WO2017139915A1 - 适用于非正交多址接入的信息传输方法、装置以及通信*** - Google Patents

适用于非正交多址接入的信息传输方法、装置以及通信*** Download PDF

Info

Publication number
WO2017139915A1
WO2017139915A1 PCT/CN2016/073796 CN2016073796W WO2017139915A1 WO 2017139915 A1 WO2017139915 A1 WO 2017139915A1 CN 2016073796 W CN2016073796 W CN 2016073796W WO 2017139915 A1 WO2017139915 A1 WO 2017139915A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
information transmission
symbol
real
predetermined angle
Prior art date
Application number
PCT/CN2016/073796
Other languages
English (en)
French (fr)
Inventor
张健
杨现俊
王昕�
Original Assignee
富士通株式会社
张健
杨现俊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 杨现俊, 王昕� filed Critical 富士通株式会社
Priority to JP2018541147A priority Critical patent/JP2019510402A/ja
Priority to CN201680078855.3A priority patent/CN108463957A/zh
Priority to PCT/CN2016/073796 priority patent/WO2017139915A1/zh
Priority to EP16890150.2A priority patent/EP3419193A1/en
Publication of WO2017139915A1 publication Critical patent/WO2017139915A1/zh
Priority to US16/051,674 priority patent/US20180343160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3444Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power by applying a certain rotation to regular constellations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an information transmission method, apparatus, and communication system suitable for non-orthogonal multiple access.
  • Machine Type Communication is a prominent feature of the fifth generation (5G) mobile communication system.
  • 5G fifth generation
  • 5G systems In addition to the traditional use of user devices (such as smart phones), more and more smart devices will become user devices and have flexible access to the system.
  • 5G systems In order to achieve the Internet of Everything, 5G systems need to support more user device connections than 4G systems. Therefore, the new multiple access technology is particularly important in the design of 5G systems.
  • SCMA Sparse Code Multiple Access
  • SCMA is a new type of multiple access technology. “Sparse” means that the signal transmitted by a certain user equipment does not occupy all allocated resources, but by allowing multiple user equipments to use the same resource, more user equipment can be allowed to access the system at the same time. SCMA is essentially a non- Orthogonal multiple access mode.
  • Embodiments of the present invention provide an information transmission apparatus, method, and communication system suitable for non-orthogonal multiple access. By performing a second rotation of the symbol, a higher diversity gain can be achieved, thereby further improving system performance and multiplexing a larger number of user devices.
  • an information transmission method suitable for non-orthogonal multiple access includes:
  • the transmitting end modulates the data to be transmitted into a plurality of constellation symbols
  • a plurality of fourth symbols are mapped onto a plurality of resource particles and transmitted.
  • an information transmission apparatus suitable for non-orthogonal multiple access, the information transmission apparatus comprising:
  • a data modulation unit that modulates data to be transmitted into a plurality of constellation symbols
  • a first rotating unit that obtains a plurality of first symbols after rotating the plurality of constellation symbols by a first predetermined angle
  • a first interleaving unit which performs interleaving of the imaginary part and the real part of the plurality of first symbols to obtain a plurality of second symbols; wherein the real and imaginary parts belonging to the same first symbol are scattered to different second symbols Department and imaginary position;
  • a second rotating unit which rotates the plurality of second symbols by a second predetermined angle to obtain a plurality of third symbols
  • a second interleaving unit which performs interleaving of the imaginary part and the real part by the plurality of third symbols to obtain a plurality of fourth symbols; wherein the real and imaginary parts belonging to the same third symbol are scattered to different fourth symbols Department and imaginary position;
  • the resource mapping unit maps the plurality of fourth symbols onto the plurality of resource particles and transmits the same.
  • a communication system comprising:
  • a transmitting end configured with the information transmission device as described above;
  • the receiving end receives the information sent by the transmitting end and performs demodulation.
  • the beneficial effects of the embodiments of the present invention are: performing one rotation on a plurality of constellation symbols and interleaving the imaginary parts and real parts of different symbols, and then performing second rotation and interleaving the imaginary parts and the real parts of different symbols; Achieve higher diversity gains to further improve system performance and reuse a larger number of user devices.
  • 1 is a schematic diagram of multiplexing of multi-user equipment in SCMA
  • FIG. 3 is a schematic diagram of an information transmission method applicable to non-orthogonal multiple access according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of user resource mapping according to Embodiment 1 of the present invention.
  • FIG. 5 is another schematic diagram of an information transmission method applicable to non-orthogonal multiple access according to Embodiment 1 of the present invention.
  • 6 is a schematic diagram of user resource mapping of orthogonal multiple access
  • Figure 8 is a schematic diagram of a comparison between the SCMA method and the double rotation method
  • Figure 10 is a schematic diagram of another comparison of the SCMA method and the dual rotation method
  • FIG. 11 is another comparative schematic diagram of the SCMA method and the dual rotation method
  • FIG. 12 is a schematic diagram of performing codeword interleaving according to an embodiment of the present invention.
  • FIG. 13 is another schematic diagram of performing codeword interleaving according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of an information transmission apparatus applicable to non-orthogonal multiple access according to Embodiment 4 of the present invention.
  • FIG. 16 is a schematic diagram of a user equipment according to Embodiment 4 of the present invention.
  • FIG. 17 is a schematic diagram of a base station according to Embodiment 4 of the present invention.
  • Figure 18 is a diagram showing the communication system of Embodiment 5 of the present invention.
  • a base station may be referred to as an access point, a broadcast transmitter, a Node B, an evolved Node B (eNB), etc., and may include some or all of their functions.
  • the term “base station” will be used herein. Each base station provides communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • a mobile station or device may be referred to as a "User Equipment” (UE).
  • UE User Equipment
  • a UE may be fixed or mobile and may also be referred to as a mobile station, terminal, access terminal, subscriber unit, station, and the like.
  • the UE may be a cellular telephone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless telephone, and the like.
  • PDA personal digital assistant
  • the "codewords" in the SCMA are constructed using two-dimensional constellation points, for example, the signals are first rotated, and the signal copies are respectively generated in the real part and the imaginary part. These copies are then transmitted over multiple resource particles so that inter-symbol associations can be established within the codeword to counter the interference generated by signal overlays of multiple user devices.
  • each square represents a time-frequency resource particle, for example, resource particles (RE, in an Orthogonal Frequency Division Multiplexing (OFDM) system) Resource Element).
  • RE Orthogonal Frequency Division Multiplexing
  • the blank indicates a zero position, indicating that the user equipment does not transmit a signal on the resource particle, or is called a transmission zero symbol; the shadow represents a non-zero position, indicating that the user equipment transmits a signal on the resource, and the transmission is non-zero. Zero symbol.
  • four resource particles carry a total of six user equipment signals, and each user equipment transmits two non-zero symbols.
  • u i, v i is a real number
  • c i is a complex
  • i, i + 1 is used to identify two consecutive symbols. The following identifies the identity of the user equipment without confusion.
  • the original symbol is first phase rotated. Assuming the rotation angle is ⁇ , the rotated symbol is:
  • the s i , s i+1 are mapped to the two non-zero positions of Figure 1 for transmission, and thus the SCMA complete codeword is obtained, including zero symbols and non-zero symbols.
  • each user equipment For multiple user equipments, each user equipment generates a signal in accordance with the above process, which in turn is mapped to a non-zero location transmission.
  • the non-zero locations mapped are different.
  • the four resource particles shown in Figure 1 constitute a codeword, including zero symbols and non-zero symbols.
  • the s i , s i+1 expression is a general formula for transmitting non-zero symbols. In actual transmission, multiple codewords can be transmitted depending on the size of the resource allocation.
  • FIG. 2 is a diagram showing the transmission of 2 code words in SCMA, showing an example of continuously transmitting 4 non-zero symbols.
  • the same signal component for example, u i or v i , etc.
  • u i or v i , etc. is dispersed and transmitted to two different resource particles.
  • FIG. 3 is a schematic diagram of an information transmission method according to an embodiment of the present invention. As shown in FIG. 3, the information transmission method includes:
  • Step 301 The transmitting end modulates the data to be transmitted into a plurality of constellation symbols.
  • Step 302 The transmitting end rotates the plurality of constellation symbols by a first predetermined angle to obtain a plurality of first symbols.
  • Step 303 The transmitting end performs interleaving of the imaginary part and the real part by using the plurality of first symbols to obtain a plurality of second symbols; wherein the real part and the imaginary part belonging to the same first symbol are scattered to the real part of the different second symbol And imaginary position;
  • Step 304 The transmitting end rotates the plurality of second symbols by a second predetermined angle to obtain a plurality of third symbols.
  • Step 305 The transmitting end performs interleaving of the imaginary part and the real part by using the plurality of third symbols to obtain a plurality of fourth symbols; wherein the real part and the imaginary part belonging to the same third symbol are scattered to the real part of the different fourth symbol And imaginary position; and
  • Step 306 The transmitting end maps multiple fourth symbols onto multiple resource particles and transmits the same.
  • multiple transmitting ends may perform non-orthogonal multiple access (eg, non-orthogonal multiple access based on sparse characteristics).
  • the transmitting end can be, for example, an MTC user equipment, and the MTC user equipment and other user equipment perform non-orthogonal transmission based on sparsity characteristics to the receiving end.
  • the present invention is not limited thereto, and only the MTC user equipment and the non-orthogonal multiple access based on the sparse characteristic are taken as an example for description.
  • the receiving end may be a macro base station (for example, an eNB), and the macro cell generated by the macro base station (for example, a Macro cell) may provide a service for the user equipment; or the receiving end may also be a micro base station, and the generated by the micro base station.
  • a micro cell for example, a Pico cell
  • the present invention is not limited thereto, and a specific scenario can be determined according to actual needs.
  • c i ⁇ c i+3 can be derived from Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM, Quadrture) Amplitude Modulation), a symbol of an arbitrary constellation such as 64QAM, but the present invention is not limited thereto.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • QAM Quadrture Amplitude Modulation
  • any related method can be referred to.
  • step 302 assuming that the first predetermined angle is ⁇ , the plurality of first symbols after the first rotation are:
  • step 303 the two first symbols having different signal components may be interleaved with the imaginary part and the real part, thereby obtaining a plurality of second symbols.
  • step 304 it is assumed that the second predetermined angle is Then the third symbol after the second rotation is:
  • step 305 two third symbols having different signal components may be interleaved with the imaginary part and the real part, thereby obtaining a plurality of fourth symbols.
  • step 306 a plurality of fourth symbols can be mapped onto a plurality of resource particles, respectively.
  • N fourth symbols may be mapped to N resource particles of M time-frequency resource particles, and the remaining resource particles transmit zero symbols; wherein M and N are positive integers and M is greater than N.
  • mapping may be performed in a manner other than "sparse code division".
  • FIG. 4 is a schematic diagram of user resource mapping according to an embodiment of the present invention.
  • w i to w i+3 are mapped to 4 non-zero resource locations for transmission; wherein the same signal component (eg, u i ) is spread over 4 different resource particles for transmission.
  • the method shown in FIG. 4 (which can be called a dual rotation method) can obtain higher.
  • the diversity gain which improves the demodulation performance of the user equipment, makes it possible to further multiplex a larger number of user equipment.
  • each user equipment performs steps 301 to 305; and in step 305, the non-zero resource locations to which different user equipments are mapped are different, thereby enabling non-orthogonal multiple access. .
  • FIG. 5 is another schematic diagram of an information transmission method according to an embodiment of the present invention, showing a case where data to be transmitted is modulated into a plurality of code words. As shown in FIG. 5, the information transmission method includes:
  • Step 501 The transmitting end modulates the data to be transmitted into multiple codewords.
  • Each of the codewords contains N non-zero constellation symbols, and N is a positive integer.
  • step 502 the sender selects a certain codeword.
  • Step 503 The transmitting end rotates the N constellation symbols of the codeword by a first predetermined angle to obtain N first symbols.
  • Step 504 The transmitting end performs N interleaving of the N first symbols on the imaginary part and the real part to obtain N second symbols.
  • Step 505 The transmitting end rotates the N second symbols by a second predetermined angle to obtain N third symbols.
  • Step 506 The transmitting end performs interleaving of the imaginary part and the real part by the N third symbols to obtain a plurality of fourth symbols.
  • Step 507 The transmitting end maps the N fourth symbols to the N resource particles in the M time-frequency resource particles.
  • M is a positive integer and M is greater than N. After resource mapping, these symbols can be transmitted accordingly. For details on how to map and how to transmit, you can refer to any related method.
  • step 508 it is determined whether there is still an unprocessed codeword; if yes, step 502 is performed, another codeword is selected to continue processing; if not, the current transmission process is completed.
  • FIG. 5 only schematically illustrates an embodiment of the present invention, but the present invention is not limited thereto.
  • the order of execution between the various steps can be appropriately adjusted, and other steps can be added or some of the steps can be reduced.
  • Those skilled in the art can appropriately modify the above based on the above contents, and are not limited to the description of the above drawings.
  • the plurality of constellation symbols are rotated and interleaved once, and the real part and the imaginary part originally belonging to the same first symbol are scattered to the real part and the imaginary part of the second symbol, and then rotated twice. Interleaving, the real and imaginary parts belonging to the same third symbol are scattered to the real and imaginary parts of different fourth symbols; thereby obtaining higher diversity gain, thereby further improving system performance and multiplexing more User equipment.
  • the embodiment of the present invention is further explained on the basis of the first embodiment.
  • the use of the BPSK symbol by the MTC user equipment is taken as an example to explain the effect of the present invention and how to determine the rotation angle.
  • FIG. 6 is a schematic diagram of user resource mapping of orthogonal multiple access. As shown in FIG. 6, in the orthogonal multiple access mode, an MTC user equipment usually uses QPSK symbols for transmission, and four resource particles can be reused. 4 user devices, one resource particle per user device.
  • FIG. 7 is a schematic diagram of user resource mapping of SCMA. As shown in FIG. 7, in SCMA mode, each MTC user equipment uses two resource particles, and the transmitted signal is formed by rotating and interleaving two BPSK symbols. Four resource particles can reuse six user devices.
  • a single user equipment is still taken as an example, and the user equipment identifier is omitted. It is assumed that the user equipment is ready to transmit the original 4 BPSK symbols: a 1 , a 2 , a 3 and a 4 , where a 1 to a 4 are from the BPSK constellation.
  • the first level of constellation rotation can be performed. Assuming the rotation angle is ⁇ , the rotated symbol is recorded as:
  • the interleaving method is, for example: Imaginary part Real part interchange, will Imaginary part The real part is interchanged. This gives you:
  • the interleaving method is, for example: Imaginary part Real part interchange, will Imaginary part The real part is interchanged. This gives you:
  • w 1 to w 4 can be mapped to 4 non-zero resource locations and transmitted.
  • non-orthogonal multiple access e.g., non-orthogonal multiple access based on sparse characteristics
  • FIG. 8 is a schematic diagram of a comparison between the SCMA method and the dual rotation method of the embodiment of the present invention, showing a case of taking a single user equipment as an example.
  • a 1 as an example, in which the method in the SCMA two transmission resource element 8, while the double rotation method embodiment of the present invention is to transmit in four resource elements, and therefore compared with the method of SCMA
  • the dual rotation method of the embodiment of the present invention theoretically has a higher diversity effect.
  • FIG. 9 is another schematic diagram of a comparison between the SCMA method and the dual rotation method of the embodiment of the present invention, showing the bit error rate (BER, Bit Error Rate) of the dual rotation method under the single user equipment condition, the SCMA method and the embodiment of the present invention.
  • Performance curve where the channel hypothesis follows an independent and identically distributed Rayleigh distribution.
  • FIG. 10 is another schematic diagram of a comparison between the SCMA method and the dual rotation method of the embodiment of the present invention, showing the bit error rate of the dual rotation method of the SCMA method and the embodiment of the present invention under the condition of a multi-user device (the number of user equipment is 6) Performance curve; where the channel hypothesis follows an independent and identically distributed Rayleigh distribution.
  • FIG. 11 is another schematic diagram of a comparison between the SCMA method and the dual rotation method of the embodiment of the present invention, showing the block error rate of the dual rotation method of the SCMA method and the embodiment of the present invention under the condition of a multi-user device (the number of user equipment is 6) (BLER, Block Error Rate) performance curve; where the channel hypothesis obeys an independent and identically distributed Rayleigh distribution, The Turbo channel coding conforming to the LTE standard is used, and the code rate is 0.795.
  • the vector a 1&2 can have four possible values, so that x has four possible values, namely x ⁇ ⁇ x (l)
  • l 1, 2, 3, 4 ⁇ .
  • x (i) is misjudged as x (k)
  • an error occurs in the demodulation of a 1 , a 2 , and the error probability is calculated below.
  • the above only schematically illustrates how to determine the first predetermined angle and the second predetermined angle, but the present invention is not limited thereto, and other methods of determining the angle may also be used.
  • the rotation angle is not limited to 45° and 60°, and may be other angles, and specific values may be determined according to actual scenes.
  • Embodiments of the present invention further explain how to perform resource mapping on the basis of Embodiments 1 and 2.
  • the fourth symbol containing the same signal component may be dispersedly mapped to non-adjacent resource particles experiencing independent or uncorrelated channel fading. on.
  • This resource mapping method is also applicable to the traditional SCMA method.
  • mapping symbols (which may be s i in SCMA, etc., or w i of the embodiment of the present invention) to non-zero resources
  • symbol interleaving may be performed, so that symbols containing the same signal components are mapped as much as possible.
  • resource particles that are capable of undergoing independent or uncorrelated channel fading the same codeword is spread over non-adjacent resource particles that experience independent or uncorrelated fading.
  • FIG. 12 is a schematic diagram of performing codeword interleaving according to an embodiment of the present invention, showing a case where SCMA is taken as an example.
  • symbols belonging to the same codeword (including zero symbols and non-zero symbols) in the conventional SCMA method will be mapped onto consecutive resource particles; Such push, more The codewords will be filled with all resource block pairs assigned to the user device.
  • symbols belonging to the same codeword will be mapped into different resource block pairs, so that each symbol can undergo as much as possible irrelevance.
  • the channel is fading, thereby further utilizing diversity.
  • FIG. 13 is another schematic diagram of performing codeword interleaving according to an embodiment of the present invention, showing a case where the dual rotation method of the embodiment of the present invention is taken as an example.
  • symbols belonging to the same codeword including zero symbols and non-zero symbols
  • the codewords will be filled with all resource block pairs assigned to the user device.
  • symbols containing the same signal component can be dispersed and transmitted on four non-zero resource particles, so that eight symbols (including zero symbols and non-zero symbols) can be seen.
  • Eight symbols including zero symbols and non-zero symbols
  • FIG. 14 is another comparative diagram of the SCMA method and the dual rotation method of the embodiment of the present invention, showing performance simulation results after using codeword interleaving; wherein the ETU is 120 km/h channel, using LTE Turbo channel coding, code rate It is 0.795.
  • the double-rotation method after codeword interleaving has better performance than the conventional SCMA method; and compared with FIG. 11, the method of performing codeword interleaving is better than the method of not interleaving codewords. Performance (such as a lower block error rate) can further achieve diversity gain.
  • Embodiments of the present invention provide an information transmission apparatus suitable for non-orthogonal multiple access.
  • This embodiment corresponds to the information transmission method applicable to non-orthogonal multiple access in Embodiments 1 to 3, and the same content is not described again.
  • FIG. 15 is a schematic diagram of an information transmission apparatus applicable to non-orthogonal multiple access according to an embodiment of the present invention.
  • an information transmission apparatus 1500 suitable for non-orthogonal multiple access includes:
  • a data modulation unit 1501 that modulates data to be transmitted into a plurality of constellation symbols
  • a first rotating unit 1502 which respectively rotates the plurality of constellation symbols by a first predetermined angle to obtain a plurality of first symbols
  • a first interleaving unit 1503 which performs interleaving of the imaginary part and the real part by the plurality of first symbols to obtain a plurality of second symbols; wherein the real and imaginary parts belonging to the same first symbol are dispersed to different second symbols Real and virtual parts Set
  • a second rotating unit 1504 which rotates the plurality of second symbols by a second predetermined angle to obtain a plurality of third symbols
  • a second interleaving unit 1505 which performs interleaving of the imaginary part and the real part by the plurality of third symbols to obtain a plurality of fourth symbols; wherein the real and imaginary parts belonging to the same first symbol are dispersed to different second symbols Real and imaginary positions;
  • the resource mapping unit 1506 maps the plurality of fourth symbols onto the plurality of resource particles and transmits the same.
  • the data to be transmitted may be modulated into a plurality of codewords, each codeword comprising N non-zero constellation symbols, where N is a positive integer.
  • N fourth symbols may be mapped to N resource particles of M time-frequency resource particles for transmission; wherein M is a positive integer and M is greater than N.
  • M is a positive integer and M is greater than N.
  • the invention is not limited thereto.
  • the information transmission apparatus 1500 applicable to the non-orthogonal multiple access may further include:
  • the angle determining unit 1507 determines the first predetermined angle and the second predetermined angle based on the symbol error rate.
  • the resource mapping unit 1506 is further configured to: scatter a fourth symbol having the same signal component onto resource particles having independent or uncorrelated channel fading.
  • the resource particles included in the same codeword are from different physical resource block pairs, and are located at time-frequency locations that are not adjacent to each other and are far away from each other.
  • the embodiment of the present invention further provides a transmitting end configured with the information transmission device 1500 suitable for non-orthogonal multiple access as described above.
  • the transmitting end can be, for example, a user equipment, such as an MTC user equipment; the receiving end can be a base station.
  • FIG. 16 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1600 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functionality of information transmission device 1500 suitable for non-orthogonal multiple access may be integrated into central processor 100.
  • the central processing unit 100 may be configured to implement the information transmission method applicable to non-orthogonal multiple access as described in Embodiments 1 to 3.
  • the central processing unit 100 may be configured to perform control of modulating data to be transmitted into a plurality of constellation symbols; and respectively rotating the plurality of constellation symbols by a first predetermined angle to obtain a plurality of first symbols;
  • the plurality of first symbols perform interleaving of the imaginary part and the real part to obtain a plurality of second symbols, wherein the first symbol belongs to the same
  • the real part and the imaginary part are scattered to different real and imaginary positions of the second symbol; and the plurality of second symbols are respectively rotated by a second predetermined angle to obtain a plurality of third symbols;
  • the symbol performs interleaving of the imaginary part and the real part to obtain a plurality of fourth symbols, wherein the real part and the imaginary part belonging to the same third symbol are scattered to the real part and the imaginary part position of the different fourth symbol;
  • the fourth symbol is mapped onto multiple resource particles and transmitted.
  • the information transmission device 1500 suitable for non-orthogonal multiple access can be configured separately from the central processing unit 100, for example, the information transmission device 1500 suitable for non-orthogonal multiple access can be configured to The chip connected to the central processing unit 100 realizes the function of the information transmission device 1500 suitable for non-orthogonal multiple access by the control of the central processing unit 100.
  • the user equipment 1600 may further include: a communication module 110, an input unit 120, a memory 140, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1600 does not have to include all the components shown in FIG. 16, and the above components are not required; in addition, the user equipment 1600 may further include components not shown in FIG. There are technologies.
  • the sending end may be, for example, a base station, and the receiving end may be a user equipment, such as an MTC user equipment.
  • the present invention is not limited thereto, and the transmitting end and the receiving end may also be other network devices.
  • FIG. 17 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 1700 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the information transmission apparatus 1500 suitable for non-orthogonal multiple access can implement the information transmission method suitable for non-orthogonal multiple access as described in Embodiment 1.
  • the central processing unit 200 can be configured to implement the functionality of the information transmission device 1500 suitable for non-orthogonal multiple access.
  • the base station 1700 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to the prior art, and details are not described herein again. It should be noted that the base station 1700 also does not have to include all of the components shown in FIG. 17; in addition, the base station 1700 may also include components not shown in FIG. 17, and reference may be made to the prior art.
  • the plurality of constellation symbols are rotated and interleaved once, and the real part and the imaginary part originally belonging to the same first symbol are scattered to the real part and the imaginary part of the second symbol, and then rotated twice. Interlacing, the real and imaginary parts that belong to the same third symbol are scattered to the real and imaginary parts of different fourth symbols; Achieve higher diversity gains to further improve system performance and reuse a larger number of user devices.
  • the embodiment of the present invention further provides a communication system, and the same contents as those of Embodiments 1 to 4 are not described herein.
  • the communication system may include:
  • a transmitting end configured with the information transmission device 1500 suitable for non-orthogonal multiple access as described in Embodiment 4;
  • the receiving end receives the information sent by the transmitting end and performs demodulation.
  • multiple transmitting ends may respectively map the fourth symbol onto multiple resource particles for non-orthogonal multiple access.
  • the sending end may be a user equipment, such as an MTC user equipment, and the receiving end may be a base station; however, the present invention is not limited thereto.
  • the following takes the sending end as the user equipment and the receiving end as the base station as an example.
  • the communication system 1800 can include a base station 1801 and a user equipment 1802.
  • the user equipment 1802 modulates the data to be transmitted into a plurality of constellation symbols; and after the plurality of constellation symbols are respectively rotated by the first predetermined angle, the plurality of first symbols are obtained; and the plurality of first symbols are interleaved by the imaginary part and the real part.
  • the base station 1801 receives the information transmitted by the user equipment 1802 and demodulates the received information accordingly.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a transmitting end, the program causes a computer to perform the non-orthogonal multiple address described in Embodiment 1 in the transmitting end. Access information transmission method.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform information transmission suitable for non-orthogonal multiple access according to Embodiment 1 in a transmitting end. method.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • this invention Reference is made to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to implement the various methods or steps described above.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the information transmission method described in connection with the embodiment of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 15 and/or one or more combinations of functional block diagrams may correspond to various software of a computer program flow.
  • Modules can also correspond to individual hardware modules.
  • These software modules may correspond to the respective steps shown in FIG. 3, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种适用于非正交多址接入的信息传输装置、方法以及通信***。所述信息传输方法包括:发送端将待传输数据调制成多个星座符号;将多个星座符号分别旋转第一预定角度后获得多个第一符号;将多个第一符号进行虚部和实部的交织后获得多个第二符号;将多个第二符号分别旋转第二预定角度后获得多个第三符号;将多个第三符号进行虚部和实部的交织后获得多个第四符号;以及将多个第四符号映射到多个资源粒子上并进行传输。由此,能够获得更高的分集增益,从而进一步提升***性能,复用更多数量的用户设备。

Description

适用于非正交多址接入的信息传输方法、装置以及通信*** 技术领域
本发明涉及通信技术领域,特别涉及一种适用于非正交多址接入的信息传输方法、装置以及通信***。
背景技术
机器类型通信(MTC,Machine Type Communication)是第五代(5G)移动通信***的一个显著特征。除传统意义上的人使用用户设备(例如智能手机)外,越来越多的智能设备将成为用户设备并能够灵活接入***。为了实现万物互联,5G***需要支持比4G***更多的用户设备连接数目。因此,新的多址接入技术在5G***设计中尤显重要。
稀疏码分多址(SCMA,Sparse Code Multiple Access)是一种新型多址接入技术。“稀疏”指某一用户设备所传输的信号并不占据所有分配的资源,但通过允许多个用户设备使用同一资源,能够允许更多的用户设备同时接入***,SCMA本质上是一种非正交的多址接入方式。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
本发明实施例提供一种适用于非正交多址接入的信息传输装置、方法以及通信***。通过对符号进行二次旋转,能够获得更高的分集增益,从而进一步提升***性能,复用更多数量的用户设备。
根据本发明实施例的第一个方面,提供一种适用于非正交多址接入的信息传输方法,所述信息传输方法包括:
发送端将待传输数据调制成多个星座符号;
将多个星座符号分别旋转第一预定角度后获得多个第一符号;
将多个第一符号进行虚部和实部的交织后获得多个第二符号;其中将属于同一第 一符号的实部和虚部分散到不同的第二符号的实部和虚部位置;
将多个第二符号分别旋转第二预定角度后获得多个第三符号;
将多个第三符号进行虚部和实部的交织后获得多个第四符号;其中将属于同一第三符号的实部和虚部分散到不同的第四符号的实部和虚部位置;以及
将多个第四符号映射到多个资源粒子上并进行传输。
根据本发明实施例的第二个方面,提供一种适用于非正交多址接入的信息传输装置,所述信息传输装置包括:
数据调制单元,其将待传输数据调制成多个星座符号;
第一旋转单元,其将多个星座符号分别旋转第一预定角度后获得多个第一符号;
第一交织单元,其将多个第一符号进行虚部和实部的交织后获得多个第二符号;其中将属于同一第一符号的实部和虚部分散到不同的第二符号的实部和虚部位置;
第二旋转单元,其将多个第二符号分别旋转第二预定角度后获得多个第三符号;
第二交织单元,其将多个第三符号进行虚部和实部的交织后获得多个第四符号;其中将属于同一第三符号的实部和虚部分散到不同的第四符号的实部和虚部位置;以及
资源映射单元,将多个第四符号映射到多个资源粒子上并进行传输。
根据本发明实施例的第三个方面,提供一种通信***,所述通信***包括:
发送端,其配置有如上所述的信息传输装置;以及
接收端,其接收所述发送端发送的信息并进行解调。
本发明实施例的有益效果在于:对多个星座符号进行一次旋转并对不同符号的虚部和实部进行交织,然后进行二次旋转并对不同符号的虚部和实部进行交织;由此能够获得更高的分集增益,从而进一步提升***性能,复用更多数量的用户设备。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在, 但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是SCMA中多用户设备进行复用的一示意图;
图2是SCMA中传输2个码字的一示意图;
图3是本发明实施例1的适用于非正交多址接入的信息传输方法的一示意图;
图4是本发明实施例1的用户资源映射的一示意图;
图5是本发明实施例1的适用于非正交多址接入的信息传输方法的另一示意图;
图6是正交多址接入的用户资源映射的一示意图;
图7是SCMA的用户资源映射的一示意图;
图8是SCMA方法与双旋转方法的一比较示意图;
图9是SCMA方法与双旋转方法的另一比较示意图;
图10是SCMA方法与双旋转方法的另一比较示意图;
图11是SCMA方法与双旋转方法的另一比较示意图;
图12是本发明实施例的进行码字交织的一示意图;
图13是本发明实施例的进行码字交织的另一示意图;
图14是SCMA方法与双旋转方法的另一比较示意图;
图15是本发明实施例4的适用于非正交多址接入的信息传输装置的一示意图;
图16是本发明实施例4的用户设备的一示意图;
图17是本发明实施例4的基站的一示意图;
图18是本发明实施例5的通信***的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包 括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,基站可以被称为接入点、广播发射机、节点B、演进节点B(eNB)等,并且可以包括它们的一些或所有功能。在文中将使用术语“基站”。每个基站对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请中,移动站或设备可以被称为“用户设备”(UE,User Equipment)。UE可以是固定的或移动的,并且也可以称为移动台、终端、接入终端、用户单元、站等。UE可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信设备、手持设备、膝上型计算机、无绳电话等。
为了解决多个用户设备抢占同一资源时产生的用户设备间干扰问题,SCMA中的“码字”使用二维星座点构造,例如将信号先经过旋转,在实部和虚部分别产生信号副本,然后将这些副本在多个资源粒子上传输,这样可以在码字内建立起符号间的关联,用以对抗多个用户设备的信号叠加时产生的干扰。
图1是SCMA中多用户设备进行复用的一示意图,其中每一方格代表一个时频资源粒子,例如,正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)***中的资源粒子(RE,Resource Element)。
如图1所示,空白指示零位置,表示该用户设备没有在该资源粒子上传输信号,或称为传输零符号;阴影代表非零位置,表示用户设备在该资源上传输信号,传输的是非零符号。如图1所示,4个资源粒子总共承载了6个用户设备的信号,每个用户设备传输2个非零符号。
对于某一用户设备,假设该用户设备原始传输的两个非零复数符号为:
ci=ui+jvi
ci+1=ui+1+jvi+1
其中,ui、vi为实数,ci为复数,i、i+1用以标识连续的两个符号。以下在不产生混淆的前提下,省略对用户设备的标识。
为形成SCMA传输,首先对原始符号进行相位旋转,假设旋转角度为θ,则旋转后符号为:
Figure PCTCN2016073796-appb-000001
Figure PCTCN2016073796-appb-000002
接下来将
Figure PCTCN2016073796-appb-000003
的虚部与
Figure PCTCN2016073796-appb-000004
的实部进行交换,得到
si=(uicosθ-visinθ)+j(ui+1cosθ-vi+1sinθ)
si+1=(uisinθ+vicosθ)+j(ui+1sinθ+vi+1cosθ)
将si、si+1映射到图1的两个非零位置进行传输,至此得到SCMA完整的码字,包括零符号和非零符号。
对于多个用户设备,每个用户设备均按照上述过程产生信号,继而映射到非零位置传输。对于不同用户设备,如图1所示,所映射到的非零位置不同。实际上图1所示的4个资源粒子构成了一个码字,包括零符号和非零符号。相应地si、si+1表达式是传输非零符号的通式。在实际传输中,依据资源分配的大小可以传输多个码字。
图2是SCMA中传输2个码字的一示意图,示出了连续传输4个非零符号的例子。如图2所示,同一信号成分(例如ui或者vi等)被分散到2个不同的资源粒子上进行传输。
以上对于SCMA进行了示意性说明。值得注意的是,本发明实施例并不限于进行SCMA传输,可以适用于任何的非正交多址接入场景。
实施例1
本发明实施例提供一种适用于非正交多址接入的信息传输方法,从发送端一侧对本发明进行说明。图3是本发明实施例的信息传输方法的一示意图,如图3所示,该信息传输方法包括:
步骤301,发送端将待传输数据调制成多个星座符号;
步骤302,发送端将多个星座符号分别旋转第一预定角度后获得多个第一符号;
步骤303,发送端将多个第一符号进行虚部和实部的交织后获得多个第二符号;其中将属于同一第一符号的实部和虚部分散到不同的第二符号的实部和虚部位置;
步骤304,发送端将多个第二符号分别旋转第二预定角度后获得多个第三符号;
步骤305,发送端将多个第三符号进行虚部和实部的交织后获得多个第四符号;其中将属于同一第三符号的实部和虚部分散到不同的第四符号的实部和虚部位置;以 及
步骤306,发送端将多个第四符号映射到多个资源粒子上并进行传输。
在本实施例中,多个发送端可以进行非正交多址接入(例如基于稀疏特性的非正交多址接入)。该发送端例如可以是MTC用户设备,该MTC用户设备和其他用户设备向接收端进行例如基于稀疏特性的非正交传输。但本发明不限于此,以下仅以MTC用户设备和基于稀疏特性的非正交多址接入为例进行说明。
在本实施例中,接收端可以为宏基站(例如eNB),该宏基站产生的宏小区(例如Macro cell)可以为用户设备提供服务;或者接收端也可以为微基站,该微基站产生的微小区(例如Pico cell)可以为用户设备提供服务;或者接收端也可以为其他网络设备。本发明不限于此,可以根据实际的需要确定具体的场景。
以下以传输4个符号为例,从某一用户设备的角度对本发明进行说明。
假设该用户设备准备传输4个原始的复数符号:
ci=ui+jvi
ci+1=ui+1+jvi+1
ci+2=ui+2+jvi+2
ci+3=ui+3+jvi+3
其中ci~ci+3可以是来自于二进制相移键控(BPSK,Binary Phase Shift Keying)、正交相移键控(QPSK,Quadrature Phase Shift Keying)、16正交幅度调制(QAM,Quadrature Amplitude Modulation)、64QAM等任意星座的符号,但本发明不限于此。此外,关于如何调制星座符号等,可以参考相关的任意方法。
在步骤302中,假设第一预定角度为θ,则进行第一次旋转后的多个第一符号为:
Figure PCTCN2016073796-appb-000005
Figure PCTCN2016073796-appb-000006
Figure PCTCN2016073796-appb-000007
Figure PCTCN2016073796-appb-000008
关于具体如何对星座符号进行旋转(也可称为星座旋转或相位旋转),可以参考 相关的任意方法。
在步骤303中,可以将具有不同信号成分的两个第一符号进行虚部和实部的交织,由此获得多个第二符号。
例如,将
Figure PCTCN2016073796-appb-000009
的虚部与
Figure PCTCN2016073796-appb-000010
的实部互换,将
Figure PCTCN2016073796-appb-000011
的虚部与
Figure PCTCN2016073796-appb-000012
的实部互换,则多个第二符号为:
si=(uicosθ-visinθ)+j(ui+1cosθ-vi+1sinθ)
si+1=(uisinθ+vicosθ)+j(ui+1sinθ+vi+1cosθ)
si+2=(ui+2cosθ-vi+2sinθ)+j(ui+3cosθ-vi+3sinθ)
si+3=(ui+2sinθ+vi+2cosθ)+j(ui+3sinθ+vi+3cosθ)
值得注意的是,以上仅是本发明实施例的一个具体实施方式,但本发明不限于此。例如,还可以将
Figure PCTCN2016073796-appb-000013
的实部与
Figure PCTCN2016073796-appb-000014
的虚部互换,将
Figure PCTCN2016073796-appb-000015
的实部与
Figure PCTCN2016073796-appb-000016
的虚部互换;或者也可以将
Figure PCTCN2016073796-appb-000017
的虚部与
Figure PCTCN2016073796-appb-000018
的实部互换,将
Figure PCTCN2016073796-appb-000019
的虚部与
Figure PCTCN2016073796-appb-000020
的实部互换等等。可以根据实际情况确定具体的虚实交织的方式。
在步骤304中,假设第二预定角度为
Figure PCTCN2016073796-appb-000021
则进行第二次旋转后的多个第三符号为:
Figure PCTCN2016073796-appb-000022
Figure PCTCN2016073796-appb-000023
Figure PCTCN2016073796-appb-000024
Figure PCTCN2016073796-appb-000025
值得注意的是,以上以将
Figure PCTCN2016073796-appb-000026
的虚部与
Figure PCTCN2016073796-appb-000027
的实部互换,将
Figure PCTCN2016073796-appb-000028
的虚部与
Figure PCTCN2016073796-appb-000029
的实部 互换为例进行说明,如果步骤303中的虚实交织方式不同,则相应地得到的第三符号也会不同。
在步骤305中,可以将具有不同信号成分的两个第三符号进行虚部和实部的交织,由此获得多个第四符号。
例如,将
Figure PCTCN2016073796-appb-000030
的虚部与
Figure PCTCN2016073796-appb-000031
的实部互换,将
Figure PCTCN2016073796-appb-000032
的虚部与
Figure PCTCN2016073796-appb-000033
的实部互换,则多个第四符号为:
Figure PCTCN2016073796-appb-000034
Figure PCTCN2016073796-appb-000035
Figure PCTCN2016073796-appb-000036
Figure PCTCN2016073796-appb-000037
值得注意的是,以上仅是本发明实施例的一个具体实施方式,但本发明不限于此。例如,还可以将
Figure PCTCN2016073796-appb-000038
的实部与
Figure PCTCN2016073796-appb-000039
的虚部互换,将
Figure PCTCN2016073796-appb-000040
的实部与
Figure PCTCN2016073796-appb-000041
的虚部互换;或者也可以将
Figure PCTCN2016073796-appb-000042
的虚部与
Figure PCTCN2016073796-appb-000043
的实部互换,将
Figure PCTCN2016073796-appb-000044
的虚部与
Figure PCTCN2016073796-appb-000045
的实部互换等等。
在步骤306中,可以将多个第四符号分别映射到多个资源粒子上。
例如,N个第四符号可以被映射到M个时频资源粒子的N个资源粒子上,其余资源粒子传输零符号;其中M、N为正整数且M大于N。但本发明不限于此,例如也可以采用非“稀疏码分”的方式进行映射。
图4是本发明实施例的用户资源映射的一示意图。如图4所示,将wi至wi+3映射到4个非零资源位置上传输;其中同一信号成分(例如ui)被分散到4个不同的资源粒子上进行传输。相比于图2所示的SCMA方法中ui被分散到2个不同的资源粒子上进行传输的情况,图4所示的方法(可称为双旋转方法,dual rotation)能够获得更高的分集增益,从而使用户设备的解调性能得到提升,使进一步复用更多数量的用户设备成为可能。
以上从单一用户设备的角度进行了说明。对于多个用户设备的情形,每个用户设备均执行步骤301至步骤305;而在步骤305中,不同用户设备所映射到的非零资源位置不同,由此可以进行非正交多址接入。
图5是本发明实施例的信息传输方法的另一示意图,示出了待传输数据被调制成多个码字的情况。如图5所示,该信息传输方法包括:
步骤501,发送端将待传输数据调制成多个码字;
其中每一个码字包含N个非零星座符号,N为正整数。
步骤502,发送端选择某一码字。
步骤503,发送端将该码字的N个星座符号分别旋转第一预定角度后获得N个第一符号。
步骤504,发送端将N个第一符号进行虚部和实部的交织后获得N个第二符号;
其中将属于同一第一符号的实部和虚部分散到不同第二符号的实部和虚部位置。
步骤505,发送端将N个第二符号分别旋转第二预定角度后获得N个第三符号;
步骤506,发送端将N个第三符号进行虚部和实部的交织后获得多个第四符号;
其中将属于同一第三符号的实部和虚部分散到不同第四符号的实部和虚部位置。
步骤507,发送端将N个第四符号映射到M个时频资源粒子中的N个资源粒子上;
其中M为正整数且M大于N。在进行资源映射后,可以相应地传输这些符号,关于具体如何映射以及如何传输,可以参考相关的任意方法。
步骤508,判断是否还有未处理的码字;如果还有则执行步骤502,选择另一码字继续进行处理;如果没有则完成本次传输过程。
值得注意的是,图5仅示意性地对本发明实施例进行了说明,但本发明不限于此。例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图的记载。
由上述实施例可知,对多个星座符号进行一次旋转并交织,将原属于同一第一符号的实部和虚部分散到不同第二符号的实部和虚部位置,然后进行二次旋转并交织,将原属于同一第三符号的实部和虚部分散到不同第四符号的实部和虚部位置;由此能够获得更高的分集增益,从而进一步提升***性能,复用更多数量的用户设备。
实施例2
本发明实施例在实施例1的基础上进行进一步说明。其中以MTC用户设备使用BPSK符号为例,对本发明的效果以及如何确定旋转角度进行说明。
图6是正交多址接入的用户资源映射的一示意图,如图6所示,在正交多址接入模式下,MTC用户设备通常使用QPSK符号进行传输,4个资源粒子能够复用4个用户设备,每用户设备使用1个资源粒子。
图7是SCMA的用户资源映射的一示意图,如图7所示,在SCMA模式下,每个MTC用户设备使用2个资源粒子,所传输的信号通过对2个BPSK符号进行旋转和交织而形成,4个资源粒子能够复用6个用户设备。
在本实施例中,仍以单一用户设备为例,并省略用户设备标识。假设该用户设备准备传输原始的4个BPSK符号:a1、a2、a3和a4,其中a1~a4来自于BPSK星座。
首先,可以进行第一级的星座旋转。假设旋转角度为θ,则旋转后的符号记为:
Figure PCTCN2016073796-appb-000046
Figure PCTCN2016073796-appb-000047
Figure PCTCN2016073796-appb-000048
Figure PCTCN2016073796-appb-000049
然后,可以进行虚实交织。交织方式例如为:将
Figure PCTCN2016073796-appb-000050
的虚部与
Figure PCTCN2016073796-appb-000051
的实部互换,将
Figure PCTCN2016073796-appb-000052
的虚部与
Figure PCTCN2016073796-appb-000053
的实部互换。由此得到:
s1=a1cosθ+ja2cosθ
s2=a1sinθ+ja2sinθ
s3=a3cosθ+ja4cosθ
s4=a3sinθ+ja4sinθ
然后,可以进行第二级的旋转。假设旋转角度为
Figure PCTCN2016073796-appb-000054
旋转后的符号记为:
Figure PCTCN2016073796-appb-000055
Figure PCTCN2016073796-appb-000056
Figure PCTCN2016073796-appb-000057
Figure PCTCN2016073796-appb-000058
然后,可以进行虚实交织。交织方式例如为:将
Figure PCTCN2016073796-appb-000059
的虚部与
Figure PCTCN2016073796-appb-000060
的实部互换,将
Figure PCTCN2016073796-appb-000061
的虚部与
Figure PCTCN2016073796-appb-000062
的实部互换。由此得到:
Figure PCTCN2016073796-appb-000063
Figure PCTCN2016073796-appb-000064
Figure PCTCN2016073796-appb-000065
Figure PCTCN2016073796-appb-000066
然后,可以将w1~w4映射到4个非零资源位置上并传输。
多个用户设备可以分别进行上述操作,不同用户设备的非零资源位置不同。由此,可以进行非正交多址接入(例如基于稀疏特性的非正交多址接入)。
图8是SCMA方法与本发明实施例的双旋转方法的一比较示意图,示出了以单用户设备为例的情况。如图8所示,以a1为例,SCMA方法中将其在2个资源粒子上传输,而本发明实施例的双旋转方法将其在4个资源粒子上传输,因此与SCMA方法相比,本发明实施例的双旋转方法在理论上具有更高的分集效果。
图9是SCMA方法与本发明实施例的双旋转方法的另一比较示意图,示出了单用户设备条件下、SCMA方法与本发明实施例的双旋转方法的误比特率(BER,Bit Error Rate)性能曲线;其中信道假设服从独立同分布瑞利分布。
图10是SCMA方法与本发明实施例的双旋转方法的另一比较示意图,示出多用户设备(用户设备数为6)条件下、SCMA方法与本发明实施例的双旋转方法的误比特率性能曲线;其中信道假设服从独立同分布瑞利分布。
图11是SCMA方法与本发明实施例的双旋转方法的另一比较示意图,示出多用户设备(用户设备数为6)条件下、SCMA方法与本发明实施例的双旋转方法的误块率(BLER,Block Error Rate)性能曲线;其中信道假设服从独立同分布瑞利分布, 使用符合LTE标准的Turbo信道编码,码率为0.795。
图9至11所示的仿真结果验证了本发明实施例的双旋转方法的有效性。通过使用本发明实施例的双旋转方法,用户设备的解调性能得到提升,从而为进一步复用更多数目的用户设备提供了可能。
以上从理论上以及仿真结果上对本发明实施例的双旋转方法进行了说明;以下对于如何确定旋转角度进行示意性说明。
在本实施例中,可以基于误符号率确定第一预定角度和第二预定角度。例如,在星座符号为BPSK符号,并且信噪比高于预定值的情况下,第一预定角度θ=45°,第二预定角度
Figure PCTCN2016073796-appb-000067
以下简要说明推导过程:
令向量x=[x1 x2 x3 x4]T,a1&2=[a1 a2]T,则对于符号a1、a2,双旋转变换可以等效记为x=Ga1&2,其中
Figure PCTCN2016073796-appb-000068
实际上有
Figure PCTCN2016073796-appb-000069
其中w=[w1 w2 w3 w4]T,即将w的实部记为矩阵G与2个BPSK符号组成的向量的乘积。同理,w的虚部也可以记为矩阵G与2个BPSK符号组成的向量的乘积。
由于对a1、a2的解调仅取决于w的实部,对a3、a4的解调仅取决于w的虚部,因此可以选择任一路进行分析。
由于a1、a2取自BPSK星座,因此向量a1&2可以有4种可能取值,从而使x存在4种可能取值,即x∈{x(l)|l=1,2,3,4}。当x(i)被误判为x(k)时,对a1、a2的解调会发生错误,下面对该错误概率进行计算。
由于x各个元素在不同资源粒子上传输,其经历不同信道,假设所经历信道服从独立同分布瑞利衰落,将x(i)误判为x(k)的概率可以记为:
Figure PCTCN2016073796-appb-000070
其中ρ表示信噪比(SNR,Signal to Noise Ratio)。进而平均错误概率可以记为:
Figure PCTCN2016073796-appb-000071
Figure PCTCN2016073796-appb-000072
实际上
Figure PCTCN2016073796-appb-000073
是关于旋转角度
Figure PCTCN2016073796-appb-000074
θ的函数,因此旋转角度可以通过最小化平均错误概率获得,即
Figure PCTCN2016073796-appb-000075
令ρ=30dB,即设为高信噪比,可以求解出一组可行的旋转角度值,该旋转角度值为
Figure PCTCN2016073796-appb-000076
θ=45°。
值得注意的是,以上仅对如何确定第一预定角度和第二预定角度进行了示意性说明,但本发明不限于此,还可以使用其他确定角度的方法。此外,旋转角度并不限于45°和60°,还可以是其他的角度,可以根据实际场景确定具体的数值。
实施例3
本发明实施例在实施例1和2的基础上,对如何进行资源映射进行进一步说明。
在本实施例中,在将多个第四符号映射到多个资源粒子上时,可以将含有相同信号成分的第四符号分散映射到不相邻的、经历独立或不相关信道衰落的资源粒子上。该资源映射方法同样适用于传统SCMA方法。
例如,在将符号(可以是SCMA中的si等,也可以是本发明实施例的wi等)映射到非零资源上传输时,可以进行符号交织,使得包含相同信号成分的符号尽量映射到能够经历独立或不相关信道衰落的资源粒子上,即将同一码字分散到不相邻的、经历独立或不相关衰落的资源粒子上传输。
图12是本发明实施例的进行码字交织的一示意图,示出了以SCMA为例的情况。如图12的左侧所示,传统的SCMA方法(没有进行码字交织的方法)中属于同一个码字的符号(包括零符号与非零符号)将被映射到连续的资源粒子上;以此类推,多 个码字将填充满为该用户设备所分配的所有资源块对。
如图12的右侧所示,本发明实施例中,属于同一个码字的符号(包括零符号和非零符号)将被映射到不同的资源块对内,这样各个符号能够经历尽量不相关的信道衰落,从而进一步利用分集。
图13是本发明实施例的进行码字交织的另一示意图,示出了以本发明实施例的双旋转方法为例的情况。如图13的左侧所示,在没有进行码字交织的方法中,属于同一个码字的符号(包括零符号和非零符号)将被映射到连续的资源粒子上;以此类推,多个码字将填充满为该用户设备所分配的所有资源块对。
如图13的右侧所示,本发明实施例中,可以将包含相同信号成分的符号分散到4个非零资源粒子上传输,因此可以将8个符号(包括零符号和非零符号)看做一个等效的码字,然后对该等效的码字进行交织。属于同一码字的8个符号经过交织后,将被分散到不同的资源块对上进行传输。
图14是SCMA方法与本发明实施例的双旋转方法的另一比较示意图,示出了使用码字交织后的性能仿真结果;其中假设为ETU 120km/h信道,使用LTE Turbo信道编码,码率为0.795。
如图14所示,码字交织后的双旋转方法比传统SCMA方法具有更好的性能;并且与图11相比,进行码字交织后的方法比没有进行码字交织的方法具有更好的性能(例如误块率更低),可以进一步获得分集增益。
实施例4
本发明实施例提供一种适用于非正交多址接入的信息传输装置。本实施例对应于实施例1至3中的适用于非正交多址接入的信息传输方法,相同的内容不再赘述。
图15是本发明实施例的适用于非正交多址接入的信息传输装置的一示意图,如图15所示,适用于非正交多址接入的信息传输装置1500包括:
数据调制单元1501,其将待传输数据调制成多个星座符号;
第一旋转单元1502,其将多个星座符号分别旋转第一预定角度后获得多个第一符号;
第一交织单元1503,其将多个第一符号进行虚部和实部的交织后获得多个第二符号;其中将属于同一第一符号的实部和虚部分散到不同的第二符号的实部和虚部位 置;
第二旋转单元1504,其将多个第二符号分别旋转第二预定角度后获得多个第三符号;
第二交织单元1505,其将多个第三符号进行虚部和实部的交织后获得多个第四符号;其中将属于同一第一符号的实部和虚部分散到不同的第二符号的实部和虚部位置;以及
资源映射单元1506,将多个第四符号映射到多个资源粒子上并进行传输。
在本实施例中,待传输数据可以被调制成多个码字,每一码字包括N个非零星座符号,其中N为正整数。
在本实施例中,N个第四符号可以被映射到M个时频资源粒子的N个资源粒子上以进行传输;其中M为正整数且M大于N。但本发明不限于此。
如图15所示,适用于非正交多址接入的信息传输装置1500还可以包括:
角度确定单元1507,其基于误符号率确定第一预定角度和第二预定角度。
在本实施例中,资源映射单元1506还可以用于:将具有相同信号成分的第四符号分散映射到具有独立或不相关信道衰落的资源粒子上。同一个码字所包含的资源粒子来自于不同物理资源块对,位于互不相邻、彼此远离的时频位置。
本发明实施例还提供一种发送端,配置有如上所述的适用于非正交多址接入的信息传输装置1500。该发送端例如可以是用户设备,例如MTC用户设备;接收端可以是基站。
图16是本发明实施例的用户设备的一示意图。如图16所示,该用户设备1600可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,适用于非正交多址接入的信息传输装置1500的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为实现实施例1至3中所述的适用于非正交多址接入的信息传输方法。
例如,中央处理器100可以被配置为进行如下的控制:将待传输数据调制成多个星座符号;将所述多个星座符号分别旋转第一预定角度后获得多个第一符号;将所述多个第一符号进行虚部和实部的交织后获得多个第二符号,其中将属于同一第一符号 的实部和虚部分散到不同的第二符号的实部和虚部位置;将所述多个第二符号分别旋转第二预定角度后获得多个第三符号;将所述多个第三符号进行虚部和实部的交织后获得多个第四符号,其中将属于同一第三符号的实部和虚部分散到不同的第四符号的实部和虚部位置;以及将所述多个第四符号映射到多个资源粒子上并进行传输。
在另一个实施方式中,适用于非正交多址接入的信息传输装置1500可以与中央处理器100分开配置,例如可以将适用于非正交多址接入的信息传输装置1500配置为与中央处理器100连接的芯片,通过中央处理器100的控制来实现适用于非正交多址接入的信息传输装置1500的功能。
如图16所示,该用户设备1600还可以包括:通信模块110、输入单元120、存储器140、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1600也并不是必须要包括图16中所示的所有部件,上述部件并不是必需的;此外,用户设备1600还可以包括图16中没有示出的部件,可以参考现有技术。
在本实施例中,该发送端例如还可以是基站,接收端可以是用户设备,例如MTC用户设备。但本发明不限于此,发送端和接收端还可以是其他的网络设备。
图17是本发明实施例的基站的一构成示意图。如图17所示,基站1700可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,适用于非正交多址接入的信息传输装置1500可以实现如实施例1所述的适用于非正交多址接入的信息传输方法。中央处理器200可以被配置为实现适用于非正交多址接入的信息传输装置1500的功能。
此外,如图17所示,基站1700还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1700也并不是必须要包括图17中所示的所有部件;此外,基站1700还可以包括图17中没有示出的部件,可以参考现有技术。
由上述实施例可知,对多个星座符号进行一次旋转并交织,将原属于同一第一符号的实部和虚部分散到不同第二符号的实部和虚部位置,然后进行二次旋转并交织,将原属于同一第三符号的实部和虚部分散到不同第四符号的实部和虚部位置;由此能 够获得更高的分集增益,从而进一步提升***性能,复用更多数量的用户设备。
实施例5
本发明实施例还提供一种通信***,与实施例1至4相同的内容不再赘述。
在本实施例中,通信***可以包括:
发送端,其配置有如实施例4所述的适用于非正交多址接入的信息传输装置1500;
接收端,其接收所述发送端发送的信息并进行解调。
在本实施例中,多个发送端可以分别将第四符号映射到多个资源粒子上以进行非正交多址接入。其中,发送端可以是用户设备,例如MTC用户设备,接收端可以是基站;但本发明不限于此。
以下以发送端为用户设备,接收端为基站为例进行说明。
图18是本发明实施例的通信***的一示意图,如图18所示,通信***1800可以包括基站1801和用户设备1802。
其中,用户设备1802将待传输数据调制成多个星座符号;将多个星座符号分别旋转第一预定角度后获得多个第一符号;将多个第一符号进行虚部和实部的交织后获得多个第二符号,其中将属于同一第一符号的实部和虚部分散到不同第二符号的实部和虚部位置;将多个第二符号分别旋转第二预定角度后获得多个第三符号;将多个第三符号进行虚部和实部的交织后获得多个第四符号,其中将属于同一第一符号的实部和虚部分散到不同第二符号的实部和虚部位置;以及将多个第四符号映射到多个资源粒子上并进行传输。
基站1801接收用户设备1802发送的信息,并对接收到的信息相应地进行解调。
本发明实施例还提供一种计算机可读程序,其中当在发送端中执行所述程序时,所述程序使得计算机在所述发送端中执行实施例1所述的适用于非正交多址接入的信息传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在发送端中执行实施例1所述的适用于非正交多址接入的信息传输方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的信息传输方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图15中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,数据调制单元、资源映射单元等),既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图3所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (15)

  1. 一种适用于非正交多址接入的信息传输方法,所述信息传输方法包括:
    发送端将待传输数据调制成多个星座符号;
    将所述多个星座符号分别旋转第一预定角度后获得多个第一符号;
    将所述多个第一符号进行虚部和实部的交织后获得多个第二符号;其中将属于同一第一符号的实部和虚部分散到不同的第二符号的实部和虚部位置;
    将所述多个第二符号分别旋转第二预定角度后获得多个第三符号;
    将所述多个第三符号进行虚部和实部的交织后获得多个第四符号;其中将属于同一第三符号的实部和虚部分散到不同的第四符号的实部和虚部位置;以及
    将所述多个第四符号映射到多个资源粒子上并进行传输。
  2. 根据权利要求1所述的信息传输方法,其中,每N个第四符号被映射到M个时频资源粒子中的N个资源粒子上,形成一个码字;其中M、N为正整数且M大于N。
  3. 根据权利要求1所述的信息传输方法,其中,所述多个星座符号包括:
    ci=ui+jvi,ci+1=ui+1+jvi+1,ci+2=ui+2+jvi+2和ci+3=ui+3+jvi+3
    则,所述多个第一符号包括:
    Figure PCTCN2016073796-appb-100001
    Figure PCTCN2016073796-appb-100002
    Figure PCTCN2016073796-appb-100003
    Figure PCTCN2016073796-appb-100004
    所述多个第二符号包括:
    si=(uicosθ-visinθ)+j(ui+1cosθ-vi+1sinθ)
    si+1=(uisinθ+vicosθ)+j(ui+1sinθ+vi+1cosθ)
    si+2=(ui+2cosθ-vi+2sinθ)+j(ui+3cosθ-vi+3sinθ)
    si+3=(ui+2sinθ+vi+2cosθ)+j(ui+3sinθ+vi+3cosθ)
    其中,θ为所述第一预定角度,i为正整数,ui和vi分别为符号的实部和虚部。
  4. 根据权利要求3所述的信息传输方法,其中,所述多个第三符号包括:
    Figure PCTCN2016073796-appb-100005
    Figure PCTCN2016073796-appb-100006
    Figure PCTCN2016073796-appb-100007
    Figure PCTCN2016073796-appb-100008
    所述多个第四符号包括:
    Figure PCTCN2016073796-appb-100009
    Figure PCTCN2016073796-appb-100010
    Figure PCTCN2016073796-appb-100011
    Figure PCTCN2016073796-appb-100012
    其中,
    Figure PCTCN2016073796-appb-100013
    为所述第二预定角度。
  5. 根据权利要求1所述的信息传输方法,其中,所述信息传输方法还包括:
    基于误符号率确定所述第一预定角度和所述第二预定角度。
  6. 根据权利要求5所述的信息传输方法,其中,在所述星座符号为BPSK符号,并且信噪比高于预定值的情况下,所述第一预定角度θ=45°,所述第二预定角度
    Figure PCTCN2016073796-appb-100014
    =60°。
  7. 根据权利要求1所述的信息传输方法,其中,将所述多个第四符号分别映射到多个资源粒子上包括:
    将包含有相同信号成分的第四符号分散映射到不相邻的、经历独立或不相关信道衰落的资源粒子上。
  8. 根据权利要求7所述的信息传输方法,其中,同一个码字所对应的资源粒子来自于不同物理资源块对,位于互不相邻且彼此远离的时频位置。
  9. 一种适用于非正交多址接入的信息传输装置,所述信息传输装置包括:
    数据调制单元,其将待传输数据调制成多个星座符号;
    第一旋转单元,其将所述多个星座符号分别旋转第一预定角度后获得多个第一符号;
    第一交织单元,其将所述多个第一符号进行虚部和实部的交织后获得多个第二符号;其中将属于同一第一符号的实部和虚部分散到不同的第二符号的实部和虚部位置;
    第二旋转单元,其将所述多个第二符号分别旋转第二预定角度后获得多个第三符号;
    第二交织单元,其将所述多个第三符号进行虚部和实部的交织后获得多个第四符号;其中将属于同一第三符号的实部和虚部分散到不同的第四符号的实部和虚部位置;以及
    资源映射单元,将所述多个第四符号映射到多个资源粒子上并进行传输。
  10. 根据权利要求9所述的信息传输装置,其中,每N个第四符号被映射到M个时频资源粒子的N个资源粒子上,形成一个码字;其中M、N为正整数且M大于N。
  11. 根据权利要求9所述的信息传输装置,其中,所述信息传输装置还包括:
    角度确定单元,其基于误符号率确定所述第一预定角度和所述第二预定角度。
  12. 根据权利要求9所述的信息传输装置,其中,所述资源映射单元还用于:将包含有相同信号成分的第四符号分散映射到不相邻的、经历独立或不相关信道衰落的资源粒子上。
  13. 根据权利要求12所述的信息传输装置,其中,同一个码字所对应的资源粒子来自于不同物理资源块对,位于互不相邻且彼此远离的时频位置。
  14. 一种通信***,所述通信***包括:
    发送端,其配置有如权利要求9所述的信息传输装置;
    接收端,其接收所述发送端发送的信息并进行解调。
  15. 根据权利要求14所述的通信***,其中,多个发送端分别将符号映射到多个资源粒子上以进行非正交多址接入。
PCT/CN2016/073796 2016-02-15 2016-02-15 适用于非正交多址接入的信息传输方法、装置以及通信*** WO2017139915A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018541147A JP2019510402A (ja) 2016-02-15 2016-02-15 非直交多元接続に適用される情報伝送方法、装置及び通信システム
CN201680078855.3A CN108463957A (zh) 2016-02-15 2016-02-15 适用于非正交多址接入的信息传输方法、装置以及通信***
PCT/CN2016/073796 WO2017139915A1 (zh) 2016-02-15 2016-02-15 适用于非正交多址接入的信息传输方法、装置以及通信***
EP16890150.2A EP3419193A1 (en) 2016-02-15 2016-02-15 Information transmission method, device and communication system suitable for non-orthogonal multiple access
US16/051,674 US20180343160A1 (en) 2016-02-15 2018-08-01 Information Transmission Method, Apparatus and Communication System suitable for Nonorthogonal Multiple Access

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073796 WO2017139915A1 (zh) 2016-02-15 2016-02-15 适用于非正交多址接入的信息传输方法、装置以及通信***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/051,674 Continuation US20180343160A1 (en) 2016-02-15 2018-08-01 Information Transmission Method, Apparatus and Communication System suitable for Nonorthogonal Multiple Access

Publications (1)

Publication Number Publication Date
WO2017139915A1 true WO2017139915A1 (zh) 2017-08-24

Family

ID=59624783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073796 WO2017139915A1 (zh) 2016-02-15 2016-02-15 适用于非正交多址接入的信息传输方法、装置以及通信***

Country Status (5)

Country Link
US (1) US20180343160A1 (zh)
EP (1) EP3419193A1 (zh)
JP (1) JP2019510402A (zh)
CN (1) CN108463957A (zh)
WO (1) WO2017139915A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132165A1 (en) * 2017-11-01 2019-05-02 Industrial Technology Research Institute Method of receiving or transmitting data by ue or base station under noma scheme, ue using the same and base station using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070058745A1 (en) * 2005-09-09 2007-03-15 Sony Corporation Wireless communication apparatus, wireless communication method and computer program therefor
CN101621490A (zh) * 2009-08-13 2010-01-06 北京邮电大学 一种用于ofdm***的联合编码调制分集的方法
CN102904665A (zh) * 2011-07-25 2013-01-30 华为技术有限公司 一种控制信道的传输方法、装置和***
CN103178890A (zh) * 2011-12-26 2013-06-26 中兴通讯股份有限公司 信号收发方法及***、信号发送、接收方法及相关装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1846382A (zh) * 2003-09-30 2006-10-11 松下电器产业株式会社 无线发送装置、无线接收装置以及无线发送方法
US7570698B2 (en) * 2004-11-16 2009-08-04 Intel Corporation Multiple output multicarrier transmitter and methods for spatial interleaving a plurality of spatial streams
CN102075487B (zh) * 2009-11-25 2013-02-27 清华大学 基于多维星座映射的编码调制方法、解调解码方法及***
CN102170325B (zh) * 2011-03-11 2013-07-10 北京邮电大学 一种基于多输入多输出无线通信***的调制方法
EP2618532A1 (en) * 2012-01-19 2013-07-24 Panasonic Corporation Improved Component Interleaving for Rotated Constellations
US9509379B2 (en) * 2013-06-17 2016-11-29 Huawei Technologies Co., Ltd. System and method for designing and using multidimensional constellations
CN105306175B (zh) * 2015-11-09 2018-10-02 哈尔滨工业大学 基于v-blast编码方式的mimo-scma***上行链路构架方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070058745A1 (en) * 2005-09-09 2007-03-15 Sony Corporation Wireless communication apparatus, wireless communication method and computer program therefor
CN101621490A (zh) * 2009-08-13 2010-01-06 北京邮电大学 一种用于ofdm***的联合编码调制分集的方法
CN102904665A (zh) * 2011-07-25 2013-01-30 华为技术有限公司 一种控制信道的传输方法、装置和***
CN103178890A (zh) * 2011-12-26 2013-06-26 中兴通讯股份有限公司 信号收发方法及***、信号发送、接收方法及相关装置

Also Published As

Publication number Publication date
EP3419193A1 (en) 2018-12-26
CN108463957A (zh) 2018-08-28
US20180343160A1 (en) 2018-11-29
JP2019510402A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
US10547486B2 (en) Data transmission method and apparatus
WO2018153307A1 (zh) 传输数据的方法和装置
JP5694213B2 (ja) 符号化された伝送のための多次元コンステレーション
WO2017000291A1 (zh) 传输上行数据的方法和设备
WO2017041297A1 (zh) 信息传输装置、方法以及通信***
EP3930230A1 (en) Method for data transmission, and communication apparatus
WO2019144812A1 (zh) 基于加扰的数据传输方法
JP2022046754A (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
US9660751B2 (en) Wireless communication system with efficient PDCCH processing
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
WO2019242738A1 (zh) 发送调制符号的方法、接收调制符号的方法和通信设备
CN113228817B (zh) Ppdu的半正交多路访问通信和确认
WO2017139915A1 (zh) 适用于非正交多址接入的信息传输方法、装置以及通信***
WO2018171748A1 (zh) 一种资源映射方法及其装置
CN108604951B (zh) 数据传输方法及设备
WO2020259356A1 (zh) 通信方法和通信装置
WO2012028087A1 (zh) Mu-mimo通信***中数据调制的方法及装置
WO2020103926A1 (zh) 发送信息的方法和装置
CN108574555B (zh) 干扰随机化方法及设备
WO2017193373A1 (zh) 资源映射方法、装置以及通信***
WO2023116613A1 (zh) 通信方法及装置
WO2023098398A1 (zh) 通信方法及装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2024007224A1 (zh) 一种基于反馈的自适应传输方法
US20210136763A1 (en) Data sending method, data receiving method, apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016890150

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016890150

Country of ref document: EP

Effective date: 20180917