WO2018157514A1 - 多驱动线性振动马达以及电子设备 - Google Patents

多驱动线性振动马达以及电子设备 Download PDF

Info

Publication number
WO2018157514A1
WO2018157514A1 PCT/CN2017/089571 CN2017089571W WO2018157514A1 WO 2018157514 A1 WO2018157514 A1 WO 2018157514A1 CN 2017089571 W CN2017089571 W CN 2017089571W WO 2018157514 A1 WO2018157514 A1 WO 2018157514A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration motor
linear vibration
magnets
vibrator
stator
Prior art date
Application number
PCT/CN2017/089571
Other languages
English (en)
French (fr)
Inventor
朱跃光
毛东升
臧玮晔
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2018157514A1 publication Critical patent/WO2018157514A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs

Definitions

  • the present invention relates to the field of vibration device technology, and more particularly to a multi-drive linear vibration motor and an electronic device to which the linear vibration motor is applied.
  • the existing linear vibration motor can only provide a single vibration experience because the stator has a single magnetic circuit system and the driving force of the vibrator is constant. Can not meet the requirements of a variety of vibration experience.
  • a multi-drive linear vibration motor includes a housing, a stator, a vibrator and an elastic member, the stator, the vibrator and the elastic member being disposed in the housing, the stator including a pole core and a coil disposed around the pole core, The pole core is perpendicular to the vibration direction, the stator is a plurality of and the current directions of the adjacent coils are opposite, the vibrator includes a weight portion and a magnet connected to the weight portion, the magnet is a plurality of the magnets The magnetization direction is parallel to the vibration direction, and the magnetization directions of the adjacent magnets are opposite.
  • the vibrator is suspended in the casing by the elastic member, and the magnets are sequentially spaced from the stator.
  • the multi-drive linear vibration motor is configured to control a different number of coils to conduct according to a preset vibration effect.
  • the number of the magnets is greater than or equal to two, the number of the stators is one more than the number of the magnets, and a plurality of the magnets are respectively suspended in a gap formed by a plurality of the stators.
  • the weight portion includes two masses, and the plurality of the magnets are disposed side by side between the two mass blocks and are respectively inserted into the two mass blocks.
  • the thickness of the magnet is configured to gradually increase from the plug end to the middle, in two An adhesive is also applied between the plug end and the two masses.
  • the elastic element is a spring piece, a spring or an elastic rubber piece.
  • the elastic element is a spring piece, and the elastic piece is disposed on an upper side and/or a lower side of the vibrator in a vibration direction, and the elastic piece has a escape port for avoiding the stator.
  • a printed wiring board is further included, each of the coils being electrically connected to the printed wiring board.
  • the housing is a rectangular parallelepiped, the housing includes oppositely disposed tops and bottoms, a plurality of the stators are disposed at the bottom, and the pole core is parallel to the bottom.
  • an electronic device is provided.
  • the apparatus includes the linear vibration motor provided by the present invention.
  • the inventors of the present invention have found that in the prior art, the linear vibration motor can only provide a single vibration feeling experience because the magnetic circuit system of the stator is single and the driving force of the vibrator is constant. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • the multi-drive linear vibration motor is configured to control a different number of coils to conduct according to a preset vibration effect.
  • a preset vibration effect For example, one, several, and all of the plurality of coils can be individually controlled to be turned on. In this way, the vibrator can obtain different magnitudes of driving force, thereby enabling different vibration modes.
  • vibration effects in a variety of scenarios can be provided, increasing the user's vibration experience.
  • FIG. 1 is an exploded view of a linear vibration motor in accordance with an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a linear vibration motor in accordance with an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of another angle of a linear vibration motor in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a linear vibration motor in accordance with an embodiment of the present invention.
  • FIG. 5 is a block diagram showing the structure of a vibrator in accordance with one embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a vibrator in accordance with one embodiment of the present invention.
  • FIG. 7 is a circuit diagram of an FPCB in accordance with one embodiment of the present invention.
  • 11 upper shell
  • 12 shrapnel
  • 13 tungsten steel block
  • 14 avoidance port
  • 15 magnet
  • 16 pole core
  • 17 coil
  • 18 FPCB
  • 19 lower shell.
  • a multi-drive linear vibration motor includes a housing, a stator, a vibrator, and a resilient member.
  • the stator, the vibrator and the resilient element are disposed within the housing.
  • the stator includes a pole core 16 and a coil 17 disposed around the pole core 16.
  • the pole core 16 is perpendicular to the direction of vibration.
  • the direction of vibration is the direction in which the vibrator vibrates.
  • the stator is plural and the currents of the adjacent coils 17 are opposite in direction.
  • the stator is responsive to electrical signals from external circuitry and generates an electromagnetic field.
  • coil 17 receives an electrical signal from an external circuit to generate an alternating electromagnetic field within coil 17.
  • the pole core 16 functions to gather magnetic lines of inductance. For example, the user can set the winding direction of the coil 17 and the positive and negative connection to achieve the opposite current direction of the adjacent coil 17.
  • the vibrator includes a weight portion and a magnet 15 coupled to the weight portion.
  • the magnets 15 are plural and the magnetization direction of the magnets 15 is parallel to the vibration direction, and the magnetization directions of the adjacent magnets 15 are opposite.
  • the magnetization direction is the direction in which the N pole and the S pole of the magnet 15 are connected.
  • the vibrator is suspended within the housing by a resilient member.
  • the energization coil 17 cuts the magnetic line of the magnet 15 to generate a Lorentz force, and the Lorentz force forms a driving force for vibrator vibration.
  • the user can make the direction of the Lorentz force between each stator and the corresponding magnet 15 the same to increase the driving force.
  • the elastic element provides an elastic restoring force to the vibrator, and the elastic restoring force increases as the distance of the vibrator from the initial position increases, and points to the initial position.
  • the elastic member is a spring piece 12, a spring or an elastic rubber piece.
  • the elastic element is a spring piece 12.
  • the elastic piece 12 is restrained and fixed between the vibrator and the housing. The vibrator will squeeze the elastic piece 12 during the vibration process, and the compressed elastic piece 12 can prevent the vibrator from colliding with the housing during the vibration process, and can also provide the elastic recovery force in the opposite direction for the vibration of the vibrator.
  • the magnet 15 and the stator are sequentially spaced apart. After energization, the coil 17 cuts the magnetic line of the magnet 15 to form a Lorentz force, and the Lorentz force drives the vibrator to vibrate due to the fixed position of the coil 17.
  • the multi-drive linear vibration motor is configured to control a different number of coils 17 to conduct according to a preset vibration effect. For example, one, several, and all of the plurality of coils 17 can be individually controlled to be turned on. In this way, the vibrator can obtain different magnitudes of driving force, thereby enabling different vibration modes.
  • the number of the magnets 15 is two or more, and the number of the stators is one more than the number of the magnets 15, and the plurality of magnets 15 are respectively suspended in the gap formed by the plurality of stators. In this manner, each of the magnets 15 has a stator and a mating end. In this way, each magnet 15 is balanced by force, avoiding polarization
  • FIG. 1 is an exploded view of a linear vibration motor in accordance with an embodiment of the present invention.
  • 2 is a cross-sectional view of a linear vibration motor in accordance with an embodiment of the present invention.
  • Figure 3 is a diagram in accordance with the present invention A cross-sectional view of another angle of the linear vibration motor of one embodiment.
  • the housing is a rectangular parallelepiped.
  • the housing includes opposing top and bottom portions.
  • the top and side walls constitute the upper case 11, and the bottom constitutes the lower case 19.
  • a plurality of stators are disposed at the bottom, and the pole core 16 is parallel to the bottom.
  • the direction of vibration is perpendicular to the top and bottom.
  • the rectangular structure of the rectangular body is regular, and the linear vibration motor is installed in other electronic devices, and the internal space is regular, and it is convenient to set other electronic components.
  • the magnet 15 is located in the gap of the three stators.
  • the coils 17 on both sides ie, the coil a and the coil c
  • the coil 17 (i.e., coil b) of the stator located in the middle is opposite to the winding direction of the above two coils 17.
  • the current direction of the coil b is opposite to that of the above two coils 17 (coil a and coil c).
  • the magnetization directions of the two magnets are opposite.
  • the upper surface of the left magnet is N pole and the lower surface is S pole.
  • the upper surface of the right magnet is S pole and the lower surface is N pole.
  • the magnet is opposite to the pole core adjacent thereto.
  • the coil is symmetrical with respect to the magnet. The vibrator moves more smoothly during start-up and the vibrator receives the greatest Lorentz force.
  • the magnetic line of inductance exits from the N pole of the left magnet through the coil a (ie, the left coil) to the S stage.
  • the coil a cuts the magnetic induction line, and according to the left hand rule, the coil a is subjected to the downward Lorentz force.
  • the left magnet is subjected to an upward Lorentz force, and the position of the coil 17 is fixed.
  • the left magnet vibrates upwards.
  • the coil a drives the vibrator to vibrate upward.
  • a part of the magnetic induction line of the two magnets 15 close to each other is as shown in FIG.
  • the magnetic line of inductance from the N pole of the left magnet reaches the S pole of the right magnet via the coil b (ie, the intermediate coil); the magnetic line of inductance from the N pole of the right magnet reaches the left S pole via the coil b.
  • the coil b cuts the magnetic line, and according to the left hand rule, the coil b is subjected to the downward Lorentz force.
  • the two magnets 15 are subjected to an upward Lorentz force, and the position of the coil b is fixed.
  • the two magnets 15 vibrate upward.
  • the coil b drives the vibrator to vibrate upward.
  • the magnetic line of inductance comes from the N pole of the right magnet and reaches the S stage via the coil c (ie, the right coil).
  • the coil c cuts the magnetic induction line, and according to the left hand rule, the coil c is subjected to the downward Lorentz force.
  • the right magnet is subjected to an upward Lorentz force, and the position of the coil c is fixed.
  • Magnetic The body 15 vibrates upwards.
  • the coil c drives the vibrator to vibrate upward.
  • the vibrator when the single coil driving mode is employed, that is, when the coil b is turned on, the vibrator is subjected to the Lorentz force of the coil b, so that the driving force is minimized.
  • the linear vibration motor has low energy consumption and long response time, which is suitable for the general tactile feedback experience.
  • the vibrator When the double coil driving mode is adopted, that is, when the coil a and the coil c are simultaneously turned on, the vibrator is subjected to two Lorentz forces in the same direction, so that the driving force is larger than the single coil driving mode.
  • the linear vibration motor has moderate energy consumption, moderate response time, and good tactile feedback experience in tactile feedback.
  • both magnets 15 are subjected to an upward Lorentz force.
  • the vibrator is subjected to the Lorentz force in the same direction of the three coils 17, so that the driving force is greatly increased.
  • the driving effect is excellent, the response time is greatly shortened, and the tactile feedback of the whole machine is provided with an excellent vibration feeling experience. At this time, the linear vibration motor consumes the most energy.
  • the weight portion includes two masses, and the plurality of magnets 15 are disposed side by side between the two mass blocks and are respectively inserted into the two mass blocks.
  • the mass is a tungsten steel block 13
  • two tungsten steel blocks 13 are interposed with two magnets 15 arranged side by side, and two tungsten steel blocks 13 are located at both ends of the magnet 15.
  • the magnet 15 is a ferrite magnet or a neodymium iron boron magnet.
  • the plugging method facilitates the assembly and disassembly of the vibrator.
  • the arrangement of the two masses increases the weight of the stator and improves the vibration feel.
  • the thickness of the magnet 15 is configured to gradually increase from the plug end toward the middle portion, and an adhesive is also applied between the two plug ends and the two masses.
  • the magnet 15 is similar to a fusiform shape. This configuration facilitates the insertion of the magnet 15 into the mass.
  • the binder can effectively increase the bonding force between the mass and the magnet 15, and the life of the vibrator is improved.
  • the elastic element is a spring piece 12.
  • the elastic piece 12 is disposed on the upper side and/or the lower side of the vibrator in the vibration direction, and the elastic piece 12 has the escape port 14 for avoiding the stator.
  • the elastic piece 12 has good elasticity, is simple in structure, and is durable.
  • the arrangement of the escape opening 14 allows the coil 17 to pass through the spring 12 when installed, and the coil 17 does not interfere with the spring 12 when vibrating.
  • the elastic piece 12 does not occupy the space inside the casing in the vibration direction, and the thickness of the linear vibration motor can be made thinner. It conforms to the development trend of miniaturization and thinning of electronic devices.
  • the elastic piece 12 is one, and one end of the elastic piece 12 is connected to the top and the other end is connected to the vibrator.
  • the elastic piece 12 is one, and one end of the elastic piece 12 is connected to the bottom and the other end is connected to the vibrator.
  • FIG. 1-3 there are two elastic pieces 12, wherein one elastic piece 12 has one end connected to the top and the other end connected to the vibrator; the other elastic piece 12 has one end connected to the bottom and the other end connected to the vibrator.
  • the linear vibration motor further includes a printed wiring board, and each of the coils 17 is electrically connected to the printed wiring board.
  • the printed wiring board is FPCB 18 (flexible printed wiring board), and the FPCB 18 has a small thickness, which conforms to the trend of thinning and miniaturization of electronic equipment, and has a good conduction effect.
  • FIG. 7 is a circuit diagram of an FPCB 18 in accordance with one embodiment of the present invention.
  • the FPCB 18 is capable of implementing the above three driving modes by controlling the conduction of different pads.
  • the external circuit or processing chip turns on the pad 2 and the pad 3, that is, the pad 2 is the positive electrode and the pad 3 is the negative electrode.
  • the current trend is:
  • Pad 2 ⁇ Pad 6 ⁇ Coil b ⁇ Pad 7 ⁇ Pad 3
  • the external circuit or processing chip turns on the pad 1 and the pad 3, that is, the pad 1 is the positive electrode and the pad 3 is the negative electrode.
  • the current trend is:
  • the external circuit or the processing chip turns on the pad 1 and the pad 2, that is, the pad 1 is the positive electrode and the pad 2 is the negative electrode.
  • the current trend is:
  • the conduction of different numbers of coils 17 can be achieved by the FPCB 18, thereby achieving multiple vibratory experiences of the linear vibration motor.
  • an electronic device is provided.
  • the electronic device can be, but is not limited to, a mobile phone, a tablet computer, a smart watch, a smart bracelet, a PSP, a notebook computer, a VR device, a true wireless headset, and the like.
  • the electronic device includes the linear vibration motor provided by the present invention.
  • the electronic device has a variety of vibration modes that provide a vibratory experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种多驱动线性振动马达以及电子设备,该线性振动马达包括壳体、定子、振子和弹性元件,定子、振子和弹性元件被设置在壳体内,定子包括极芯(16)和围绕极芯(16)设置的线圈(17),极芯(16)垂直于振动方向,定子为多个并且相邻的线圈(17)的电流方向相反,振子包括配重部和与配重部连接的磁体(15),磁体(15)为多个并且磁体(15)的充磁方向与振动方向平行,相邻的磁体(15)的充磁方向相反,振子通过弹性元件悬置在壳体内,磁体(15)与定子依次间隔设置,多驱动线性振动马达被配置为能根据预设的振动效果控制不同数量的线圈(17)导通。该线性振动马达能提供多种振感体验。

Description

多驱动线性振动马达以及电子设备 技术领域
本发明涉及振动装置技术领域,更具体地,涉及一种多驱动线性振动马达以及应用了该线性振动马达的电子设备。
背景技术
现有的线性振动马达由于定子的磁路***单一,造成振子的驱动力恒定,故只能提供单一的振感体验。无法满足多种振感体验的要求。
发明内容
本发明的一个目的是提供一种多驱动线性振动马达的新技术方案。
根据本发明的第一方面,提供了一种多驱动线性振动马达。该线性振动马达包括壳体、定子、振子和弹性元件,所述定子、所述振子和所述弹性元件被设置在所述壳体内,所述定子包括极芯和围绕极芯设置的线圈,所述极芯垂直于振动方向,所述定子为多个并且相邻的线圈的电流方向相反,所述振子包括配重部和与配重部连接的磁体,所述磁体为多个并且所述磁体的充磁方向与振动方向平行,相邻的所述磁体的充磁方向相反,所述振子通过所述弹性元件悬置在所述壳体内,所述磁体与所述定子依次间隔设置,所述多驱动线性振动马达被配置为能根据预设的振动效果控制不同数量的线圈导通。
可选地,所述磁体的数量大于等于2个,所述定子的数量比所述磁体的数量多1个,多个所述磁体被分别悬置在多个所述定子形成的间隙中。
可选地,所述定子为3个,所述磁体为2个。
可选地,所述配重部包括两个质量块,多个所述磁体并排设置在两个所述质量块之间,并且分别与两个所述质量块插接。
可选地,所述磁体的厚度被配置为由插接端向中部逐渐增加,在两个 所述插接端与两个所述质量块之间还涂覆有粘结剂。
可选地,所述弹性元件为弹片、弹簧或者弹性橡胶件。
可选地,所述弹性元件为弹片,所述弹片被设置在所述振子的沿振动方向的上侧和/或下侧,所述弹片具有用于避让所述定子的避让口。
可选地,还包括印刷线路板,每个所述线圈与所述印刷线路板导通。
可选地,所述壳体为长方体,所述壳体包括相对设置的顶部和底部,多个所述定子被设置在所述底部,所述极芯与所述底部平行。
根据本发明的另一个方面,提供了一种电子设备。该设备包括本发明提供的所述线性振动马达。
本发明的发明人发现,在现有技术中,线性振动马达由于定子的磁路***单一,造成振子的驱动力恒定,故只能提供单一的振感体验。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
根据本发明的实施例,多驱动线性振动马达被配置为能根据预设的振动效果控制不同数量的线圈导通。例如,能分别控制多个线圈中的一个、几个和全部导通。通过这种方式,振子能够得到不同大小的驱动力,从而能够实现不同的振动模式。
此外,通过控制不同数量的线圈导通,能提供多种情景下的振动效果,增加了用户的振感体验。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是根据本发明的一个实施例的线性振动马达的分解图。
图2是根据本发明的一个实施例的线性振动马达的剖视图。
图3是根据本发明的一个实施例的线性振动马达另一角度的剖视图。
图4是根据本发明的一个实施例的线性振动马达的原理图。
图5是根据本发明的一个实施例的振子的结构示意图。
图6是根据本发明的一个实施例的振子的剖视图。
图7是根据本发明的一个实施例的FPCB的线路图。
附图标记说明:
11:上壳;12:弹片;13:钨钢块;14:避让口;15:磁体;16:极芯;17:线圈;18:FPCB;19:下壳。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
根据本发明的实施例,提供了一种多驱动线性振动马达。该线性振动马达包括壳体、定子、振子和弹性元件。定子、振子和弹性元件被设置在壳体内。定子包括极芯16和围绕极芯16设置的线圈17。极芯16垂直于振动方向。振动方向即振子振动的方向。定子为多个并且相邻的线圈17的电流方向相反。定子用于响应外部电路的电信号并产生电磁场。例如,线圈17接收来自外部电路的电信号,以在线圈17内产生交变的电磁场。极芯16起到聚拢磁感线的作用。例如,用户可以通过设置线圈17的绕向以及正、负极接法,以实现相邻的线圈17的电流方向相反。
振子包括配重部和与配重部连接的磁体15。磁体15为多个并且磁体15的充磁方向与振动方向平行,相邻的磁体15的充磁方向相反。充磁方向即磁体15的N极和S极连线的方向。振子通过弹性元件悬置在壳体内。通电线圈17切割磁体15的磁感线产生洛伦兹力,洛伦兹力形成振子振动的驱动力。
用户通过设置线圈17的电流方向和磁体15的充磁方向,能够使每个定子与相应的磁体15之间的洛伦兹力的方向相同,以增大驱动力。
弹性元件为振子提供弹性回复力,弹性回复力随振子偏离初始位置的距离增大而增大,并且指向初始位置。例如,弹性元件为弹片12、弹簧或者弹性橡胶件。这几种弹性元件制作方便,并且使用寿命长。
优选的是,弹性元件为弹片12。例如,弹片12被限位固定在振子和壳体之间。振子在振动的过程中会挤压弹片12,受挤压的弹片12能够防止振子在振动过程中与壳体碰撞,同时也能够为振子的振动提供反方向上的弹性回复力。
在本发明实施例中,磁体15与定子依次间隔设置。在通电后,线圈17切割磁体15的磁感线形成洛伦兹力,由于线圈17的位置固定,洛伦兹力驱动振子发生振动。
多驱动线性振动马达被配置为能根据预设的振动效果控制不同数量的线圈17导通。例如,能分别控制多个线圈17中的一个、几个和全部导通。通过这种方式,振子能够得到不同大小的驱动力,从而能够实现不同的振动模式。
此外,通过控制不同数量的线圈17导通,能提供多种情景下的振动效果,增加了用户的振感体验。
优选的是,磁体15的数量大于等于2个,定子的数量比磁体15的数量多1个,多个磁体15被分别悬置在多个定子形成的间隙中。通话这种方式,每个磁体15的两端均有定子与其配合。这样,每个磁体15受力均衡,避免了出现偏振
图1是根据本发明的一个实施例的线性振动马达的分解图。图2是根据本发明的一个实施例的线性振动马达的剖视图。图3是根据本发明的一 个实施例的线性振动马达另一角度的剖视图。
如图1所示,在该例子中,上壳11和下壳19围合在一起构成壳体。优选的是,壳体为长方体。壳体包括相对设置的顶部和底部。例如顶部和侧壁构成上壳11,底部构成下壳19。多个定子被设置在底部,极芯16与底部平行。振动方向垂直于顶部和底部。长方体的结构外形规整,便于线性振动马达被安装到其他电子设备中去,并且内部空间规整,便于设置其他电子元件。
在该例子中,定子为3个,磁体15为2个。磁体15位于三个定子的间隙中。例如,如图3-4所示,位于两边的线圈17(即线圈a和线圈c)的绕向方向相同,并且电流方向相同。位于中间的定子的线圈17(即线圈b)与上述两个线圈17的绕向相反,在通电时,线圈b的电流方向与上述两个线圈17(线圈a和线圈c)的相反。两个磁铁的充磁方向相反。例如,左侧磁体上表面为N极,下表面为S极。右侧磁体上表面为S极,下表面为N极。优选的是,在初始状态时,磁体与和与其相邻的极芯相对。这样,线圈相对于磁体对称。在起振时振子运动更平稳,并且振子受到的洛伦兹力最大。
如图4所示,磁感线由左侧磁体的N极出来经由线圈a(即左侧线圈)到达S级。线圈a切割磁感线,根据左手定则,线圈a受到向下的洛伦兹力的作用。左侧磁体受到向上的洛伦兹力的作用,线圈17的位置固定。左侧磁体向上振动。线圈a驱动振子向上振动。
两个磁体15相互靠近的部分磁感线走向如图4所示。由左侧磁体N极出来的磁感线经由线圈b(即中间线圈)到达右侧磁体的S极;由右侧磁体N极出来的磁感线经由线圈b达到左侧磁体S极。
线圈b切割磁感线,根据左手定则,线圈b受到向下的洛伦兹力的作用。两个磁体15受到向上的洛伦兹力的作用,线圈b的位置固定。两个磁体15向上振动。线圈b驱动振子向上振动。
如图4所示,磁感线由右侧磁体的N极出来经由线圈c(即右侧线圈)到达S级。线圈c切割磁感线,根据左手定则,线圈c受到向下的洛伦兹力的作用。右侧磁体受到向上的洛伦兹力的作用,线圈c的位置固定。磁 体15向上振动。线圈c驱动振子向上振动。
这样,当采用单线圈驱动模式时,即线圈b导通时,振子受到线圈b的洛伦兹力的作用,使得驱动力最小。线性振动马达能耗小,响应时间较长,适用于普通触觉反馈体验。
当采用双线圈驱动模式时,即线圈a和线圈c同时导通时,振子受到两个同方向的洛伦兹力的作用,使得驱动力大于单线圈驱动模式。线性振动马达能耗适中,响应时间适中,触觉反馈中振感体验较好。
当采用三线圈驱动模式时,即三个线圈17同时导通时,两个磁体15均受到向上的洛伦兹力。振子受到三个线圈17的同方向的洛伦兹力的作用,使得驱动力大大增加。驱动效果极佳,大大缩短了响应时间,对整机触觉反馈提供极佳的振感体验。此时,线性振动马达的能耗最大。
在该例子中,通过控制不同数量线圈17的导通,能够得到多种振动效果。满足了用户对多种振感的要求。
当然,本领域技术人员可以根据实际需要设置线圈17和磁体15的数量,以及磁体15的充磁方向。当振子到达最大位移时,线圈的电流方向变向,以向反方向驱动振子。
在一个例子中,配重部包括两个质量块,多个磁体15并排设置在两个质量块之间,并且分别与两个质量块插接。例如,如图5-6所示,质量块为钨钢块13,两个钨钢块13与并排设置的两个磁体15插接在一起,两个钨钢块13位于磁体15两端。可选的是,磁体15为铁氧体磁铁或者钕铁硼磁铁。插接的方式便于振子的组装和拆卸。两个质量块的设置增大了定子的重量,可以提高振感。
优选的是,磁体15的厚度被配置为由插接端向中部逐渐增加,在两个插接端与两个质量块之间还涂覆有粘结剂。例如,如图5-6所示,磁体15类似于梭形。这种结构便于磁体15插接到质量块中。并且,粘结剂可以有效增加质量块与磁体15之间的结合力,提高了振子的使用寿命。
在一个例子中,弹性元件为弹片12。弹片12被设置在振子的沿振动方向的上侧和/或下侧,弹片12具有用于避让定子的避让口14。弹片12具有良好的弹性,结构简单并且耐用。
如图1和3所示,避让口14的设置,允许在安装时线圈17穿过弹片12,并且在振动时线圈17不会对弹片12形成干涉。这样,弹片12不占用壳体内部沿振动方向的空间,能够使线性振动马达的厚度更薄。顺应了电子设备小型化、轻薄化的发展趋势。
例如,弹片12为一个,弹片12的一端与顶部连接并且另一端与振子连接。
例如,弹片12为一个,弹片12的一端与底部连接并且另一端与振子连接。
例如,如图1-3所示,弹片12为2个,其中,一个弹片12的一端与顶部连接并且另一端与振子连接;另一个弹片12的一端与底部连接并且另一端与振子连接。
在一个例子中,线性振动马达还包括印刷线路板,每个线圈17与印刷线路板导通。例如,印刷线路板为FPCB18(柔性印刷线路板),FPCB18具有较小的厚度,顺应了电子设备轻薄化、小型化的发展趋势,并且导通效果良好。
图7是根据本发明的一个实施例的FPCB18的线路图。
如图7所示,通过控制不同焊盘的导通,该FPCB18能够实现上述三种驱动模式。
例如,单线圈驱动模式时,外部电路或者处理芯片导通焊盘2和焊盘3,即焊盘2为正极,焊盘3为负极。此时,电流走向为:
焊盘②→焊盘⑥→线圈b→焊盘⑦→焊盘③
例如,双线圈驱动模式时,外部电路或者处理芯片导通焊盘1和焊盘3,即焊盘1为正极,焊盘3为负极。此时,电流走向为:
焊盘①→焊盘④→线圈a→焊盘⑤→焊盘⑨→线圈c→焊盘⑧→焊盘③
例如,三线圈驱动模式时,外部电路或者处理芯片导通焊盘1和焊盘2,即焊盘1为正极,焊盘2为负极。此时,电流走向为:
焊盘①→焊盘④→线圈a→焊盘⑤→焊盘⑨→线圈c→焊盘⑧→焊盘⑦→线圈b→焊盘⑥→焊盘②
通过该FPCB18能够实现对不同数量线圈17的导通,从而实现线性振动马达的多种振感体验。
根据本发明的另一个实施例,提供了一种电子设备。该电子设备可以是但不局限于手机、平板电脑、智能手表、智能手环、PSP、笔记本电脑、VR设备、真无线耳机等。该电子设备包括本发明提供的线性振动马达。
该电子设备具有多种振动模式,能够提供振感体验。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种多驱动线性振动马达,其特征在于,包括壳体、定子、振子和弹性元件,所述定子、所述振子和所述弹性元件被设置在所述壳体内,所述定子包括极芯(16)和围绕极芯(16)设置的线圈(17),所述极芯(16)垂直于振动方向,所述定子为多个并且相邻的线圈(17)的电流方向相反,所述振子包括配重部和与配重部连接的磁体(15),所述磁体(15)为多个并且所述磁体(15)的充磁方向与振动方向平行,相邻的所述磁体(15)的充磁方向相反,所述振子通过所述弹性元件悬置在所述壳体内,所述磁体(15)与所述定子依次间隔设置,所述多驱动线性振动马达被配置为能根据预设的振动效果控制不同数量的线圈(17)导通。
  2. 根据权利要求1所述的多驱动线性振动马达,其特征在于,所述磁体(15)的数量大于等于2个,所述定子的数量比所述磁体(15)的数量多1个,多个所述磁体(15)被分别悬置在多个所述定子形成的间隙中。
  3. 根据权利要求1或2所述的多驱动线性振动马达,其特征在于,所述定子为3个,所述磁体(15)为2个。
  4. 根据权利要求1-3中的任意一项所述的多驱动线性振动马达,其特征在于,所述配重部包括两个质量块,多个所述磁体(15)并排设置在两个所述质量块之间,并且分别与两个所述质量块插接。
  5. 根据权利要求1-4中的任意一项所述的多驱动线性振动马达,其特征在于,所述磁体(15)的厚度被配置为由插接端向中部逐渐增加,在两个所述插接端与两个所述质量块之间还涂覆有粘结剂。
  6. 根据权利要求1-5中的任意一项所述的多驱动线性振动马达,其特征在于,所述弹性元件为弹片(12)、弹簧或者弹性橡胶件。
  7. 根据权利要求1-6中的任意一项所述的多驱动线性振动马达,其特征在于,所述弹性元件为弹片(12),所述弹片(12)被设置在所述振子的沿振动方向的上侧和/或下侧,所述弹片(12)具有用于避让所述定子的避让口(14)。
  8. 根据权利要求1-7中的任意一项所述的多驱动线性振动马达,其特征在于,还包括印刷线路板,每个所述线圈(17)与所述印刷线路板导通。
  9. 根据权利要求1-8中的任意一项所述的多驱动线性振动马达,其特征在于,所述壳体为长方体,所述壳体包括相对设置的顶部和底部,多个所述定子被设置在所述底部,所述极芯(16)与所述底部平行。
  10. 一种电子设备,其特征在于,包括如权利要求1-9中的任意一项所述的线性振动马达。
PCT/CN2017/089571 2017-03-02 2017-06-22 多驱动线性振动马达以及电子设备 WO2018157514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710121638.4A CN106849593B (zh) 2017-03-02 2017-03-02 多驱动线性振动马达以及电子设备
CN201710121638.4 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018157514A1 true WO2018157514A1 (zh) 2018-09-07

Family

ID=59137894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089571 WO2018157514A1 (zh) 2017-03-02 2017-06-22 多驱动线性振动马达以及电子设备

Country Status (2)

Country Link
CN (1) CN106849593B (zh)
WO (1) WO2018157514A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849593B (zh) * 2017-03-02 2018-11-02 歌尔股份有限公司 多驱动线性振动马达以及电子设备
CN106712433A (zh) * 2017-03-10 2017-05-24 信利光电股份有限公司 一种电子设备及其多振子振动装置
CN109617356B (zh) * 2019-02-12 2024-01-23 共达电声股份有限公司 一种线性激励器
CN214626752U (zh) * 2021-03-01 2021-11-05 瑞声光电科技(常州)有限公司 一种多螺线管式新型线性振动马达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359657A (ja) * 1991-06-06 1992-12-11 Toshiba Corp モータ
JPH10243688A (ja) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd リニア振動モータの起動制御方法
CN105099118A (zh) * 2015-07-31 2015-11-25 瑞声光电科技(常州)有限公司 多谐振线性电机
CN106130305A (zh) * 2016-08-22 2016-11-16 歌尔股份有限公司 配置有纵向振动马达的电子产品
CN106169855A (zh) * 2016-08-22 2016-11-30 歌尔股份有限公司 纵向振动马达
CN106849593A (zh) * 2017-03-02 2017-06-13 歌尔股份有限公司 多驱动线性振动马达以及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359657A (ja) * 1991-06-06 1992-12-11 Toshiba Corp モータ
JPH10243688A (ja) * 1997-02-25 1998-09-11 Matsushita Electric Works Ltd リニア振動モータの起動制御方法
CN105099118A (zh) * 2015-07-31 2015-11-25 瑞声光电科技(常州)有限公司 多谐振线性电机
CN106130305A (zh) * 2016-08-22 2016-11-16 歌尔股份有限公司 配置有纵向振动马达的电子产品
CN106169855A (zh) * 2016-08-22 2016-11-30 歌尔股份有限公司 纵向振动马达
CN106849593A (zh) * 2017-03-02 2017-06-13 歌尔股份有限公司 多驱动线性振动马达以及电子设备

Also Published As

Publication number Publication date
CN106849593A (zh) 2017-06-13
CN106849593B (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
US10312788B2 (en) Linear vibration motor
WO2018157514A1 (zh) 多驱动线性振动马达以及电子设备
US9048718B2 (en) Linear vibrator having pole plate positioned in weight thereof
CN106712437B (zh) 一种线性振动马达
US20170070132A1 (en) Linear Vibrator
US10840789B2 (en) Vibration generation device and electronic apparatus
US20210136499A1 (en) Screen sounding exciter and electronic device
WO2021128788A1 (zh) 一种振动装置及电子产品
US10069395B2 (en) Vibration motor
US20180229270A1 (en) Linear vibration motor
CN106712436A (zh) 一种线性振动马达
US11515068B2 (en) Exciter
CN106655698B (zh) 一种线性振动马达
CN106655695A (zh) 一种线性振动马达
CN206349906U (zh) 一种线性振动马达
WO2022242537A1 (zh) 振动马达及电子设备
WO2018171060A1 (zh) 线性振动马达
CN204967588U (zh) 线性振动马达
CN106487196B (zh) 一种线性振动马达
WO2018166090A1 (zh) 线性振动马达
US11025147B2 (en) Vibration motor
CN209516883U (zh) 振动马达和触觉设备
CN206349905U (zh) 一种线性振动马达
CN114421730B (zh) 一种线性振动马达
WO2020098426A1 (zh) 振动电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899090

Country of ref document: EP

Kind code of ref document: A1