WO2016049909A1 - 数据传输方法和相关设备 - Google Patents

数据传输方法和相关设备 Download PDF

Info

Publication number
WO2016049909A1
WO2016049909A1 PCT/CN2014/088032 CN2014088032W WO2016049909A1 WO 2016049909 A1 WO2016049909 A1 WO 2016049909A1 CN 2014088032 W CN2014088032 W CN 2014088032W WO 2016049909 A1 WO2016049909 A1 WO 2016049909A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
bits
mapped
resource units
resource
Prior art date
Application number
PCT/CN2014/088032
Other languages
English (en)
French (fr)
Inventor
王磊
张舜卿
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14903014.0A priority Critical patent/EP3190817B1/en
Priority to PCT/CN2014/088032 priority patent/WO2016049909A1/zh
Priority to CN201480081680.2A priority patent/CN106797567B/zh
Publication of WO2016049909A1 publication Critical patent/WO2016049909A1/zh
Priority to US15/474,200 priority patent/US10219278B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and related equipment.
  • Modulation plays an important role in converting the original data (bits) into an air interface signal suitable for transmission in the communication system, and is an important part of the effective operation of the communication system.
  • a conventional communication system employs a modulation method of a fixed number of bits and the like.
  • it is often implemented by a combination of coding and modulation, for example, defining different orders of the coding modulation strategy.
  • Embodiments of the present invention provide a data transmission method and related devices to improve the reliability of bit transmission.
  • a first aspect of the present invention provides a data transmission method, including:
  • mapping the K bits to the F resource units according to the value of the codebook and the K bits to obtain a codeword C K to be transmitted by using the F resource units where the codebook includes S different kinds of K bits have S-code words with a one-to-one mapping relationship, the S is less than or equal to 2 K , and each of the S code words is a complex vector including F complex numbers.
  • the difference between the value of the ith value and the value of the jth bit of the K bits is different, and the code includes a code that has a mapping relationship with the value of the ith type.
  • the word is a codeword C i
  • the codeword included in the codebook having a mapping relationship with the jth value is a codeword C j
  • the codeword C i does not include the codeword C j includes a complex number Z j1 and a complex number Z j2 , wherein K, F, S are integers greater than 1, the i is not equal to the j, and the i and j are positive integers less than or equal to the S;
  • the codeword C K is transmitted using the F resource units.
  • the codeword does not include the C p C q codeword comprises a plurality of plural Z q1 and Z q2, wherein the codeword and the codeword C p C q is S1 codewords any two codes a word, the S1 codewords being part or all of the S codewords.
  • the complex number Z u1 at the ⁇ position and the complex number Z e1 at the ⁇ position in the code word C e are the values of the code word C u Different, the complex number Z u2 at the ⁇ position in the code word C u is different from the complex number Z e2 at the ⁇ position in the code word C e , and the code word C p and the code word C q are S2 Any two codewords in the codeword, the S2 codewords being part or all of the S codewords.
  • the acquiring K bits to be transmitted includes:
  • log 2 (M) bits are respectively obtained from each layer of the W layer data stream to form the K bits, wherein the W and the M is an integer greater than one.
  • the codebook includes some or all of the codewords in the codebook 1 in the embodiment of the present invention when the K is equal to 6.
  • the codebook includes some or all of the codewords in the codebook 2 in the embodiment of the present invention when the K is equal to 12.
  • the data transmission method is performed by a user terminal or a base station.
  • a second aspect of the present invention provides a data transmission method, which may include:
  • the bits mapped onto the F resource elements are mapped onto modulation symbols for transmission.
  • mapping the K bits to the F resource units includes:
  • V bit sequences onto F resource units, each bit sequence of the V bit sequences being mapped to at least two resource units among the F resource units, the V being greater than 1 and less than or equal to the integer of K.
  • the V bit sequences are mapped to V resource unit groups, and the V resource unit groups include different resource units, and the V resource unit groups and the V bit sequences are in one-to-one correspondence.
  • Each of the V resource unit groups includes at least two of the F resource units.
  • the resource unit group i in the V resource unit group includes the resource unit i 1 and Resource unit i 2
  • the resource unit group j in the V resource unit groups includes a resource unit j 1 and the resource unit i 2 .
  • the mapping the bits mapped to the F resource units to the modulation symbols for transmission comprises: mapping the bits mapped to the F resource units onto the modulation symbols for transmission based on the constellation diagram ;
  • the constellation map used to map the y bits mapped to the resource elements j among the F resource elements to the modulation symbols for transmission is a constellation diagram x, wherein if the y is an even number, the The constellation x is a square Gray constellation containing 2 y constellation points; and/or if the y is an odd number, the constellation x is a cross-shaped Gray constellation containing 2 y constellation points.
  • bit a of the K bits is mapped to the f1 resource units of the F resource units, where the K bits are Bit b is mapped to f2 resource units of the F resource units,
  • the bits a on the mapped f1 resource units are respectively mapped to f1 bit bearer positions on the modulation symbols, and the bits b on the mapped f2 resource units are respectively mapped to a f2 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f1 bit bearer positions is f1 + , and a transmission reliability indicator value corresponding to the f2 bit bearer positions And a value of f2 + , wherein an absolute value of the difference between the f1 + and the f2 + is less than or equal to a third threshold;
  • the bit a and the bit b are any two bits of the K bits; the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position, or the higher the transmission reliability indication value Small indicates that the transmission reliability of the corresponding bit bearer position is higher.
  • bit c of the K bits is mapped to the f3 resource units of the F resource units, where the K bits are Bit d is mapped to f4 resource units of the F resource units,
  • the bits c on the mapped f3 resource units are respectively mapped to f3 bit bearer positions on the modulation symbols, and the bits d on the mapped f4 resource units are respectively mapped to a f4 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f3 bit bearer positions is f3 + , and a transmission reliability indicator value corresponding to the f4 bit bearer positions And the value is f4 + ;
  • bit c and the bit d are any two bits of the K bits
  • the f3 + is greater than the f4 + ;
  • the f3 + is smaller than the f4 + .
  • the K bits to be transmitted are based on the Turbo code by the W 0 original data streams corresponding to the W users. Obtained by channel coding, the bit c is a systematic bit, the bit d is a parity bit, and the importance of the bit c is higher than the importance of the bit d;
  • the K bits to be transmitted are obtained by channel coding the W0 original data streams corresponding to the W users based on the low density parity check code, and the degree of the bit c is higher than the degree of the bit d.
  • the importance of the bit c is higher than the importance of the bit d.
  • a third aspect of the present invention provides a data transmission apparatus, including:
  • An acquiring unit configured to acquire K bits to be transmitted
  • the codebook includes S codewords having a one-to-one mapping relationship with S different values of K bits, the S being less than or equal to 2K , and each of the S codewords includes F a complex vector of complex numbers, wherein the difference between the value of the ith type of the K bits and the value of the jth type is different, and the value of the ith type is different from the value of the ith type
  • the codeword having a mapping relationship is a codeword C i
  • the codeword included in the codebook having a mapping relationship with the j-th value is a codeword C j
  • the codeword C i does not include the codeword
  • the codeword C j includes a complex number Z j1 and a complex number Z j2 , wherein the K, F, and S are integers greater than 1, the
  • a sending unit configured to send the codeword C K by using the F resource units.
  • the codeword does not include the C p C q codeword comprises a plurality of plural Z q1 and Z q2, wherein said codeword C p C q and the codeword any two codewords S1 code word, the code word of the S1 S codewords some or all of the codeword.
  • the complex number Z u1 at the ⁇ position and the complex number Z e1 at the ⁇ position in the code word C e are the values of the code word C u Different, the complex number Z u2 at the ⁇ position in the code word C u is different from the complex number Z e2 at the ⁇ position in the code word C e , and the code word C p and the code word C q are S2 Any two codewords in the codeword, the S2 codewords being part or all of the S codewords.
  • the acquiring unit is specifically configured to: when the codebook corresponding to the modulation order is equal to M, obtain log 2 (M) bits from each layer of the data stream in the W layer data stream to form the K bits,
  • the W and the M are integers greater than one.
  • the codebook includes some or all of the codewords in the codebook 1 in the embodiment of the present invention when the K is equal to 6.
  • the codebook includes some or all of the codewords in the codebook 2 in the embodiment of the present invention when the K is equal to 12.
  • the data transmission device is deployed in a user terminal or a base station, or the data transmission device is a user terminal or a base station itself.
  • a fourth aspect of the present invention provides a data transmission apparatus, including:
  • An acquiring unit configured to acquire K bits to be transmitted
  • mapping unit configured to map the K bits onto the F resource units, where each of the K bits is mapped to at least two resource units of the F resource units, where Said K and said F are integers greater than one;
  • a sending unit configured to map the bits mapped to the F resource units to the modulation symbols for transmission.
  • the mapping unit is specifically configured to divide the K bits into V bit sequences; and map the V bit sequences to F On the resource unit, each of the V bit sequences is mapped to at least two of the F resource elements, the V being an integer greater than one and less than or equal to the K.
  • the V bit sequences are mapped into V resource unit groups, where the V The resource unit groups included in the resource unit group are different, the V resource unit groups and the V bit sequences are in one-to-one correspondence, and each of the V resource unit groups includes the F resource units At least two resource units in .
  • the resource unit group i in the V resource unit group includes the resource unit i 1 and Resource unit i 2
  • the resource unit group j in the V resource unit groups includes a resource unit j 1 and the resource unit i 2 .
  • the sending unit is specifically configured to: map, according to a constellation, a bit mapped to the F resource units to a modulation symbol for transmission;
  • the constellation map used to map the y bits mapped to the resource elements j among the F resource elements to the modulation symbols for transmission is a constellation diagram x, wherein if the y is an even number, the The constellation x is a square Gray constellation containing 2 y constellation points; and/or if the y is an odd number, the constellation x is a cross-shaped Gray constellation containing 2 y constellation points.
  • the bit a of the K bits is mapped to the f1 resource units of the F resource units, where the K bits are Bit b is mapped to f2 resource units of the F resource units,
  • the bits a on the mapped f1 resource units are respectively mapped to f1 bit bearer positions on the modulation symbols, and the bits b on the mapped f2 resource units are respectively mapped to a f2 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f1 bit bearer positions is f1 + , and a transmission reliability indicator value corresponding to the f2 bit bearer positions And a value of f2 + , wherein an absolute value of the difference between the f1 + and the f2 + is less than or equal to a third threshold;
  • the bit a and the bit b are any two bits of the K bits; the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position, or the higher the transmission reliability indication value Small indicates that the transmission reliability of the corresponding bit bearer position is higher.
  • the bit c of the K bits is mapped to the f3 resource units of the F resource units, where the K bits are Bit d is mapped to f4 resource units of the F resource units,
  • the bits c on the mapped f3 resource units are respectively mapped to f3 bit bearer positions on the modulation symbols, and the bits d on the mapped f4 resource units are respectively mapped to a f4 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f3 bit bearer positions is f3 + , and a transmission reliability indicator value corresponding to the f4 bit bearer positions And the value is f4 + ;
  • bit c and the bit d are any two bits of the K bits
  • the f3 + is greater than the f4 + ;
  • the f3 + is smaller than the f4 + .
  • the K bits to be transmitted are based on the Turbo code by the W 0 original data streams corresponding to the W users. Obtained by channel coding, the bit c is a systematic bit, the bit d is a parity bit, and the importance of the bit c is higher than the importance of the bit d;
  • the K bits to be transmitted are obtained by channel coding the W0 original data streams corresponding to the W users based on the low density parity check code, and the degree of the bit c is higher than the degree of the bit d.
  • the importance of the bit c is higher than the importance of the bit d.
  • a data transmission device may comprise:
  • the processor is configured to acquire K bits to be transmitted, and map the K bits to F resource units according to the value of the codebook and the K bits to obtain that the F resources are to be used.
  • a codeword C K that is transmitted by the unit the codebook includes S codewords having a one-to-one mapping relationship with S different values of K bits, the S being less than or equal to 2 K , the S codewords
  • Each of the codewords is a complex vector including F complex numbers, wherein the difference between the value of the ith type of the K bits and the value of the jth type is different, and the value of the codebook is different.
  • a codeword having a mapping relationship with the value of the ith type is a codeword C i
  • a codeword included in the codebook having a mapping relationship with the value of the jth type is a codeword C j
  • the codeword C i does not include the complex number Z j1 and the complex number Z j2 included in the codeword C j
  • the K, F, S being an integer greater than 1
  • the i is not equal to the j
  • the i and j is a positive integer less than or equal to the S;
  • the transmitter is configured to send the codeword C K using the F resource units.
  • the codeword does not include the C p C q codeword comprises a plurality of plural Z q1 and Z q2, wherein the codeword and the codeword C p C q is S1 codewords any two codes a word, the S1 codewords being part or all of the S codewords.
  • the complex number Z u2 at the ⁇ position in the code word C u is different from the complex number Z e2 at the ⁇ position in the code word C e
  • the code word C p and the code word C q are S2 Any two codewords in the codeword, the S2 codewords being part or all of the S codewords.
  • the processor is configured to: when the codebook corresponding modulation order is equal to M, obtain log 2 (M) bits from each layer of the W layer data stream to form the K bits, W and the M are integers greater than one.
  • the codebook includes some or all of the codewords in the codebook 1 in the embodiment of the present invention when the K is equal to 6.
  • the codebook includes some or all of the codewords in the codebook 2 in the embodiment of the present invention when the K is equal to 12.
  • the data transmission device is deployed in a user terminal or a base station, or the data transmission device is a user terminal or a base station itself.
  • a sixth aspect of the present invention provides a data transmission apparatus, including:
  • the processor is configured to acquire K bits to be transmitted; map the K bits to F resource units, where each bit of the K bits is mapped to F resource units On at least two resource units, the K and the F are integers greater than one;
  • the transmitter is configured to map bits mapped onto the F resource elements onto modulation symbols for transmission.
  • the processor For dividing the K bits into V bit sequences; mapping the V bit sequences onto F resource units, each of the V bit sequences being mapped to F resource units On at least two of the resource elements, the V is an integer greater than one and less than or equal to the K.
  • the V bit sequences are mapped to V resource unit groups, and the V resource unit groups include different resource units, and the V resource unit groups and the V bit sequences are in one-to-one correspondence.
  • Each of the V resource unit groups includes at least two of the F resource units.
  • the resource unit group i in the V resource unit group includes the resource unit i 1 and Resource unit i 2
  • the resource unit group j in the V resource unit groups includes a resource unit j 1 and the resource unit i 2 .
  • the transmitter is specifically configured to: map, according to a constellation, bits mapped to the F resource units to modulation symbols for transmission;
  • the constellation map used to map the y bits mapped to the resource elements j among the F resource elements to the modulation symbols for transmission is a constellation diagram x, wherein if the y is an even number, the The constellation x is a square Gray constellation containing 2 y constellation points; and/or if the y is an odd number, the constellation x is a cross-shaped Gray constellation containing 2 y constellation points.
  • the bit a of the K bits is mapped to the f1 resource units of the F resource units, where the K bits are Bit b is mapped to f2 resource units of the F resource units,
  • the bits a on the mapped f1 resource units are respectively mapped to f1 bit bearer positions on the modulation symbols, and the bits b on the mapped f2 resource units are respectively mapped to a f2 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f1 bit bearer positions is f1 + , and a transmission reliability indicator value corresponding to the f2 bit bearer positions And a value of f2 + , wherein an absolute value of the difference between the f1 + and the f2 + is less than or equal to a third threshold;
  • the bit a and the bit b are any two bits of the K bits; the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position, or the higher the transmission reliability indication value Small indicates that the transmission reliability of the corresponding bit bearer position is higher.
  • the bit c of the K bits is mapped to the f3 resource units of the F resource units, where the K bits are Bit d is mapped to f4 resource units of the F resource units,
  • the bits c on the mapped f3 resource units are respectively mapped to f3 bit bearer positions on the modulation symbols, and the bits d on the mapped f4 resource units are respectively mapped to a f4 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f3 bit bearer positions is f3 + , and a transmission reliability indicator value corresponding to the f4 bit bearer positions And the value is f4 + ;
  • bit c and the bit d are any two bits of the K bits
  • the f3 + is greater than the f4 + ;
  • the f3 + is smaller than the f4 + .
  • the K bits to be transmitted are based on the Turbo code by the W 0 original data streams corresponding to the W users. Obtained by channel coding, the bit c is a systematic bit, the bit d is a parity bit, and the importance of the bit c is higher than the importance of the bit d;
  • the K bits to be transmitted are obtained by channel coding the W0 original data streams corresponding to the W users based on the low density parity check code, and the degree of the bit c is higher than the degree of the bit d.
  • the importance of bit c is higher than the importance of bit d.
  • the transmitting end maps K bits to be transmitted to F resource units, and each of the K bits is mapped to F resource units.
  • the K and the F are integers greater than one; the bits mapped onto the F resource elements are mapped onto modulation symbols for transmission. Since each of the to-be-transmitted is mapped to at least two of the F resource elements, that is, each bit is redundantly transmitted on at least at least two resource elements when performing data transmission, This is advantageous to improve the reliability of bit transmission to some extent.
  • the transmitting end maps the K bits to the F resource units according to the value of the codebook and the K bits to be transmitted to obtain that the F resource units are to be used. Transmitting a codeword C K , wherein, since the codebook includes S codewords having a one-to-one mapping relationship with different values of S bits of K bits, each of the S codewords is a complex vector including F complex numbers, where the codebook includes the ith when the difference between the value of the ith type of the K bits and the value of the jth type is different, and only the value of the 1 bit is different.
  • the codeword having a mapping relationship is a codeword C i
  • the codeword included in the codebook having a mapping relationship with the j-th value is a codeword C j
  • the codeword C i does not include
  • the complex word Z j1 and the complex number Z j2 included in the code word C j will cause at least two complex numbers in the corresponding code word to change
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a constellation diagram according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of mapping a bit sequence to a resource unit according to an embodiment of the present invention
  • FIG. 2-d is a schematic diagram of a calculation amount comparison according to an embodiment of the present invention.
  • FIG. 2-e is a schematic diagram of another calculation amount comparison according to an embodiment of the present invention.
  • FIG. 2-f is a schematic diagram of simulation of error rate simulation according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a data transmission apparatus according to an embodiment of the present invention.
  • Embodiments of the present invention provide a data transmission method, a related device, and a communication system to improve the reliability of bit transmission.
  • a data transmission method comprises: acquiring K bits to be transmitted; mapping the K bits to F resource units, wherein the K bits are included Each bit is mapped to at least two of the F resource elements, said K And the F is an integer greater than 1; mapping the bits mapped to the F resource elements onto the modulation symbols for transmission.
  • FIG. 1 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present invention.
  • a data transmission method provided by an embodiment of the present invention may include:
  • the K bits are obtained by channel coding of original data streams corresponding to W users, and the W is a positive integer, for example, the W may be equal to 1, 2, 3, 4, 6, 8, or other values. That is to say, the K bits are bits obtained by channel coding.
  • the K bits are obtained by channel coding the original data stream corresponding to the W users based on a low density parity check code (abbreviation: LDPC) or a Turbo code or other code.
  • LDPC low density parity check code
  • Turbo code Turbo code or other code.
  • the number of original data streams corresponding to each of the W users may be one or more.
  • each of the K bits is mapped to at least two resource units among the F resource units.
  • the K and the F are integers greater than one.
  • the resource unit mentioned in the embodiment of the present invention refers to a resource unit of an air interface.
  • the K may be equal to, for example, 2, 3, 4, 5, 7, 8, 10, 50, 101, 505, 2029 or other values.
  • the K bits may be from one or more data streams. If the K bits are from multiple data streams, the multiple data streams may be data streams corresponding to one or more users. It can be understood that, since the value of the K may be any integer greater than 1, the technical solution of this embodiment may be a data transmission method for an arbitrary rate.
  • the importance of each of the K bits may be the same or different.
  • K bits to be transmitted are mapped to F resource units, and each of the K bits is mapped to at least two of the F resource units.
  • the K and the F are integers greater than one; the bits mapped onto the F resource units are mapped onto modulation symbols for transmission. Since each of the to-be-transmitted is mapped to F resource units At least two resource units in the medium, that is to say, when data transmission is performed, each bit is redundantly transmitted on at least at least two resource units, which is advantageous for improving the reliability of bit transmission to some extent.
  • the mapping the K bits to the F resource units may include: dividing the K bits into V bit sequences; V bit sequences are mapped onto F resource units, each bit sequence of the V bit sequences being mapped to at least two resource units among F resource units, wherein the V is greater than 1 And less than or equal to the integer of K.
  • dividing the K bits into V bit sequences may include: performing the K by a random algorithm or a pseudo-random algorithm or an importance equalization algorithm or other algorithms.
  • the bits are divided into V bit sequences.
  • V when the V is equal to the K, it means that each of the K bits is divided into one bit sequence.
  • V when the V is less than the K, it indicates that at least one of the V bit sequences includes at least two of the K bits.
  • the number of bits contained in two of the V bit sequences may be equal or unequal.
  • the K is equal to 20, and the V is equal to 20, which means that each of the 20 bits is divided into 1 bit sequence.
  • K is equal to 20, and V is equal to 5
  • the 5 bit sequences do not necessarily all include the same number of bits, and some bit sequences may include 1 bit sequence.
  • Bits some bit sequences include 3 bits, some bit sequences include 6 bits, and some bit sequences include other numbers of bits. It can be understood that mapping with a bit sequence as a granularity is advantageous for reducing the complexity of mapping compared to mapping at a bit granularity.
  • the importance of each bit in the same bit sequence may be the same or different.
  • the importance of each bit in the same bit sequence is different, that is, the importance of each bit in the same bit sequence is different from each other, or the importance part of each bit in the same bit sequence is the same.
  • the importance of the bits in the two different bit sequences may be the same or different.
  • the importance of each bit in the two different bit sequences is different, meaning that the bits of the two different bit sequences are not important to each other. Same or partially the same.
  • the V bit sequences are mapped to V resource unit groups, and the V resource unit groups include different resource units, wherein the V resource unit groups and the V bit sequences are one by one.
  • each of the V resource unit groups includes at least two resource units of the F resource units.
  • the resource unit group i in the V resource unit groups includes a resource unit i 1 and a resource unit i 2 , where the resource unit group j in the V resource unit group includes the resource unit j 1 and the resource Unit i 2 . That is to say, the intersection of the resource unit group i and the resource unit group included in the resource unit group j in the V resource unit groups is a non-empty set.
  • the intersection of the resource units included in any two resource element groups of the V resource unit groups may also be an empty set.
  • the total number of bit sequences in the V bit sequences mapped to the resource unit m1 is mapped to the resource unit n1 in the V bit sequences.
  • the difference between the total number of bit sequences on is less than or equal to a first threshold, wherein the resource unit m1 and the resource unit n1 are any two (or two) of the F resource units ) Resource unit. That is to say, the total number of bit sequences mapped on different resource units can be as uniform as possible to some extent. Of course, this uniformity problem may not be considered in some scenarios.
  • the value of the first threshold may be determined according to a specific uniformity requirement, for example, the first threshold may be equal to 1, 3, 6, 9, 10, 21 or other values.
  • the total number of bits of the K bits mapped to the resource unit m2, and the bits of the K bits mapped to the resource unit n2 The difference between the total number of units is less than or equal to a second threshold, wherein the resource unit m2 and the resource unit n2 are any two (or two of) resource units of the F resource units. That is to say, the total amount of bits mapped on different resource units can be as uniform as possible to some extent, and of course, this uniformity problem may not be considered in some scenarios.
  • the value of the second threshold may be determined according to a specific uniformity requirement, for example, the second threshold may be equal to 1, 2, 3, 5, 9, 10, 21 or other values.
  • the mapping the bits mapped to the F resource units to the modulation symbols for transmission comprises: mapping to the F based on a constellation diagram (or other manner) The bits on the resource elements are mapped onto the modulation symbols for transmission.
  • mapping the y bits mapped to the resource unit j among the F resource units to the modulation symbol for transmission is a constellation Figure x, wherein there is a correspondence between the constellation diagram x and the value of the y.
  • the corresponding relationship between the constellation diagram x and the value of the y may be various.
  • the constellation map x is a square Gray constellation including 2 y constellation points; and/or, if the y is an odd number, The constellation x is a cross-shaped gray constellation containing 2 y constellation points.
  • the bit a of the K bits is mapped to the f1 resource units of the F resource units, and the bit b of the K bits is mapped. Go to f2 resources in the F resource units.
  • the bits a on the mapped f1 resource units are respectively mapped to f1 bit bearer positions on the modulation symbols, and the bits b on the mapped f2 resource units are respectively mapped to a f2 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f1 bit bearer positions is f1 + , and a transmission reliability indicator value corresponding to the f2 bit bearer positions
  • the sum value is f2 + , wherein the absolute value of the difference between the f1 + and the f2 + is less than or equal to the first threshold.
  • the bit a and the bit b may be any two bits (or two of the K bits) of the K bits; the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position. The smaller the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position. It can be understood that since the transmission reliability corresponding to each bit is as balanced as possible, it is advantageous to improve the transmission reliability of the whole bit.
  • the bit c of the K bits is mapped to the f3 resource units of the F resource units, where the bit d of the K bits is Mapping to f4 resources in the F resource units.
  • the bits c on the mapped f3 resource units are respectively mapped to f3 bit bearer positions on the modulation symbols, and the bits d on the mapped f4 resource units are respectively mapped to a f4 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f3 bit bearer positions is f3 + , and a transmission reliability indicator value corresponding to the f4 bit bearer positions And a value of f4 + ; wherein the bit c and the bit d are any two bits (or two of the K bits) of the K bits; wherein if the bit c is more important than The importance of the bit d, and the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position, the
  • any one of the data transmission methods provided in this embodiment may be performed by, for example, a user terminal or a base station.
  • FIG. 2-a is a schematic flowchart of a data transmission method according to another embodiment of the present invention.
  • a data transmission method provided by another embodiment of the present invention may include:
  • the number of original data streams corresponding to each of the W users may be one or more, where the W is a positive integer, for example, the W may be equal to 1, 2, 3, 4, 6 , 8, 9 or 16 or other values.
  • the W 0 is a positive integer greater than or equal to the W, for example, the W 0 may be equal to 1, 2, 3, 4, 6, 8, 9, or 16 or other values.
  • K is an integer greater than one.
  • the W 0 original data streams corresponding to the W users include a total of K 0 bits.
  • K 0 K*R, where R is the coding rate of the channel coding.
  • the W 0 original data streams corresponding to the W users may be channel-coded based on a low-density parity check code or a Turbo code or other channel coding manner to obtain a to-be-transmitted K bits.
  • each original data stream corresponding to the W users may obtain at least one codeword, and each codeword may include at least one data stream.
  • each codeword may include three a data stream in which the three data streams
  • channel coding may be performed on the two original data streams corresponding to the two users to obtain four code words, wherein each code word includes two.
  • a data stream, each of the two data streams comprising n bits, then K n * 2 * 4.
  • Other situations can be deduced by analogy.
  • dividing the K bits into V bit sequences may include: performing the K by a random algorithm or a pseudo-random algorithm or an importance equalization algorithm or other algorithms.
  • the bits are divided into V bit sequences.
  • V is an integer greater than 1 and less than or equal to the K.
  • Each of the V bit sequences is mapped to at least two of the F resource units.
  • V when the V is equal to the K, it means that each of the K bits is divided into one bit sequence.
  • V when the V is less than the K, it indicates that at least one of the V bit sequences includes at least two of the K bits.
  • the number of bits contained in two of the V bit sequences may be equal or unequal.
  • the K is equal to 20, and the V is equal to 20, which means that each of the 20 bits is divided into 1 bit sequence.
  • K is equal to 20, and V is equal to 5
  • the 5 bit sequences do not necessarily all include the same number of bits, and some bit sequences may include 1 bit sequence.
  • Bits some bit sequences include 3 bits, some bit sequences include 6 bits, and some bit sequences include other numbers of bits. It can be understood that mapping with a bit sequence as a granularity is advantageous for reducing the complexity of mapping compared to mapping at a bit granularity.
  • the V bit sequences are mapped to V resource unit groups, and the V resource unit groups include different resource units, and the set of all resource units included in the V resource unit groups is the A subset of the set of F resource elements.
  • the number of resource units included in the V resource unit groups may be equal or unequal.
  • the V resource unit groups and the V bit sequences are in one-to-one correspondence.
  • each of the V resource unit groups includes the F resource units At least two resource units. It can be understood that, since each resource unit group includes at least two resource units of the F resource units, each bit sequence of the V bit sequences is mapped to at least two resource units.
  • the resource unit group i in the V resource unit groups includes a resource unit i 1 and a resource unit i 2
  • the resource unit group j in the V resource unit groups includes a resource unit j 1 and a Resource unit i 2 .
  • the bit sequence v1 in the V bit sequences is mapped to the resource unit group i
  • the bit sequence v2 in the V bit sequences is mapped to the resource unit group j
  • the intersection of the resource unit group i and the resource unit group included in the resource unit group j in the V resource unit groups is a non-empty set.
  • the resource unit group i and the resource unit group j in the V resource unit groups may be two or any two resource unit groups in the V resource unit groups. It can be understood that when the resource unit group i in the V resource unit group and the resource unit included in the resource unit group j are non-empty sets, the resource units to which the two bit sequences are mapped are not completely identical. Some bit sequences can be mapped to resource elements non-orthogonally to some extent. Since this redundant mapping method is flexible, it is beneficial to improve the flexibility and controllability of the modulation rate.
  • intersection of the resource units included in any two resource element groups of the V resource unit groups may also be an empty set, that is, any one of the F resource units. It may belong to only one of the V resource unit groups.
  • the total number of bit sequences in the V bit sequences mapped to the resource unit m1 is mapped to the resource unit n1 in the V bit sequences.
  • the difference between the total number of bit sequences on is less than or equal to a first threshold, wherein the resource unit m1 and the resource unit n1 are any two (or two) of the F resource units ) Resource unit. That is to say, the total number of bit sequences mapped on different resource units can be as uniform as possible to some extent, and of course, this uniformity problem may not be considered in some scenarios.
  • the value of the first threshold may be determined according to a specific uniformity requirement, for example, the first threshold may be equal to 1, 3, 6, 9, 10, 21 or other values.
  • the K bits are mapped to resources.
  • the difference between the total number of bits on the unit m2 and the total number of bits of the K bits mapped onto the resource unit n2 is less than or equal to a second threshold, wherein the resource unit m2 and The resource unit n2 is any two (or two of) resource units of the F resource units. That is to say, the total amount of bits mapped on different resource units can be as uniform as possible to some extent, and of course, this uniformity problem may not be considered in some scenarios.
  • the value of the second threshold may be determined according to a specific uniformity requirement, for example, the second threshold may be equal to 1, 2, 3, 5, 9, 10, 21 or other values.
  • the mapping the bits mapped to the F resource units to the modulation symbols for transmission comprises: mapping to the F based on a constellation diagram (or other manner)
  • the bits on the resource elements are mapped onto the modulation symbols for transmission.
  • the constellation map used for mapping the bits mapped to the resource elements j in the F resource units to the modulation symbols for transmission may be the same as or different from the resources to be mapped to the F resource units.
  • the bits on unit i are mapped to a constellation used for transmission on the modulation symbols, wherein resource unit j and resource unit i may be two or any two of the F resource units.
  • the constellation map used for mapping the y bits mapped to the resource unit j among the F resource units to the modulation symbol for transmission is a constellation diagram x,
  • the mapping between the constellation diagram x and the value of y has a corresponding relationship.
  • the corresponding relationship between the constellation diagram x and the value of the y may be various.
  • the constellation diagram x is a square Gray constellation including 2y constellation points; and/or, if the y is an odd number, the constellation Figure x is a cross-shaped Gray constellation containing 2y constellation points.
  • a constellation map containing 2y constellation points is selected.
  • Constellation point mapping The corresponding constellation points in the constellation can be selected according to the bit mapping relationship and the value of y bits.
  • the constellation diagram corresponding to several different values of y is illustrated by way of example in Figure 2-b.
  • the bit a of the K bits is mapped to the f1 resource units of the F resource units, and the bit b of the K bits is mapped. Go to f2 resource units in the F resource units.
  • the bits a on the mapped f1 resource units are respectively mapped to f1 bit bearer positions on the modulation symbols, and the bits b on the mapped f2 resource units are respectively mapped to The f2 bit bearer positions on the modulation symbols, the sum of the transmission reliability indication values corresponding to the f1 bit bearer positions is f1 + , and the sum of the transmission reliability indication values corresponding to the f2 bit bearer positions Is f2 + , wherein the absolute value of the difference between the f1 + and the f2 + is less than or equal to the first threshold.
  • the bit a and the bit b may be any two bits (or two of the bits) of the K bits. The larger the transmission reliability indication value is, the higher the transmission reliability of the corresponding bit bearer position is, or the smaller the transmission reliability indicator value is, the higher the transmission reliability of the corresponding bit bearer position is.
  • the bit c of the K bits is mapped to the f3 resource units of the F resource units, where the bit d of the K bits is Mapping to f4 resource units in the F resource units.
  • the bits c on the mapped f3 resource elements are respectively mapped to f3 bit bearer positions on the modulation symbols, and the bits d on the mapped f4 resource units are respectively mapped to modulation symbols.
  • the sum of the transmission reliability indication values corresponding to the f3 bit bearer positions is f3 +
  • the sum of the transmission reliability indication values corresponding to the f4 bit bearer positions is f4 + ;
  • the bit c and the bit d are any two bits (or two of the K bits) of the K bits; wherein if the bit c is of higher importance than the bit d Importance, and the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position, the f3 + being greater than the f4 + ;
  • the bits mapped to the F resource units may also be mapped to the modulation symbols for transmission based on a random manner or other manners. Based on random mode When mapping the bits mapped onto the F resource elements onto the modulation symbols, the importance of each bit mapped to the F resource elements and the reliability of each bit bearer location are not considered.
  • any one of the data transmission methods provided in this embodiment may be performed by, for example, a user terminal or a base station.
  • the user acquires W W 0 corresponding raw data stream, the user W W 0 corresponding raw data stream is channel coded to be transmitted to give the K Bits; mapping K bits to be transmitted onto F resource elements, each of the K bits being mapped onto at least two of the F resource elements; mapping to the The bits on the F resource elements are mapped onto the modulation symbols for transmission. Since each of the channels to be transmitted obtained by channel coding is mapped to at least two resource units among the F resource units, that is, when data transmission is performed, each bit is redundantly transmitted on at least two resource units. This is beneficial to improve the reliability of bit transmission to some extent.
  • each intermediate node can be a memory area.
  • each intermediate node is connected to a maximum of d v resource units
  • the number of intermediate nodes is V
  • each resource is connected to a maximum of d f intermediate nodes
  • connection relationship between the intermediate node and the resource unit presented by the connection network may be represented by the traversal value of the combination number. That is, traversing F takes all the combinations of d v ,
  • sequence number of the resource unit to which the i-th intermediate node is connected is the bit value of the i-th combination number (for example, 0 means no connection, 1 means connection).
  • the receiving end can decode the received signals acquired from the F resource units, for example, according to a message passing algorithm algorithm or other decoding algorithm.
  • Figures 2-d and 2-e are graphs comparing the computational performance of the receiving end corresponding to the conventional SCMA scheme and the inventive scheme.
  • Figure 2-d shows that the computational performance of the receiving end of the solution of the present invention is much higher than that of the conventional SCMA scheme.
  • FIG. 2-f is a simulation diagram of BER performance corresponding to the traditional SCMA scheme, the scheme of the present invention, and the low density signature code division multiple access (LDS) scheme. .
  • LDS low density signature code division multiple access
  • OFDM orthogonal frequency division multiplexing
  • parameters are favorable for compatibility with the SCMA.
  • SCMA-based solutions can be seen as some special cases of this approach.
  • simulation comparison analysis it can be found by simulation comparison analysis that some of the above technical solutions of the present embodiment have the advantages of reducing complexity and bit error rate compared with several conventional technical solutions.
  • another data transmission method includes: acquiring K bits to be transmitted; mapping the K bits to F according to values of the codebook and the K bits Resolving, on the resource unit, a codeword C K to be transmitted using the F resource units, where the codebook includes S codewords having a one-to-one mapping relationship with different values of S bits of K bits, S is less than or equal to 2 K , and each of the S codewords is a complex vector including F complex numbers, wherein the difference between the value of the ith type and the value of the jth value of the K bits For a value of only one bit, the codeword included in the codebook having a mapping relationship with the value of the i-th type is a codeword C i , and the codebook includes the value of the j-th type A codeword having a mapping relationship is a codeword Cj , wherein the codeword C i does not include a complex number Z j1 and a complex number Z j2 included in the code
  • FIG. 3 is a schematic flowchart diagram of another data transmission method according to another embodiment of the present invention.
  • another data transmission method provided by another embodiment of the present invention may include:
  • the K bits are obtained by channel coding of original data streams corresponding to W users, and the W is a positive integer, for example, the W may be equal to 1, 2, 3, 4, 6, 8, or other values. That is to say, the K bits are bits obtained by channel coding.
  • the K bits are obtained by channel coding of original data streams corresponding to W users based on low density parity check code (LDPC) or Turbo code or other codes.
  • LDPC low density parity check code
  • Turbo code Turbo code or other codes.
  • the number of original data streams corresponding to each of the W users may be one or more.
  • acquiring the K bits to be transmitted may include: when the codebook corresponding to the modulation order is equal to M, from each layer of the data stream in the W layer data stream. Log 2 (M) bits are respectively acquired to constitute the K bits, wherein the W and the M are integers greater than one.
  • mapping between the codeword C K and the K bits has a mapping relationship.
  • the codebook may include S codewords having a one-to-one mapping relationship with S different values of K bits, and the S is less than or equal to 2K .
  • Each of the S codewords is a complex vector comprising F complex numbers.
  • the difference between the value of the ith type of the K bits and the value of the jth type is different, and only one bit has different values.
  • the codeword included in the codebook and having a mapping relationship with the value of the i-th type is a codeword C i .
  • the codebook includes a code word has a mapping relation with the j th value of a code word C j, C i the codeword does not include the codeword C j Z j1 comprising plural and plural Z j2.
  • S may be greater than 1, and S may be, for example, equal to 1, 2, 3, 4, 6, 8, 15, 201, 1005 or other values.
  • the C p codeword does not include the codeword C q complex comprising a plurality of Z q1 and Z q2, wherein said code word and said code C p
  • the word C q is any two of the S1 code words, and the S1 code words are some or all of the S code words.
  • the S1 is less than or equal to the S. That is to say, there are at least two complex numbers between any two of the S1 code words.
  • the complex number Z u1 of the codeword C u located at the ⁇ position is different from the value of the complex number Z e1 of the code word C e located at the ⁇ position, where the code The complex number Z u2 at the ⁇ position in the word C u is different from the complex number Z e2 at the ⁇ position in the code word C e , and the code word C p and the code word C q are in the S2 code words. Any two codewords, the S2 codewords being part or all of the S codewords. The S2 is less than or equal to the S. That is to say, there is a difference between the complex numbers of at least two identical positions between any two of the S2 code words.
  • the resource unit mentioned in the embodiment of the present invention refers to a resource unit of an air interface.
  • the K may be equal to, for example, 2, 3, 4, 5, 7, 8, 10, 50, 101, 505, 2029 or other values.
  • the K bits may be from one or more data streams. If the K bits are from multiple data streams, the multiple data streams may be data streams corresponding to one or more users. It can be understood that, since the value of the K may be any integer greater than 1, the technical solution of this embodiment may be a data transmission method for an arbitrary rate.
  • the importance of each of the K bits may be the same or different.
  • the K bits are mapped to F resource units according to the value of the codebook and the K bits to be transmitted to obtain that the F resource units are to be used for transmission.
  • the codeword C K since the codebook includes S codewords having a one-to-one mapping relationship with different values of S bits of K bits, each of the S codewords includes F complex numbers a complex vector, where the difference between the value of the ith type of the K bits and the value of the jth type is different, and the value of the codebook includes a mapping with the value of the ith type
  • the codeword of the relationship is a codeword C i
  • the codeword included in the codebook having a mapping relationship with the j-th value is a codeword C j
  • the codeword C i does not include the codeword C j
  • the complex number Z j1 and the complex number Z j2 included since a value of one of the K bits changes, causes at least two complex numbers in the corresponding code word
  • each of the K bits is mapped to at least two of the F resource elements On the source unit, and since each of the to-be-transmitted is mapped to at least two of the F resource units, that is, when data transmission is performed, each bit is performed on at least two resource units. Redundant transmission, which is beneficial to improve the reliability of bit transmission to some extent.
  • the codebook may include one or more codewords in the following codebook 1:
  • the codebook may include one or more codewords in the following codebook 2:
  • any one of the data transmission methods provided in this embodiment may be performed by, for example, a user terminal or a base station.
  • an embodiment of the present invention provides a data transmission apparatus 400, which may include:
  • An obtaining unit 410 configured to acquire K bits to be transmitted
  • the mapping unit 420 is configured to map the K bits to the F resource units according to the value of the codebook and the K bits to obtain a codeword C K to be transmitted by using the F resource units,
  • the codebook includes S codewords having a one-to-one mapping relationship with S different values of K bits, the S being less than or equal to 2K , and each of the S codewords includes F a complex vector of complex numbers, wherein the difference between the value of the ith type of the K bits and the value of the jth type is different, and the value of the coded book is different from the value of the ith type
  • the codeword having a mapping relationship is a codeword C i
  • the codeword included in the codebook having a mapping relationship with the j-th value is a codeword C j , wherein the codeword C i does not include
  • the codeword C j includes a complex number Z j1 and a complex number Z j2 , wherein the K, F, and S are integers greater than
  • the sending unit 430 is configured to send the codeword C K by using the F resource units.
  • the codeword does not include the C p C q codeword comprises a plurality of plural Z q1 and Z q2, wherein the codeword and the codeword C p C q is S1 codewords any two codes a word, the S1 codewords being part or all of the S codewords.
  • the lower labels of the complex number Z q1 and the complex number Z q2 are not used to define the position or order of the complex number Z q1 and the complex number Z q2 in the codebook, and other similarities are not specifically described.
  • the complex number Z u1 of the codeword C u located at the ⁇ position is different from the value of the complex number Z e1 of the code word C e located at the ⁇ position, where the code The complex number Z u2 at the ⁇ position in the word C u is different from the complex number Z e2 at the ⁇ position in the code word C e , and the code word C p and the code word C q are in the S2 code words. Any two codewords, the S2 codewords being part or all of the S codewords.
  • the acquiring unit is specifically configured to: when the codebook corresponding to the modulation order is equal to M, obtain a log from each layer of the data stream in the W layer data stream. 2 (M) bits to form the K bits, the W and the M being an integer greater than one.
  • the codebook when the K is equal to 6, the codebook includes some or all of the codewords in the codebook 1 in the foregoing embodiment.
  • the codebook when the K is equal to 12, the codebook includes some or all of the codewords in the codebook 2 in the foregoing embodiment.
  • the data transmission device 400 is deployed in a user terminal or a base station, or the data transmission device 400 is a user terminal or a base station itself.
  • the data transmission device 400 maps K bits to be transmitted to F resource units, and each of the K bits is mapped to F resource units.
  • the K and the F are integers greater than one; the bits mapped onto the F resource elements are mapped onto modulation symbols for transmission. Since each of the to-be-transmitted is mapped to at least two of the F resource elements, that is, each bit is redundantly transmitted on at least at least two resource elements when performing data transmission, This is advantageous to improve the reliability of bit transmission to some extent.
  • an embodiment of the present invention further provides a data transmission apparatus 500, which may include:
  • the obtaining unit 510 is configured to acquire K bits to be transmitted.
  • the mapping unit 520 is configured to map the K bits to the F resource units, where each of the K bits is mapped to at least two resource units of the F resource units,
  • the K and the F are integers greater than one;
  • the sending unit 530 is configured to map the bits mapped to the F resource units to the modulation symbols for transmission.
  • the mapping unit 520 may be specifically configured to divide the K bits into V bit sequences; and map the V bit sequences to F resource units.
  • Each of the V bit sequences is mapped to at least two of the F resource elements, the V being an integer greater than one and less than or equal to the K.
  • the V bit sequences are mapped to V
  • the resource unit groups of the V resource unit groups are different, the V resource unit groups and the V bit sequences are in one-to-one correspondence, and each resource in the V resource unit groups
  • the unit group includes at least two resource units of the F resource units.
  • the resource unit group i in the V resource unit groups includes a resource unit i 1 and a resource unit i 2
  • the resource unit group in the V resource unit groups j includes a resource unit j 1 and the resource unit i 2 .
  • the sending unit 530 is specifically configured to: map, by using a constellation map, bits mapped to the F resource units to modulation symbols for transmission;
  • the constellation map used to map the y bits mapped to the resource elements j among the F resource elements to the modulation symbols for transmission is a constellation diagram x, wherein if the y is an even number, the The constellation x is a square Gray constellation containing 2 y constellation points; and/or if the y is an odd number, the constellation x is a cross-shaped Gray constellation containing 2 y constellation points.
  • the bit a of the K bits is mapped to the f1 resource units of the F resource units, where the bit b of the K bits is Mapping to f2 resource units in the F resource units,
  • the bits a on the mapped f1 resource units are respectively mapped to f1 bit bearer positions on the modulation symbols, and the bits b on the mapped f2 resource units are respectively mapped to a f2 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f1 bit bearer positions is f1 + , and a transmission reliability indicator value corresponding to the f2 bit bearer positions And a value of f2 + , wherein an absolute value of the difference between the f1 + and the f2 + is less than or equal to a third threshold;
  • the bit a and the bit b are any two bits of the K bits; the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position, or the higher the transmission reliability indication value Small indicates that the transmission reliability of the corresponding bit bearer position is higher.
  • the bit c of the K bits is mapped to the f3 resource units of the F resource units, where the bit d of the K bits is Mapping to f4 resource units in the F resource units,
  • the bits c on the mapped f3 resource units are respectively mapped to f3 bit bearer positions on the modulation symbols, and the bits d on the mapped f4 resource units are respectively mapped to a f4 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f3 bit bearer positions is f3 + , and a transmission reliability indicator value corresponding to the f4 bit bearer positions And the value is f4 + ;
  • bit c and the bit d are any two bits of the K bits
  • the f3 + is greater than the f4 + ;
  • the f3 + is smaller than the f4 + .
  • the K bits to be transmitted are obtained by channel coding of W 0 original data streams corresponding to W users according to a Turbo code, where the bit c is a system bit.
  • the bit d is a parity bit, the importance of the bit c being higher than the importance of the bit d.
  • the K bits to be transmitted are obtained by channel coding the W0 original data streams corresponding to the W users based on the low density parity check code, and the degree of the bit c is higher than the degree of the bit d.
  • the importance of the bit c is higher than the importance of the bit d.
  • the data transmission device 500 maps the K bits to the F resource units according to the value of the codebook and the K bits to be transmitted to obtain that the F devices are to be used.
  • a codeword C K that is transmitted by the resource unit, wherein the codebook includes S codewords having a one-to-one mapping relationship with different values of S bits of K bits, and each of the S codewords
  • the word is a complex vector including F complex numbers.
  • the codebook includes and The codeword having the mapping relationship of the i-th value is a codeword C i , and the codeword included in the codebook having a mapping relationship with the j-th value is a codeword C j , and the codeword C i is not Including the complex number Z j1 and the complex number Z j2 included in the codeword C j , since a certain value of the K bits changes, it will cause at least two complex numbers in the corresponding code word to change, and the complex number in the code word
  • the resource unit have a one-to-one mapping relationship, that is to say, each of the K bits is mapped to F At least two resource units among the resource units, and since each of the to-be-transmitted is mapped to at least two of the F resource units, that is, each data bit is transmitted during data transmission Redundant transmission is performed on at least two resource
  • an embodiment of the present invention further provides a data transmission apparatus 600, including: a processor 602, a memory 603, and a transmitter 604 connected through a bus 601.
  • the processor 602 calls the code stored in the memory 603 through the bus 601 for acquiring K bits to be transmitted; and mapping the K bits to the F resources according to the value of the codebook and the K bits.
  • the unit is configured to obtain a codeword C K to be transmitted by using the F resource units, where the codebook includes S codewords having a one-to-one mapping relationship with different values of S bits of K bits, where S is less than or equal to 2 K , and each of the S codewords is a complex vector including F complex numbers, wherein the difference between the value of the ith type and the value of the jth value of the K bits is Only the value of the 1 bit is different, and the codeword included in the codebook has a mapping relationship with the value of the ith type is a codeword C i , and the codebook includes and the value of the jth type
  • the codeword of the mapping relationship is a codeword Cj , wherein the codeword C i does not include the complex number Z j1 and the complex number
  • the transmitter 604 is configured to send the codeword C K by using the F resource units.
  • the C p codeword does not include the codeword C q complex comprising a plurality of Z q1 and Z q2, wherein said code word and said code C p
  • the word C q is any two of the S1 code words, and the S1 code words are some or all of the S code words.
  • the complex number Z u1 of the codeword C u located at the ⁇ position is different from the value of the complex number Z e1 of the code word C e located at the ⁇ position, where the code The complex number Z u2 at the ⁇ position in the word C u is different from the complex number Z e2 at the ⁇ position in the code word C e , and the code word C p and the code word C q are in the S2 code words. Any two codewords, the S2 codewords being part or all of the S codewords.
  • the processor is configured to obtain log 2 from each layer of the data stream in the W layer data stream when the codebook corresponding to the modulation order is equal to M. M) bits to form the K bits, the W and the M being an integer greater than one.
  • the codebook when the K is equal to 6, the codebook includes some or all of the codewords in the codebook 1 in the foregoing embodiment.
  • the codebook when the K is equal to 12, the codebook includes some or all of the codewords in the codebook 2 in the foregoing embodiment.
  • the data transmission device 600 is deployed in a user terminal or a base station, or the data transmission device 600 is a user terminal or a base station itself.
  • the data transmission device 600 maps K bits to be transmitted to F resource units, and each of the K bits is mapped to F resource units.
  • the K and the F are integers greater than one; the bits mapped onto the F resource elements are mapped onto modulation symbols for transmission. Since each of the to-be-transmitted is mapped to at least two of the F resource elements, that is, each bit is redundantly transmitted on at least at least two resource elements when performing data transmission, This is advantageous to improve the reliability of bit transmission to some extent.
  • an embodiment of the present invention further provides a data transmission apparatus 700, including: a processor 702, a memory 703, and a transmitter 704 connected through a bus 701.
  • the processor 702 calls the code stored in the memory 703 via the bus 701 for acquiring K bits to be transmitted; mapping the K bits to the F resource units, wherein among the K bits Each bit is mapped to at least two of the F resource elements, the K and the F being an integer greater than one.
  • the transmitter 604 is configured to map the bits mapped to the F resource units to the modulation symbols for transmission.
  • the processor is configured to divide the K bits into V bit sequences; and map the V bit sequences to F resource units, where Each of the V bit sequences is mapped to at least two of the F resource elements On the unit, the V is an integer greater than 1 and less than or equal to the K.
  • the V bit sequences are mapped into V resource unit groups, where the V resource unit groups include different resource units, and the V resource units are different.
  • the group and the V bit sequences are in one-to-one correspondence, and each of the V resource unit groups includes at least two resource units of the F resource units.
  • the resource unit group i in the V resource unit groups includes a resource unit i 1 and a resource unit i 2
  • the resource unit group in the V resource unit groups j includes a resource unit j 1 and the resource unit i 2 .
  • the transmitter 604 is configured to map, by using a constellation map, bits mapped to the F resource units to modulation symbols for transmission;
  • the constellation map used to map the y bits mapped to the resource elements j among the F resource elements to the modulation symbols for transmission is a constellation diagram x, wherein if the y is an even number, the The constellation x is a square Gray constellation containing 2 y constellation points; and/or if the y is an odd number, the constellation x is a cross-shaped Gray constellation containing 2 y constellation points.
  • the bit a of the K bits is mapped to the f1 resource units of the F resource units, where the bit b of the K bits is Mapping to f2 resource units in the F resource units,
  • the bits a on the mapped f1 resource units are respectively mapped to f1 bit bearer positions on the modulation symbols, and the bits b on the mapped f2 resource units are respectively mapped to a f2 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f1 bit bearer positions is f1 + , and a transmission reliability indicator value corresponding to the f2 bit bearer positions And a value of f2 + , wherein an absolute value of the difference between the f1 + and the f2 + is less than or equal to a third threshold;
  • the bit a and the bit b are any two bits of the K bits; the greater the transmission reliability indication value, the higher the transmission reliability of the corresponding bit bearer position, or the higher the transmission reliability indication value Small indicates that the transmission reliability of the corresponding bit bearer position is higher.
  • the bit c of the K bits is mapped to the f3 resource units of the F resource units, where the bit d of the K bits is Map to On the f4 resource units of the F resource units,
  • the bits c on the mapped f3 resource units are respectively mapped to f3 bit bearer positions on the modulation symbols, and the bits d on the mapped f4 resource units are respectively mapped to a f4 bit bearer position on the modulation symbol, where a sum of transmission reliability indication values corresponding to the f3 bit bearer positions is f3 + , and a transmission reliability indicator value corresponding to the f4 bit bearer positions And the value is f4 + ;
  • bit c and the bit d are any two bits of the K bits
  • the f3 + is greater than the f4 + ;
  • the f3 + is smaller than the f4 + .
  • the K bits to be transmitted are obtained by channel coding of W 0 original data streams corresponding to W users according to a Turbo code, where the bit c is a system bit.
  • the bit d is a parity bit, the importance of the bit c being higher than the importance of the bit d.
  • the K bits to be transmitted are obtained by channel coding the W0 original data streams corresponding to the W users based on the low density parity check code, and the degree of the bit c is higher than the degree of the bit d.
  • the importance of the bit c is higher than the importance of the bit d.
  • the data transmission device 700 is deployed in a user terminal or a base station, or the data transmission device 700 is a user terminal or a base station itself.
  • the data transmission device 700 maps the K bits to the F resource units according to the value of the codebook and the K bits to be transmitted to obtain that the F resource units are to be used. Transmitting a codeword C K , wherein, since the codebook includes S codewords having a one-to-one mapping relationship with different values of S bits of K bits, each of the S codewords is a complex vector including F complex numbers, where the codebook includes the ith when the difference between the value of the ith type of the K bits and the value of the jth type is different, and only the value of the 1 bit is different.
  • the codeword having a mapping relationship is a codeword C i
  • the codeword included in the codebook having a mapping relationship with the j-th value is a codeword C j
  • the codeword C i does not include
  • the complex word Z j1 and the complex number Z j2 included in the code word C j will cause at least two complex numbers in the corresponding code word to
  • At least two resource elements among the elements and since each of the to-be-transmitted is mapped to at least two of the F resource units, that is, when data transmission is performed, each bit is Redundant transmission is performed on at least two resource units, which is advantageous for improving the reliability of bit transmission to some extent.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the user terminals in the embodiments of the present invention may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, an access terminal, a terminal, a wireless communication device, and a user agent.
  • user equipment or user equipment UE, User Equipment
  • the user terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP), a Wireless Local Loop (WLL) station, a handheld device with wireless communication capabilities, and a personal digital processing (PDA, Personal). Digital Assistant), in-vehicle device, wearable device, computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal digital processing
  • the base station of the embodiments of the present invention may be used to communicate with a mobile device, where the base station may be an AP (Access Point, wireless access point) of GSM, or a GSM (Global System of Mobile communication) or CDMA (Code). Division Multiple Access, code
  • the BTS (Base Transceiver Station) in the multiple access) may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or may be LTE (Long Term Evolution, An eNB or an eNodeB (Evolved Node B) in a long term evolution, or a relay station or an access point, or a base station device in a future 5G network.
  • AP Access Point, wireless access point
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • the BTS (Base Transceiver Station) in the multiple access) may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or may be LTE (Long
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, server or network device, etc., and in particular a processor in a computer device) to perform all or part of the steps of the methods of the various embodiments of the present invention.
  • the foregoing storage medium may include: a U disk, a mobile hard disk, a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory.
  • Various media that can store program code such as a RAM (Random Access Memory).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

一种数据传输方法和相关设备,一种数据传输方法,包括:获取待传输的K个比特;根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字;使用所述F个资源单元发送所述码字CK。本发明实施例提供的方案有利于提高比特传输的可靠性。

Description

数据传输方法和相关设备 技术领域
本发明涉及通信技术领域,具体涉及一种数据传输方法和相关设备。
背景技术
调制在通信***中承载着将原始数据(比特)转换成适合传输的空口信号的重要作用,是通信***进行有效工作的重要部分。传统通信***为了传输的标准化,采用固定比特数的调制方式等。而对于现有长期演进***等,为实现连续速率可调,往往采用编码和调制联合的方式来实现,例如定义编码调制策略的不同阶数等。
对于未来的第五代(5G)通信***,传统调制编码方式的空间将越来越有限,主要体现在:随着多媒体应用的进一步发展,信息比特的动态压缩比率将会变得越来越高。在这种背景下需将信源编码和信道编码综合考虑,才能有效对抗衰落信道。然而,传统调制编码方式一般依赖于固定速率的编码(即母码速率),无法进行有效的信源信道联合编码。无固定速率的编码方式(例如喷泉码等)的进一步发展也要求调制方式能够更加灵活,能够适应任意速率的调制需求。机器通信和车载通信等新通信方式的广泛出现也对调制速率的范围和调制可靠性等提出了新的要求。
传统信号调制机制在对传输可靠性等方面的支持还略显不足,因此在目前新需求的驱动下,研究一些对传输可靠性等方面能够更好支持的信号调制机制变得很有技术意义。
发明内容
本发明实施例提供数据传输方法和相关设备,以提高比特传输的可靠性。
本发明第一方面提供一种数据传输方法,包括:
获取待传输的K个比特;
根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字 中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
使用所述F个资源单元发送所述码字CK
结合第一方面,在第一方面的第一种可能的实施方式中,
所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
结合第一方面,在第一方面的第二种可能的实施方式中,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。
结合第一方面或第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式中,
所述获取待传输的K个比特包括:
当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,其中,所述W和所述M为大于1的整数。
结合第一方面或第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式或第一方面的第三种可能的实施方式,在第一方面的第四种可能的实施方式中,当所述K等于6时所述码本包括如本发明实施例中的码本1中的部分或全部码字。
结合第一方面或第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式或第一方面的第三种可能的实施方式,在第一方面的第五种可 能的实施方式中,当所述K等于12时所述码本包括如本发明实施例中的码本2中的部分或全部码字。
结合第一方面或第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式或第一方面的第三种可能的实施方式或第一方面的第四种可能的实施方式或第一方面的第五种可能的实施方式,在第一方面的第六种可能的实施方式中,所述数据传输方法由用户终端或基站执行。
本发明第二方面提供一种数据传输方法,可包括:
获取待传输的K个比特;
将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;
将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
结合第二方面,在第二方面的第一种可能的实施方式中,所述将所述K个比特映射到F个资源单元上,包括:
将所述K个比特划分为V个比特序列;
将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,所述V为大于1且小于或等于所述K的整数。
结合第二方面的第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,
所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
结合第二方面的第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
结合第二方面或第二方面的第一种可能的实施方式或第二方面的第二种可能的实施方式或第二方面的第三种可能的实施方式,在第二方面的第四种可能的实施方式中,所述将映射到所述F个资源单元上的比特映射到调制符号上进行传输包括:基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
结合第二方面或第二方面的第一种可能的实施方式或第二方面的第二种可能的实施方式或第二方面的第三种可能的实施方式或第二方面的第四种可能的实施方式,在第二方面的第五种可能的实施方式中,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
结合第二方面或第二方面的第一种可能的实施方式或第二方面的第二种可能的实施方式或第二方面的第三种可能的实施方式或第二方面的第四种可能的实施方式,在第二方面的第六种可能的实施方式中,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上,
其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
结合第二方面的第六种可能的实施方式,在第二方面的第七种可能的实施方式中,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重要性;
或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述比特c的重要性高于所述比特d的重要性。
本发明第三方面提供一种数据传输装置,包括:
获取单元,用于获取待传输的K个比特;
映射单元,用于根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
发送单元,用于使用所述F个资源单元发送所述码字CK
结合第三方面,在第三方面的第一种可能的实施方式中,所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
结合第三方面,在第三方面的第二种可能的实施方式中,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。
结合第三方面或第三方面的第一种可能的实施方式或第三方面的第二种可能的实施方式,在第三方面的第三种可能的实施方式中,
所述获取单元具体用于,当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,所述W和所述M为大于1的整数。
结合第三方面或第三方面的第一种可能的实施方式或第三方面的第二种可能的实施方式或第三方面的第三种可能的实施方式,在第三方面的第四种可能的实施方式中,当所述K等于6时所述码本包括如本发明实施例中的码本1中的部分或全部码字。
结合第三方面或第三方面的第一种可能的实施方式或第三方面的第二种可能的实施方式或第三方面的第三种可能的实施方式,在第三方面的第五种可能的实施方式中,当所述K等于12时所述码本包括如本发明实施例中的码本2中的部分或全部码字。
结合第三方面或第三方面的第一种可能的实施方式或第三方面的第二种可能的实施方式或第三方面的第三种可能的实施方式或第三方面的第四种可能的实施方式或第三方面的第五种可能的实施方式,在第三方面的第六种可能的实施方式中,
所述数据传输装置部署于用户终端或基站中,或所述数据传输装置为用户终端或基站本身。
本发明第四方面提供一种数据传输装置,包括:
获取单元,用于获取待传输的K个比特;
映射单元,用于将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;
发送单元,用于将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
结合第四方面,在第四方面的第一种可能的实施方式中,所述映射单元具体用于将所述K个比特划分为V个比特序列;将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,所述V为大于1且小于或等于所述K的整数。
结合第四方面的第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
结合第四方面的第四方面的第二种可能的实施方式,在第四方面的第三种可能的实施方式中,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
结合第四方面或第四方面的第一种可能的实施方式或第四方面的第二种可能的实施方式或第四方面的第三种可能的实施方式,在第四方面的第四种可能的实施方式中,所述发送单元具体用于:基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
结合第四方面或第四方面的第一种可能的实施方式或第四方面的第二种可能的实施方式或第四方面的第三种可能的实施方式或第四方面的第四种可能的实施方式,在第四方面的第五种可能的实施方式中,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
结合第四方面或第四方面的第一种可能的实施方式或第四方面的第二种可能的实施方式或第四方面的第三种可能的实施方式或第四方面的第四种可能的实施方式,在第四方面的第六种可能的实施方式中,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上,
其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相 应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
结合第四方面的第六种可能的实施方式,在第四方面的第七种可能的实施方式中,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重要性;
或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述比特c的重要性高于所述比特d的重要性。
本发明第五方面一种数据传输装置,可包括:
通过总线连接的处理器、存储器和发射器;
其中,所述处理器用于获取待传输的K个比特;根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
所述发射器,用于使用所述F个资源单元发送所述码字CK
结合第五方面,在第五方面的第一种可能的实施方式中,
所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
结合第五方面,在第五方面的第二种可能的实施方式中,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码 字中的部分或全部码字。
结合第五方面或第五方面的第一种可能的实施方式或第五方面的第二种可能的实施方式,在第五方面的第三种可能的实施方式中,
所述处理器用于,当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,所述W和所述M为大于1的整数。
结合第五方面或第五方面的第一种可能的实施方式或第五方面的第二种可能的实施方式或第五方面的第三种可能的实施方式,在第五方面的第四种可能的实施方式中,当所述K等于6时所述码本包括如本发明实施例中的码本1中的部分或全部码字。
结合第五方面或第五方面的第一种可能的实施方式或第五方面的第二种可能的实施方式或第五方面的第三种可能的实施方式,在第五方面的第五种可能的实施方式中,当所述K等于12时所述码本包括如本发明实施例中的码本2中的部分或全部码字。
结合第五方面或第五方面的第一种可能的实施方式或第五方面的第二种可能的实施方式或第五方面的第三种可能的实施方式或第五方面的第四种可能的实施方式或第五方面的第五种可能的实施方式,在第五方面的第六种可能的实施方式中,
所述数据传输装置部署于用户终端或基站中,或所述数据传输装置为用户终端或基站本身。
本发明第六方面提供一种数据传输装置,包括:
通过总线连接的处理器、存储器和发射器;
其中,所述处理器用于获取待传输的K个比特;将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;
所述发射器用于将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
结合第六方面,在第六方面的第一种可能的实施方式中,所述所述处理器 用于将所述K个比特划分为V个比特序列;将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,所述V为大于1且小于或等于所述K的整数。
结合第六方面的第六方面的第一种可能的实施方式,在第六方面的第二种可能的实施方式中,
所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
结合第六方面的第六方面的第二种可能的实施方式,在第六方面的第三种可能的实施方式中,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
结合第六方面或第六方面的第一种可能的实施方式或第六方面的第二种可能的实施方式或第六方面的第三种可能的实施方式,在第六方面的第四种可能的实施方式中,所述发射器具体用于,基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
结合第六方面或第六方面的第一种可能的实施方式或第六方面的第二种可能的实施方式或第六方面的第三种可能的实施方式或第六方面的第四种可能的实施方式,在第六方面的第五种可能的实施方式中,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映 射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
结合第六方面或第六方面的第一种可能的实施方式或第六方面的第二种可能的实施方式或第六方面的第三种可能的实施方式或第六方面的第四种可能的实施方式,在第六方面的第六种可能的实施方式中,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上,
其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
结合第六方面的第六种可能的实施方式,在第六方面的第七种可能的实施方式中,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重要性;
或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述 比特c的重要性高于所述比特d的重要性。
可以看出,本发明实施例的一些技术方案中,发送端将待传输的K个比特映射到F个资源单元上,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;将映射到所述F个资源单元上的比特映射到调制符号上进行传输。由于将待传输的每个映射到F个资源单元之中的至少两个资源单元上,也就是说,在进行数据传输时,每个比特都在至少至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
在本发明实施例的另一些技术方案中,发送端根据码本和待传输的K个比特的取值将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,其中,由于所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S个码字中的每个码字为包括F个复数的复数向量,当K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同时,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,由于K个比特中某个比特取值变化,就将引起相应码字中的至少两个复数发生变化,而码字中的复数和资源单元具有一一映射关系,这也就是说,所述K个比特之中的每个比特被映射到了F个资源单元之中的至少两个资源单元上,而由于将待传输的每个映射到F个资源单元之中的至少两个资源单元上,也就是说,在进行数据传输时,每个比特都在至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种数据传输方法的流程示意图;
图2-a为本发明实施例提供的一种数据传输方法的流程示意图;
图2-b为本发明实施例提供的一种星座图的示意图;
图2-c为本发明实施例提供的一种比特序列向资源单元映射的示意图;
图2-d为本发明实施例提供的一种计算量对比示意图;
图2-e为本发明实施例提供的另一种计算量对比示意图;
图2-f为本发明实施例提供的误码率仿真对比示意图;
图3为本发明实施例提供的一种数据传输方法的流程示意图;
图4为本发明实施例提供的一种数据传输装置的示意图;
图5为本发明实施例提供的一种数据传输装置的示意图;
图6为本发明实施例提供的一种数据传输装置的示意图;
图7为本发明实施例提供的一种数据传输装置的示意图。
具体实施方式
本发明实施例提供数据传输方法和相关设备及通信***,以提高比特传输的可靠性。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明数据传输方法的一个实施例,其中,一种数据传输方法包括:获取待传输的K个比特;将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K 和所述F为大于1的整数;将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
请参见图1,图1为本发明的一个实施例提供的一种数据传输方法的流程示意图。其中,图1举例所示,本发明的一个实施例提供的一种数据传输方法可包括:
101、获取待传输的K个比特。
其中,所述K个比特由W个用户对应的原始数据流经信道编码得到,所述W为正整数,例如所述W可等于1、2、3、4、6、8或其他值。即是说所述K个比特为经信道编码而得到的比特。
举例来说,所述K个比特由W个用户对应的原始数据流基于低密度奇偶校验码(英文:low density parity check code,缩写:LDPC)或Turbo码或其他码进行信道编码而得到。其中,所述W个用户中的每个用户对应的原始数据流的数量可为一个或多个。
102、将所述K个比特映射到F个资源单元上。其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上。所述K和所述F为大于1的整数。
其中,本发明实施例中提及的资源单元是指空口的资源单元。
其中,所述K例如可等于2、3、4、5、7、8、10、50、101、505、2029或其他值。其中,所述K个比特可以来自一个或多个数据流,若所述K个比特来自多个数据流,则该多个数据流可以为一个或多个用户对应的数据流。可以理解的是,由于所述K的取值可以是大于1的任意整数,因此,本实施例的技术方案可以是针对任意速率的数据传输方法。
其中,所述K个比特中的每个比特的重要性可能相同或不同。
103、将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
可以看出,本实施例的技术方案中,将待传输的K个比特映射到F个资源单元上,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;将映射到所述F个资源单元上的比特映射到调制符号上进行传输。由于将待传输的每个映射到F个资源单元之 中的至少两个资源单元上,也就是说,在进行数据传输时,每个比特都在至少至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
可选的,在本发明的一些可能的实施方式中,所述将所述K个比特映射到F个资源单元上,可包括:将所述K个比特划分为V个比特序列;将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,其中,所述V为大于1且小于或等于所述K的整数。
可选的,在本发明的一些可能的实施方式中,将所述K个比特划分为V个比特序列,可包括:通过随机算法或伪随机算法或重要性均衡算法或其他算法将所述K个比特划分为V个比特序列。
可以理解,当所述V等于所述K时,表示所述K个比特中的每个比特被划分为一个比特序列。当所述V小于所述K时,表示所述V个比特序列中的至少一个比特序列包括所述K个比特中的至少两个比特。所述V个比特序列中的其中两个比特序列所包含的比特数量可能相等或不等。例如所述K等于20,所述V等于20,则表示将20个比特中的每个比特划分为1个比特序列。又例如所述K等于20,所述V等于5,则表示将20个比特划分为5个比特序列,这5个比特序列并不一定都包括相同的比特数量,也可能一些比特序列包括1个比特,一些比特序列包括3个比特,一些比特序列包括6个比特,一些比特序列包括其他数量的比特。可以理解,以比特序列为粒度来进行映射,相比于以比特为粒度来进行映射而言,有利于降低映射的复杂度。
其中,同一比特序列内的各比特的重要性可能相同或不同。其中,同一比特序列内的各比特的重要性不同,是指同一比特序列内的各比特的重要性互不相同,或者是指同一比特序列内的各比特的重要性部分相同。其中,两个不同比特序列中的比特的重要性可能相同或不同,其中,两个不同比特序列内的各比特的重要性不同,是指两个不同比特序列内的各比特的重要性互不相同或部分相同。
其中,所述V个比特序列被映射到V个资源单元组中,所述V个资源单元 组所包含的资源单元不同,其中,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。可选的,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2。也就是说,所述V个资源单元组中的资源单元组i和资源单元组j所包含的资源单元的交集为非空集。当然,在另一些可能的实施方式中,所述V个资源单元组中的任意两个资源单元组所包含的资源单元的交集也可能为空集。
可选的,在本发明一些可能的实施方式中,所述V个比特序列中被映射到资源单元m1上的比特序列的总个数,与所述V个比特序列中被映射到资源单元n1上的比特序列的总个数之间的差值小于或者等于第一阈值,其中,所述资源单元m1和所述资源单元n1为所述F个资源单元中的任意两个(或其中两个)资源单元。也就是说,不同资源单元上映射的比特序列总量可在一定程度上尽量均匀。当然,在某些场景下也可能不考虑这种均匀性问题。其中,第一阈值的取值可根据具体均匀性要求而确定,例如第一阈值可等于1、3、6、9、10、21或其他值。
又可选的,在本发明一些可能实施方式中,所述K个比特中被映射到资源单元m2上的比特的总个数,与所述K个比特中被映射到资源单元n2上的比特的总个数之间的差值小于或者等于第二阈值,其中,所述资源单元m2和所述资源单元n2为所述F个资源单元中的任意两个(或者其中两个)资源单元。也就是说,不同资源单元上映射的比特总量可在一定程度上尽量均匀,当然在某些场景下也可能不考虑这种均匀性问题。其中,第二阈值的取值可根据具体均匀性要求而确定,例如第二阈值可等于1、2、3、5、9、10、21或其他值。
可选的,在本发明一些可能实施方式中,所述将映射到所述F个资源单元上的比特映射到调制符号上进行传输包括:基于星座图(或其他方式)将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
可选的,在本发明一些可能实施方式中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座 图x,其中,所述星座图x与所述y的取值之间具有对应关系。
其中,所述星座图x与所述y的取值之间具有的对应关系具体可能是多种多样的。可选的,在本发明一些可能实施方式中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或,若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
可选的,在本发明一些可能实施方式中,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源上。其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第一阈值。其中,所述比特a和所述比特b可为所述K个比特中的任意两个比特(或其中两个比特);传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。可以理解,由于各比特所对应的传输可靠性尽量的均衡,这样有利于提高整体比特的传输可靠性。
又可选的,在本发明一些可能实施方式中,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源上。其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+;其中,所述比特c和所述比特d为所述K个比特中的任意两个比特(或其中两个比特);其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输 可靠性越高,所述f3+小于所述f4+。可以理解,由于重要性高的比特所对应的传输可靠性高于重要性低的比特所对应的传输可靠性,这样就有利于尽量的保证重要性高的比特尽量可靠传输,这样就有利于提高重要性高的比特的传输可靠性。
其中,本实施例提供的上述任意一种数据传输方法例如可由用户终端或基站执行。
为便于更好的理解和实施本发明实施例的上述方案,下面通过一些具体的应用场景进行举例说明
请参见图2-a,图2-a为本发明的另一个实施例提供的一种数据传输方法的流程示意图。其中,图2-a举例所示,本发明的另一个实施例提供的一种数据传输方法可包括:
201、获取W个用户对应的W0个原始数据流。
其中,所述W个用户中的每个用户对应的原始数据流的数量可以为一个或多个,其中,所述W为正整数,例如所述W可等于1、2、3、4、6、8、9或16或者其他值。其中,所述W0为大于或者等于所述W的正整数,例如所述W0可以等于1、2、3、4、6、8、9或16或其他值。
202、对所述W个用户对应的W0个原始数据流进行信道编码以得到待传输的K个比特。
其中,所述K为大于1的整数。
其中,W个用户对应的W0个原始数据流共包含K0个比特。
其中,K0=K*R,其中,R为信道编码的编码速率。
其中,在本发明一些可能的实施方式中,可基于低密度奇偶校验码或Turbo码或其他信道编码方式对所述W个用户对应的W0个原始数据流进行信道编码以得到待传输的K个比特。
其中,对所述W个用户对应的每个原始数据流进行信道编码可得到至少1个码字,而每个码字可包括至少一个数据流。举例来说,假设获取到了1个用户对应的1个原始数据流,假设对该1个用户对应的1个原始数据流进行信道编码得到4个码字,其中,每个码字可包括3个数据流,其中,该3个数据流中的 每个数据流包括n个比特,则K=n*3*2。又举例来说,假设获取到了2个用户对应的2个原始数据流,可对该2个用户对应的2个原始数据流进行信道编码得到4个码字,其中,每个码字包括2个数据流,该2个数据流中的每个数据流包括n个比特,则K=n*2*4。其他情况可以此类推。
203、将所述K个比特划分为V个比特序列。
可选的,在本发明的一些可能的实施方式中,将所述K个比特划分为V个比特序列,可包括:通过随机算法或伪随机算法或重要性均衡算法或其他算法将所述K个比特划分为V个比特序列。
204、将所述V个比特序列映射到F个资源单元上。
其中,所述V为大于1且小于或等于所述K的整数。
其中,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上。
可以理解,当所述V等于所述K时,表示所述K个比特中的每个比特被划分为一个比特序列。当所述V小于所述K时,表示所述V个比特序列中的至少一个比特序列包括所述K个比特中的至少两个比特。所述V个比特序列中的其中两个比特序列所包含的比特数量可能相等或不等。例如所述K等于20,所述V等于20,则表示将20个比特中的每个比特划分为1个比特序列。又例如所述K等于20,所述V等于5,则表示将20个比特划分为5个比特序列,这5个比特序列并不一定都包括相同的比特数量,也可能一些比特序列包括1个比特,一些比特序列包括3个比特,一些比特序列包括6个比特,一些比特序列包括其他数量的比特。可以理解,以比特序列为粒度来进行映射,相比于以比特为粒度来进行映射而言,有利于降低映射的复杂度。
其中,所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组所包含的所有资源单元的集合为所述F个资源单元的集合的子集。其中,V个资源单元组所包含的资源单元的数量可以相等或不等。
其中,所述V个资源单元组和所述V个比特序列一一对应。
其中,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中 的至少两个资源单元。可以理解,由于每个资源单元组包括所述F个资源单元中的至少两个资源单元,因此,所述V个比特序列中的每个比特序列被映射到至少两个资源单元上。
举例来说,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,其中,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2。假设V个比特序列中的比特序列v1被映射到资源单元组i,则表示比特序列v1被映射到资源单元组i中的资源单元i1和资源单元i2。假设V个比特序列中的比特序列v2被映射到资源单元组j,则表示比特序列v2被映射到资源单元组j中的资源单元j1和所述资源单元i2。也就是说,所述V个资源单元组中的资源单元组i和资源单元组j所包含的资源单元的交集为非空集。其中,所述V个资源单元组中的资源单元组i和资源单元组j可为所述V个资源单元组中的其中两个或任意两个资源单元组。可以理解,当所述V个资源单元组中的资源单元组i和资源单元组j所包含的资源单元的交集为非空集,表示两个比特序列所映射到的资源单元不完全相同,这就可在一定程度上实现一些比特序列非正交的映射到资源单元上,由于这种冗余映射方式较为灵活,因此有利于提高调制速率的灵活性可控性。
在另一些可能的实施方式中,所述V个资源单元组中的任意两个资源单元组所包含的资源单元的交集也可能为空集,即,所述F个资源单元的任意一个资源单元可只属于所述V个资源单元组中的其中一个资源单元。
可选的,在本发明一些可能的实施方式中,所述V个比特序列中被映射到资源单元m1上的比特序列的总个数,与所述V个比特序列中被映射到资源单元n1上的比特序列的总个数之间的差值小于或者等于第一阈值,其中,所述资源单元m1和所述资源单元n1为所述F个资源单元中的任意两个(或其中两个)资源单元。也就是说,不同资源单元上映射的比特序列总量可在一定程度上尽量均匀,当然在某些场景下也可能不考虑这种均匀性问题。其中,第一阈值的取值可根据具体均匀性要求而确定,例如第一阈值可等于1、3、6、9、10、21或其他值。
又可选的,在本发明一些可能实施方式中,所述K个比特中被映射到资源 单元m2上的比特的总个数,与所述K个比特中被映射到资源单元n2上的比特的总个数之间的差值小于或者等于第二阈值,其中,所述资源单元m2和所述资源单元n2为所述F个资源单元中的任意两个(或者其中两个)资源单元。也就是说,不同资源单元上映射的比特总量可在一定程度上尽量均匀,当然在某些场景下也可能不考虑这种均匀性问题。其中,第二阈值的取值可根据具体均匀性要求而确定,例如第二阈值可等于1、2、3、5、9、10、21或其他值。
205、将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
可选的,在本发明一些可能实施方式中,所述将映射到所述F个资源单元上的比特映射到调制符号上进行传输包括:基于星座图(或其他方式)将映射到所述F个资源单元上的比特映射到调制符号上进行传输。其中,将映射到所述F个资源单元中的资源单元j上的比特映射到调制符号上进行传输所使用的星座图,可同于或不同于将映射到所述F个资源单元中的资源单元i上的比特映射到调制符号上进行传输所使用的星座图,其中,资源单元j和资源单元i可为所述F个资源单元中的其中两个或任意两个资源单元。
可选的,在本发明一些可能实施方式中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,所述星座图x与所述y的取值之间具有对应关系。
其中,所述星座图x与所述y的取值之间具有的对应关系具体可能是多种多样的。可选的,在本发明一些可能实施方式中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或,若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
举例来说,如图2-b举例所示,对于某个资源单元来说,若其每次承载比特数为y,则选择包含2y个星座点的星座图。星座点映射:可根据比特映射关系及y个比特的取值选择星座图中对应的星座点。图2-b中举例示出了y的几种不同取值所对应的星座图。
可选的,在本发明一些可能实施方式中,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上。其中,被映射的所述f1个资源单元上的 所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第一阈值。其中,所述比特a和所述比特b可为所述K个比特中的任意两个比特(或其中两个比特)。传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
下面举例一种K个比特中各比特的传输可靠性均衡控制方式。假设某资源单元被映射了y个比特,则根据y确定对应星座图。根据星座图确定这y个比特对应的比特传输可靠性,y个比特分别赋予一个权值wk(k=1,..,y)。K个比特中的每个比特都赋予一个初始的相同或相近权值Bi。比特映射时根据各个比特的权重进行比特摆放,高权值的比特放在高可靠性的比特承载位置,然后更新Bi为Bi–wk,而后基于更新的Bi按照类似方式继续进行比特映射。
又可选的,在本发明一些可能实施方式中,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上。被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+;其中,所述比特c和所述比特d为所述K个比特中的任意两个比特(或者其中两个比特);其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或者,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
当然,在本发明另一些可能实施方式中,也可基于随机方式或其他方式将映射到所述F个资源单元上的比特映射到调制符号上进行传输。基于随机方式 将映射到所述F个资源单元上的比特映射到调制符号上时,不考虑映射到所述F个资源单元上的各比特的重要性和各比特承载位置的可靠性。
其中,本实施例提供的上述任意一种数据传输方法例如可由用户终端或基站执行。
可以看出,本实施例的技术方案中,获取W个用户对应的W0个原始数据流之后,对所述W个用户对应的W0个原始数据流进行信道编码以得到待传输的K个比特;将待传输的K个比特映射到F个资源单元上,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上;将映射到所述F个资源单元上的比特映射到调制符号上进行传输。由于将信道编码得到的待传输的每个映射到F个资源单元之中的至少两个资源单元上,即,在进行数据传输时,每个比特都在至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
下面结合附图介绍一种将V个比特序列映射到F个资源单元上的机制。
例如图2-c举例所示,设可用资源单元数为F,V个比特序列中的每个比特序列被置于V个中间节点(每个中间节点可为一个内存区)之中的不同中间节点中。其中,每个中间节点最多连接dv个资源单元,中间节点数为V,每个资源最多连接df个中间节点,则,
Figure PCTCN2014088032-appb-000001
其中,连接网络所呈现的中间节点和资源单元的连接关系可用组合数的遍历值来表示。即遍历F取dv的所有组合数,共有
Figure PCTCN2014088032-appb-000002
个,例如第i个中间节点所连接的资源单元的序号就是第i个组合数的比特取值(如0表示不连接,1表示连接)。
基于本实施例上述的一些技术方案中,有利于降低接收端的信号解码运算的复杂度。接收端例如可按照消息传递算法(message passing algorithm)算法或其他译码算法来对从F个资源单元上获取到的接收信号进行解码。
例如参见图2-d和2-e,图2-d和2-e为对应传统SCMA方案和本发明方案的接收端计算量性能对比图。
其中,图2-d示出了一种当调制阶数M0=4;资源单元数F=4;K个比特被划分为的比特序列数V=6时的接收端计算量性能对比图,图2-d示出本发明方案的接收端计算量性能远高于传统SCMA方案。
其中,图2-e示出了一种当调制阶数M0=4;资源单元数F=8;K个比特被划分为的比特序列数V=24时的接收端计算量性能对比图,图2-e示出本发明方案的接收端计算量性能远高于传统SCMA方案。
参见图2-f,图2-f为对应传统SCMA方案、本发明的方案和低密度码分多址(英文:low density signature code division multiple access,缩写:LDS)方案的误码率性能仿真图。
其中,图2-f所示仿真图的参数环境如下:
调制方式为4QAM;频谱效率为1.5;资源单元数F=8;K个比特被划分为的比特序列数V=6;纠错码为Turbo码,码率1/2,码长1992bits;Turbo码最大迭代次数为6;信道模型为高斯白噪声信道和瑞利衰落信道;帧结构可为14个正交频分复用(英文:orthogonal frequency division multiplexing,缩写:OFDM)符号,48个资源块。
可以看出,本实施例上述的一些技术方案中,参数(例如用户数、数据流层数、中间节点数、调制阶数等),有利于兼容SCMA。基于SCMA的方案可看做是这种方案的一些特例。并且,通过仿真对比分析可以发现,本实施例上述的一些技术方案相对于几种传统的技术方案而言,具有降低复杂度和误码率等优点。
本发明数据传输方法的另一个实施例,另一种数据传输方法包括:获取待传输的K个比特;根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,其中,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字 Cj包括的复数Zj1和复数Zj2;使用所述F个资源单元发送所述码字CK
请参见图3,图3为本发明的另一个实施例提供的另一种数据传输方法的流程示意图。其中,图3举例所示,本发明的另一个实施例提供的另一种数据传输方法可包括:
301、获取待传输的K个比特。
其中,所述K个比特由W个用户对应的原始数据流经信道编码得到,所述W为正整数,例如所述W可等于1、2、3、4、6、8或其他值。即是说所述K个比特为经信道编码而得到的比特。
举例来说,所述K个比特由W个用户对应的原始数据流基于低密度奇偶校验码(LDPC)或Turbo码或其他码进行信道编码而得到。其中,所述W个用户中的每个用户对应的原始数据流的数量可为一个或多个。
可选的,在本发明的一些可能的实施方式中,获取待传输的K个比特可以包括:当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,其中,所述W和所述M为大于1的整数。
302、根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK
其中,码字CK和所述K个比特的取值之间具有映射关系。
其中,所述码本可包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K。所述S个码字中的每个码字为包括F个复数的复数向量。其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同。其中,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci。所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2
例如上述S可大于1,S例如可等于1、2、3、4、6、8、15、201、1005或其他值。
可选的,在本发明一些可能的实施方式中,所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的 任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。所述S1小于或等于所述S。也就是说,所述S1个码字中的任意两个码字之间有至少两个复数存在差异。
可选的,在本发明一些可能的实施方式中,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。所述S2小于或等于所述S。也就是说,所述S2个码字中的任意两个码字之间有至少两个相同位置的复数存在差异。
303、使用所述F个资源单元发送所述码字CK
其中,本发明实施例中提及的资源单元是指空口的资源单元。
其中,所述K例如可等于2、3、4、5、7、8、10、50、101、505、2029或其他值。其中,所述K个比特可以来自一个或多个数据流,若所述K个比特来自多个数据流,则该多个数据流可以为一个或多个用户对应的数据流。可以理解的是,由于所述K的取值可以是大于1的任意整数,因此,本实施例的技术方案可以是针对任意速率的数据传输方法。
其中,所述K个比特中的每个比特的重要性可能相同或不同。
可以看出,本实施例的方案中,根据码本和待传输的K个比特的取值将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,由于所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S个码字中的每个码字为包括F个复数的复数向量,当K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同时,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,由于K个比特中的某个比特取值变化,就将引起相应码字中的至少两个复数发生变化,而码字中的复数和资源单元具有一一映射关系,这也就是说,所述K个比特之中的每个比特被映射到了F个资源单元之中的至少两个资源单元上,而由于将待传输的每个映射到F个资源单元之中的至少两个资 源单元上,也就是说,在进行数据传输时,每个比特都在至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
可选的,在本发明一些可能的实施方式中,当所述K等于6时所述码本可包括如下码本1中的一个或多个码字:
码本1
Figure PCTCN2014088032-appb-000003
Figure PCTCN2014088032-appb-000004
可选的,在本发明一些可能的实施方式中,当所述K等于6时所述码本可包括如下码本2中的一个或多个码字:
码本2
其中,本实施例提供的上述任意一种数据传输方法例如可由用户终端或基站执行。
参见图4,本发明实施例提供一种数据传输装置400,可包括:
获取单元410,用于获取待传输的K个比特;
映射单元420,用于根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
发送单元430,用于使用所述F个资源单元发送所述码字CK
可选的,在本发明的一些可能实施方式中,
所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
其中,复数Zq1和复数Zq2的下标号并不用于限定复数Zq1和复数Zq2之在码本中的位置或顺序,其他未作特别说明之处类似。
可选的,在本发明的一些可能实施方式中,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。
可选的,在本发明的一些可能实施方式中,所述获取单元具体用于,当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,所述W和所述M为大于1的整数。
可选的,在本发明的一些可能实施方式中,当所述K等于6时所述码本包括上述实施例中的码本1中的部分或全部码字。
可选的,在本发明的一些可能实施方式中,当所述K等于12时所述码本包括上述实施例中的码本2中的部分或全部码字。
可选的,在本发明的一些可能实施方式中,所述数据传输装置400部署于用户终端或基站中,或所述数据传输装置400为用户终端或基站本身。
可以理解的是,本实施例的数据传输装置400的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
可以看出,本发明的一些技术方案中,数据传输装置400将待传输的K个比特映射到F个资源单元上,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;将映射到所述F个资源单元上的比特映射到调制符号上进行传输。由于将待传输的每个映射到F个资源单元之中的至少两个资源单元上,也就是说,在进行数据传输时,每个比特都在至少至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
参见图5,本发明实施例还提供一种数据传输装置500,可包括:
获取单元510,用于获取待传输的K个比特。
映射单元520,用于将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;
发送单元530,用于将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
可选的,在本发明的一些可能实施方式中,所述映射单元520可具体用于将所述K个比特划分为V个比特序列;将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,所述V为大于1且小于或等于所述K的整数。
可选的,在本发明的一些可能实施方式中,所述V个比特序列被映射到V 个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
可选的,在本发明的一些可能实施方式中,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
可选的,在本发明的一些可能实施方式中,
所述发送单元530具体用于:基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
可选的,在本发明的一些可能实施方式中,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
可选的,在本发明的一些可能实施方式中,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上,
其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
可选的,在本发明的一些可能实施方式中,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重要性。或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述比特c的重要性高于所述比特d的重要性。
可以理解的是,本实施例的数据传输装置500的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
可以看出,在实施例的技术方案中,数据传输装置500根据码本和待传输的K个比特的取值将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,其中,由于所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S个码字中的每个码字为包括F个复数的复数向量,当K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同时,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,由于K个比特中某个比特取值变化,就将引起相应码字中的至少两个复数发生变化,而码字中的复数和资源单元具 有一一映射关系,这也就是说,所述K个比特之中的每个比特被映射到了F个资源单元之中的至少两个资源单元上,而由于将待传输的每个映射到F个资源单元之中的至少两个资源单元上,也就是说,在进行数据传输时,每个比特都在至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
参见图6,本发明实施例还提供一种数据传输装置600,包括:通过总线601连接的处理器602、存储器603和发射器604。
其中,处理器602通过总线601调用存储器603中存储的代码以用于获取待传输的K个比特;根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,其中,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
发射器604,用于使用所述F个资源单元发送所述码字CK
可选的,在本发明的一些可能实施方式中,所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
可选的,在本发明的一些可能实施方式中,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。
可选的,在本发明的一些可能实施方式中,所述处理器用于,当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M) 个比特以组成所述K个比特,所述W和所述M为大于1的整数。
可选的,在本发明的一些可能实施方式中,当所述K等于6时所述码本包括上述实施例中的码本1中的部分或全部码字。
可选的,在本发明的一些可能实施方式中,当所述K等于12时所述码本包括上述实施例中的码本2中的部分或全部码字。
可选的,在本发明的一些可能实施方式中,所述数据传输装置600部署于用户终端或基站中,或所述数据传输装置600为用户终端或基站本身。
可以理解的是,本实施例的数据传输装置600的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
可以看出,本实施例的一些技术方案中,数据传输装置600将待传输的K个比特映射到F个资源单元上,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;将映射到所述F个资源单元上的比特映射到调制符号上进行传输。由于将待传输的每个映射到F个资源单元之中的至少两个资源单元上,也就是说,在进行数据传输时,每个比特都在至少至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
参见图7,本发明实施例还提供一种数据传输装置700,包括:通过总线701连接的处理器702、存储器703和发射器704。
其中,处理器702通过总线701调用存储器703中存储的代码以用于获取待传输的K个比特;将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数.
发射器604,用于将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
可选的,在本发明的一些可能实施方式中,所述所述处理器用于将所述K个比特划分为V个比特序列;将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源 单元上,所述V为大于1且小于或等于所述K的整数。
可选的,在本发明的一些可能实施方式中,所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
可选的,在本发明的一些可能实施方式中,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
可选的,在本发明的一些可能实施方式中,所述发射器604用于基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
可选的,在本发明的一些可能实施方式中,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
可选的,在本发明的一些可能实施方式中,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到 所述F个资源单元中的f4个资源单元上,
其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
可选的,在本发明的一些可能实施方式中,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重要性。或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述比特c的重要性高于所述比特d的重要性。
可选的,在本发明的一些可能实施方式中,所述数据传输装置700部署于用户终端或基站中,或所述数据传输装置700为用户终端或基站本身。
可以理解的是,本实施例的数据传输装置700的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
可以看出,本实施例方案中,数据传输装置700根据码本和待传输的K个比特的取值将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,其中,由于所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S个码字中的每个码字为包括F个复数的复数向量,当K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同时,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所 述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,由于K个比特中某个比特取值变化,就将引起相应码字中的至少两个复数发生变化,而码字中的复数和资源单元具有一一映射关系,这也就是说,所述K个比特之中的每个比特被映射到了F个资源单元之中的至少两个资源单元上,而由于将待传输的每个映射到F个资源单元之中的至少两个资源单元上,也就是说,在进行数据传输时,每个比特都在至少两个资源单元上进行冗余传输,这样有利于在一定程度上提高比特传输的可靠性。
在本说明书中使用的术语"部件"、"模块"、"***"等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
需要说明,本发明各实施例的用户终端也可以称为***、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、接入终端、终端、无线通信设备、用户代理、用户装置或用户设备(UE,User Equipment)。用户终端可以是蜂窝电话、无绳电话、会话启动协议(SIP,Session Initiation Protocol)电话、无线本地环路(WLL,Wireless Local Loop)站、具有无线通信功能的手持设备、个人数字处理(PDA,Personal Digital Assistant)、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
此外,本发明各实施例的基站可用于与移动设备通信,基站可以是WiFi的AP(Access Point,无线接入点),或者是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码 分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本发明各个实施例所述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬盘、磁碟、光盘、只读存储器(ROM,Read-Only Memory)或者随机存取存 储器(RAM,Random Access Memory)等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (42)

  1. 一种数据传输方法,其特征在于,包括:
    获取待传输的K个比特;
    根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
    使用所述F个资源单元发送所述码字CK
  2. 根据权利要求1所述方法,其特征在于,
    所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
  3. 根据权利要求1所述方法,其特征在于,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。
  4. 根据权利要求1至3任一项所述方法,其特征在于,
    所述获取待传输的K个比特包括:
    当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,其中,所述W和所述M为大于1的整数。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,
    所述数据传输方法由用户终端或基站执行。
  6. 一种数据传输方法,其特征在于,包括:
    获取待传输的K个比特;
    将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;
    将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
  7. 根据权利要求6所述的方法,其特征在于,所述将所述K个比特映射到F个资源单元上,包括:
    将所述K个比特划分为V个比特序列;
    将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,所述V为大于1且小于或等于所述K的整数。
  8. 根据权利要求7所述的方法,其特征在于,
    所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
  9. 根据权利要求8所述的方法,其特征在于,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
  10. 根据权利要求6至9任一项所述的方法,其特征在于,所述将映射到所述F个资源单元上的比特映射到调制符号上进行传输包括:基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
    其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
  11. 根据权利要求6至10任一项所述的方法,其特征在于,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
    其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
    其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
  12. 根据权利要求6至10任一项所述的方法,其特征在于,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上,
    其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
    其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
    其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
  13. 根据权利要求12所述的方法,其特征在于,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重 要性;
    或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述比特c的重要性高于所述比特d的重要性。
  14. 一种数据传输装置,其特征在于,包括:
    获取单元,用于获取待传输的K个比特;
    映射单元,用于根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
    发送单元,用于使用所述F个资源单元发送所述码字CK
  15. 根据权利要求14所述的装置,其特征在于,
    所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
  16. 根据权利要求14所述的装置,其特征在于,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。
  17. 根据权利要求14至16任一项所述的装置,其特征在于,
    所述获取单元具体用于,当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,所述W 和所述M为大于1的整数。
  18. 根据权利要求14至16任一项所述的装置,其特征在于,当所述K等于6时所述码本包括如下码本中的部分或全部码字:
    Figure PCTCN2014088032-appb-100001
    Figure PCTCN2014088032-appb-100002
  19. 根据权利要求14至18任意一项所述的装置,其特征在于,
    所述数据传输装置部署于用户终端或基站中,或所述数据传输装置为用户终端或基站本身。
  20. 一种数据传输装置,其特征在于,包括:
    获取单元,用于获取待传输的K个比特;
    映射单元,用于将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K 和所述F为大于1的整数;
    发送单元,用于将映射到所述F个资源单元上的比特映射到调制符号上进行传输。
  21. 根据权利要求20所述的装置,其特征在于,
    所述映射单元具体用于将所述K个比特划分为V个比特序列;将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,所述V为大于1且小于或等于所述K的整数。
  22. 根据权利要求21所述的装置,其特征在于,
    所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
  23. 根据权利要求22所述的装置,其特征在于,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
  24. 根据权利要求20至23任一项所述的装置,其特征在于,所述发送单元具体用于:基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
    其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
  25. 根据权利要求20至24任一项所述的装置,其特征在于,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
    其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映 射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
    其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
  26. 根据权利要求20至24任一项所述的装置,其特征在于,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上,
    其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
    其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
    其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
  27. 根据权利要求26所述的装置,其特征在于,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重要性;
    或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述比特c的重要性高于所述比特d的重要性。
  28. 一种数据传输装置,其特征在于,包括:
    通过总线连接的处理器、存储器和发射器;
    其中,所述处理器用于获取待传输的K个比特;根据码本和所述K个比特的取值,将所述K个比特映射到F个资源单元上以得到将使用所述F个资源单元进行传输的码字CK,所述码本包括与K个比特的S种不同取值具有一一映射关系的S个码字,所述S小于或等于2K,所述S个码字中的每个码字为包括F个复数的复数向量,其中,K个比特的第i种取值和第j种取值的取值差异为只有1个比特的取值不同,所述码本包括的与所述第i种取值具有映射关系的码字为码字Ci,所述码本包括的与所述第j种取值具有映射关系的码字为码字Cj,其中,所述码字Ci不包括所述码字Cj包括的复数Zj1和复数Zj2,所述K、F、S为大于1的整数,所述i不等于所述j,所述i和j为小于或等于所述S的正整数;
    所述发射器,用于使用所述F个资源单元发送所述码字CK
  29. 根据权利要求28所述的装置,其特征在于,
    所述码字Cp不包括所述码字Cq包括的复数Zq1和复数Zq2,其中,所述码字Cp和所述码字Cq为S1个码字中的任意两个码字,所述S1个码字为所述S个码字中的部分或全部码字。
  30. 根据权利要求28所述的装置,其特征在于,所述码字Cu中位于α位置的复数Zu1与所述码字Ce中位于α位置的复数Ze1取值不同,所述码字Cu中位于β位置的复数Zu2与所述码字Ce中位于β位置的复数Ze2取值不同,所述码字Cp和所述码字Cq为S2个码字中的任意两个码字,所述S2个码字为所述S个码字中的部分或全部码字。
  31. 根据权利要求28至30任一项所述的装置,其特征在于,
    所述处理器用于,当所述码本对应调制阶数等于M时,从W层数据流中的每层数据流中分别获取log2(M)个比特以组成所述K个比特,所述W和所述M为大于1的整数。
  32. 根据权利要求28至31任一项所述的装置,其特征在于,当所述K等于6时所述码本包括如下码本中的部分或全部码字:
    Figure PCTCN2014088032-appb-100003
    Figure PCTCN2014088032-appb-100004
    Figure PCTCN2014088032-appb-100005
  33. 根据权利要求28至31任一项所述的装置,,其特征在于,当所述K等于12时所述码本包括如下码本中的部分或全部码字:
    (由于码本太长,待定稿时补上)。
  34. 根据权利要求28至33任一项所述的装置,,其特征在于,
    所述数据传输装置部署于用户终端或基站中,或所述数据传输装置为用户终端或基站本身。
  35. 一种数据传输装置,其特征在于,包括:
    通过总线连接的处理器、存储器和发射器;
    其中,所述处理器用于获取待传输的K个比特;将所述K个比特映射到F个资源单元上,其中,所述K个比特之中的每个比特被映射到F个资源单元之中的至少两个资源单元上,所述K和所述F为大于1的整数;
    所述发射器用于将映射到所述F个资源单元上的比特映射到调制符号上进 行传输。
  36. 根据权利要求35所述的装置,其特征在于,
    所述所述处理器用于将所述K个比特划分为V个比特序列;将所述V个比特序列映射到F个资源单元上,所述V个比特序列之中的每个比特序列被映射到F个资源单元之中的至少两个资源单元上,所述V为大于1且小于或等于所述K的整数。
  37. 根据权利要求36所述的装置,其特征在于,
    所述V个比特序列被映射到V个资源单元组中,所述V个资源单元组所包含的资源单元不同,所述V个资源单元组和所述V个比特序列一一对应,所述V个资源单元组中的每个资源单元组包括所述F个资源单元中的至少两个资源单元。
  38. 根据权利要求37所述的装置,其特征在于,所述V个资源单元组中的资源单元组i包括资源单元i1和资源单元i2,所述V个资源单元组中的资源单元组j包括资源单元j1和所述资源单元i2
  39. 根据权利要求35至38任一项所述的装置,其特征在于,
    所述发射器具体用于,基于星座图将映射到所述F个资源单元上的比特映射到调制符号上进行传输;
    其中,将映射到所述F个资源单元之中的资源单元j上的y个比特映射到调制符号上进行传输所使用的星座图为星座图x,其中,若所述y为偶数,所述星座图x为包含2y个星座点的正方形格雷星座;和/或若所述y为奇数,所述星座图x为包含2y个星座点的十字形格雷星座。
  40. 根据权利要求35至39任一项所述的装置,其特征在于,所述K个比特中的比特a被映射到所述F个资源单元中的f1个资源单元上,所述K个比特中的比特b被映射到所述F个资源单元中的f2个资源单元上,
    其中,被映射的所述f1个资源单元上的所述比特a被分别映射到调制符号上的f1个比特承载位置,被映射的所述f2个资源单元上的所述比特b被分别映射到调制符号上的f2个比特承载位置,其中,所述f1个比特承载位置所对应的传输可靠性指示值的和值为f1+,所述f2个比特承载位置所对应的传输可靠性指 示值的和值为f2+,其中,所述f1+与所述f2+之间的差值的绝对值小于或等于第三阈值;
    其中,所述比特a和所述比特b为所述K个比特中的任意两个比特;传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,或传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高。
  41. 根据权利要求35至39任一项所述的装置,其特征在于,所述K个比特中的比特c被映射到所述F个资源单元中的f3个资源单元上,所述K个比特中的比特d被映射到所述F个资源单元中的f4个资源单元上,
    其中,被映射的所述f3个资源单元上的所述比特c被分别映射到调制符号上的f3个比特承载位置,被映射的所述f4个资源单元上的所述比特d被分别映射到调制符号上的f4个比特承载位置,其中,所述f3个比特承载位置所对应的传输可靠性指示值的和值为f3+,所述f4个比特承载位置所对应的传输可靠性指示值的和值为f4+
    其中,所述比特c和所述比特d为所述K个比特中的任意两个比特;
    其中,若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越大表示相应比特承载位置的传输可靠性越高,所述f3+大于所述f4+;或若所述比特c的重要性高于所述比特d的重要性,且传输可靠性指示值越小表示相应比特承载位置的传输可靠性越高,所述f3+小于所述f4+
  42. 根据权利要求41所述的装置,其特征在于,所述待传输的K个比特由W个用户对应的W0个原始数据流基于Turbo码进行信道编码而得到,所述比特c为***比特,所述比特d为校验比特,所述比特c的重要性高于所述比特d的重要性;
    或者,所述待传输的K个比特由W个用户对应的W0个原始数据流基于低密度奇偶校验码进行信道编码而得到,所述比特c的度高于所述比特d的度,所述比特c的重要性高于所述比特d的重要性。
PCT/CN2014/088032 2014-09-30 2014-09-30 数据传输方法和相关设备 WO2016049909A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14903014.0A EP3190817B1 (en) 2014-09-30 2014-09-30 Data transmission method and related device
PCT/CN2014/088032 WO2016049909A1 (zh) 2014-09-30 2014-09-30 数据传输方法和相关设备
CN201480081680.2A CN106797567B (zh) 2014-09-30 2014-09-30 数据传输方法和相关设备
US15/474,200 US10219278B2 (en) 2014-09-30 2017-03-30 Data transmission method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088032 WO2016049909A1 (zh) 2014-09-30 2014-09-30 数据传输方法和相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/474,200 Continuation US10219278B2 (en) 2014-09-30 2017-03-30 Data transmission method and related device

Publications (1)

Publication Number Publication Date
WO2016049909A1 true WO2016049909A1 (zh) 2016-04-07

Family

ID=55629334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088032 WO2016049909A1 (zh) 2014-09-30 2014-09-30 数据传输方法和相关设备

Country Status (4)

Country Link
US (1) US10219278B2 (zh)
EP (1) EP3190817B1 (zh)
CN (1) CN106797567B (zh)
WO (1) WO2016049909A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509264B1 (en) * 2016-09-19 2023-08-09 Huawei Technologies Co., Ltd. Method and apparatus for transmitting data

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107395546B (zh) * 2017-08-30 2020-04-24 重庆物奇科技有限公司 电力线载波通信中对数据符号进行频域信息扩展的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098091A1 (en) * 2003-04-29 2004-11-11 Lg Electronics Inc. Signal transmitting method in mobile communication system
CN1556624A (zh) * 2003-12-31 2004-12-22 П 以太网冗余网络***中数据传输模式的自适应选择方法
CN101018224A (zh) * 2006-12-15 2007-08-15 北京创毅视讯科技有限公司 移动数字多媒体广播物理层信令信息收发方法及收发端
CN101018269A (zh) * 2006-12-19 2007-08-15 北京创毅视讯科技有限公司 移动数字多媒体广播物理层信令信息收发方法及收发端
CN102065046A (zh) * 2009-11-11 2011-05-18 北京泰美世纪科技有限公司 一种ofdm***的信息传输方法及信号生成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7660232B2 (en) * 2005-12-20 2010-02-09 Samsung Electronics Co., Ltd. Interleaver design with column skip for IEEE 802.11n standard
US20090074103A1 (en) * 2007-09-14 2009-03-19 Texas Instruments Incorporated Rate matching to maintain code block resource element boundaries
CN101800725B (zh) * 2009-02-11 2012-10-24 北京泰美世纪科技有限公司 移动多媒体广播发送***
US9037163B2 (en) * 2009-10-09 2015-05-19 Qualcomm Incorporated Method and apparatus for continuity of positioning determination at handover
CN102404072B (zh) * 2010-09-08 2013-03-20 华为技术有限公司 一种信息比特发送方法、装置和***
US8638761B2 (en) * 2010-10-06 2014-01-28 Qualcomm Incorporated Low-latency interleaving for low-density parity-check (LDPC) coding
US9240853B2 (en) * 2012-11-16 2016-01-19 Huawei Technologies Co., Ltd. Systems and methods for sparse code multiple access

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098091A1 (en) * 2003-04-29 2004-11-11 Lg Electronics Inc. Signal transmitting method in mobile communication system
CN1556624A (zh) * 2003-12-31 2004-12-22 П 以太网冗余网络***中数据传输模式的自适应选择方法
CN101018224A (zh) * 2006-12-15 2007-08-15 北京创毅视讯科技有限公司 移动数字多媒体广播物理层信令信息收发方法及收发端
CN101018269A (zh) * 2006-12-19 2007-08-15 北京创毅视讯科技有限公司 移动数字多媒体广播物理层信令信息收发方法及收发端
CN102065046A (zh) * 2009-11-11 2011-05-18 北京泰美世纪科技有限公司 一种ofdm***的信息传输方法及信号生成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3509264B1 (en) * 2016-09-19 2023-08-09 Huawei Technologies Co., Ltd. Method and apparatus for transmitting data

Also Published As

Publication number Publication date
EP3190817B1 (en) 2020-03-25
US10219278B2 (en) 2019-02-26
EP3190817A1 (en) 2017-07-12
CN106797567B (zh) 2020-09-11
CN106797567A (zh) 2017-05-31
EP3190817A4 (en) 2018-02-28
US20170208596A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
KR102199298B1 (ko) 극성 코드를 이용하여 데이터를 인코딩하기 위한 방법 및 장치
JP6552128B2 (ja) 複素次元あたりの投影が少ないコードブックを生成するためのシステムおよび方法ならびにその利用
WO2017101631A1 (zh) 用于处理极化码的方法和通信设备
CN107835063B (zh) 信息传输的方法、发送端设备和接收端设备
WO2016138632A1 (zh) 用于上行数据传输的方法和装置
WO2018233414A1 (zh) 极化码编码的方法和装置
WO2018050105A1 (zh) 传输数据的方法和装置
US20190132087A1 (en) Method and apparatus for data transmission
US10158404B2 (en) Data transmission method, transmit end device, and receive end device
WO2018153307A1 (zh) 传输数据的方法和装置
WO2017124844A1 (zh) 确定极化码传输块大小的方法和通信设备
WO2016101107A1 (zh) 传输指示信息的方法和装置
WO2016145664A1 (zh) 传输信息的方法、终端设备、网络设备和装置
JP6517346B2 (ja) 指示情報を伝送するための方法および装置
WO2016172875A1 (zh) 传输信息的方法、网络设备和终端设备
US10361896B2 (en) Data communication method, related device, and communications system
JP7301168B2 (ja) コーディングおよび変調方法、復調および復号方法、装置、ならびにデバイス
CN106922206B (zh) 确定调制编码阶数的方法、装置和设备
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
WO2016049909A1 (zh) 数据传输方法和相关设备
WO2017133407A1 (zh) 信号传输方法和装置
WO2021105548A1 (en) Design of fixed length coding scheme for probabilistic shaping applied to new radio physical layer
WO2018171776A1 (zh) 一种广播信息指示的发送方法和发送设备
WO2018001357A1 (zh) 一种信息发送、接收方法及设备
WO2017054571A1 (zh) 一种数据传输方法、设备和***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014903014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903014

Country of ref document: EP