flow of the refrigerant 14 by generating a capillary phenomenon, such as a wig, a groove, and a mesh.
  • the material of the base 10 and the heat radiating part 20 is, for example, aluminum.
  • the heat radiating part 20 is joined to the second main surface 12 by, for example, brazing, friction stir welding, or the like.
  • heat is transmitted from the electronic component 6 to the refrigerant 14 via the first main surface 11 of the base 10, and heat is transmitted from the refrigerant 14 to the heat dissipation unit 20 via the second main surface 12.
  • the cooling performance of the cooling device 1 according to Embodiment 1 is higher than that of the vessel.
  • the electronic component 6 is a power converter, for example, an inverter.
  • the electronic component 6 includes, for example, an electronic element such as a switching element or a diode that is formed of a wide band gap semiconductor having a larger band gap than silicon.
  • the wide band gap semiconductor is, for example, silicon carbide, gallium nitride material, diamond or the like.
  • a switching element formed of a wide band gap semiconductor is used, the switching speed is increased, so that the heat generated in the electronic component 6 increases.
  • the second main surface 12 of the base 10 in which the groove 13 in which the refrigerant 14 is sealed is formed is spaced from each other. It is possible to improve the cooling performance of the vehicular power converter 2 by opening and joining the plurality of heat dissipating units 20. Further, by forming the groove 13 extending in the horizontal direction inside the base 10, the temperature of the electronic component 6 can be made uniform in the horizontal direction. By providing a fin that extends in the same direction as the groove 13 as the heat dissipating part 20, it is possible to improve the cooling performance of the vehicular power converter 2.
  • the vehicular power conversion device 2 is a cooling method that can cause a temperature variation in the horizontal direction, for example, a running direction that flows in the horizontal direction. Suitable for cooling method using wind.
  • FIG. 7 is a cross-sectional view of a cooling device according to Embodiment 2 of the present invention.
  • FIG. 8 is a cross-sectional view of the cooling device according to the second embodiment. 8 is a cross-sectional view taken along the line CC of FIG.
  • a plurality of grooves 15 each extending in the vertical direction are formed side by side in the horizontal direction.
  • the heat radiating part 20 is joined to the second main surface 12 as in the first embodiment.
  • the electronic device 6 is cooled by the cooling device 1.
  • the refrigerant 14 that has been changed to gas flows inside the groove 15 to a location where the temperature is lower. Since the refrigerant 14 moves in the vertical direction, the temperature of the electronic component 6 attached to the first main surface 11 is made uniform in the vertical direction.
  • FIG. 9 is a cross-sectional view of the cooling device according to the second embodiment.
  • a bypass 16 that connects the lower ends in the vertical direction of at least some of the grooves 15 is formed.
  • the second main surface 12 of the base 10 in which the groove 15 in which the refrigerant 14 is sealed is formed is spaced from each other. It is possible to improve the cooling performance of the vehicular power converter 2 by opening and joining the plurality of heat dissipating units 20. Further, by forming the groove 15 extending in the vertical direction inside the base 10, the temperature of the electronic component 6 can be made uniform in the vertical direction. By providing a fin that extends in the same direction as the groove 15 as the heat dissipating part 20, it is possible to improve the cooling performance of the vehicle power conversion device 2. Since the groove 15 extending in the vertical direction is formed in the base 10, the vehicular power conversion device 2 according to the second embodiment uses a cooling method that can cause temperature variations in the vertical direction, such as natural convection. Suitable for cooling method.
  • FIG. 10 is a cross-sectional view of a cooling device according to Embodiment 3 of the present invention.
  • the base 10 of the cooling device 1 according to the third embodiment has an annular shape whose center axis is the direction in which the first main surface 11 and the second main surface 12 face each other.
  • a groove 17 is formed.
  • the heat radiating part 20 is joined to the second main surface 12 as in the first embodiment.
  • the electronic device 6 is cooled by the cooling device 1.
  • the refrigerant 14 convects as shown by a solid line arrow in FIG. 10 by attaching the electronic component 6 to a portion of the first main surface 11 facing a part of the groove 17. . Due to the convection of the refrigerant 14, the temperature of the electronic component 6 attached to the first main surface 11 is made uniform.
  • the second main surface 12 of the base 10 in which the groove 17 in which the refrigerant 14 is sealed is formed is spaced from each other. It is possible to improve the cooling performance of the vehicular power converter 2 by opening and joining the plurality of heat dissipating units 20. Further, by forming the annular groove 17 in the base 10, it is possible to make the temperature of the electronic component 6 uniform.
  • FIG. 11 is a cross-sectional view of a cooling device according to Embodiment 4 of the present invention.
  • a groove 18 having at least one branch is formed in the base 10 of the cooling device 1 according to the fourth embodiment.
  • the refrigerant 14 convects the groove 18 having at least one branch by attaching the electronic component 6 to a portion of the first main surface 11 facing a part of the groove 18.
  • the temperature of the electronic component 6 can be made uniform by convection of the refrigerant 14.
  • the groove 18 having a branch it is possible to transmit heat to the entire heat dissipating unit 20, and it is possible to improve the cooling performance of the vehicle power conversion device 2.
  • the second main surface 12 of the base 10 in which the groove 18 in which the refrigerant 14 is enclosed is formed is spaced from each other. It is possible to improve the cooling performance of the vehicular power converter 2 by opening and joining the plurality of heat dissipating units 20. Further, by forming the groove 18 having at least one branch in the base 10, the temperature of the electronic component 6 is made uniform, and the heat is transmitted to the entire heat dissipating unit 20, so that It is possible to improve the cooling performance.
  • the present invention is not limited to the above-described embodiment, and any of the above-described embodiments may be combined.
  • the shape of the heat radiating part 20 is not limited to fins, and may be a sword mountain shape, a bellows shape, or the like.
  • the direction in which the cooling device 1 is attached to the vehicle power conversion device 2 is not limited to the above example.
  • the first main surface 11 and the second main surface 12 face each other in the vertical direction, and the cooling device 1 closes the opening 7 formed on the upper surface in the vertical direction of the vehicle power conversion device 2 so that the vehicle It may be attached to the power converter 2 for industrial use.
  • the base 10 closes the opening 7 from the outside of the housing 3, but the base 10 is provided inside the housing 3, closes the opening 7 from the inside of the housing 3, and the heat dissipation portion from the opening 7. 20 may protrude outside the housing 3.
  • 1 cooling device 2 vehicle power conversion device, 3 housing, 4 cover, 5 vent, 6 electronic parts, 7 opening, 10 base, 11 first main surface, 12 second main surface, 13, 15, 17, 18 groove 14 refrigerant, 16 bypass, 20 heat dissipation part, 100 vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

車両用電力変換装置(2)は、電子部品(6)が内部に格納され、開口(7)が形成される筐体(3)、および冷却装置(1)を備える。冷却装置(1)は、板状部材であるベース(10)、およびベース(10)に取り付けられる複数の放熱部(20)を備える。ベース(10)の内部には、冷媒が封入される溝が形成される。ベース(10)は、第1の主面(11)が筐体(3)の内側に面する向きで、開口(7)を塞ぎ、第1の主面(11)に電子部品(6)が取り付けられる。ベース(10)の第2の主面(12)に、互いに間隔をあけて、複数の放熱部(20)が接合される。

Description

車両用電力変換装置
 この発明は、冷却装置を備えた車両用電力変換装置に関する。
 電力変換装置が有する半導体素子はスイッチング動作時に熱を発生させる。半導体素子が発生させる熱を放熱するために、電力変換装置には冷却装置が設けられる。特許文献1に開示されるヒートパイプを備えるヒートシンクは、ベース板に対してヒートパイプをほぼ全長に亘り埋設させて構成される。ヒートパイプは、ベース板に形成された埋め込み溝に挿入されてから、半田で埋め込まれる。特許文献2に開示される電力変換装置は、鉄道車両の床下に設けられる。該電力変換装置において、受熱部材の一方の面にはパワー半導体モジュールが設置され、他方の面には、ヒートパイプが埋め込まれる。ヒートパイプは、半田付けによって受熱部材と熱的に接続されている。
特許第4491209号公報 特許第5560182号公報
 特許文献1に開示されるヒートシンクにおいては、ベース板とヒートパイプとの間に設けられる半田によって、熱抵抗が増大する。特許文献2に開示される電力変換装置においては、受熱部材とヒートパイプとの間に設けられる半田によって、熱抵抗が増大する。熱抵抗が増大すると、冷却装置の冷却効率は低下してしまう。
 本発明は上述の事情に鑑みてなされたものであり、車両用電力変換装置の冷却性能を向上させることが目的である。
 上記目的を達成するために、本発明の車両用電力変換装置は、電子部品が内部に格納され、開口が形成され、車両に取り付けられる筐体、筐体に取り付けられるベース、および複数の放熱部を備える。ベースは、対向する第1の主面および第2の主面を有する板状部材である。ベースの内部には、第1の主面および第2の主面に沿って伸びて、冷媒が封入される溝が形成される。ベースは、第1の主面が筐体の内側に面する向きで、開口を塞ぐ。第1の主面に電子部品が取り付けられる。複数の放熱部は、互いに間隔を空けて、第2の主面に接合される。
 本発明によれば、冷媒が封入される溝が内部に形成されるベースの面に、互いに間隔をあけて、複数の放熱部を接合することで、車両用電力変換装置の冷却性能を向上させることが可能である。
本発明の実施の形態1に係る冷却装置の側面図 実施の形態1に係る冷却装置の断面図 実施の形態1に係る冷却装置の断面図 実施の形態1に係る電力変換装置の断面図 実施の形態1に係る電力変換装置の断面図 実施の形態1に係る電力変換装置の車両への搭載例を示す図 本発明の実施の形態2に係る冷却装置の断面図 実施の形態2に係る冷却装置の断面図 実施の形態2に係る冷却装置の断面図 本発明の実施の形態3に係る冷却装置の断面図 本発明の実施の形態4に係る冷却装置の断面図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る冷却装置の側面図である。冷却装置1は、板状部材であるベース10およびベース10に取り付けられる複数の放熱部20を備える。放熱部20の数は任意である。図1の例では、放熱部20は、フィンである。ベース10は、電子部品が取り付けられる第1の主面11、および第1の主面11と対向する第2の主面12を有する。放熱部20は、第2の主面12に取り付けられる。冷却装置1は、第1の主面11に取り付けられる電子部品を冷却する。
 図2は、実施の形態1に係る冷却装置の断面図である。ベース10の内部には、第1の主面11および第2の主面12に沿って伸びる溝13が形成される。溝13には、冷媒14が封入される。冷媒14は、気体の状態である冷媒14と、液体の状態である冷媒14とが混在する、気液二相の状態である。冷媒は、例えば、純水、エタノール、アセトン等である。
 図3は、実施の形態1に係る冷却装置の断面図である。図3は、図2のA-A線での断面図である。実施の形態1では、第1の主面11と第2の主面12とに沿って、それぞれが水平方向に伸びる複数の溝13が、鉛直方向に並べて形成される。実施の形態1の例では、放熱部20は、鉛直方向に伸びるフィンであるが、放熱部20を取り付ける向きは任意である。放熱部20は、水平方向に伸びるフィンでもよい。放熱部20として、溝13と同じ方向に伸びるフィンを設けることで、車両用電力変換装置2の冷却性能を向上させることが可能である。またフィンが伸びる方向を車両の進行方向に一致させることで、走向風を放熱部20に接触させることができるため、車両用電力変換装置2の冷却性能を向上させることが可能である。図3において、破線で示す箇所は、第1の主面11において、後述する電子部品が取り付けられる箇所と対向する箇所である。すなわち、図3において、破線で示す箇所が、電子部品での発熱によって、温度が上昇する箇所である。溝13のそれぞれに封入される冷媒14の温度は、冷媒14の対流により、水平方向に均一化される。そのため、第1の主面11に取り付けられる、後述する電子部品の温度は、水平方向に均一化される。
 図4は、実施の形態1に係る電力変換装置の断面図である。図5は、実施の形態1に係る電力変換装置の断面図である。図5は、図4のB-B線での断面図である。図6は、実施の形態1に係る車両用電力変換装置の車両への搭載例を示す図である。車両用電力変換装置2は、筐体3および冷却装置1を備える。筐体3の内部には、電子部品6が格納される。筐体3には、開口7が形成される。車両100の床下に、車両用電力変換装置2の筐体3が取り付けられる。冷却装置1は筐体3に取り付けられる。冷却装置1のベース10が開口7を塞ぐ。ベース10の第1の主面11は、筐体3の内側に面する。電子部品6が第1の主面11に取り付けられる。ベース10には溝13が形成されるため、第1の主面11と第2の主面12が対向する方向のベース10の厚みは、筐体3の厚みより厚い。図4の例では、冷却装置1は、カバー4で覆われる。カバー4には、通気口5が形成される。通気口5から流入した空気が、放熱部20に接触しながら流れる。放熱部20から空気に熱が伝達されることで、電子部品6が冷却される。
 冷却装置1による電子部品6の冷却について説明する。電子部品6で生じた熱は、ベース10の第1の主面11を介して、冷媒14に伝達される。電子部品6から伝達された熱によって、液状の冷媒14の温度が上昇し、冷媒14は気体に変化する。気体に変化した冷媒14は、溝13の内部において、より温度が低い箇所に流れる。冷媒14が溝13の内部を、温度が低い箇所に向かって流れる間に、冷媒14から第2の主面12を介して、放熱部20に熱が伝達される。放熱部20に熱を伝達した冷媒14の温度は下がり、冷媒14は液体に変化する。冷媒14から熱を伝達された放熱部20は、放熱部20に接触しながら流れる空気に熱を伝達する。空気に熱を伝達することで、放熱部20が冷却される。上述のように、電子部品6で生じた熱が、冷媒14および放熱部20を介して空気に伝達され、電子部品6が冷却される。
 溝13の内面には、毛細管現象を発生させることで、冷媒14の流動を促進する構造、例えばウィッグ、グルーブ、メッシュ等が設けられる。ベース10および放熱部20の材質は、例えばアルミニウムである。放熱部20は、例えばろう付け、摩擦攪拌接合等によって、第2の主面12に接合される。板状部材の一方の面に溝13を彫り、溝13に冷媒14を流し入れた後、該板状部材に別の板状部材を接合して溝13を塞ぐことで、ベース10を形成することができる。また第1の主面11および第2の主面12を有する板状部材の側面から溝13を彫り、溝13に冷媒14を流し入れた後、側面を塞ぐことで、ベース10を形成してもよい。
 実施の形態1では、電子部品6からベース10の第1の主面11を介して冷媒14に熱が伝達され、冷媒14から第2の主面12を介して放熱部20に熱が伝達される。ヒートパイプをベースプレートに半田付けするヒートパイプ冷却器と比べて、電子部品6と冷媒14との間の熱抵抗、および冷媒14と放熱部20との間の熱抵抗は低いため、該ヒートパイプ冷却器より、実施の形態1に係る冷却装置1の冷却性能は高い。
 電子部品6は、電力変換装置であり、例えばインバータである。電子部品6は、例えば、ケイ素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成される、スイッチング素子、ダイオード等の電子素子を有する。ワイドバンドギャップ半導体とは、例えば、炭化ケイ素、窒化ガリウム系材料、ダイヤモンド等である。ワイドバンドギャップ半導体によって形成されたスイッチング素子を用いると、スイッチング速度が速くなるため、電子部品6で生じる熱が増大する。実施の形態1に係る冷却装置1を設けることで、ワイドバンドギャップ半導体によって形成された電子素子を有する電子部品6を十分に冷却することが可能である。
 以上説明したとおり、本実施の形態1に係る車両用電力変換装置2によれば、冷媒14が封入される溝13が内部に形成されるベース10の第2の主面12に、互いに間隔をあけて、複数の放熱部20を接合することで、車両用電力変換装置2の冷却性能を向上させることが可能である。また水平方向に伸びる溝13をベース10の内部に形成することで、電子部品6の温度を、水平方向に均一化することが可能である。放熱部20として、溝13と同じ方向に伸びるフィンを設けることで、車両用電力変換装置2の冷却性能を向上させることが可能である。水平方向に伸びる溝13がベース10の内部に形成されているため、実施の形態1に係る車両用電力変換装置2は、水平方向に温度のばらつきが生じ得る冷却方法、例えば水平方向に流れる走向風を利用した冷却方法に適している。
 (実施の形態2)
 図7は、本発明の実施の形態2に係る冷却装置の断面図である。図8は、実施の形態2に係る冷却装置の断面図である。図8は、図7のC-C線における断面図である。実施の形態2に係る冷却装置1のベース10においては、実施の形態1と異なり、それぞれが鉛直方向に伸びる複数の溝15が、水平方向に並べて形成される。放熱部20は、実施の形態1と同様に、第2の主面12に接合される。
 実施の形態1と同様に、冷却装置1によって、電子部品6が冷却される。図7の例では、気体に変化した冷媒14は、溝15の内部において、より温度が低い箇所に流れる。冷媒14が鉛直方向に移動するため、第1の主面11に取り付けられる電子部品6の温度は、鉛直方向に均一化される。
 図9は、実施の形態2に係る冷却装置の断面図である。図9に示す冷却装置1においては、複数の溝15の内、少なくとも一部の溝15の鉛直方向の下端を連結するバイパス16が形成される。バイパス16を設けることで、バイパス16において冷媒14が対流し、冷媒14の温度は、対流により、水平方向において均一化される。そのため、バイパス16と対向する第1の主面11の一部に取り付けられる電子部品6の温度は、水平方向に均一化される。
 以上説明したとおり、本実施の形態2に係る車両用電力変換装置2によれば、冷媒14が封入される溝15が内部に形成されるベース10の第2の主面12に、互いに間隔をあけて、複数の放熱部20を接合することで、車両用電力変換装置2の冷却性能を向上させることが可能である。また鉛直方向に伸びる溝15をベース10の内部に形成することで、電子部品6の温度を、鉛直方向に均一化することが可能である。放熱部20として、溝15と同じ方向に伸びるフィンを設けることで、車両用電力変換装置2の冷却性能を向上させることが可能である。鉛直方向に伸びる溝15がベース10の内部に形成されているため、実施の形態2に係る車両用電力変換装置2は、鉛直方向に温度のばらつきが生じ得る冷却方法、例えば自然対流を利用した冷却方法に適している。
 (実施の形態3)
 図10は、本発明の実施の形態3に係る冷却装置の断面図である。実施の形態3に係る冷却装置1のベース10においては、実施の形態1と異なり、第1の主面11と第2の主面12とが対向する方向を中心軸とする環状の形状を有する溝17が形成される。放熱部20は、実施の形態1と同様に、第2の主面12に接合される。
 実施の形態1と同様に、冷却装置1によって、電子部品6が冷却される。図10において破線で示すように、溝17の一部と対向する第1の主面11の箇所に電子部品6を取り付けることで、図10において実線の矢印で示すように、冷媒14が対流する。冷媒14の対流により、第1の主面11に取り付けられる電子部品6の温度は、均一化される。
 以上説明したとおり、本実施の形態3に係る車両用電力変換装置2によれば、冷媒14が封入される溝17が内部に形成されるベース10の第2の主面12に、互いに間隔をあけて、複数の放熱部20を接合することで、車両用電力変換装置2の冷却性能を向上させることが可能である。また環状の溝17をベース10に形成することで、電子部品6の温度を、均一化することが可能である。
 (実施の形態4)
 図11は、本発明の実施の形態4に係る冷却装置の断面図である。実施の形態4に係る冷却装置1のベース10においては、実施の形態1と異なり、少なくとも1つの分岐を有する溝18が形成される。
 図11において破線で示すように、溝18の一部と対向する第1の主面11の箇所に電子部品6を取り付けることで、少なくとも1つの分岐を有する溝18を冷媒14が対流する。冷媒14の対流により、電子部品6の温度を、均一化することが可能である。また分岐を有する溝18を形成することで、放熱部20全体に熱を伝達することが可能となり、車両用電力変換装置2の冷却性能を向上させることが可能である。
 以上説明したとおり、本実施の形態4に係る車両用電力変換装置2によれば、冷媒14が封入される溝18が内部に形成されるベース10の第2の主面12に、互いに間隔をあけて、複数の放熱部20を接合することで、車両用電力変換装置2の冷却性能を向上させることが可能である。また少なくとも1つの分岐を有する溝18をベース10に形成することで、電子部品6の温度を、均一化すること、および放熱部20全体に熱を伝達することにより、車両用電力変換装置2の冷却性能を向上させることが可能である。
 本発明は、上述の実施の形態に限られず、上述の実施の形態の内、任意の実施の形態を組み合わせてもよい。放熱部20の形状はフィンに限られず、例えば剣山状、蛇腹状等の形状でもよい。冷却装置1が車両用電力変換装置2に取り付けられる向きは、上述の例に限られない。例えば、第1の主面11と第2の主面12とは鉛直方向に対向し、冷却装置1は、車両用電力変換装置2の鉛直方向の上面に形成された開口7を塞いで、車両用電力変換装置2に取り付けられてもよい。上述の例では、ベース10は、筐体3の外側から開口7を塞ぐが、ベース10は、筐体3の内部に設けられ、筐体3の内側から開口7を塞ぎ、開口7から放熱部20が筐体3の外側に突出してもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 1 冷却装置、2 車両用電力変換装置、3 筐体、4 カバー、5 通気口、6 電子部品、7 開口、10 ベース、11 第1の主面、12 第2の主面、13,15,17,18 溝 14 冷媒、16 バイパス、20 放熱部、100 車両。

Claims (12)

  1.  電子部品が内部に格納され、開口が形成され、車両に取り付けられる筐体と、
     対向する第1の主面および第2の主面を有する板状部材であって、前記第1の主面および前記第2の主面に沿って伸びて、冷媒が封入される溝が内部に形成され、前記第1の主面が前記筐体の内側に面する向きで前記開口を塞ぎ、前記第1の主面に前記電子部品が取り付けられ、前記筐体に取り付けられるベースと、
     互いに間隔を空けて、前記第2の主面に接合される複数の放熱部と、
     を備える車両用電力変換装置。
  2.  前記ベースおよび前記放熱部の材質はアルミニウムである請求項1に記載の車両用電力変換装置。
  3.  前記放熱部は、前記第2の主面にろう付けされる請求項2に記載の車両用電力変換装置。
  4.  前記第1の主面と前記第2の主面とは水平方向に対向し、
     それぞれが水平方向に伸びる複数の前記溝が、鉛直方向に並べて形成される、
     請求項1から3のいずれか1項に記載の車両用電力変換装置。
  5.  前記放熱部は、水平方向に伸びるフィンである請求項4に記載の車両用電力変換装置。
  6.  前記フィンが伸びる方向は、前記車両の進行方向である請求項5に記載の車両用電力変換装置。
  7.  前記第1の主面と前記第2の主面とは水平方向に対向し、
     それぞれが鉛直方向に伸びる複数の前記溝が、水平方向に並べて形成される、
     請求項1から3のいずれか1項に記載の車両用電力変換装置。
  8.  前記放熱部は、鉛直方向に伸びるフィンである請求項7に記載の車両用電力変換装置。
  9.  前記複数の溝の内、少なくとも一部の前記溝の鉛直方向の下端を連結するバイパスが前記ベースの内部に形成される請求項7または8に記載の車両用電力変換装置。
  10.  前記溝は、前記第1の主面と前記第2の主面とが対向する方向を中心軸とする環状の形状を有する請求項1から9のいずれか1項に記載の車両用電力変換装置。
  11.  前記溝は、少なくとも1つの分岐を有する請求項1から3のいずれか1項に記載の車両用電力変換装置。
  12.  前記電子部品は、炭化ケイ素、窒化ガリウム系材料、またはダイヤモンドを用いたワイドバンドギャップ半導体によって形成される電子素子を有する請求項1から11のいずれか1項に記載の車両用電力変換装置。
PCT/JP2017/012290 2017-03-27 2017-03-27 車両用電力変換装置 WO2018179031A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/496,645 US11348850B2 (en) 2017-03-27 2017-03-27 Vehicle power conversion device
DE112017007329.4T DE112017007329T5 (de) 2017-03-27 2017-03-27 Fahrzeug-Leistungswandlervorrichtung
PCT/JP2017/012290 WO2018179031A1 (ja) 2017-03-27 2017-03-27 車両用電力変換装置
JP2019508332A JP6710320B2 (ja) 2017-03-27 2017-03-27 車両用電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012290 WO2018179031A1 (ja) 2017-03-27 2017-03-27 車両用電力変換装置

Publications (1)

Publication Number Publication Date
WO2018179031A1 true WO2018179031A1 (ja) 2018-10-04

Family

ID=63674477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012290 WO2018179031A1 (ja) 2017-03-27 2017-03-27 車両用電力変換装置

Country Status (4)

Country Link
US (1) US11348850B2 (ja)
JP (1) JP6710320B2 (ja)
DE (1) DE112017007329T5 (ja)
WO (1) WO2018179031A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019006900T5 (de) * 2019-02-22 2021-11-11 Mitsubishi Electric Corporation Kühlvorrichtung und leistungsumwandlungsvorrichtung
EP4060725B1 (en) * 2021-03-19 2023-07-26 Hitachi Energy Switzerland AG A cooling assembly for at least one semiconductor module, a power module and a method for manufacturing a power module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239043A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The 微細流路を備えた冷却装置、その製造方法
JP2011125152A (ja) * 2009-12-11 2011-06-23 Toyota Central R&D Labs Inc 電力変換装置
JP2012075251A (ja) * 2010-09-29 2012-04-12 Hitachi Ltd 冷却装置および電力変換装置,車両用電力変換装置
JP2016220341A (ja) * 2015-05-18 2016-12-22 カルソニックカンセイ株式会社 電力変換装置
JP2017046529A (ja) * 2015-08-28 2017-03-02 三菱電機株式会社 半導体装置、インテリジェントパワーモジュールおよび電力変換装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560182A (en) 1978-10-31 1980-05-07 Tokuyama Soda Co Ltd Heat exchange element
JPS61115767A (ja) 1984-11-12 1986-06-03 財団法人鉄道総合技術研究所 ボデイマウント式の電車の主回路用電気機器の冷却装置
US7278474B2 (en) 2001-10-09 2007-10-09 Mikros Manufacturing, Inc. Heat exchanger
JP2004349673A (ja) 2003-04-30 2004-12-09 Fuji Electric Holdings Co Ltd 半導体素子モジュール及びその放熱ベース基板
JP4491209B2 (ja) 2003-08-29 2010-06-30 古河スカイ株式会社 ヒートパイプを備えるヒートシンク
US20070227707A1 (en) * 2006-03-31 2007-10-04 Machiroutu Sridhar V Method, apparatus and system for providing for optimized heat exchanger fin spacing
JP5185012B2 (ja) 2008-08-08 2013-04-17 日本モレックス株式会社 冷却ユニットおよび電子機器
EP2503593B1 (en) * 2009-11-17 2017-12-20 Mitsubishi Electric Corporation Heat dissipating device and method for manufacturing heat dissipating device
JP5560182B2 (ja) 2010-12-27 2014-07-23 株式会社日立製作所 冷却装置およびそれを備えた電力変換装置
JP5249365B2 (ja) 2011-01-26 2013-07-31 三菱電機株式会社 電力変換装置
JP2012220141A (ja) 2011-04-12 2012-11-12 Toyota Central R&D Labs Inc ヒートパイプ
TWI541488B (zh) * 2011-08-29 2016-07-11 奇鋐科技股份有限公司 散熱裝置及其製造方法
JP5901343B2 (ja) * 2012-02-24 2016-04-06 三菱電機株式会社 冷却器及び冷却装置
TWI482244B (zh) * 2012-11-19 2015-04-21 Ind Tech Res Inst 熱交換器以及半導體模組
JP6079421B2 (ja) 2013-05-10 2017-02-15 株式会社デンソー 電力変換装置
JP6023120B2 (ja) * 2014-05-15 2016-11-09 レノボ・シンガポール・プライベート・リミテッド 携帯用情報機器
JP6345265B2 (ja) * 2014-10-29 2018-06-20 日立オートモティブシステムズ株式会社 電子機器及び電子機器の製造方法
TWM526264U (zh) * 2016-03-21 2016-07-21 Taiwan Microloops Corp 液冷式散熱裝置及其散熱結構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239043A (ja) * 2008-03-27 2009-10-15 Furukawa Electric Co Ltd:The 微細流路を備えた冷却装置、その製造方法
JP2011125152A (ja) * 2009-12-11 2011-06-23 Toyota Central R&D Labs Inc 電力変換装置
JP2012075251A (ja) * 2010-09-29 2012-04-12 Hitachi Ltd 冷却装置および電力変換装置,車両用電力変換装置
JP2016220341A (ja) * 2015-05-18 2016-12-22 カルソニックカンセイ株式会社 電力変換装置
JP2017046529A (ja) * 2015-08-28 2017-03-02 三菱電機株式会社 半導体装置、インテリジェントパワーモジュールおよび電力変換装置

Also Published As

Publication number Publication date
JP6710320B2 (ja) 2020-06-17
JPWO2018179031A1 (ja) 2019-11-07
DE112017007329T5 (de) 2019-12-05
US11348850B2 (en) 2022-05-31
US20200381317A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2018179314A1 (ja) 冷却装置および車両用電力変換装置
JP5070014B2 (ja) 放熱装置
JP2007335663A (ja) 半導体モジュール
JP5534067B1 (ja) 電子部品、および電子部品冷却方法
JP6554406B2 (ja) 液冷式冷却器
JP2008270297A (ja) パワーユニットおよび放熱容器
JP2003324173A (ja) 半導体素子の冷却装置
JP5028822B2 (ja) パワーモジュールの冷却装置
JP6741561B2 (ja) 鉄道車両の電力変換装置
JP5114323B2 (ja) 半導体装置
WO2018179031A1 (ja) 車両用電力変換装置
JP7133044B2 (ja) 自励振動ヒートパイプ冷却器
JP2013098468A (ja) パワー半導体モジュール冷却装置
JP6932276B2 (ja) 冷却装置
JP2011199202A (ja) 熱拡散部材、放熱部材及び冷却装置
JPWO2020105075A1 (ja) 半導体装置
JP2021082702A (ja) 半導体冷却装置
JP2001168569A (ja) 電子部品用冷却装置
JP2016219571A (ja) 液冷式冷却装置
JP2011159663A (ja) 半導体装置
JP2008262974A (ja) 半導体装置
JP7199574B2 (ja) 冷却装置および電力変換装置
JP2020171196A (ja) 鉄道車両の電力変換装置
JP2017204503A (ja) 伝熱構造体、絶縁積層材、絶縁回路基板およびパワーモジュール用ベース
JP2008270296A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508332

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17903802

Country of ref document: EP

Kind code of ref document: A1