WO2018166090A1 - 线性振动马达 - Google Patents

线性振动马达 Download PDF

Info

Publication number
WO2018166090A1
WO2018166090A1 PCT/CN2017/089387 CN2017089387W WO2018166090A1 WO 2018166090 A1 WO2018166090 A1 WO 2018166090A1 CN 2017089387 W CN2017089387 W CN 2017089387W WO 2018166090 A1 WO2018166090 A1 WO 2018166090A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration motor
vibrator
coil
housing
linear vibration
Prior art date
Application number
PCT/CN2017/089387
Other languages
English (en)
French (fr)
Inventor
朱跃光
孙长军
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2018166090A1 publication Critical patent/WO2018166090A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the present invention relates to the field of vibration device technology, and more particularly to a linear vibration motor.
  • a miniature vibration motor is generally used for system feedback.
  • the incoming call alert of the mobile phone the vibration feedback of the gaming machine, and the like.
  • the vibration direction of the vibration motor is generally along the horizontal long axis direction.
  • the long axis direction is the extending direction of the long side of the vibration motor.
  • Such a vibration motor generally includes a vibrator assembly and a metal dome housed in a housing.
  • a metal dome is used to suspend the magnetic vibrator within the housing.
  • the metal shrapnel not only provides a restoring force to the vibrator assembly, but also provides a supporting force for suspending the vibrator assembly in the space.
  • the magnetic circuit of the long-axis direction vibration motor is mostly vertically magnetized, and the magnetization direction is perpendicular to the coil, thereby forming a long-axis direction driving force.
  • the short axis direction is the extending direction of the short side of the vibration motor.
  • F Lorentz force formula
  • B magnetic induction intensity
  • I current magnitude
  • L wire length
  • the vibration component in the vibration motor also uses a metal piece having a higher density, and a larger mass can provide a higher vibration.
  • the mass block in order to accommodate the magnetic circuit system and the vibration space, the mass block will reserve a lot of escape grooves, so that a mass of a large mass cannot be obtained, and the groove has a low strength. The mass is difficult to form and is easy to break.
  • a linear vibration motor includes a housing, a vibrator, a coil, and an elastic member, the housing having a cavity, the vibrator, the coil and the elastic member are disposed in the cavity, and the vibrator passes through the elastic member Suspended in the cavity, the vibrator includes a permanent magnet and a weight portion connected together, a long side of the permanent magnet and a long side of the coil are parallel to a long axis direction, respectively, and both are short The sides are respectively parallel to the short axis direction, the permanent magnets are plural and the magnetization direction is parallel to the short axis direction, and adjacent sides of the plurality of permanent magnets have the same polarity, and the long sides of the coil are The gaps between the adjacent permanent magnets are opposed to cause the vibrator to vibrate in the short axis direction.
  • the number of the coils is two, and the permanent magnets are two, and the adjacent long sides of the two coils are opposite to the gap between the two permanent magnets, and two of the long The sides have the same current direction.
  • adjacent long sides of the two coils are symmetrically disposed with respect to a center line of the gap.
  • the housing has a first raised portion, and the coil is disposed on the first raised portion.
  • the pole core is two, the coil is disposed around the pole core, and the two are in one-to-one correspondence, the shell is made of a magnetic conductive material, each of the A pole core is coupled to the housing to magnetize a sidewall of the housing adjacent the pole core, the sidewall forming a magnetic force with the permanent magnet.
  • the permanent magnet is embedded in the weight portion.
  • the weight portion is provided with a groove, and the permanent magnet is disposed in the groove, and a reinforcing rib is arranged between the adjacent grooves.
  • a second protrusion is disposed on the wall of the weight portion perpendicular to the vibration direction, and one end of the elastic element is connected to the second protrusion.
  • a third protrusion is disposed on the wall of the housing perpendicular to the vibration direction, and the other end of the elastic element is coupled to the third protrusion.
  • the elastic element is a spring piece
  • the elastic piece includes a first connecting portion for connecting with the housing, a second connecting portion for connecting with the vibrator, and a middle portion between the first connecting portion and the second connecting portion.
  • a spring arm which is in the form of a straight piece.
  • the inventors of the present invention have found that in the prior art, the linear vibration motors each vibrate in the long axis direction, limited by the size in the short axis direction, and the driving force is limited. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • FIG. 1 is an exploded view of a linear vibration motor in accordance with one embodiment of the present invention.
  • FIG. 2 is an assembled view of a stator and a lower case in accordance with one embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a linear vibration motor in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a shrapnel according to an embodiment of the present invention.
  • Figure 5 is a block diagram showing the structure of a mass in accordance with one embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of an upper case in accordance with one embodiment of the present invention.
  • Fig. 7 is a schematic structural view of a linear vibration motor in which a lower case is not mounted, according to an embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of a linear vibration motor in which a lower case is not mounted, according to another embodiment of the present invention.
  • 11 upper shell; 12: third boss; 13: mass; 14: groove; 15: shrapnel; 16: permanent magnet; 17: pole core; 18: coil; 19: FPCB; 20: lower shell; 21: first raised portion; 22: first connecting portion; 23: second connecting portion; 24: first side wall; 25: second side wall; 26: long side of the coil; 27: short side of the coil; 28: long side of the permanent magnet; 29: short side of the permanent magnet; 30: elastic arm; 31: reinforcing rib.
  • a linear vibration motor is provided.
  • the vibration motor can be used in electronic devices such as mobile phones, game machines, notebook computers, wearable devices, walkie-talkies, and the like.
  • the vibration motor includes a housing, a vibrator, a coil 18, and a resilient member.
  • the housing has a cavity.
  • the vibrator, coil 18 and spring element are disposed within the cavity.
  • the vibrator is suspended in the cavity by a resilient element.
  • the elastic member may be, but not limited to, a resilient piece 15, an elastic rubber member, a spring, or the like.
  • the vibrator includes a permanent magnet 16 and a weight portion that are coupled together.
  • the permanent magnet 16 is used to form a magnetic field.
  • the permanent magnet 16 is a ferrite magnet or a neodymium iron boron magnet.
  • the weight portion is used to increase the inertia of the vibrator to enhance the vibration.
  • the long side 28 of the permanent magnet and the long side 26 of the coil are respectively parallel to the long axis direction, and the short side 27 of the coil and the short side 29 of the permanent magnet are respectively parallel to the short axis direction.
  • the long axis direction is the extending direction of the long side of the linear vibration motor
  • the short axis direction is the extending direction of the short side of the linear vibration motor.
  • the permanent magnets 16 are plural and the magnetization direction is parallel to the short axis direction.
  • the magnetization direction of the permanent magnet 16 is parallel to the coil 18.
  • Adjacent sides of the plurality of permanent magnets 16 have the same polarity.
  • the isotropic repulsion causes the adjacent permanent magnets 16 to form a hedging structure, and the magnetic field direction of the gap of the adjacent permanent magnets 16 is perpendicular to the coil 18.
  • the long side 26 of the coil opposes the gap between adjacent permanent magnets 16 to cause the vibrator to vibrate in the short axis direction.
  • the two gaps of 16 are oppositely arranged to drive the vibrator with three permanent magnets 16 to vibrate.
  • one of the long sides of the coil 18 opposes the gap of the adjacent two permanent magnets 16 to drive the vibrator with the two permanent magnets 16 to vibrate.
  • the long side 28 of the permanent magnet and the long side 26 of the coil are parallel to the long axis direction, respectively, and the short sides of the both are parallel to the short axis direction, and the vibrator vibrates in the short axis direction.
  • the lengths of the permanent magnets 16 and the coils 18 are not limited by the housing, and the user can set the lengths of the two according to actual needs, thereby increasing the driving force of the linear vibration motor, shortening the response time, and improving the vibration of the linear vibration motor.
  • the number of the permanent magnets 16 is plural and the magnetization direction of the permanent magnets 16 is parallel to the short-axis direction, which can effectively increase the magnetic field strength and further increase the driving force.
  • the weight portion does not need to be designed to avoid the processing difficulty, and the mass 13 is easy to obtain a large mass, and the vibration of the linear vibration motor is improved.
  • FIG. 1 is an exploded view of a linear vibration motor in accordance with one embodiment of the present invention.
  • 3 is a cross-sectional view of a linear vibration motor in accordance with one embodiment of the present invention.
  • the housing includes an upper case 11 and a lower case 20.
  • the upper case 11 and the lower case 20 are fastened together to form a cavity inside them.
  • the housing is provided in a rectangular parallelepiped shape.
  • the cross section of the housing may be an approximately rectangular parallelepiped shape, such as an elliptical shape, a racetrack shape, or the like, as long as it has opposing major and minor axes.
  • the material of the housing may be, but not limited to, metal, plastic, ceramic, and the like.
  • the linear vibration motor further includes a pole core 17 disposed around the pole core 17.
  • the pole core 17 is capable of gathering magnetic lines of inductance.
  • the housing has a first raised portion 21, and the coil 18 is disposed on the first raised portion 21.
  • the lower case 20 protrudes into the cavity to form the first boss portion 21.
  • the coil 18 is disposed on the first boss portion 21 by bonding. In this way, the gap between the permanent magnet 16 and the coil 18 is smaller, enabling more magnetic lines to pass through the coil 18. Thereby increasing the size of the Lorentz force.
  • the elastic member is a spring piece 15.
  • the elastic piece 15 includes a first connecting portion 22 for connecting with the housing, a second connecting portion 23 for connecting with the vibrator, and a spring arm 30 located between the first connecting portion 22 and the second connecting portion 23, and the elastic arm 30 is Straight sheet.
  • the straight-shaped elastic arm 30 reduces the manufacturing difficulty of the elastic piece 15, and the structural strength of the elastic piece 15 is high.
  • the elastic piece 15 does not need to be bent, which reduces the damage during the processing and improves the service life.
  • the size of the elastic piece 15 in the axial direction is not limited and can have a larger length.
  • the stress and resonance frequency of the elastic piece 15 are low.
  • a person skilled in the art can set the thickness of the elastic piece 15 according to actual conditions.
  • the elastic piece 15 is located between the vibrator and the side wall of the upper case 11 to provide the vibrator with an elastic restoring force in the short-axis direction.
  • the number of the elastic pieces 15 is two, and the vibrator is located between the two elastic pieces 15. The vibrator is suspended above the coil 18 by two springs 15.
  • the second convex portion is provided on the wall of the weight portion perpendicular to the vibration direction, and one end of the elastic member is connected to the second convex portion.
  • the provision of the second raised portion provides a space for the connection of the elastic elements.
  • the second connecting portion 23 is welded to the second raised portion by welding.
  • a third raised portion 12 is provided on the wall of the housing perpendicular to the direction of vibration, and the other end of the resilient member is coupled to the third raised portion 12.
  • the provision of the third raised portion 12 provides space for the connection of the resilient elements.
  • a third boss portion 12 is provided on both the first side wall 24 and the second side wall 25 in the direction of the extension axis.
  • the third raised portion 12 is convex toward the cavity.
  • the first connecting portion 22 of the elastic piece 15 is welded to the third convex portion 12.
  • the third convex portion 12 can avoid the violent collision of the elastic piece 15 with the first side wall 24 and the second side wall 25 in the vibration process and the drop test to reduce the vibration noise of the vibration motor and improve the vibration of the elastic piece 15. reliability.
  • the elastic pieces 15 are two.
  • the first connecting portion 22 of each of the elastic pieces 15 is at a set angle to the elastic arm 30, for example, 90°.
  • the elastic piece 15 is L-shaped.
  • the first connecting portion 22 is welded to the side wall of the upper casing 11 in the short-axis direction.
  • the elastic piece 15 occupies in the direction along the short axis The space used is reduced, which increases the vibration space of the vibrator.
  • the permanent magnet 16 is embedded in the weight portion.
  • the weight portion is the mass 13 .
  • the mass 13 is made of tungsten steel.
  • the weight portion is provided with a recess 14 in which the permanent magnet 16 is disposed. In this way, it is possible to prevent the permanent magnets 16 from protruding out of the mass 13, reducing the volume of the vibrators, and reducing or even avoiding collision of the permanent magnets 16 with other components.
  • reinforcing ribs 31 are provided between adjacent grooves 14 to improve the overall strength of the mass 13 and to prevent breakage or failure of the mass 13 during the forming and dropping tests.
  • the mass 13 can be integrally formed by pouring.
  • the rib 31 and the groove 14 are simultaneously cast. In this way, the mass 13 can have a higher structural strength.
  • the adjacent long sides of the two coils 18 are symmetrically disposed with respect to the centerline of the gap.
  • the two permanent magnets 16 are of the same type, and the magnetic lines of interest of the two adjacent permanent magnets 16 respectively form two closed magnetic circuits.
  • the long side 26 of the coil is symmetrically disposed with respect to the centerline of the gap.
  • the linear vibration motor also includes a pole core 17.
  • the pole core 17 is used to gather the magnetic field generated by the energized coil 18 to increase the magnetic field strength.
  • the casing is made of a magnetically permeable material, for example, the upper casing 11 and the lower casing 20 are made of SUS-430.
  • Each pole core 17 is coupled to the housing to magnetize a sidewall of the housing adjacent the pole core 17, and a magnetic force is formed between the sidewall and the permanent magnet 16.
  • the polarity of the housing is the same as the polarity of the end of the pole core 17 that is connected to the housing.
  • the adjacent side of the two permanent magnets 16 is an N pole, and the direction of the magnetic field is perpendicular to the coil 18 downward.
  • the two long sides of the two coils 18 cut the magnetic line of inductance.
  • the coil 18 is subjected to a Lorentz force to the right, and the vibrator is subjected to a reaction force F to the left.
  • the currents of the two coils 18 are opposite in direction.
  • the lower end of the right pole core 17 is an S pole, and since the second side wall 25 is close to the pole core 17, it is magnetized to the S pole; the lower end of the pole core 17 on the left side is the N pole, due to the first The side wall 24 is close to the pole core and is magnetized to the N pole.
  • the permanent magnet 16 on the right side is subjected to the repulsive force of the second side wall 25, and the force is to the left.
  • the permanent magnet 16 on the left side is subjected to the attraction of the first side wall 24, which is directed to the left. Both forces are generated simultaneously.
  • the vibrator is subjected to the "electromagnetic force" F' of the shell wall.
  • the reaction force F of the coil 18 and the "electromagnetic force" F' of the casing wall are in the same direction, which together constitute the driving force of the vibrator vibration.
  • the driving force of the linear vibration motor is greatly improved, the response time of the vibration motor is effectively shortened, and the vibration feeling is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种线性振动马达包括壳体、振子、线圈(18)以及弹性元件,壳体具有腔体,振子、线圈(18)和弹性元件被设置在腔体内,振子通过弹性元件悬置在腔体中,振子包括连接在一起的永磁体(16)和配重部,永磁体(16)的长边和线圈(18)的长边分别与长轴方向平行,并且二者的短边分别与短轴方向平行,永磁体(16)为多个并且充磁方向平行于短轴方向,多个永磁体(16)的相邻的一侧具有相同的极性,线圈(18)的长边与相邻的永磁体(16)之间的间隙相对,以使振子沿短轴方向振动。该振动马达响应时间短,振感体验良好。

Description

线性振动马达 技术领域
本发明涉及振动装置技术领域,更具体地,涉及一种线性振动马达。
背景技术
随着通信技术的发展,便携式电子产品,例如手机、掌上游戏机或者掌上多媒体娱乐设备等进入人们的生活。在这些便携式电子产品中,一般采用微型振动马达来做***反馈。例如,手机的来电提示、游戏机的振动反馈等。
在现有的振动马达中,振动马达的振动方向一般为沿水平长轴方向。长轴方向即振动马达的长边的延伸方向。这种振动马达一般包括收容于壳体内的振子组件和金属弹片。金属弹片用于将所述磁性振子悬浮于所述壳体内。金属弹片不仅要为振子组件提供回复力,还要提供使振子组件悬置于空间内的支撑力。
长轴方向振动马达的磁路多采用垂直充磁,并且充磁方向垂直线圈,从而形成长轴方向驱动力。但由于受限于短轴方向尺寸,线圈和磁铁的长度不能做大。短轴方向即振动马达的短边的延伸方向。根据洛伦兹力公式F=BIL,其中,B:磁感强度;I:电流大小;L:导线长度。线圈的L的大小受到短轴限制,使得驱动力受到限制。
此外,振动马达中的振动组件还要用到具有较高密度的金属件质量块,较大的质量能够提供较高的振感。但在长轴方向振动马达中,为了安放磁路***以及振动空间的需要,质量块会预留很多避让槽,从而不能获得较大质量的质量块,而且开槽使得质量块的强度较低,质量块成型难度大且易断裂。
发明内容
本发明的一个目的是提供一种线性振动马达的新技术方案。
根据本发明的第一方面,提供了一种线性振动马达。该振动马达包括壳体、振子、线圈以及弹性元件,所述壳体具有腔体,所述振子、所述线圈和所述弹性元件被设置在所述腔体内,所述振子通过所述弹性元件悬置在所述腔体中,所述振子包括连接在一起的永磁体和配重部,所述永磁体的长边和所述线圈的长边分别与长轴方向平行,并且二者的短边分别与短轴方向平行,所述永磁体为多个并且充磁方向平行于短轴方向,多个所述永磁体的相邻的一侧具有相同的极性,所述线圈的长边与相邻的所述永磁体之间的间隙相对,以使所述振子沿短轴方向振动。
可选地,所述线圈为2个,所述永磁体为2个,2个所述线圈的相邻的长边均与2个所述永磁体之间的间隙相对,并且2个所述长边具有相同的电流方向。
可选地,2个所述线圈的相邻的长边相对于所述间隙的中线对称设置。
可选地,所述壳体具有第一凸起部,所述线圈被设置在所述第一凸起部上。
可选地,还包括极芯,所述极芯为2个,所述线圈围绕所述极芯设置,并且二者一一对应,所述壳体由导磁性材料制作而成,每个所述极芯与所述壳体连接以将所述壳体的与该极芯相邻的侧壁磁化,所述侧壁与所述永磁体之间形成磁力。
可选地,所述永磁体嵌入所述配重部中。
可选地,所述配重部设置有凹槽,所述永磁体被设置在所述凹槽中,相邻的所述凹槽之间具有加强筋。
可选地,所述配重部垂直于振动方向的壁上设置有第二凸起部,所述弹性元件的一端与所述第二凸起部连接。
可选地,所述壳体垂直于振动方向的壁上设置有第三凸起部,所述弹性元件的另一端与所述第三凸起部连接。
可选地,所述弹性元件为弹片,所述弹片包括用于与壳体连接的第一连接部、用于与振子连接的第二连接部以及位于第一连接部和第二连接部中间的弹臂,所述弹臂为直片状。
本发明的发明人发现,在现有技术中,线性振动马达均沿长轴方向振动,受限于短轴方向的尺寸,驱动力受到限制。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是根据本发明一个实施例的线性振动马达的分解图。
图2是根据本发明一个实施例的定子与下壳的装配图。
图3是根据本发明一个实施例的线性振动马达的剖视图。
图4是根据本发明一个实施例的弹片的结构示意图。
图5是根据本发明一个实施例的质量块的结构示意图。
图6是根据本发明一个实施例的上壳的结构示意图。
图7是根据本发明一个实施例的未安装下壳的线性振动马达的结构示意图。
图8是根据本发明另一个实施例的未安装下壳的线性振动马达的结构示意图。
附图标记说明:
11:上壳;12:第三凸起部;13:质量块;14:凹槽;15:弹片;16:永磁体;17:极芯;18:线圈;19:FPCB;20:下壳;21:第一凸起部;22:第一连接部;23:第二连接部;24:第一侧壁;25:第二侧壁;26:线圈的长边;27:线圈的短边;28:永磁体的长边;29:永磁体的短边;30:弹臂;31:加强筋。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到: 除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本发明的实施例,提供了一种线性振动马达。该振动马达能够用于手机、游戏机、笔记本电脑、可穿戴设备、对讲机等电子设备。
如图1-8所示,该振动马达包括壳体、振子、线圈18以及弹性元件。壳体具有腔体。振子、线圈18和弹性元件被设置在腔体内。振子通过弹性元件悬置在腔体中。例如,弹性元件可以是但不局限于弹片15、弹性橡胶件、弹簧等。
振子包括连接在一起的永磁体16和配重部。永磁体16用于形成磁场。例如,永磁体16为铁氧体磁铁或者钕铁硼磁铁。配重部用于增大振子的惯性,以提升振感。永磁体的长边28和线圈的长边26分别与长轴方向平行,并且线圈的短边27和永磁体的短边29分别与短轴方向平行。如图1和2所示,长轴方向即线性振动马达的长边的延伸方向,短轴方向即线性振动马达的短边的延伸方向。
永磁体16为多个并且充磁方向平行于短轴方向。永磁体16的充磁方向与线圈18平行。多个永磁体16的相邻的一侧具有相同的极性。同性相斥使得相邻的永磁体16形成对冲结构,相邻永磁体16的间隙的磁场方向垂直于线圈18。线圈的长边26与相邻的永磁体16之间的间隙相对,以使振子沿短轴方向振动。例如,线圈18的两条长边分别与相邻三个永磁体 16的两个间隙相对设置,以驱动带有三个永磁体16的振子振动。例如,线圈18的其中一条长边与相邻两个永磁体16的间隙相对,以驱动带有两个永磁体16的振子振动。
该线性振动马达,永磁体的长边28和线圈的长边26分别与长轴方向平行,并且二者的短边分别与短轴方向平行,振子沿短轴方向振动。永磁体16和线圈18的长度不受壳体的限制,用户能够根据实际需要设置二者的长度,从而能够增大线性振动马达的驱动力,缩短响应时间,提升线性振动马达的振感。
此外,在该线性振动马达中,永磁体16为多个并且永磁体16的充磁方向平行于短轴方向,能够有效地提高磁场强度,进一步增大了驱动力。
此外,由于长度不受限制,故配重部无需进行避让设计,降低了加工难度,并且质量块13容易获得大的质量,提升线性振动马达的振感。
图1是根据本发明一个实施例的线性振动马达的分解图。图3是根据本发明一个实施例的线性振动马达的剖视图。
如图1所示,壳体包括上壳11和下壳20。上壳11和下壳20扣合在一起,以在它们内部形成腔体。为了方便说明,壳体设置为长方体。当然,在其他示例中,壳体的截面可以为近似长方体的形状,例如椭圆形、跑道形等,只要具有相对的长轴和短轴即可。壳体的材质可以是但不局限于金属、塑料、陶瓷等。
在该例子中,线圈18为2个,永磁体16为2个。2个线圈18的相邻的长边均与2个永磁体16之间的间隙相对。并且2个线圈的长边26具有相同的电流方向。例如,如图2和3所示,线圈18被设置在下壳20上。线圈18通过FPCB19与外部电路连接,以传输电信号。优选的是,线性振动马达还包括极芯17,线圈18围绕极芯17设置。极芯17能够聚拢磁感线。
优选的是,壳体具有第一凸起部21,线圈18被设置在第一凸起部21上。例如,如图1和3所示,下壳20向腔体内凸出,以形成第一凸起部21。线圈18通过粘接的方式被设置在第一凸起部21上。通过这种方式,永磁体16与线圈18之间的间隙更小,能够使更多的磁感线穿过线圈18, 从而提高了洛伦兹力的大小。
在一个例子中,如图4所示,弹性元件为弹片15。弹片15包括用于与壳体连接的第一连接部22、用于与振子连接的第二连接部23以及位于第一连接部22和第二连接部23中间的弹臂30,弹臂30为直片状。直片状的弹臂30,降低了弹片15的制造难度,并且弹片15的结构强度高。弹片15无需进行弯折,降低了加工过程中的损伤,提高了使用寿命。
此外,由于该线性振动马达沿短轴方向振动,弹片15延长轴方向的尺寸不受限制,可以具有更大的长度。这样,弹片15的应力和谐振频率较低。
本领域技术人员可以根据实际情况设置弹片15的厚度。
例如,弹片15位于振子与上壳11的侧壁之间,以为振子提供沿短轴方向的弹性回复力。优选的是,弹片15为2个,振子位于2个弹片15之间。振子通过两个弹片15悬置在线圈18之上。
优选的是,在配重部垂直于振动方向的壁上设置有第二凸起部,弹性元件的一端与第二凸起部连接。第二凸起部的设置为弹性元件的连接提供了空间。例如,通过焊接的方式将第二连接部23焊接到第二凸起部上。
此外,这样可以避免在振动过程以及在跌落试验中配重部对弹片15的刚性碰撞,从而提高弹片15可靠性。
在一个例子中,在壳体垂直于振动方向的壁上设置有第三凸起部12,弹性元件的另一端与第三凸起部12连接。第三凸起部12的设置为弹性元件的连接提供了空间。例如,如图6所示,在延长轴方向的第一侧壁24和第二侧壁25上均设置有第三凸起部12。第三凸起部12向腔体内凸起。弹片15的第一连接部22焊接在第三凸起部12上。
此外,该第三凸起部12能够避免振动马达在振动过程以及跌落试验中弹片15与第一侧壁24和第二侧壁25的剧烈碰撞,以减小振动马达振动噪音,提高弹片15的可靠性。
例如,如图7所示,弹片15为两个。每个弹片15的第一连接部22与弹臂30成设定角度,例如90°。弹片15为L形。第一连接部22与上壳11的沿短轴方向的侧壁焊接在一起。这样,弹片15在沿短轴方向上占 用的空间减小,增大了振子的振动空间。
在一个例子中,永磁体16嵌入配重部中。例如,配重部为质量块13。如图5所示,质量块13由钨钢制作而成。配重部设置有凹槽14,永磁体16被设置在凹槽14中。通过这种方式,能够避免永磁体16凸出于质量块13,减小了振子的体积,并且减少甚至避免永磁体16与其他元件发生碰撞。
优选的是,相邻的凹槽14之间具有加强筋31,以提高质量块13的整体强度,避免质量块13在成型以及跌落试验中发生断裂或者失效。
例如,质量块13可以采用浇筑的方式一体成型。加强筋31和凹槽14同时被浇筑成型。通过这种方式,质量块13能够具有更高的结构强度。
在一个例子中,2个线圈18的相邻的长边相对于间隙的中线对称设置。2个永磁体16型号相同,两个相邻永磁体16间隙出来的磁感线分别构成两个闭合磁路。线圈的长边26相对于间隙的中线对称设置。这样,线圈18对于两个永磁体16的作用力大小相等,方向相同,振子的振动更加均衡,避免了出现偏振。
在一个例子中,线性振动马达还包括极芯17。极芯17用于聚拢通电的线圈18产生的磁场,提高磁场强度。极芯17为2个,线圈18围绕极芯17设置,并且二者一一对应。壳体由导磁性材料制作而成,例如上壳11和下壳20的材质均为SUS-430。每个极芯17与壳体连接,以将壳体的与该极芯17相邻的侧壁磁化,侧壁与永磁体16之间形成磁力。例如,壳体的极性与极芯17的和壳体连接的一端的极性相同。
例如,如图3所示,两个永磁体16相邻的一侧为N极,磁场方向垂直于线圈18向下。通电后,两个线圈18的两个长边切割磁感线。线圈18受到向右的洛伦兹力作用,振子受到向左的反作用力F的作用。
两个线圈18的电流方向相反。根据安培定则,右侧的极芯17下端为S极,由于第二侧壁25靠近该极芯17,故被磁化为S极;左侧的极芯17的下端为N极,由于第一侧壁24靠近该极芯,故被磁化为N极。此时,右侧的永磁体16受到第二侧壁25的排斥力,该力向左。左侧的永磁体16受到第一侧壁24的吸引力作用,该力向左。两个力同时产生。这样,振子受到了壳壁的“电磁力”F’的作用。
当振动达到最左端时,两个线圈18的电流方向发生变化。此时,线圈18的反作用力F和壳壁的“电磁力”F’作用同时发生变化,变为向右。
线圈18的反作用力F和壳壁的“电磁力”F’作用方向相同,二者共同构成了振子振动的驱动力。从而大大提高了线性振动马达的驱动力,有效地缩短了振动马达的响应时间,提高了振感。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种线性振动马达,其特征在于,包括壳体、振子、线圈(18)以及弹性元件,所述壳体具有腔体,所述振子、所述线圈(18)和所述弹性元件被设置在所述腔体内,所述振子通过所述弹性元件悬置在所述腔体中,所述振子包括连接在一起的永磁体(16)和配重部,所述永磁体的长边(28)和所述线圈的长边(26)分别与长轴方向平行,并且二者的短边分别与短轴方向平行,所述永磁体(16)为多个并且充磁方向平行于短轴方向,多个所述永磁体(16)的相邻的一侧具有相同的极性,所述线圈的长边(26)与相邻的所述永磁体(16)之间的间隙相对,以使所述振子沿短轴方向振动。
  2. 根据权利要求1所述的线性振动马达,其特征在于,所述线圈(18)为2个,所述永磁体(16)为2个,2个所述线圈(18)的相邻的长边均与2个所述永磁体(16)之间的间隙相对,并且2个所述长边具有相同的电流方向。
  3. 根据权利要求1或2所述的线性振动马达,其特征在于,2个所述线圈(18)的相邻的长边相对于所述间隙的中线对称设置。
  4. 根据权利要求1-3中的任意一项所述的线性振动马达,其特征在于,所述壳体具有第一凸起部(21),所述线圈(18)被设置在所述第一凸起部(21)上。
  5. 根据权利要求1-4中的任意一项所述的线性振动马达,其特征在于,还包括极芯(17),所述极芯(17)为2个,所述线圈(18)围绕所述极芯(17)设置,并且二者一一对应,所述壳体由导磁性材料制作而成,每个所述极芯(17)与所述壳体连接以将所述壳体的与该极芯(17)相邻的侧壁磁化,所述侧壁与所述永磁体(16)之间形成磁力。
  6. 根据权利要求1-5中的任意一项所述的线性振动马达,其特征在于,所述永磁体(16)嵌入所述配重部中。
  7. 根据权利要求1-6中的任意一项所述的线性振动马达,其特征在于,所述配重部设置有凹槽,所述永磁体(16)被设置在所述凹槽中,相邻的所述凹槽之间具有加强筋(31)。
  8. 根据权利要求1-7中的任意一项所述的线性振动马达,其特征在于,所述配重部垂直于振动方向的壁上设置有第二凸起部,所述弹性元件的一端与所述第二凸起部连接。
  9. 根据权利要求1-8中的任意一项所述的线性振动马达,其特征在于,所述壳体垂直于振动方向的壁上设置有第三凸起部(12),所述弹性元件的另一端与所述第三凸起部(12)连接。
  10. 根据权利要求1-9中的任意一项所述的线性振动马达,其特征在于,所述弹性元件为弹片(15),所述弹片(15)包括用于与壳体连接的第一连接部(22)、用于与振子连接的第二连接部(23)以及位于第一连接部(22)和第二连接部(23)中间的弹臂(30),所述弹臂(30)为直片状。
PCT/CN2017/089387 2017-03-13 2017-06-21 线性振动马达 WO2018166090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710147453.0 2017-03-13
CN201710147453.0A CN107070159B (zh) 2017-03-13 2017-03-13 线性振动马达

Publications (1)

Publication Number Publication Date
WO2018166090A1 true WO2018166090A1 (zh) 2018-09-20

Family

ID=59623074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089387 WO2018166090A1 (zh) 2017-03-13 2017-06-21 线性振动马达

Country Status (2)

Country Link
CN (1) CN107070159B (zh)
WO (1) WO2018166090A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953492B (zh) * 2017-03-23 2020-02-18 歌尔股份有限公司 线性振动马达
CN109951043B (zh) * 2017-12-21 2024-03-26 四川安和精密电子电器股份有限公司 一种振动电机
CN110957881A (zh) * 2019-12-26 2020-04-03 浙江省东阳市东磁诚基电子有限公司 一种低漏磁的水平线性马达及其实现方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169074A (ja) * 1993-12-14 1995-07-04 Hitachi Metals Ltd 駆動装置
CN101488697A (zh) * 2009-02-20 2009-07-22 瑞声声学科技(深圳)有限公司 扁平线性振动电机
CN102035345A (zh) * 2010-12-17 2011-04-27 歌尔声学股份有限公司 扁平线性振动器
CN204928524U (zh) * 2015-07-30 2015-12-30 瑞声光电科技(常州)有限公司 振动电机
CN205231986U (zh) * 2015-07-31 2016-05-11 歌尔声学股份有限公司 线性振动电机
CN106169855A (zh) * 2016-08-22 2016-11-30 歌尔股份有限公司 纵向振动马达

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013699B2 (en) * 2002-04-01 2011-09-06 Med-El Elektromedizinische Geraete Gmbh MRI-safe electro-magnetic tranducer
CN201789401U (zh) * 2010-09-01 2011-04-06 歌尔声学股份有限公司 扁平线性振动器
CN204597754U (zh) * 2015-05-07 2015-08-26 歌尔声学股份有限公司 扁平线性马达
CN205178826U (zh) * 2015-11-25 2016-04-20 歌尔声学股份有限公司 线性振动马达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169074A (ja) * 1993-12-14 1995-07-04 Hitachi Metals Ltd 駆動装置
CN101488697A (zh) * 2009-02-20 2009-07-22 瑞声声学科技(深圳)有限公司 扁平线性振动电机
CN102035345A (zh) * 2010-12-17 2011-04-27 歌尔声学股份有限公司 扁平线性振动器
CN204928524U (zh) * 2015-07-30 2015-12-30 瑞声光电科技(常州)有限公司 振动电机
CN205231986U (zh) * 2015-07-31 2016-05-11 歌尔声学股份有限公司 线性振动电机
CN106169855A (zh) * 2016-08-22 2016-11-30 歌尔股份有限公司 纵向振动马达

Also Published As

Publication number Publication date
CN107070159B (zh) 2019-09-17
CN107070159A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN109309892B (zh) 电磁激励器以及屏幕发声装置
US10992214B2 (en) Linear vibration motor
CN109068244B (zh) 电磁激励器以及屏幕发声装置
WO2018058809A1 (zh) 线性振动马达
WO2018036037A1 (zh) 线性振动马达
WO2021121055A1 (zh) 一种振动装置
CN105553217B (zh) 振动马达
WO2018058807A1 (zh) 线性振动马达
US11515773B2 (en) Linear vibration motor and electronic device
CN105703593B (zh) 线性振动马达
WO2018058808A1 (zh) 线性振动马达以及电子设备
WO2018171060A1 (zh) 线性振动马达
WO2018166090A1 (zh) 线性振动马达
US20200412228A1 (en) Vibration motor
US11515068B2 (en) Exciter
CN106655695B (zh) 一种线性振动马达
CN111049349A (zh) 一种振动装置及电子产品
WO2021000090A1 (zh) 振动电机
WO2016153261A1 (ko) 햅틱 액추에이터
WO2018157514A1 (zh) 多驱动线性振动马达以及电子设备
CN208821074U (zh) 电磁激励器以及屏幕发声装置
CN206023534U (zh) 谐振马达
CN204967588U (zh) 线性振动马达
CN211352007U (zh) 一种振动装置及电子产品
WO2018157515A1 (zh) 用于线性振动马达的壳体以及线性振动马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900590

Country of ref document: EP

Kind code of ref document: A1