WO2018176886A1 - 一种地热地板基材的制造工艺及基材 - Google Patents

一种地热地板基材的制造工艺及基材 Download PDF

Info

Publication number
WO2018176886A1
WO2018176886A1 PCT/CN2017/113858 CN2017113858W WO2018176886A1 WO 2018176886 A1 WO2018176886 A1 WO 2018176886A1 CN 2017113858 W CN2017113858 W CN 2017113858W WO 2018176886 A1 WO2018176886 A1 WO 2018176886A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor substrate
fiber
geothermal floor
geothermal
substrate
Prior art date
Application number
PCT/CN2017/113858
Other languages
English (en)
French (fr)
Inventor
陈秀兰
王俊伟
王丽
Original Assignee
大亚人造板集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大亚人造板集团有限公司 filed Critical 大亚人造板集团有限公司
Publication of WO2018176886A1 publication Critical patent/WO2018176886A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/0209Methods, e.g. characterised by the composition of the agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/029Feeding; Proportioning; Controlling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/10Moulding of mats
    • B27N3/12Moulding of mats from fibres

Definitions

  • the invention belongs to the technical field of man-made fiberboard production, and relates to the manufacture of a floor substrate, in particular to a manufacturing process and a substrate of a geothermal floor substrate.
  • Geothermal floor for home decoration will be the Chinese wood flooring industry.
  • Geothermal floor refers to the floor that is applied to the ground radiant heating system and transmits heat through the board facing the room.
  • the types mainly include solid wood flooring and laminate flooring.
  • geothermal wood flooring generally has the disadvantages of less obvious heat sensitivity, slower temperature rise, slower temperature drop, etc., and in the production process, the base material used as the core board is mostly made of urea-formaldehyde resin bonded wood fiber, at high temperature. The amount of formaldehyde released will increase.
  • the object of the present invention is to develop a substrate manufacturing process for geothermal floor without aldehyde and high thermal conductivity, so that the geothermal floor can achieve a heating speed and a good heat preservation effect during use.
  • the manufacturing process of the geothermal floor substrate is wood chip ⁇ screening ⁇ water washing ⁇ cooking ⁇ hot grinding ⁇ applying aldehyde-free adhesive and waterproofing agent ⁇ drying ⁇ applying additive ⁇ paving ⁇ pre-pressing ⁇ hot pressing ⁇ cooling ⁇ Separate packaging.
  • the step of applying the aldehyde-free adhesive and the water repellent according to the present invention is to add diphenylmethane diisocyanate (MDI) and water repellent emulsified paraffin to the fiber after separating the wood chips into elongated fibers by a hot mill.
  • MDI diphenylmethane diisocyanate
  • the amount of MDI added is 2.5 to 5% of the mass of the absolute fiber, and the amount of the emulsified paraffin is 1-2% of the mass of the absolute fiber.
  • the additive is a mixture of alumina and carbon fiber powder, wherein the alumina and the carbon fiber powder are ultrafine powders between 200 and 300 mesh; the addition amount of the alumina powder is relatively absolute.
  • the dry fiber mass is 5 to 7%, and the carbon fiber powder is added in an amount of 0.5 to 1% based on the mass of the dry fiber; the additive is applied in the fiber air supply pipe.
  • the moisture content after drying of the fiber is 10 to 12% before the application of the additive.
  • the inner mold release agent may be directly mixed with the glue or the outer mold release agent may be sprayed on the surface of the steel strip and the fiber formed slab in the production. A separator is formed.
  • the specific process content of the MDI application can be referred to the applicant's Chinese patent CN 2014104620728.
  • the geothermal floor substrate prepared according to the process of the present invention has an appearance similar to that of a common floor substrate, that is, a density board, which uses a formaldehyde-free resin in the manufacturing process and adds a heat conductive substance to make the geothermal
  • a common floor substrate that is, a density board
  • the thermal conductivity of the floor substrate (using the heating rate as an indicator) and the dimensional stability are improved. It is an enhanced floor substrate that adapts to the times and has low carbon and environmental protection. It can realize the efficient, fast and economical secondary processing of geothermal floor.
  • the amount of thermal conductive material added and the board The comprehensive cost and safety of the material are the key. By applying a certain amount of heat conductive material, the performance of the substrate is ensured, and the heating heating rate of the sheet is also improved.
  • the raw materials used in the present invention are all self-made or commercially available, and diphenylmethane diisocyanate (MDI) is purchased from Huntsman Chemical Co., Ltd.; carbon fiber powder is purchased from Zhangzhou Zhongli New Material Co., Ltd.
  • MDI diphenylmethane diisocyanate
  • carbon fiber powder is purchased from Zhangzhou Zhongli New Material Co., Ltd.
  • the geothermal floor substrate process disclosed by the invention adjusts the sizing process and adds alumina and carbon fiber powder to the fiber, and the prepared floor substrate does not contain formaldehyde, has good water resistance; and improves the geothermal floor substrate Thermal conductivity and dimensional stability. At the same time, it eliminates the hidden danger of formaldehyde pollution in the composite geothermal floor during use, improves the deformation, arching, shrinkage and other problems of the composite floor in geothermal use, and improves the thermal conductivity and thermal insulation of the geothermal floor. Save energy consumption.
  • a manufacturing process of a 7mm geothermal floor substrate comprises the following steps:
  • Fiber preparation after the self-cut wood chips or the purchased wood chips obtained by the screening are subjected to water washing treatment, and then subjected to retort treatment, and the cooked wood chips are subjected to hot grinding treatment to obtain desired fibers;
  • the glue is applied, and diphenylmethane diisocyanate (purchased from Huntsman) and emulsified paraffin are uniformly sprayed on the fiber, wherein the amount of diphenylmethane diisocyanate (MDI) is 4%.
  • MDI diphenylmethane diisocyanate
  • the amount of the molding agent added is 0.5%, and the amount of the emulsified paraffin added is 1%;
  • the fiber after sorting is paved by a paving machine, and pre-pressing is performed by a pre-pressing machine;
  • Hot pressing hot pressing at 220-170 °C, using 5-stage temperature zone, wherein the inlet section pressure is 280-320 N/m 2 and the rebound section pressure is 170-230 N/m 2 , core layer molding
  • the grading section is gradually reduced to 70-90N/m 2
  • the final fixed section pressure is 140-170N/m 2
  • the press speed is 560-590mm/s;
  • Performance 7mm geothermal floor substrate 7mm ordinary floor substrate Density kg/m 3 840-860 850-870 Plate moisture content% 4.5-5.5 4-6 Internal bond strength MPa 1.5-1.9 ⁇ 1.2 Static bending strength MPa 48-52 ⁇ 35
  • Modulus of elasticity MPa 3400-3800 ⁇ 3000 24h water absorption thickness expansion rate% 7-8 ⁇ 11 Formaldehyde emission mg/100g 0.2-0.3 E1 ⁇ 8 Dimensional stability (mm) 0.5 ⁇ 0.8 Heating substrate heating rate °C/h 10-12 5-5.5
  • a manufacturing process of a 12mm geothermal floor substrate comprising the following steps:
  • Fiber preparation after the self-cut wood chips or the purchased wood chips obtained by the screening are subjected to water washing treatment, and then subjected to retort treatment, and the cooked wood chips are subjected to hot grinding treatment to obtain desired fibers;
  • the glue is applied, and diphenylmethane diisocyanate (purchased from Huntsman) and emulsified paraffin are uniformly sprayed on the fiber, wherein the amount of diphenylmethane diisocyanate (MDI) is 3.5%.
  • MDI diphenylmethane diisocyanate
  • the amount of the molding agent added is 0.5%, and the amount of the emulsified paraffin added is 1.5%;
  • the fiber after sorting is paved by a paving machine, and pre-pressing is performed by a pre-pressing machine;
  • Cooling and tempering the substrate of the hot press is cooled and stacked separately, and the quenching and tempering time is 48h or more;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

一种地热地板基材的制造工艺,其流程为:木片→筛选→水洗→蒸煮→热磨→施加无醛胶黏剂及防水剂→干燥→施加添加剂→铺装→预压→热压→冷却→分等包装。以及该工艺所制得的地热地板基材。该工艺通过施胶工艺的调整,并在纤维中添加氧化铝和碳纤维粉,制得的地板基材不含甲醛,耐水性能好,消除了地板在使用过程中会释放甲醛污染的问题,改善了地板使用中出现的变形等问题,提高了地热地板基材的热传导性能及尺寸稳定性,节省了能源消耗。

Description

一种地热地板基材的制造工艺及基材 技术领域
本发明属于人造纤维板生产技术领域,涉及地板基材的制造,尤其涉及一种地热地板基材的制造工艺及基材。
发明背景
随着中国社会老龄化进程的加快,以及全球气候异常导致的极端天气,长江以南广大地区难捱的冬季,给消费者带来比较大的麻烦,家装用地热地板将是中国木地板行业的大势所趋。地热地板指适用于地面辐射供暖***铺设的地板,并通过板面向室内传递热量,类型主要包括实木地板及强化复合地板。目前地热木地板普遍存在热度感觉不明显,升温慢,降温慢等缺点,并且强化复合地板在生产过程中,用作芯板的基材多用脲醛树脂粘合木质纤维制造而成,在高温状态下,甲醛释放量会增加。
为提高地热地板的升温效率,实木地板在制备或安装时,在地板条侧边***铝片(或铜片等导热金属片)等方式提高其传热效率。操作较为复杂,安装效率低,成本较高。针对上述问题,开发一种无醛环保、且导热系数高,即升温较快,保温效果较好的专门用作地热的地板基材是人造板业内趋势之一。
发明内容
本发明的目的是开发一种无醛高导热系数的专门用于地热地板的基材制造工艺,使地热地板在使用过程中达到加热速度快,保温好的效果。
技术方案
一种地热地板基材的制造工艺,生产流程为木片→筛选→水洗→蒸煮→热磨→施加无醛胶黏剂及防水剂→干燥→施加添加剂→铺装→预压→热压→冷却→分等包装。
本发明所述的施加无醛胶黏剂及防水剂步骤,是经热磨机将木片分离成细长纤维后,在纤维中添加二苯基甲烷二异氰酸酯(MDI),以及防水剂乳化石蜡,其中MDI的添加量相对绝干纤维质量的2.5~5%,乳化石蜡添加量相对绝干纤维质量的1~2%。
本发明所述的施加添加剂步骤,所述添加剂为氧化铝和碳纤维粉混合而成,其中,氧化铝和碳纤维粉为超细粉末,在200~300目之间;氧化铝粉末的添加量相对绝干纤维质量的5~7%,碳纤维粉的添加量相对绝干纤维质量的0.5~1%;所述添加剂在纤维风送管道中进行施加。
本发明在施加添加剂之前,纤维干燥后的含水率在10~12%。
为防止二苯基甲烷二异氰酸酯(MDI)在高温条件粘热压机钢带,在生产中可加内脱模剂直接与胶水混合或者将外脱模剂喷涂在钢带和纤维成型板坯表面形成隔离膜。MDI施加的具体工艺内容可参考申请人的中国专利CN 2014104620728。
依据本发明所述工艺制得的地热地板基材,外观与普通地板基材,即密度板接近,该基材在制造过程中采用不含甲醛的树脂,并添加了易导热物质,使得该地热地板基材的热传导性能(以加热升温速率作为指标)及尺寸稳定性获得提高,是一款适应时代、低碳环保的强化地板基材,可实现地热地板二次加工的高效、快捷、经济。导热材料的添加量与板 材综合成本、安全性是关键,通过施加一定量的导热材料,既保证了基材的性能,也提高了板材的加热升温速率。
本发明所用原料均为自制或市售,二苯基甲烷二异氰酸酯(MDI)购自亨斯曼化工有限公司;碳纤维粉购自沧州中丽新材料有限公司。
有益效果
本发明所公开的地热地板基材工艺,通过施胶工艺的调整,并在纤维中添加氧化铝和碳纤维粉,所制得的地板基材不含甲醛,耐水性能好;提高了地热地板基材的热传导性能及尺寸稳定性。同时,消除了复合地热地板在使用过程中会释放甲醛污染的隐患,改善了复合地板在地热使用中出现的变形、起拱、收缩离缝等问题,提高了地热地板的热传导性及保温性,节省了能源消耗。
具体实施方式
下面结合实施例对本发明进行详细说明,以便本领域的技术人员更好地理解本发明,但本发明并不局限于以下实施例。
实施例1
一种7mm地热地板基材的制造工艺,包括如下步骤:
1、纤维制备,将筛选所得的自削木片或外购木片经过水洗处理后,进行蒸煮处理,对蒸煮后的木片进行热磨处理,获得所需的纤维;
2、调施胶,将二苯基甲烷二异氰酸酯(外购自亨斯曼)及乳化石蜡分别均匀喷射在纤维上,其中,二苯基甲烷二异氰酸酯(MDI)的添加量为4%,脱模剂的添加量为0.5%,乳化石蜡的添加量为1%;
3、干燥,将施胶施蜡后的纤维进行干燥处理,干燥后的纤维含水率在11~12%;
4、施加添加剂,在纤维风送管道中,将添加剂氧化铝粉和碳纤维粉的混合物均匀喷射在干燥后的纤维中,其中,氧化铝粉末的添加量为绝干纤维质量的6%,碳纤维粉的添加量为绝干纤维质量的0.7%;
5、铺装预压,通过铺装机将分选后的纤维铺装成型,通过预压机进行预压处理;
6、热压,在220~170℃温度条件下进行热压,采用5段温度分区,其中,入口段压力在280~320N/m2,反弹段压力在170~230N/m2,芯层塑化段逐步下降至70~90N/m2,最后定厚段压力在140~170N/m2,压机速度在560~590mm/s;
7、冷却调质,出热压机的基材进行冷却后单独堆放,堆垛调质时间为48h以上;
8、砂光锯切,砂光后锯切至所需规格尺寸板材;
9、分等和包装。
表1 板材的性能指标
性能指标 7mm地热地板基材 7mm普通地板基材
密度kg/m3 840-860 850-870
板含水率% 4.5-5.5 4-6
内结合强度MPa 1.5-1.9 ≥1.2
静曲强度MPa 48-52 ≥35
弹性模量MPa 3400-3800 ≥3000
24h吸水厚度膨胀率% 7-8 ≤11
甲醛释放量mg/100g 0.2-0.3 E1≤8
尺寸稳定性(mm) 0.5 ≤0.8
加热基材升温速率℃/h 10-12 5-5.5
实施例2
一种12mm地热地板基材的制造工艺,包括如下步骤:
1、纤维制备,将筛选所得的自削木片或外购木片经过水洗处理后,进行蒸煮处理,对蒸煮后的木片进行热磨处理,获得所需的纤维;
2、调施胶,将二苯基甲烷二异氰酸酯(外购自亨斯曼)及乳化石蜡分别均匀喷射在纤维上,其中,二苯基甲烷二异氰酸酯(MDI)的添加量为3.5%,脱模剂的添加量为0.5%,乳化石蜡的添加量为1.5%;
3、干燥,将施胶施蜡后的纤维进行干燥处理,干燥后的含水率在10~11%;
4、施加添加剂,在纤维风送管道中,将添加剂碳纤维粉和氧化铝粉均匀喷射在干燥后的纤维中,其中,氧化铝粉末的添加量为绝干纤维质量的7%,碳纤维粉的添加量为绝干纤维质量的1%;
5、铺装预压,通过铺装机将分选后的纤维铺装成型,通过预压机进行预压处理;
6、热压,在235~180℃温度条件下进行热压,采用5段温度分区,其中,入口段压力在300~350N/m2,反弹段压力在190~240N/m2,芯层塑化段逐步下降至80~100N/m2,最后定厚段压力在150~180N/m2,压机速度在350~380mm/s;
7、冷却调质:出热压机的基材进行冷却后单独堆放,堆垛调质时间为48h以上;
8、砂光锯切:砂光后锯切至所需规格尺寸板材;
9、分等和包装。
表2 板材的性能指标
性能指标 12mm地热地板基材 12mm普通地板基材
密度kg/m3 820-840 820-850
板含水率% 4.5-5.5 4-6
内结合强度MPa 1.4-1.8 ≥1.2
静曲强度MPa 40-45 ≥32
弹性模量MPa 3200-3500 ≥3000
24h吸水厚度膨胀率% 6-7 ≤9
甲醛释放量mg/100g 0.2-0.3 E1≤8
尺寸稳定性(mm) 0.5 ≤0.8
加热基材升温速率℃/h 8-11 4-5
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

  1. 一种地热地板基材的制造工艺,其特征在于:生产流程为木片→筛选→水洗→蒸煮→热磨→施加无醛胶黏剂及防水剂→干燥→施加添加剂→铺装→预压→热压→冷却→分等包装。
  2. 根据权利要求1所述的地热地板基材的制造工艺,其特征在于:所述施加无醛胶黏剂及防水剂步骤,是经热磨机将木片分离成细长纤维后,在纤维中添加二苯基甲烷二异氰酸酯,以及防水剂乳化石蜡,其中二苯基甲烷二异氰酸酯的添加量相对绝干纤维质量的2.5~5%,乳化石蜡添加量相对绝干纤维质量的1~2%。
  3. 根据权利要求1所述的地热地板基材的制造工艺,其特征在于:所述添加剂为氧化铝和碳纤维粉混合而成,其中,氧化铝和碳纤维粉为超细粉末,在200~300目之间;氧化铝粉末的添加量相对绝干纤维质量的5~7%,碳纤维粉的添加量相对绝干纤维质量的0.5~1%。
  4. 根据权利要求1所述的地热地板基材的制造工艺,其特征在于:所述添加剂在纤维风送管道中进行施加。
  5. 根据权利要求1所述的地热地板基材的制造工艺,其特征在于:在施加添加剂之前,纤维干燥后的含水率在10~12%。
  6. 根据权利要求1-5任一所述制造工艺所制得的地热地板基材。
PCT/CN2017/113858 2017-03-31 2017-11-30 一种地热地板基材的制造工艺及基材 WO2018176886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710206842.6 2017-03-31
CN201710206842.6A CN106903773A (zh) 2017-03-31 2017-03-31 一种地热地板基材的制造工艺及基材

Publications (1)

Publication Number Publication Date
WO2018176886A1 true WO2018176886A1 (zh) 2018-10-04

Family

ID=59195048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113858 WO2018176886A1 (zh) 2017-03-31 2017-11-30 一种地热地板基材的制造工艺及基材

Country Status (2)

Country Link
CN (1) CN106903773A (zh)
WO (1) WO2018176886A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903773A (zh) * 2017-03-31 2017-06-30 大亚人造板集团有限公司 一种地热地板基材的制造工艺及基材
CN109955341A (zh) * 2017-12-26 2019-07-02 中山市大自然木业有限公司 防水耐磨木质地板的制备方法及制备的防水耐磨木质地板
CN109605536B (zh) * 2018-12-07 2021-06-29 广西大学 高效导热高密度纤维板及其制造方法
CN109366676A (zh) * 2018-12-12 2019-02-22 大亚木业(茂名)有限公司 一种无醛防潮地板基材的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171302A (ja) * 2011-02-24 2012-09-10 Toyo Tex Co Ltd 木質繊維集積板および床材
CN103085147A (zh) * 2011-11-02 2013-05-08 大亚科技股份有限公司 超低甲醛释放量中高密度纤维板的制造方法
CN104493944A (zh) * 2014-12-03 2015-04-08 潘传节 一种p2高光板加工方法
CN105275179A (zh) * 2014-07-18 2016-01-27 中国科学院理化技术研究所 一种导热木质复合地板
CN106903773A (zh) * 2017-03-31 2017-06-30 大亚人造板集团有限公司 一种地热地板基材的制造工艺及基材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509311A (zh) * 2009-01-06 2009-08-19 上海溢邦装饰建材有限公司 一种内部导热式结构的地板
CN103128826B (zh) * 2011-11-24 2015-04-15 大亚人造板集团有限公司 一种高光地板基材的生产工艺
CN103233569B (zh) * 2013-04-19 2015-07-15 北华大学 一种地面辐射供暖木质地板
CN103628362B (zh) * 2013-12-02 2016-05-18 大亚人造板集团有限公司 一种防潮胶粘剂的制作方法及其应用于防潮低吸涨地板基材的制造工艺
CN104231597A (zh) * 2014-09-05 2014-12-24 常熟市中腾塑胶有限公司 一种导热耐腐蚀塑胶地板
CN104290169B (zh) * 2014-09-11 2017-04-05 大亚人造板集团有限公司 一种零甲醛密度纤维板的生产工艺
CN105563603B (zh) * 2015-12-20 2017-12-15 江西绿洲环保新材料股份有限公司 全杨木高密度地板基材的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171302A (ja) * 2011-02-24 2012-09-10 Toyo Tex Co Ltd 木質繊維集積板および床材
CN103085147A (zh) * 2011-11-02 2013-05-08 大亚科技股份有限公司 超低甲醛释放量中高密度纤维板的制造方法
CN105275179A (zh) * 2014-07-18 2016-01-27 中国科学院理化技术研究所 一种导热木质复合地板
CN104493944A (zh) * 2014-12-03 2015-04-08 潘传节 一种p2高光板加工方法
CN106903773A (zh) * 2017-03-31 2017-06-30 大亚人造板集团有限公司 一种地热地板基材的制造工艺及基材

Also Published As

Publication number Publication date
CN106903773A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
WO2018176886A1 (zh) 一种地热地板基材的制造工艺及基材
CN102152369B (zh) 茶梗碎料板的生产工艺
CN103878858A (zh) 一种无醛竹木纤维板的制作方法
WO2007033588A1 (fr) Procede de fabrication d'une planche en bambou composite
WO2010094237A1 (zh) 一种无醛重组材及其制造方法
JP6251785B1 (ja) 炭化合板専用接着剤及び炭化合板の製造方法
CN103496026B (zh) 秸秆复合板材及其制备方法
CN105171883B (zh) 一种集装箱底板用竹木定向刨花板的制造方法
CN104290169A (zh) 一种零甲醛密度纤维板的生产工艺
CN105150350A (zh) 高防潮中高密度纤维板的制造方法
CN106945145A (zh) 一种低气味环保刨花板的生产工艺
CN102218758A (zh) 一种高强度轻质板材及其制造方法
CN101659074A (zh) 层状结构杂木/稻草复合中密度纤维板制造方法
EP4273347A1 (en) High-strength fireproof board, a wear-resistant fireproof veneer using same as base material, and manufacturing method
CN101554791B (zh) 一种纳米二氧化硅与膨胀蛭石的复合板材及其制造方法
WO2009056009A1 (fr) Procédé pour fabriquer du bois stratifié composite en bambou ou en bois de bambou
CN103072173A (zh) 一种白千层纤维板及其制备方法
EP3771538B1 (en) Fire-proof wooden pressure board
CN100422261C (zh) 氰酸酯树脂/碳纤维复合材料及其制备方法
CN104029257B (zh) 木纤维定向单板层积方材制造方法
CN104772796A (zh) 阻燃秸秆人造复合板及其制造方法
CN106183347B (zh) 一种隔热隔音减震纤维毡的制备方法
CN104234374A (zh) 抗静电地热地板
CN109465941A (zh) 一种超低密度复合纤维板及其制造方法
CN101117031A (zh) 新型非金属复合板材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903633

Country of ref document: EP

Kind code of ref document: A1