WO2018171748A1 - 一种资源映射方法及其装置 - Google Patents

一种资源映射方法及其装置 Download PDF

Info

Publication number
WO2018171748A1
WO2018171748A1 PCT/CN2018/080323 CN2018080323W WO2018171748A1 WO 2018171748 A1 WO2018171748 A1 WO 2018171748A1 CN 2018080323 W CN2018080323 W CN 2018080323W WO 2018171748 A1 WO2018171748 A1 WO 2018171748A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
user equipment
resource
modulation symbol
time
Prior art date
Application number
PCT/CN2018/080323
Other languages
English (en)
French (fr)
Inventor
罗禾佳
皇甫幼睿
陈莹
戴胜辰
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18772043.8A priority Critical patent/EP3592074B1/en
Publication of WO2018171748A1 publication Critical patent/WO2018171748A1/zh
Priority to US16/578,481 priority patent/US20200036474A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of field communication technologies, and in particular, to a resource mapping method and apparatus therefor.
  • the coding mode of the downlink control information (English: Newcast, NR for short) is determined to be a Polar code.
  • a nested structure (English: nested structure) is proposed in the physical downlink control channel (English: Physical Downlink Control Channel, PDCCH for short), which has the same resource element (English: Resource Element, RE: RE)
  • the characteristics of different aggregation levels (English: Aggregation Level, abbreviated as: AL), the number of candidate locations (English: candidates) included in different aggregation levels are different.
  • the base station first performs a cyclic redundancy check (English: Cyclical Redundancy Check, CRC for short) to obtain a CRC sequence, and then uses a radio network temporary identifier (English: Radio Network Temporary Identity, RNTI) related sequence to the CRC sequence.
  • the frozen bit (English: frozen)/parity check frozen (English: Parity Check frozen, PC blank for short) is scrambled to obtain the CRC sequence scrambled by the RNTI.
  • the RNTI related sequence can be a simple copy of the RNTI, or Is a function of RNTI, such as a random sequence generated with RNTI as a seed.
  • the base station serially connects the CRC sequence scrambled by the RNTI with the DCI to obtain a concatenation sequence, and then performs channel coding and rate matching on the concatenated sequence (English: Rate Matching, RM for short, and interleave). , modulation, mapping (English: Map) and sending process.
  • the channel coding adopts Polar coding, and the frozen/PC frozen in the coding sequence is scrambled by using the RNTI correlation sequence before encoding.
  • the receiving process of the solution can be seen in Figure 2, and two or more candidates in the same aggregation level can be simultaneously decoded.
  • the coded length (N) of the two or more candidates decoded at the same time and the bit length (K) of the bit to be encoded are the same, and the number of decoded candidates cannot exceed the upper limit of the width.
  • Decoding the candidate is actually decoding the log likelihood ratio of the candidate (English: Log-LikelihoodRatio, abbreviation: LLR).
  • the two LLRs input to the decoder will have significant differences, which will result in a loss of the final decoding performance. Therefore, the signal-to-noise ratio of the LLRs input to the decoder from different candidates ( English: Signal-Noise Ratio (abbreviation: SNR) requires the same, so the power balance of LLR needs to be performed before decoding.
  • SNR Signal-Noise Ratio
  • y1p y1
  • y2p Y2*sqrt(sum(y1 ⁇ 2)/sum(y2 ⁇ 2))
  • y1p and y2p are sent to the decoder of the above scheme for decoding.
  • the technical problem to be solved by the present application is to provide a resource mapping method and a device thereof, so that the receiving end can find symbol pairs with similar signal to noise ratios in candidate positions of the same aggregation level without calculation, which is advantageous for blind detection at the receiving end.
  • the application provides a resource mapping method, including:
  • the network device performs a nested structure mapping on the modulation symbol set to obtain a first resource block, where the modulation symbol set carries downlink control information corresponding to each user equipment in the at least one user equipment, where the first resource block carries the same user equipment.
  • Modulation symbols are continuous;
  • the network device maps the second resource block to a time-frequency resource, so that the user equipment acquires the modulation symbol set according to the time-frequency resource.
  • the application provides a resource mapping apparatus, including:
  • a nested mapping unit configured to perform a nested structure mapping on the modulation symbol set to obtain a first resource block, where the modulation symbol set carries downlink control information corresponding to each user equipment in the at least one user equipment, where the first resource block is The modulation symbols carrying the same user equipment are consecutive;
  • a resource block reconstruction unit configured to reconstruct the first resource block to obtain a second resource block, where the modulation symbols carrying the same user equipment on the second resource block are discontinuous;
  • the time-frequency mapping unit is configured to map the second resource block to the time-frequency resource, so that the user equipment acquires the modulation symbol set according to the time-frequency resource.
  • the application provides a network device, including:
  • a processor configured to execute the program stored by the memory, when the program is executed, the processor performs a nested structure mapping on a set of modulation symbols to obtain a first resource block, where the modulation symbol set carries at least one Downlink control information corresponding to each user equipment in the user equipment, where the modulation symbols of the same user equipment are consecutive on the first resource block; the processor reconstructs the first resource block to obtain a second resource block.
  • the modulation symbol that carries the same user equipment on the second resource block is discontinuous; the processor maps the second resource block to the time-frequency resource, so that the user equipment acquires the modulation symbol set according to the time-frequency resource.
  • the present application provides a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the decoding method as described in the first aspect.
  • the network device performs a row and column interleaving process on the first resource block to obtain a second resource block, where the column width of the primary row and column interleave is 2n, and n is a positive integer.
  • a row and column interleaving is performed to scramble the order in which the same modulation symbols are carried on the first resource block.
  • the network device performs at least two row and column interleaving processes on the first resource block to obtain a second resource block, and each of the at least two row and column interlaces is interleaved.
  • the column width is 2n, n is a positive integer, and the column widths of any two adjacent rows and columns are the same or different. Performing multiple row and column interleaving is beneficial to generating time-frequency diversity effects.
  • the network device performs a nested structure mapping on the modulation symbol set to obtain a downlink control information and a cyclic redundancy code corresponding to each user equipment before the first resource block is obtained.
  • the calibration information is sequentially subjected to channel coding, rate matching, interleaving, and modulation to obtain the modulation symbol set, and the modulation symbol set includes a modulation symbol corresponding to each user equipment.
  • the application provides a solution mapping method, including:
  • the user equipment receives the time-frequency resource indication information, and acquires the time-frequency resource according to the time-frequency resource indication information;
  • the user equipment performs time-frequency resource mapping on the time-frequency resource to obtain a nested structural resource block
  • the user equipment performs a de-nesting structure mapping on the nested structure resource block to obtain a modulation symbol set, where the modulation symbol set carries downlink control information corresponding to each user equipment in at least one user equipment.
  • the application provides a solution mapping device, including:
  • a receiving unit configured to receive time-frequency resource indication information
  • An extracting unit configured to extract time-frequency resources according to the time-frequency resource indication information
  • a demapping unit configured to perform time-frequency resource mapping on the time-frequency resource to obtain a nested structural resource block
  • the demapping unit is further configured to perform a de-nesting structure mapping on the nested structure resource block to obtain a modulation symbol set, where the modulation symbol set carries downlink control information corresponding to each user equipment in at least one user equipment.
  • the application provides a user equipment, including:
  • a transceiver configured to receive time-frequency resource indication information
  • a processor configured to execute the program stored by the memory, when the program is executed, the processor acquires a time-frequency resource according to the time-frequency resource indication information; and the processor pairs the time-frequency resource Performing a solution time-frequency resource mapping to obtain a nested structure resource block; the processor performing a de-nesting structure mapping on the nested structure resource block to obtain a modulation symbol set, where the modulation symbol set carries each user in at least one user equipment Downlink control information corresponding to the device.
  • the present application provides a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the decoding method as described in the fifth aspect.
  • the modulation symbol set is sequentially demodulated and deinterleaved.
  • the user equipment obtains downlink control information corresponding to the user equipment, if the blind detection is passed.
  • the first resource block obtained by performing the nested structure mapping is reconstructed, so that the modulation symbols mapped to the same user equipment on the time-frequency resource are not connected, so that the user equipment can be candidates at the same aggregation level without calculation. Finding pairs of symbols with similar signal-to-noise ratios in the location is beneficial for blind detection of user equipment.
  • 1 is a schematic diagram of a transmission process of a PDCCH blind detection scheme based on a Polar code
  • FIG. 2 is a schematic diagram of a receiving process of a PDCCH blind detection scheme based on a Polar code
  • Figure 3 is a basic flow chart of wireless communication
  • Figure 5 is a structural diagram of the Arikan Polar code
  • Figure 6 is a configuration diagram of a CA Polar code
  • Figure 7 is a configuration diagram of a PC Polar code
  • FIG. 8 is a schematic diagram of resource distribution of a typical nested structure
  • FIG. 9 is a diagram showing an example of a resource mapping of a transmitting end
  • Figure 10 is a diagram showing an example of a distribution of blinds at the receiving end
  • Figure 11 is a communication flow diagram based on a nested structure
  • FIG. 13a is a schematic diagram of a network device resource mapping provided by the present application.
  • FIG. 13b is an exemplary diagram of another network device resource mapping provided by the present application.
  • 15a is a diagram showing an example of a candidate distribution obtained by the demapping provided by the present application.
  • 15b is a diagram showing another example of distribution of the candidate obtained by the demapping provided by the present application.
  • 16 is a schematic structural diagram of a resource mapping apparatus provided by the present application.
  • FIG. 17 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 19 is a schematic structural diagram of a user equipment provided by the present application.
  • FIG. 3 is a basic flow of wireless communication.
  • the source is sequentially sent after source coding, channel coding, rate matching, and modulation mapping.
  • the information is outputted by demapping demodulation, de-rate matching, channel decoding, and source decoding.
  • the channel coding code can use a Polar code. Since the code length of the original Polar code (parent code) is an integer power of 2, in practical applications, a Polar code of arbitrary code length needs to be implemented by rate matching.
  • the sender performs rate matching after channel coding to achieve an arbitrary target code length, and performs de-rate matching on the receiving end before channel decoding.
  • the basic process of the wireless communication also includes additional processes (for example, precoding and interleaving), and since these additional processes are common common sense to those skilled in the art, they are not enumerated one by one.
  • additional processes for example, precoding and interleaving
  • CRC sequence and CRC information mentioned in this application are different names of the same thing.
  • the present application can be applied to a wireless communication system, where a wireless communication system usually consists of a cell, each cell includes a base station (English: Base Station, BS for short), and the base station transmits to multiple mobile stations (English: Mobile Station, referred to as MS)
  • a communication service is provided in which the base station is connected to the core network device, as shown in FIG.
  • the base station includes a baseband unit (English: Baseband Unit, BBU for short) and a remote radio unit (English: Remote Radio Unit, RRU for short).
  • BBU and the RRU can be placed in different places, for example, the RRU is pulled away, placed in an open area from high traffic, and the BBU is placed in the central computer room.
  • BBUs and RRUs can also be placed in the same room.
  • the BBU and RRU can also be different parts under one rack.
  • the wireless communication system mentioned in the present application includes but is not limited to: Narrow Band-Internet of Things (NB-IoT), Global System for Mobile Communications (English: Global System for Mobile Communications) , abbreviation: GSM), Enhanced Data Rate for GSM Evolution (English: Enhanced Data Rate for GSM Evolution, EDGE for short), Wideband Code Division Multiple Access (WCDMA), code division Address 2000 System (English: Code Division Multiple Access, CDMA2000 for short), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution System (English: Long Term) Evolution, referred to as LTE) and the next three applications of the next-generation 5G mobile communication system, enhanced mobile broadband (English: enhanced Mobile Broadband, eBB for short), ultra-reliable low-latency communication (English: Ultra Reliable Low Latency Communications, referred to as: URLLC) and large-scale Internet of Things communication ( Wen: massive Machine Type Communications, abbreviation: mMTC).
  • NB-IoT Narrow Band-Internet of Things
  • the base station is a device deployed in a radio access network to provide a wireless communication function for an MS.
  • the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the name of the device with the function of the base station may be different.
  • LTE Long Term Evolution
  • eNB evolved NodeB
  • Node B International: Node B
  • Node B Chinese: Node B
  • the foregoing devices for providing wireless communication functions to the MS are collectively referred to as network devices.
  • the MSs referred to in this application may include various handheld devices having wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • the MS may also be referred to as a terminal (English: Terminal), and may also include a subscriber unit (English: subscriber unit), a cellular phone (English: cellular phone), a smart phone (English: smart phone), a wireless data card, and a personal number.
  • Assistant English: Personal Digital Assistant, PDA for short
  • PDA Personal Digital Assistant
  • the Polar code proposed by Turkish professor Arikan is the first code that theoretically proves to achieve Shannon capacity and has low coding and decoding complexity.
  • the Polar code is also a linear block code whose encoding matrix is G N and the encoding process is among them Is a binary line vector of length N (ie code length); G N is an N ⁇ N matrix, and defined as The Kronecker product of the matrix F 2 .
  • N ie code length
  • GN(A) is a collection of GNs
  • GN(AC) is the set in GN
  • the encoded output of the Polar code can be simplified to:
  • a row vector of length K, ie ⁇ indicates the number of elements in the collection, K is the size of the information block, Is the matrix G N
  • Is the matrix G N The submatrices obtained from the rows corresponding to the index, Is a K ⁇ N matrix.
  • the construction process of the Polar code is a collection
  • the selection process determines the performance of the Polar code.
  • the construction process of the Polar code is generally: determining that there are N polarized channels in total according to the length N of the mother code, respectively corresponding to N rows of the coding matrix, calculating the reliability of the polarized channel, and the first K polarizations with higher reliability.
  • Channel index as a collection Element the index corresponding to the remaining (NK) polarized channels is used as an index set of fixed bits Elements. Collection Determine the position of the information bits, and combine The position of the fixed bit is determined.
  • the original Polar code (parent code) has a code length of 2, which is an integer power of 2, and in practice, a Polar code of arbitrary code length needs to be implemented by rate matching.
  • the information bit set is first combined with the check precoding and then the Polar code.
  • Polar encoding includes: Airkan traditional Polar encoding and CA Polar encoding and PC Polar encoding.
  • ⁇ u1, u2, u3, u5 ⁇ is set as a fixed bit set
  • ⁇ u4, u6, u7, u8 ⁇ is set as a set of information bits
  • the information vector of length 4 is set.
  • the 4-bit information bits are encoded into 8-bit coded bits.
  • ⁇ u1, u2 ⁇ is set as a fixed bit set
  • ⁇ u3, u4, u5, u6 ⁇ is set as a set of information bits
  • ⁇ u7, u8 ⁇ is a set of CRC bits.
  • the value of ⁇ u7, u8 ⁇ is obtained by CRC of ⁇ u3, u4, u5, u6 ⁇ .
  • CA-SCL International: CRC-Aided Successive Cancellation List
  • the CA-SCL decoding algorithm selects the path through which the CRC passes as the decoding output in the candidate path of the SCL decoding output by the CRC check.
  • ⁇ u1, u2, u5 ⁇ is set to a fixed bit set
  • ⁇ u3, u4, u6, u7 ⁇ is set to the information bit set
  • ⁇ u7 ⁇ is the PC fixed bit set.
  • the value of ⁇ u7 ⁇ is obtained by X0, u6 ⁇ XOR.
  • the decoding algorithm is based on the SCL decoding algorithm, which uses the fixed set of PCs to complete the process of sorting and pruning in the decoding process, and finally outputs the most reliable path.
  • FIG. 8 it is a schematic diagram of resource allocation of a typical nested structure, which includes a nested structure of 8 REs and a maximum support aggregation level AL8.
  • FIG. 8 shows the leftmost 8 REs and each aggregation. The candidate included in the rating.
  • For a user equipment (English: User Equipment, UE for short), blind detection is performed in four configurations of AL1-AL8, where AL1 includes #0 ⁇ #7 eight candidates, and AL2 includes #8 ⁇ #11 four.
  • AL4 includes #12 and #13 two candidates, AL8 only #14 a candidate, the UE needs to perform a total of 15 blind checks at a time, each blind test requires a decoding and a CRC detection, if passed CRC detection, it means After blind detection, the UE gets the required data.
  • a nested structure consists of N REs.
  • the number of candidates for each AL and the number of REs occupied by each candidate are as shown in the following table.
  • the number of coded bits (English: bits) carried by different candidates in the same AL is the same.
  • FIG. 9 is a schematic diagram of a resource mapping of a transmitting end.
  • a minimum nested structure (including 32 REs) is used to fill in an AL4, an AL2, and two AL1 PDCCHs.
  • the index of these 32 REs is 1 to 32, and the actual application can also be 0 to 31.
  • the AL4 occupies the REs of the indexes 1 to 16, and the symbols mapped on the REs are c1, that is, the symbols carrying the UE on the aggregation of the AL4 are c1;
  • the AL2 occupies the REs of the indexes 17 to 24, and the symbols mapped on the REs are B3, that is, the symbol of the UE carrying the UE on the AL2 is b3;
  • an AL1 occupies the RE of the index 25 to 28, and the symbol mapped on the RE is a7, that is, the symbol of the UE carrying the UE on the AL1 is a7;
  • Another AL1 occupies the RE of the index 29 to 32, and the symbol mapped on these REs is a8, that is, the symbol carrying a certain UE on the calendar of the AL1 is a8.
  • FIG. 10 is a diagram showing an example of a distribution of blinds at the receiving end.
  • the symbols c1 and c2 are obtained by de-mapping under AL4;
  • the symbols b1, b2, b3, and b4 are obtained by de-mapping under AL2;
  • symbols a1, a2, a3, a4, a5, a6, a7, a8 are obtained by de-mapping under AL1. .
  • a communication flow chart based on a nested structure is used to refine the mapping process and the demapping process in FIG. 3.
  • the two mapping processes are a nested structure mapping and a time-frequency resource mapping, correspondingly two
  • the demapping process is to solve the nested structure mapping and the solution time-frequency resource mapping.
  • Nested structure mapping, mapping the modulated symbols onto the nested structure resource blocks; time-frequency resource mapping, mapping the nested structure resource blocks after the nested structure mapping to the time-frequency resources, and FIG. 9 may be twice The result of the mapping.
  • the channel coding of FIG. 11 can adopt a Polar code. In this case, the flow of the transmitting end is the same as that of FIG. 1.
  • the process of the receiving end can be consistent with FIG. 2, and two or more candidates in the same aggregation level can be simultaneously translated during blind detection. code.
  • FIG. 9 can be based on FIG. 1, and FIG. 10 can be based on FIG. 2, and FIG. 9 and FIG. 10 are only for illustration.
  • the REs in the resource blocks are not necessarily completely adjacent, which may cause the SNRs of a1 and a2 obtained by the demapping at the receiving end to be different, or the SNRs of b1 and b2 are different, or the SNRs of c1 and c2 are different, that is, the same aggregation may be caused.
  • the SNRs of the symbols carried on adjacent candidates within the rank are different.
  • the present application provides a resource mapping method and device thereof, so that the receiving end can find symbol pairs with similar signal to noise ratios in candidate positions of the same aggregation level without calculation, which is beneficial to blind detection at the receiving end.
  • FIG. 12 is a schematic flowchart diagram of a resource mapping method provided by the present application, where the method includes but is not limited to the following steps:
  • Step S101 The network device performs a nested structure mapping on the modulation symbol set to obtain a first resource block, where the modulation symbol set carries downlink control information corresponding to each user equipment in the at least one user equipment, where the first resource block carries the same resource.
  • the modulation symbol of the user equipment is continuous;
  • the modulation symbol set carries downlink control information corresponding to each user equipment in at least one user equipment.
  • the symbols mapped to the first few slots of the time-frequency resource in the set of modulation symbols are used for PDCCH transmission.
  • the modulation symbol set includes a modulation symbol corresponding to each user equipment, that is, output from the modulation module in FIG. 11 and input a symbol of the nested structure mapping module, and the modulation may be Quadrature Amplitude Modulation in FIG. , QAM), can also be modulated in other ways. Referring to FIG.
  • the network device sequentially performs channel coding, rate matching, interleaving, and modulation on the DCI information and the CRC information of each user equipment to obtain a modulation symbol corresponding to each user equipment, thereby obtaining the modulation.
  • Symbol collection The process before channel coding and channel coding can be seen in the transmission procedure shown in FIG. 1.
  • the network device performs a nested structure mapping on the modulation symbol set to obtain a first resource block, where the modulation symbols carrying the same user equipment on the first resource block are consecutive.
  • the modulation symbol c1 of a user equipment is carried on the candidate of the AL4, and the modulation symbol b3 of the user equipment is carried on the candidate of the AL2, an AL1
  • the candidate carries the modulation symbol a7 of a user equipment, and the modulation symbol a8 of a user equipment is carried on the calendar of an AL1. It can be understood that the candidate carrying the same modulation symbol on the first resource block is consecutive, and the same modulation symbol is the modulation symbol of the same user equipment.
  • Step S102 The network device performs reconfiguration on the first resource block to obtain a second resource block, where the modulation symbols carrying the same user equipment on the second resource block are discontinuous;
  • the SNR of the symbol carried by the adjacent candidate of the same aggregation level obtained by the demapping at the receiving end may be different.
  • the SNRs of a1 and a2 may be different in FIG.
  • the SNRs of b1 and b2 may be different, or the possible SNRs of c1 and c2 are different. Therefore, the present application adds a reconstruction process between the nested structure mapping and the time-frequency resource mapping in the communication flow diagram shown in FIG. 11, and can also understand that the reconstruction process is a thinning of the nested structure mapping section. Chemical.
  • the network device reconfigures the first resource block to obtain a second resource block, where the modulation symbols carrying the same user equipment on the second resource block are discontinuous. It can be understood that the candidate carrying the same modulation symbol on the second resource block is discontinuous.
  • the network device performs a row-row interleaving process on the first resource block to obtain the second resource block, where the column width of the primary row and column interleave is 2n, and n is a positive integer.
  • the network device performs at least two row and column interleaving processes on the first resource block to obtain a second resource block, where the column width of each row and column interlace in the at least two row and column interleaving is 2n, and n is a positive integer.
  • the column widths of any two adjacent row and column interlaces may be the same or different, for example, the column width of each row and column interleave is 2; or the column width of the first row and column interleave is 2, and the column width of the second row and column interleave is 4; or the first row and column interleaving has a column width of 2, the second row and column interleaving has a column width of 4, and the third row and column interleaving has a column width of 2; or the first row and column interleaving has a column width of 2, and the second The column width of the second row and column interleave is 4, and the column width of the third row and column interleave is 4 or the like.
  • the number of the at least two row and column interlaces is not limited herein.
  • the reconstruction is to change the order of candidate positions carrying the same modulation symbol, and the present application can also perform reconstruction according to other methods.
  • Step S103 The network device maps the second resource block to a time-frequency resource.
  • the network device maps the second resource to a time-frequency resource, so that all user equipments in the coverage of the network device acquire the modulation symbol set according to the time-frequency resource.
  • the row width of the row and column interleaving is 2, and an example of the network device resource mapping can be seen in FIG. 13a.
  • the RE index in FIG. 13a follows the RE index in FIG. 9, and the c1 and FIG. 13a are visible.
  • B3 is adjacent, c1 is adjacent to a7, c1 is adjacent to a8, all c1 are discontinuous, all b3 are discontinuous, all a7 are discontinuous, all a8 are discontinuous, that is, modulation symbols carrying the same user equipment are discontinuous .
  • the interleave is performed twice, and the column width of each row and column interleave is 2 as an example.
  • the RE index in FIG. 13b follows the RE index in FIG. See Figure 13b, where c1 is adjacent to b3, b3 is adjacent to a7, a7 is adjacent to c1, c1 is adjacent to a8... all c1 are discontinuous, all b3 are discontinuous, all a7 are discontinuous, all a8 Discontinuous, that is, the modulation symbols carrying the same user equipment are discontinuous.
  • the network device performs the row-row interleaving process with a column width of four at a time, and the example diagram shown in FIG. 13b can also be obtained.
  • the foregoing scheme 2 can distribute the REs further to generate a time-frequency diversity combining effect for a candidate with a lower aggregation level.
  • the network device sends time-frequency resource indication information to the user equipment in the coverage area, indicating time-frequency resources occupied by the mapped modulation symbol set, for notifying
  • the user equipment extracts the time-frequency resources according to the time-frequency resource indication information, so that the user equipments obtain the modulation symbol set according to the time-frequency resources.
  • the time-frequency resource indication information may be delivered by using wireless signaling.
  • the network device informs all user equipments in the cell by the number of times of row and column interleaving and the column width of each row and column interlace by some signaling.
  • the first resource block obtained by performing the nested structure mapping is reconstructed, so that the modulation symbols mapped to the same user equipment on the time-frequency resource are not connected, so that the receiving end does not need to calculate. Finding pairs of symbols with similar signal-to-noise ratios in candidate locations of the same aggregation level facilitates blind detection at the receiving end.
  • FIG. 14 is a schematic flowchart of a solution mapping method provided by the present application, where the method includes but is not limited to the following steps:
  • Step S201 The user equipment receives time-frequency resource indication information.
  • the user equipment serves any one of all user equipments in the cell for the network device.
  • the user equipment may receive the time-frequency resource indication information by using a wireless signaling, where the time-frequency resource indication information indicates a time-frequency resource occupied by the set of modulation symbols mapped by the network device, where the modulation symbol set carries at least one user.
  • Downlink control information corresponding to each user equipment in the device.
  • Step S202 The user equipment acquires a time-frequency resource according to the time-frequency resource indication information.
  • the user equipment acquires time-frequency resources occupied by the set of modulation symbols mapped by the network device according to the time-frequency resource indication information.
  • Step S203 The user equipment performs time-frequency resource mapping on the time-frequency resource to obtain a nested structure resource block.
  • Step S204 The user equipment performs de-nesting structure mapping on the nested structure resource block to obtain a modulation symbol set.
  • the user equipment After the nested structure mapping is performed, the user equipment sequentially performs demodulation, deinterleaving, de-rate matching, and blind detection on the modulation symbol set; if the blind detection passes, the user equipment obtains the corresponding corresponding to the user equipment.
  • Downlink control information that is, obtaining downlink control information sent by the network device for the user equipment.
  • FIG. 15a For the first scheme in the embodiment described in FIG. 12, an example of the candidate distribution obtained by the user equipment de-nesting structure mapping can be seen in FIG. 15a.
  • the AL4 blind check in Figure 15a there is always an SNR of c1 close to the SNR of c2; for the AL2 blind check in Figure 15a, there is always an SNR of b1 close to the SNR of b3, and the SNR of b2 is close to b4 SNR;
  • the SNR of a1 is always close to the SNR of a5
  • the SNR of a2 is close to the SNR of a6
  • the SNR of a3 is close to the SNR of a7
  • the SNR of a4 is close to that of a8.
  • FIG. 15b For the solution 2 in the embodiment described in FIG. 12, an example of the distribution of the distribution of the user equipment de-nesting structure mapping can be seen in FIG. 15b.
  • the AL4 blind check in Figure 15b there is always an SNR of c1 close to the SNR of c2; for the AL2 blind check in Figure 15b, there is always an SNR of b1 close to the SNR of b3, and the SNR of b2 is close to b4 SNR;
  • the SNR of a1 is always close to the SNR of a5, the SNR of a2 is close to the SNR of a6, the SNR of a3 is close to the SNR of a7, and the SNR of a4 is close to the SNR of a8.
  • SNR SNR.
  • the network device maps the second resource block into the actual physical resource block in the embodiment described in FIG. 12, since the SNRs of adjacent REs are similar, there must be a similar SNR of the modulation symbols of adjacent candidate positions within the same aggregation level. .
  • the SNRs of the LLRs of different candidates within the same aggregation level of the user equipment input decoder are made similar, thereby facilitating blind detection of the user equipment.
  • the resource mapping device 301 shown in FIG. 16 can implement the embodiment shown in FIG. 12, wherein the nesting mapping unit 3011 is configured to perform step S101; the resource block reconstruction unit 3012 is configured to perform step S102; The frequency mapping unit 3013 is configured to perform step S103.
  • the resource mapping device 301 is, for example, a base station, and the resource mapping device 301 may be an application specific integrated circuit (ASIC) or a digital signal processor (English: Digital Signal Processor). Abbreviation: DSP) or chip.
  • ASIC application specific integrated circuit
  • DSP Digital Signal Processor
  • the solution resource mapping device 401 shown in FIG. 18 can implement the embodiment shown in FIG. 14 , wherein the receiving unit 4011 is configured to perform step S201; the extracting unit 4012 is configured to perform step S202; and the demapping unit 4013 is configured. Steps S203 and S204 are performed.
  • the solution resource mapping device 401 is, for example, a UE, and the solution resource mapping device 401 may also be an ASIC or a DSP or a chip that implements related functions.
  • the present application also provides a network device 302.
  • the network device can be a base station or a DSP or ASIC or chip that implements a related resource mapping function.
  • the network device 302 includes:
  • the memory 3021 is configured to store a program, where the memory may be a random access memory (English: Random Access Memory, RAM for short) or a read only memory (English: Read Only Memory, ROM) or a flash memory, where the memory may be located. It may be located separately within the communication device or within the processor 3023.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the transceiver 3022 can be a separate chip, or can be a transceiver circuit in the processor 3023 or as an input/output interface.
  • a processor 3023 configured to execute the program stored by the memory, when the program is executed, the processor 3023 performs a nested structure mapping on a set of modulation symbols to obtain a first resource block, where the modulation symbol set carries Downlink control information corresponding to each user equipment in the at least one user equipment, the modulation symbols carrying the same user equipment on the first resource block are consecutive; the processor 3023 reconstructs the first resource block to obtain a second resource a block, the modulation symbol of the same user equipment on the second resource block is discontinuous; the processor 3023 maps the second resource block to a time-frequency resource, so that the user equipment acquires the time-frequency resource according to the time-frequency resource.
  • a set of modulation symbols configured to execute the program stored by the memory, when the program is executed, the processor 3023 performs a nested structure mapping on a set of modulation symbols to obtain a first resource block, where the modulation symbol set carries Downlink control information corresponding to each user equipment in the at least one user equipment, the modulation symbols carrying the same
  • the transceiver 3021, the memory 3022, and the processor 3023 are connected by a bus 3024.
  • the present application also provides a user equipment 402.
  • the user equipment can be a base station or a DSP or ASIC or chip that implements a related resource mapping function.
  • the user equipment 402 includes:
  • the memory 4021 is configured to store a program; wherein the memory may be a RAM or a ROM or a flash memory, where the memory may be located in the communication device alone or in the processor 4042.
  • the transceiver 4022 is configured to receive time-frequency resource indication information.
  • the transceiver 4022 can function as a separate chip, as well as a transceiver circuit within the processor 4023 or as an input and output interface.
  • a processor 4023 configured to execute the program stored in the memory, when the program is executed, the processor 4023 performs a nested structure mapping on a set of modulation symbols to obtain a first resource block, where the modulation symbol set carries Downlink control information corresponding to each user equipment in the at least one user equipment, the modulation symbols carrying the same user equipment on the first resource block are consecutive; the processor 4023 reconstructs the first resource block to obtain a second resource a block, the modulation symbol of the same user equipment on the second resource block is discontinuous; the processor 4023 maps the second resource block to a time-frequency resource, so that the user equipment acquires the time-frequency resource according to the time-frequency resource.
  • a set of modulation symbols configured to execute the program stored in the memory, when the program is executed, the processor 4023 performs a nested structure mapping on a set of modulation symbols to obtain a first resource block, where the modulation symbol set carries Downlink control information corresponding to each user equipment in the at least one user equipment, the modulation symbols carrying the same
  • the transceiver 4021, the memory 4022, and the processor 4023 are connected by a bus 4024.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center By wired (for example, coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) to another website, computer, server or data center transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD (Digital Video Disk), or a semiconductor medium (for example, a solid state hard disk).
  • SSD Solid State Disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源映射方法及其装置,其中方法包括:网络设备对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;所述网络设备对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;所述网络设备将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。采用本申请,使得接收端无需计算便能在同一聚合等级的候选位置中找到信噪比相近的符号对,有利于接收端的盲检。

Description

一种资源映射方法及其装置
本申请要求于2017年3月24日提交中国专利局、申请号为201710184760.6、申请名称为“一种资源映射方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及领域通信技术领域,尤其涉及一种资源映射方法及其装置。
背景技术
目前,在无线通信协议中,新空口(英文:New Radio,简称:NR)的下行控制信息(英文:Downlink Control Information,简称:DCI)的编码方式已经确定为极性(Polar)码。在NR的物理下行控制信道(英文:Physical Downlink Control Channel,简称:PDCCH)中提出嵌套结构(英文:nested structure),其具有同一个资源元素(英文:Resource Element,简称:RE)会出现在不同聚合等级(英文:Aggregation Level,简称:AL)中的特性,不同聚合等级所包括的候选位置(英文:candidate)数量有所不同。
目前,提出了一种基于Polar码的PDCCH盲检方案,其发送流程可参见图1。基站首先对待发送DCI进行循环冗余检验(英文:Cyclical Redundancy Check,简称:CRC)编码,得到CRC序列,然后采用无线网络临时标识(英文:Radio Network Temporary Identity,简称:RNTI)相关序列对CRC序列中的冻结位(英文:frozen)/奇偶检验冻结位(英文:Parity Check frozen,简称:PC frozen)进行加扰,得到RNTI加扰的CRC序列,RNTI相关序列可以是RNTI的简单复制,也可以是RNTI的函数,例如以RNTI为种子生成的随机序列。然后基站将RNTI加扰的CRC序列与上述DCI进行串接,得到串接序列,再对串接序列依次进行信道编码、速率匹配(英文:Rate Matching,简称:RM)、交织(英文:interleave)、调制、映射(英文:Map)和发送流程。其中,信道编码采用Polar编码,在编码前采用RNTI相关序列对待编码序列中的frozen/PC frozen进行加扰。
该方案的接收流程可参见图2,可同时对同一聚合等级中的两个或两个以上的candidate进行译码。同时译码的两个或两个以上的candidate的编码后长度(N)以及待编码比特(bit)长度(K)相同,同时译码的candidate的数量不能超过宽度上限。对candidate进行译码,实际是对candidate的对数似然比(英文:Log-LikelihoodRatio,简称:LLR)进行译码。
若两个candidate的时频资源位置差异较大,输入译码器的两个LLR会有显著差异,会造成最终译码性能损失,因此输入译码器的来自不同candidate的LLR的信噪比(英文:Signal-Noise Ratio,简称:SNR)要求相同,因此在译码前,需要对LLR进行功率平衡。上述方案给出了一种解决方法,假设两个candidate同时进行译码,第一个candidate的LLR的向量为y1,第二个candidate的LLR的向量为y2,平衡后,y1p=y1,y2p=y2*sqrt(sum(y1^2)/sum(y2^2)),然后将y1p和y2p送入上述方案的译码器进行译码。
实际上在定点位宽较小的情况下采用上述功率平衡方法,有计算开销,且功率平衡计算过程中精度会有损失,影响接收端的盲检。
发明内容
本申请所要解决的技术问题在于,提供一种资源映射方法及其装置,使得接收端无需计算便能在同一聚合等级的候选位置中找到信噪比相近的符号对,有利于接收端的盲检。
第一方面,本申请提供了一种资源映射方法,包括:
网络设备对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;
所述网络设备对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;
所述网络设备将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
第二方面,本申请提供了一种资源映射装置,包括:
嵌套映射单元,用于对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;
资源块重构单元,用于对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;
时频映射单元,用于将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
第三方面,本申请提供了一种网络设备,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;所述处理器对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;所述处理器将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
第四方面,本申请提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面所述的译码方法。
结合以上所有方面,在一种可能的设计中,所述网络设备对所述第一资源块进行一次行列交织处理得到第二资源块,所述一次行列交织的列宽为2n,n为正整数。进行一次行列交织,打乱所述第一资源块上承载相同调制符号的顺序。
结合以上所有方面,在一种可能的设计中,所述网络设备对所述第一资源块进行至少两次行列交织处理得到第二资源块,所述至少两次行列交织中每次行列交织的列宽为2n,n为正整数,任意相邻两次行列交织的列宽相同或不相同。进行多次行列交织,有利于产生时频分集效果。
结合以上所有方面,在一种可能的设计中,所述网络设备对调制符号集合进行嵌套结构映射得到第一资源块之前,对所述每个用户设备对应的下行控制信息和循环冗余码校验 信息依次进行信道编码、速率匹配、交织和调制得到所述调制符号集合,所述调制符号集合包括所述每个用户设备对应的调制符号。
第五方面,本申请提供了一种解资源映射方法,包括:
用户设备接收时频资源指示信息,并根据所述时频资源指示信息获取时频资源;
所述用户设备对所述时频资源进行解时频资源映射得到嵌套结构资源块;
所述用户设备对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。
第六方面,本申请提供了一种解资源映射装置,包括:
接收单元,用于接收时频资源指示信息;
提取单元,用于根据所述时频资源指示信息提取时频资源;
解映射单元,用于对所述时频资源进行解时频资源映射得到嵌套结构资源块;
所述解映射单元,还用于对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。
第七方面,本申请提供了一种用户设备,包括:
存储器,用于存储程序;
收发器,用于接收时频资源指示信息;
处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器根据所述时频资源指示信息获取时频资源;所述处理器对所述时频资源进行解时频资源映射得到嵌套结构资源块;所述处理器对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。
第八方面,本申请提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第五方面所述的译码方法。
结合以上所有方面,在一种可能的设计中,所述用户设备对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合之后,对所述调制符号集合依次进行解调、解交织、解速率匹配、盲检;若盲检通过,则所述用户设备获得所述用户设备对应的下行控制信息。
本申请通过对进行嵌套结构映射得到的第一资源块进行重构,使得映射到时频资源上的同一用户设备的调制符号不连接,进而使得用户设备无需计算便能在同一聚合等级的候选位置中找到信噪比相近的符号对,有利于用户设备的盲检。
附图说明
为了更清楚地说明本申请或背景技术中的技术方案,下面将对本申请或背景技术中所需要使用的附图进行说明。
图1是基于Polar码的PDCCH盲检方案的发送流程示意图;
图2是基于Polar码的PDCCH盲检方案的接收流程示意图;
图3是无线通信的基本流程图;
图4是本申请的应用场景图;
图5为Arikan Polar码的构造示图;
图6为CA Polar码的构造示图;
图7为PC Polar码的构造示图;
图8是一种典型的嵌套结构的资源分布示意图;
图9是一种发射端资源映射示例图;
图10是一种接收端盲检的candidate分布示例图;
图11是基于嵌套结构的通信流程图;
图12是本申请提供的一种资源映射方法的流程示意图;
图13a是本申请提供的一种网络设备资源映射的示例图;
图13b是本申请提供的另一种网络设备资源映射的示例图;
图14是本申请提供的一种解资源映射方法的流程示意图;
图15a是本申请提供的解映射得到的一种candidate分布示例图;
图15b是本申请提供的解映射得到的另一种candidate分布示例图;
图16是本申请提供的资源映射装置的结构示意图;
图17是本申请提供的网络设备的结构示意图;
图18是本申请提供的解资源映射装置的结构示意图;
图19是本申请提供的用户设备的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
图3是无线通信的基本流程,在发送端,信源依次经过信源编码、信道编码、速率匹配和调制映射后发出。在接收端,依次通过解映射解调、解速率匹配、信道译码和信源译码输出信宿。信道编译码可以采用Polar码,由于原始Polar码(母码)的码长为2的整数次幂,在实际应用中需要通过速率匹配实现任意码长的Polar码。发送端在信道编码后进行速率匹配实现任意的目标码长,在接收端,信道解码之前先进行解速率匹配。需要说明的是,无线通信的基本流程还包括额外流程(例如:预编码和交织),鉴于这些额外流程对于本领域技术人员而言是公共常识,不再一一列举。本申请中提到的CRC序列和CRC信息是同一事物的不同称呼。
本申请可以应用于无线通信***,无线通信***通常由小区组成,每个小区包含一个基站(英文:Base Station,简称:BS),基站向多个移动台(英文:Mobile Station,简称:MS)提供通信服务,其中基站连接到核心网设备,如图4所示。其中基站包含基带单元(英文:Baseband Unit,简称:BBU)和远端射频单元(英文:Remote Radio Unit,简称:RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于离高话务量的开阔区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
需要说明的是,本申请提及的无线通信***包括但不限于:窄带物联网***(英文:Narrow Band-Internet ofThings,简称:NB-IoT)、全球移动通信***(英文:Global System for Mobile Communications,简称:GSM)、增强型数据速率GSM演进***(英文:Enhanced Data rate for GSM Evolution,简称:EDGE)、宽带码分多址***(英文:Wideband Code Division MultipleAccess,简称:WCDMA)、码分多址2000***(英文:Code Division Multiple Access,简称:CDMA2000)、时分同步码分多址***(英文:Time Division-Synchronization Code Division Multiple Access,简称:TD-SCDMA),长期演进***(英文:Long Term  Evolution,简称:LTE)以及下一代5G移动通信***的三大应用场景增强移动宽带(英文:enhanced Mobile Broadband,简称:eMBB),超可靠低延时通信(英文:Ultra Reliable Low Latency Communications,简称:URLLC)和大规模物联网通信(英文:massive Machine Type Communications,简称:mMTC)。
本申请中,所述基站是一种部署在无线接入网中用以为MS提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的***中,具备基站功能的设备的名称可能会有所不同,例如,在长期演进(英文:Long Term Evolution,简称:LTE)***中,称为演进的节点B(英文:evolved NodeB,eNB或者eNodeB),在第三代(英文:3rd Generation,简称:3G)***中,称为节点B(英文:Node B)等。为方便描述,本申请所有实施例中,上述为MS提供无线通信功能的装置统称为网络设备。
本申请中所涉及到的MS可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述MS也可以称为终端(英文:Terminal),还可以包括用户单元(英文:subscriber unit)、蜂窝电话(英文:cellular phone)、智能手机(英文:smart phone)、无线数据卡、个人数字助理(英文:Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(英文:modem)、手持设备(英文:handset)、膝上型电脑(英文:laptop computer)、机器类型通信(英文:Machine Type Communication,简称:MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为用户设备。
下面对Polar码做简单介绍。
通信***通常采用信道编码提高数据传输的可靠性,以保证通信的质量。土耳其教授Arikan提出的Polar码是第一个理论上证明可以达到香农容量且具有低编译码复杂度的码。Polar码也是一种线性块码,其编码矩阵为G N,编码过程为
Figure PCTCN2018080323-appb-000001
其中
Figure PCTCN2018080323-appb-000002
是一个二进制的行矢量,长度为N(即码长);G N是一个N×N的矩阵,且
Figure PCTCN2018080323-appb-000003
Figure PCTCN2018080323-appb-000004
定义为
Figure PCTCN2018080323-appb-000005
个矩阵F 2的克罗内克(Kronecker)乘积。上述矩阵
Figure PCTCN2018080323-appb-000006
Polar码的编码过程中,
Figure PCTCN2018080323-appb-000007
中的一部分比特用来携带信息,称为信息比特集合合,这些比特的索引的集合合记作
Figure PCTCN2018080323-appb-000008
另外的一部分比特设置为收发端预先约定的固定值,称之为固定比特集合合或冻结比特集合合(frozen bits),其索引的集合合用
Figure PCTCN2018080323-appb-000009
的补集合
Figure PCTCN2018080323-appb-000010
表示。Polar码的编码过程相当于:
Figure PCTCN2018080323-appb-000011
这里,GN(A)是GN中由集合合
Figure PCTCN2018080323-appb-000012
中的索引对应的那些行得到的子矩阵,GN(AC)是GN中由集合合
Figure PCTCN2018080323-appb-000013
中的索引对应的那些行得到的子矩阵。
Figure PCTCN2018080323-appb-000014
Figure PCTCN2018080323-appb-000015
中的信息比特集合合,数量为K;
Figure PCTCN2018080323-appb-000016
Figure PCTCN2018080323-appb-000017
中的固定比特集合合,其数量为(N-K),是已知比特。这些固定比特通常被设置为0,但是只要收发端预先约定,固定比特可以被任意设置。从而,Polar码的编码输出可简化为:
Figure PCTCN2018080323-appb-000018
这里
Figure PCTCN2018080323-appb-000019
Figure PCTCN2018080323-appb-000020
中的信息比特集合合,
Figure PCTCN2018080323-appb-000021
为长度K的行矢量,即
Figure PCTCN2018080323-appb-000022
·表示集合合中元素的个数,K为信息块大小,
Figure PCTCN2018080323-appb-000023
是矩阵G N中由集合合
Figure PCTCN2018080323-appb-000024
中的索引对应的那些行得到的子矩阵,
Figure PCTCN2018080323-appb-000025
是一个K×N的矩阵。
Polar码的构造过程即集合合
Figure PCTCN2018080323-appb-000026
的选取过程,决定了Polar码的性能。Polar码的构造过 程通常是,根据母码码长N确定共存在N个极化信道,分别对应编码矩阵的N个行,计算极化信道可靠度,将可靠度较高的前K个极化信道的索引作为集合合
Figure PCTCN2018080323-appb-000027
的元素,剩余(N-K)个极化信道对应的索引作为固定比特的索引集合合
Figure PCTCN2018080323-appb-000028
的元素。集合合
Figure PCTCN2018080323-appb-000029
决定了信息比特的位置,集合合
Figure PCTCN2018080323-appb-000030
决定了固定比特的位置。
从编码矩阵可以看出,原始Polar码(母码)的码长为2的整数次幂,在实际应用中需要通过速率匹配实现任意码长的Polar码。
为了提升Polar码的性能,通常对信息比特集合合先进行校验预编码,再进行Polar编码。有两种常见的校验预编码方式,即CRC级联Polar编码,或是PC级联Polar编码。目前,Polar编码包括:Airkan传统Polar编码和CA Polar编码和PC Polar编码。
对图5中Airkan传统Polar编码说明,{u1,u2,u3,u5}设置为固定比特集合合,{u4,u6,u7,u8}设置为信息比特集合合,将长度为4的信息向量中的4位信息比特编码成8位编码比特。
对图6中CA Polar编码说明,{u1,u2}设置为固定比特集合合,{u3,u4,u5,u6}设置为信息比特集合合,{u7,u8}为CRC比特集合合。其中,{u7,u8}的值由{u3,u4,u5,u6}做CRC得到。
对于CA Polar编码,采用CA-SCL(英文:CRC-Aided Successive Cancellation List,中文:CRC协助的串行抵消列表)译码算法。CA-SCL译码算法通过CRC校验在SCL译码输出的候选路径中选择CRC通过的路径作为译码输出。
对图7中PC Polar编码说明,{u1,u2,u5}设置为固定比特集合合,{u3,u4,u6,u7}设置为信息比特集合合,{u7}为PC固定比特集合合。其中,{u7}的值由{u3,u6}异或得到。
对于PC Polar编码,译码算法基于SCL译码算法,利用PC固定比特集合合在译码过程中完成排序、剪枝的过程,最终输出最可靠的路径。
下面对嵌套结构做简单介绍。
请参见图8,是一种典型的嵌套结构的资源分布示意图,以包括8个RE的嵌套结构、最多支持聚合等级AL8为例,图8示出最左侧的8个RE以及各个聚合等级所包括的candidate。对于一个用户设备(英文:User Equipment,简称:UE)而言,在AL1-AL8四种配置下进行盲检,其中AL1包括#0~#7八个candidate,AL2包括#8~#11四个candidate,AL4包括#12和#13两个candidate,AL8只有#14一个candidate,UE最多一共需要进行15次盲检,每次盲检需要一次译码和一次CRC检测,如果通过CRC检测,则表示盲检通过,UE得到所需数据。假设一个嵌套结构包括N个RE,每个AL的candidate数量和每个candidate占用RE数量如下表所示,同一个AL内不同的candidate承载的编码比特(英文:bit)数相同。
  Candidate数量 占用RE数量
AL1 8 N/8
AL2 4 N/4
AL4 2 N/2
AL8 1 N/1
请参见图9,是一种发射端资源映射示例图,以一个最小嵌套结构(包括32个RE)填入一个AL4,一个AL2,2个AL1的PDCCH为例。这32个RE的索引为1~32,实际应 用中也可以为0~31。其中,AL4占用索引1~16的RE,这些RE上映射的符号为c1,即AL4的candidate上承载某个UE的符号为c1;AL2占用索引17~24的RE,这些RE上映射的符号为b3,即AL2的candidate上承载某个UE的符号为b3;一个AL1占用索引25~28的RE,这些RE上映射的符号为a7,即该AL1的candidate上承载某个UE的符号为a7;另一个AL1占用索引29~32的RE,这些RE上映射的符号为a8,即该AL1的candidate上承载某个UE的符号为a8。
请参见图10,是一种接收端盲检的candidate分布示例图。其中,在AL4下解映射得到符号c1、c2;在AL2下解映射得到符号b1、b2、b3、b4;在AL1下解映射得到符号a1、a2、a3、a4、a5、a6、a7、a8。
请参见图11,是基于嵌套结构的通信流程图,对图3中的映射流程、解映射流程进行了细化,两个映射流程为嵌套结构映射和时频资源映射,对应地两个解映射流程为解嵌套结构映射和解时频资源映射。嵌套结构映射,将经过调制的符号映射到嵌套结构资源块上;时频资源映射,将嵌套结构映射后的嵌套结构资源块映射到时频资源上,图9可为经过两次映射的结果。图11的信道编码可采用Polar码,此时发送端的流程与图1一致,接收端的流程可与图2一致,盲检时可同时对同一聚合等级中的两个或两个以上的candidate进行译码。
需要说明的是,图9可基于图1,图10可基于图2,图9和图10仅用于举例说明。实际中,资源块中的RE不一定完全相邻,可能造成接收端解映射得到的a1和a2的SNR不同,或者b1和b2的SNR不同,或者c1和c2的SNR不同,即可能造成同一聚合等级内的相邻candidate上承载的符号的SNR不同。
鉴于此,本申请提供一种资源映射方法及其装置,使得接收端无需计算便能在同一聚合等级的候选位置中找到信噪比相近的符号对,有利于接收端的盲检。
请参见图12,图12是本申请提供的一种资源映射方法的流程示意图,该方法包括但不限于如下步骤:
步骤S101:网络设备对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;
其中,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。所述调制符号集合中映射到时频资源的前几个时隙上的符号用于PDCCH传输。所述调制符号集合包括所述每个用户设备对应的调制符号,即从图11中调制模块输出,输入嵌套结构映射模块的符号,调制可以为图1中的正交调幅调制(Quadrature Amplitude Modulation,QAM),也可以为其它方式的调制。可参见图11,所述网络设备对所述每个用户设备的DCI信息和CRC信息依次进行信道编码、速率匹配、交织和调制得到所述每个用户设备对应的调制符号,进而得到所述调制符号集合。信道编码以及信道编码之前的过程可参见图1所示的发送流程。
所述网络设备对所述调制符号集合进行嵌套结构映射得到第一资源块上,所述第一资源块上承载同一用户设备的调制符号连续。所述第一资源块映射到时频资源上的效果可参见图9,AL4的candidate上承载某个用户设备的调制符号c1,AL2的candidate上承载某 个用户设备的调制符号b3,一个AL1的candidate上承载某个用户设备的调制符号a7,一个AL1的candidate上承载某个用户设备的调制符号a8。可以理解的是,所述第一资源块上承载相同调制符号的candidate连续,相同调制符号即为同一用户设备的调制符号。
步骤S102:所述网络设备对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;
如果直接将所述第一资源块映射到时频资源上,可能导致接收端在解映射得到的同一聚合等级的相邻candidate承载的符号的SNR不同,例如图10中a1和a2的SNR可能不同,或者b1和b2的SNR可能不同,或者c1和c2的可能SNR不同。因此,本申请在图11所示的通信流程示意图中的嵌套结构映射和时频资源映射两个版块之间增加一个重构过程,也可以理解该重构过程为嵌套结构映射版块的细化。
具体地,所述网络设备对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续。可以理解的是,所述第二资源块上承载相同调制符号的candidate不连续。
方案一,所述网络设备对所述第一资源块进行一次行列交织处理得到所述第二资源块,所述一次行列交织的列宽为2n,n为正整数。
方案二,所述网络设备对所述第一资源块进行至少两次行列交织处理得到第二资源块,所述至少两次行列交织中每次行列交织的列宽为2n,n为正整数,任意相邻两次行列交织的列宽可以相同也可以不相同,例如每次行列交织的列宽均为2;或第一次行列交织的列宽为2,第二次行列交织的列宽为4;或第一次行列交织的列宽为2,第二次行列交织的列宽为4,第三次行列交织的列宽为2;或第一次行列交织的列宽为2,第二次行列交织的列宽为4,第三次行列交织的列宽为4等等。所述至少两次行列交织的数量在此不做限定。
可以理解的是,重构是为了改变承载相同调制符号的候选位置的顺序,本申请还可以根据其他方法进行重构。
步骤S103:所述网络设备将所述第二资源块映射到时频资源上;
具体地,所述网络设备将所述第二资源映射到时频资源上,以使所述网络设备覆盖范围内的所有用户设备根据所述时频资源获取所述调制符号集合。
针对上述方案一,以行列交织的列宽为2为例,所述网络设备资源映射的示例图可参见图13a,图13a中的RE索引沿用图9中RE索引,可见图13a中,c1与b3相邻,c1与a7相邻,c1与a8相邻,所有的c1不连续,所有的b3不连续,所有的a7不连续,所有的a8不连续,即承载同一用户设备的调制符号不连续。
针对上述方案二,以两次行列交织,每次行列交织的列宽为2为例,所述网络设备资源映射的示例图可参见图13b,图13b中的RE索引沿用图9中RE索引,可见图13b中,c1与b3相邻,b3与a7相邻,a7与c1相邻,c1与a8相邻…所有的c1不连续,所有的b3不连续,所有的a7不连续,所有的a8不连续,即承载同一用户设备的调制符号不连续。
需要说明的是,所述网络设备进行一次列宽为4的行列交织处理也可得到图13b所示的示例图。
上述方案二相比上述方案一,对于聚合等级较低的candidate,其RE可以分布得更远,以产生时频分集合效果。
可选地,在映射到所述时频资源之后,所述网络设备向其覆盖范围内的用户设备发送时频资源指示信息,指示映射后的调制符号集合所占用的时频资源,用于告知这些用户设备根据所述时频资源指示信息提取所述时频资源,进而方便这些用户设备根据所述时频资源获取所述调制符号集合。所述时频资源指示信息可以通过无线信令下发。
可选地,所述网络设备通过一些信令将行列交织的次数和每次行列交织的列宽告知该小区内的所有用户设备。
图12所示的实施例,通过对进行嵌套结构映射得到的第一资源块进行重构,使得映射到时频资源上的同一用户设备的调制符号不连接,进而使得接收端无需计算便能在同一聚合等级的候选位置中找到信噪比相近的符号对,有利于接收端的盲检。
请参见图14,图14是本申请提供的一种解资源映射方法的流程示意图,该方法包括但不限于如下步骤:
步骤S201:用户设备接收时频资源指示信息;
具体地,所述用户设备为所述网络设备服务小区内的所有用户设备中的任意一个用户设备。所述用户设备可通过无线信令接收所述时频资源指示信息,所述时频资源指示信息指示网络设备映射后的调制符号集合所占用的时频资源,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。
步骤S202:所述用户设备根据所述时频资源指示信息获取时频资源;
具体地,所述用户设备根据所述时频资源指示信息获取所述网络设备映射后的调制符号集合所占用的时频资源。
步骤S203:所述用户设备对所述时频资源进行解时频资源映射得到嵌套结构资源块;
步骤S204:所述用户设备对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合;
在解嵌套结构映射之后,所述用户设备对所述调制符号集合依次进行解调、解交织、解速率匹配、盲检;若盲检通过,则所述用户设备获得所述用户设备对应的下行控制信息,即获取所述网络设备针对所述用户设备发送的下行控制信息。所述用户设备进行盲检、译码的过程可参见图2所示的接收流程示意图。
针对图12所描述实施例中的方案一,所述用户设备解嵌套结构映射得到的candidate分布示例图可参见图15a。对图15a中的AL4盲检来说,始终有c1的SNR接近于c2的SNR;对图15a中的AL2盲检来说,始终有b1的SNR接近于b3的SNR,b2的SNR接近于b4的SNR;对图15a中的AL1盲检来说,始终有a1的SNR接近于a5的SNR,a2的SNR接近于a6的SNR,a3的SNR接近于a7的SNR,a4的SNR接近于a8的SNR。
针对图12所描述实施例中的方案二,所述用户设备解嵌套结构映射得到的candidate分布示例图可参见图15b。对图15b中的AL4盲检来说,始终有c1的SNR接近于c2的SNR;对图15b中的AL2盲检来说,始终有b1的SNR接近于b3的SNR,b2的SNR接近于b4的SNR;对图15b中的AL1盲检来说,始终有a1的SNR接近于a5的SNR,a2的SNR接近于a6的SNR,a3的SNR接近于a7的SNR,a4的SNR接近于a8的SNR。
无论图12所描述实施例中网络设备如何将第二资源块映射到实际物理资源块中,由于相邻RE的SNR相近,则一定存在同一聚合等级内的相邻候选位置的调制符号的SNR相近。
可以理解的是,按照图12所描述实施例,使得用户设备输入译码器的同一聚合等级内的不同candidate的LLR的SNR相近,进而有利于用户设备的盲检。
需要说明的是,图16所示的资源映射装置301可以实现图12所示的实施例,其中,嵌套映射单元3011用于执行步骤S101;资源块重构单元3012用于执行步骤S102;时频映射单元3013用于执行步骤S103。所述资源映射装置301例如为基站,所述资源映射装置301也可以为实现相关功能的专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)或者数字信号处理器(英文:Digital Signal Processor,简称:DSP)或者芯片。
需要说明的是,图18所示的解资源映射装置401可以实现图14所示的实施例,其中,接收单元4011用于执行步骤S201;提取单元4012用于执行步骤S202;解映射单元4013用于执行步骤S203和S204。所述解资源映射装置401例如为UE,所述解资源映射装置401也可以为实现相关功能的ASIC或者DSP或者芯片。
如图17所示,本申请还提供了一种网络设备302。该网络设备可以为基站,或者实现相关资源映射功能的DSP或ASIC或芯片。该网络设备302包括:
存储器3021,用于存储程序;其中,该存储器可以为随机访问内存(英文:Random Access Memory,简称:RAM)或者只读内存(英文:Read Only Memory,简称:ROM)或者闪存,其中存储器可以位于单独位于通信设备内,也可以位于处理器3023的内部。
收发器3022,可以作为单独的芯片,也可以为处理器3023内的收发电路或者作为输入输出接口。
处理器3023,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器3023对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;所述处理器3023对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;所述处理器3023将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
收发器3021、存储器3022、处理器3023之间通过总线3024连接。
需要说明的是,处理器3023执行的方法与图12所描述内容一致,不再赘述。
如图19所示,本申请还提供了一种用户设备402。该用户设备可以为基站,或者实现相关资源映射功能的DSP或ASIC或芯片。该用户设备402包括:
存储器4021,用于存储程序;其中,该存储器可以为RAM或者ROM或者闪存,其中存储器可以位于单独位于通信设备内,也可以位于处理器4042的内部。
收发器4022,用于接收时频资源指示信息。收发器4022可以作为单独的芯片,也可以为处理器4023内的收发电路或者作为输入输出接口。
处理器4023,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器4023对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;所述处理器4023对所述第一资源块进行重构得到第二资源块,所述第二资 源块上承载同一用户设备的调制符号不连续;所述处理器4023将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
收发器4021、存储器4022、处理器4023之间通过总线4024连接。
需要说明的是,处理器4023执行的方法与图14所描述内容一致,不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(英文:Digital Subsciber line,简称:DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD(英文:Digital Video Disk,中文:数字视频光盘))、或者半导体介质(例如固态硬盘(英文:Solid State Disk,简称:SSD)等。

Claims (16)

  1. 一种资源映射方法,其特征在于,包括:
    网络设备对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;
    所述网络设备对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;
    所述网络设备将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备对所述第一资源块进行重构得到第二资源块,包括:
    所述网络设备对所述第一资源块进行一次行列交织处理得到第二资源块,所述一次行列交织的列宽为2n,n为正整数。
  3. 如权利要求1所述的方法,其特征在于,所述网络设备对所述第一资源块进行重构得到第二资源块,包括:
    所述网络设备对所述第一资源块进行至少两次行列交织处理得到第二资源块,所述至少两次行列交织中每次行列交织的列宽为2n,n为正整数,任意相邻两次行列交织的列宽相同或不相同。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述网络设备对调制符号集合进行嵌套结构映射得到第一资源块之前,还包括:
    所述网络设备对所述每个用户设备对应的下行控制信息和循环冗余码校验信息依次进行信道编码、速率匹配、交织和调制得到所述调制符号集合,所述调制符号集合包括所述每个用户设备对应的调制符号。
  5. 一种解资源映射方法,其特征在于,包括:
    用户设备接收时频资源指示信息,并根据所述时频资源指示信息获取时频资源;
    所述用户设备对所述时频资源进行解时频资源映射得到嵌套结构资源块;
    所述用户设备对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述用户设备对所述调制符号集合依次进行解调、解交织、解速率匹配、盲检;
    若盲检通过,则所述用户设备获得所述用户设备对应的下行控制信息。
  7. 一种资源映射装置,其特征在于,包括:
    嵌套映射单元,用于对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;
    资源块重构单元,用于对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;
    时频映射单元,用于将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
  8. 如权利要求7所述的装置,其特征在于,所述资源块重构单元具体用于对所述第一资源块进行一次行列交织处理得到第二资源块,所述一次行列交织的列宽为2n,n为正整数。
  9. 如权利要求8所述的装置,其特征在于,所述资源块重构单元具体用于对所述第一资源块进行至少两次行列交织处理得到第二资源块,所述至少两次行列交织中每次行列交织的列宽为2n,n为正整数,任意相邻两次行列交织的列宽相同或不相同。
  10. 如权利要求7-9任一项所述的装置,其特征在于,还包括:
    流程处理单元,用于对所述每个用户设备对应的下行控制信息和循环冗余码校验信息依次进行信道编码、速率匹配、交织和调制得到所述调制符号集合,所述调制符号集合包括所述每个用户设备对应的调制符号。
  11. 一种解资源映射装置,其特征在于,包括:
    接收单元,用于接收时频资源指示信息;
    提取单元,用于根据所述时频资源指示信息提取时频资源;
    解映射单元,用于对所述时频资源进行解时频资源映射得到嵌套结构资源块;
    所述解映射单元,还用于对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。
  12. 根据权利要求11所述的装置,其特征在于,还包括:
    处理单元,用于对所述调制符号集合依次进行解调、解交织、解速率匹配、盲检;
    获得单元,还用于若盲检通过,则获得所述用户设备对应的下行控制信息。
  13. 一种网络设备,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器对调制符号集合进行嵌套结构映射得到第一资源块,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息,所述第一资源块上承载同一用户设备的调制符号连续;所述处理器对所述第一资源块进行重构得到第二资源块,所述第二资源块上承载同一用户设备的调制符号不连续;所述处理器将所述第二资源块映射到时频资源上,以使用户设备根据所述时频资源获取所述调制符号集合。
  14. 一种用户设备,其特征在于,包括:
    存储器,用于存储程序;
    收发器,用于接收时频资源指示信息;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器根据所述时频资源指示信息获取时频资源;所述处理器对所述时频资源进行解时频资源映射得到嵌套结构资源块;所述处理器对所述嵌套结构资源块进行解嵌套结构映射得到调制符号集合,所述调制符号集合携带至少一个用户设备中每个用户设备对应的下行控制信息。
  15. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-4任意一项所述的资源映射方法。
  16. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求5-6任意一项所述的解资源映射方法。
PCT/CN2018/080323 2017-03-24 2018-03-23 一种资源映射方法及其装置 WO2018171748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18772043.8A EP3592074B1 (en) 2017-03-24 2018-03-23 Resource mapping method and apparatus thereof
US16/578,481 US20200036474A1 (en) 2017-03-24 2019-09-23 Resource mapping method and apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184760.6 2017-03-24
CN201710184760.6A CN108631924B (zh) 2017-03-24 2017-03-24 一种资源映射方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/578,481 Continuation US20200036474A1 (en) 2017-03-24 2019-09-23 Resource mapping method and apparatus thereof

Publications (1)

Publication Number Publication Date
WO2018171748A1 true WO2018171748A1 (zh) 2018-09-27

Family

ID=63585020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080323 WO2018171748A1 (zh) 2017-03-24 2018-03-23 一种资源映射方法及其装置

Country Status (4)

Country Link
US (1) US20200036474A1 (zh)
EP (1) EP3592074B1 (zh)
CN (1) CN108631924B (zh)
WO (1) WO2018171748A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220191072A1 (en) * 2019-03-26 2022-06-16 Koito Manufacturing Co., Ltd. Automobile
CN113055067B (zh) * 2019-12-27 2024-04-26 中兴通讯股份有限公司 下行信号处理方法、装置及基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444119A (zh) * 2011-03-13 2013-12-11 Lg电子株式会社 用于发送/接收信号的方法及其装置
CN106160974A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 一种实现信道传输的方法及基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101697781B1 (ko) * 2009-05-14 2017-01-19 엘지전자 주식회사 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444119A (zh) * 2011-03-13 2013-12-11 Lg电子株式会社 用于发送/接收信号的方法及其装置
CN106160974A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 一种实现信道传输的方法及基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "On Repetition Level Adjustment After Initial Access", 3GPP TSG RAN WG1 MEETING #83 R1-156933, 22 November 2015 (2015-11-22), XP051003276 *
NEC: "Control Channel Structure For NR", 3GPP TSG-RAN WG1 MEETING #87 R1-1701883, 17 February 2017 (2017-02-17), XP051209046 *
See also references of EP3592074A4 *

Also Published As

Publication number Publication date
EP3592074A4 (en) 2020-03-18
US20200036474A1 (en) 2020-01-30
CN108631924A (zh) 2018-10-09
CN108631924B (zh) 2020-04-21
EP3592074B1 (en) 2021-07-28
EP3592074A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
US11689220B2 (en) Method and device for interleaving data
JP7007405B2 (ja) ポーラー符号化のための方法および装置
WO2018137567A1 (zh) 一种极性码的译码方法和装置
WO2018149332A1 (zh) 一种极性码的传输方法和装置
US10477530B2 (en) Apparatus for transmitting indication information indicating a codebook
JP2022174079A (ja) 符号化方法、復号方法、装置、および装置
CN109802795B (zh) 相位跟踪参考信号的传输方法及装置
WO2018166416A1 (zh) 传输控制信息的方法和装置
CN109889310A (zh) 一种极性码的编码方法和编码装置
US20200396020A1 (en) Coding Scheme Indication Method and Device
WO2018127139A1 (zh) 一种控制信息的传输方法和装置
JP2022534300A (ja) コーディングおよび変調方法、復調および復号方法、装置、ならびにデバイス
WO2018171748A1 (zh) 一种资源映射方法及其装置
US11963170B2 (en) Resource mapping method and apparatus
BR112020010432A2 (pt) aparelho de comunicação
CN108289009B (zh) 一种被用于信道编码的ue、基站中的方法和设备
WO2017133407A1 (zh) 信号传输方法和装置
WO2018171776A1 (zh) 一种广播信息指示的发送方法和发送设备
WO2018161946A1 (zh) 数据处理的方法和装置
CN108574555B (zh) 干扰随机化方法及设备
KR20210015634A (ko) 통신 시스템에서 폴라 코드를 사용한 신호의 송수신 방법 및 장치
WO2016049909A1 (zh) 数据传输方法和相关设备
WO2017139915A1 (zh) 适用于非正交多址接入的信息传输方法、装置以及通信***
CN108282245B (zh) 一种ldpc编码译码的方法和装置
WO2018171538A1 (zh) 数据传输方法、网络设备及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018772043

Country of ref document: EP

Effective date: 20191004