WO2018163827A1 - 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム - Google Patents

超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム Download PDF

Info

Publication number
WO2018163827A1
WO2018163827A1 PCT/JP2018/006256 JP2018006256W WO2018163827A1 WO 2018163827 A1 WO2018163827 A1 WO 2018163827A1 JP 2018006256 W JP2018006256 W JP 2018006256W WO 2018163827 A1 WO2018163827 A1 WO 2018163827A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
image
reliability
freeze
motion amount
Prior art date
Application number
PCT/JP2018/006256
Other languages
English (en)
French (fr)
Inventor
和人 根本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2019504452A priority Critical patent/JP6707175B2/ja
Publication of WO2018163827A1 publication Critical patent/WO2018163827A1/ja
Priority to US16/532,724 priority patent/US20190357878A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/223Analysis of motion using block-matching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image

Definitions

  • the present invention relates to an ultrasonic observation apparatus, an operation method of the ultrasonic observation apparatus, and an operation program of the ultrasonic observation apparatus.
  • an ultrasonic transducer disposed at the distal end of an insertion portion to be inserted into a subject is a scanned image of a cross section of the subject based on an ultrasonic signal obtained by transmitting / receiving to / from an observation target.
  • An ultrasonic observation apparatus that generates an ultrasonic image is used.
  • This ultrasonic observation apparatus is known to have a freeze function in which a user designates and displays an image at a desired timing while the display apparatus is displaying a subject image live.
  • a pre-freeze function that always temporarily stores an image of a subject for a certain period of time and selects an image with relatively little motion blur as a freeze image from an image temporarily stored when the user presses the freeze switch. (For example, see Patent Document 1).
  • An ultrasonic observation apparatus that selects a freeze image based on movement information in an ultrasonic image is known as a technique for selecting an image with little movement by the pre-freeze function (see, for example, Patent Document 2).
  • this technique when an ultrasonic image is captured, the amount of movement of the ultrasonic transducer in the direction parallel to the scanning plane indicated by the ultrasonic image is calculated from the ultrasonic image, and the image with the smallest amount of movement is frozen image. Choose as.
  • the present invention has been made in view of the above, and an ultrasonic observation apparatus and an operation method of the ultrasonic observation apparatus that can accurately select an image with little movement when selecting an image by a pre-freeze function. And an operation program of the ultrasonic observation apparatus.
  • an ultrasonic observation apparatus is based on an ultrasonic signal obtained by transmitting and receiving an ultrasonic transducer to and from an observation target.
  • An ultrasonic observation apparatus that generates a plurality of ultrasonic images along a time series, wherein a subject that appears in an ultrasonic image of a latest frame among the plurality of ultrasonic images is reflected in an ultrasonic image of a past frame
  • a motion amount calculation unit that calculates a motion amount that is a movement amount with respect to the subject, a reliability determination unit that determines the reliability of the motion amount calculated by the motion amount calculation unit, and an input of a freeze instruction signal
  • a freeze image selection unit that selects a freeze image from the plurality of ultrasonic images based on the amount of motion and the reliability.
  • the ultrasonic transducer is disposed at a distal end of an insertion unit that is inserted into a subject, and the freeze image selection unit is configured to adjust the movement amount. Based on the reliability, information on movement of the ultrasonic transducer in a direction parallel to the scanning plane is calculated, and based on the reliability, movement or rotation of the ultrasonic transducer in a direction different from the direction parallel to the scanning plane is calculated. The information regarding is calculated, and the freeze image is selected.
  • the ultrasonic observation apparatus is characterized in that the freeze image selection unit selects, as the freeze image, an image having many regions with high reliability in the ultrasonic image.
  • the ultrasonic observation apparatus is characterized in that the freeze image selection unit selects the freeze image based on the reliability distribution in the ultrasonic image.
  • the freeze image selection unit may use the ultrasonic image with high reliability in the region where the depth of the observation target with respect to the ultrasonic transducer is large as the freeze image. It is characterized by selecting.
  • the motion amount calculation unit includes a plurality of regions included in a predetermined region centered on a measurement region set in the ultrasonic image, the measurement region, The degree of motion is calculated by detecting a region having a high degree of similarity, and the reliability determination unit is configured to calculate the similarity based on the similarity distribution calculated by the motion amount calculation unit. It is characterized by determining reliability.
  • an operation method of the ultrasonic observation apparatus includes a plurality of ultrasonic waves along a time series based on an ultrasonic signal obtained by transmitting and receiving an ultrasonic transducer to and from an observation target.
  • An operation method of an ultrasonic observation apparatus that generates an image, wherein the motion amount calculation unit includes a subject that appears in an ultrasonic image of a latest frame among the plurality of ultrasonic images, and that is reflected in an ultrasonic image of a past frame.
  • a motion amount calculating step for calculating a motion amount that is a moving amount with respect to the subject; a reliability determining step for determining a reliability of the motion amount calculated by the motion amount calculating portion; and a freeze A freeze image selection unit that selects a freeze image from the plurality of ultrasonic images based on the amount of motion and the reliability when receiving an input of an instruction signal; Special To.
  • an operation program of the ultrasonic observation apparatus includes a plurality of ultrasonic waves along a time series based on an ultrasonic signal obtained by transmitting / receiving an ultrasonic transducer to / from an observation target.
  • An operation program for an ultrasound observation apparatus that generates an image, wherein the motion amount calculation unit includes a subject that appears in an ultrasound image of the latest frame among the plurality of ultrasound images that is reflected in an ultrasound image of a past frame.
  • a motion amount calculating step for calculating a motion amount that is a moving amount with respect to the subject; a reliability determining step for determining a reliability of the motion amount calculated by the motion amount calculating portion; and a freeze
  • a freeze image selection unit selects a freeze image from the plurality of ultrasonic images based on the amount of motion and the reliability. Characterized in that to be executed by the ultrasonic observation apparatus.
  • an ultrasonic observation apparatus when selecting an image by the pre-freeze function, an ultrasonic observation apparatus, an operation method for the ultrasonic observation apparatus, and an operation program for the ultrasonic observation apparatus that can accurately select an image with little movement. Can be realized.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic system including an ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating measurement areas (blocks) set in an image in order to calculate a motion amount.
  • FIG. 3 is a diagram illustrating how the motion amount is calculated.
  • FIG. 4 is a diagram illustrating how an area is set in an ultrasonic image.
  • FIG. 5 is a block diagram showing a configuration of an ultrasonic diagnostic system including an ultrasonic observation apparatus according to a reference example of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic system including an ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • An ultrasonic diagnostic system 1 shown in FIG. 1 transmits an ultrasonic wave to a subject to be observed and receives an ultrasonic wave reflected by the subject, and an ultrasonic endoscope 2.
  • an ultrasonic observation device 3 that generates an ultrasonic image based on the ultrasonic signal acquired by the
  • a display device 4 that displays the ultrasonic image generated by the ultrasonic observation device 3.
  • the ultrasonic endoscope 2 converts an electrical pulse signal received from the ultrasonic observation device 3 into an ultrasonic pulse (acoustic pulse) and irradiates the subject at the tip thereof, and is reflected by the subject.
  • the ultrasonic transducer 21 converts the ultrasonic echo into an electrical echo signal expressed by a voltage change and outputs it.
  • the ultrasonic transducer 21 is disposed at the distal end of the insertion portion that is inserted into the subject.
  • the ultrasonic transducer 21 is a convex type or a linear type in which the scanning surface of the ultrasonic transducer 21 is parallel to the axial direction of the distal end of the insertion portion of the endoscope.
  • the ultrasonic endoscope 2 may be one that mechanically scans the ultrasonic transducer 21, or a plurality of elements are provided in an array as the ultrasonic transducer 21, and the elements involved in transmission and reception are electronically arranged. Electronic scanning may be performed by switching or delaying transmission / reception of each element.
  • the ultrasonic endoscope 2 usually has an imaging optical system and an imaging element, and is inserted into the digestive tract (esophagus, stomach, duodenum, large intestine) or respiratory organ (trachea, bronchi) of the subject for digestion. Images of ducts, respiratory organs and surrounding organs (pancreas, gallbladder, bile duct, biliary tract, lymph node, mediastinal organ, blood vessel, etc.) can be imaged.
  • the ultrasonic endoscope 2 has a light guide that guides illumination light to be irradiated onto the subject during imaging.
  • the light guide has a distal end portion that reaches the distal end of the insertion portion of the ultrasonic endoscope 2 into the subject, and a proximal end portion that is connected to a light source device that generates illumination light.
  • the ultrasonic observation apparatus 3 includes a transmission / reception unit 301, an addition phasing unit 302, a signal processing unit 303, a scan converter 304, an image processing unit 305, a frame memory 306, a block setting unit 307, a motion amount calculation unit 308, and a reliability determination unit. 309, a freeze image selection unit 310, an input unit 311, a control unit 312, and a storage unit 313.
  • the transmission / reception unit 301 is electrically connected to the ultrasonic endoscope 2 and transmits a transmission signal (pulse signal) including a high voltage pulse to the ultrasonic transducer 21 based on a predetermined waveform and transmission timing.
  • a transmission signal pulse signal
  • An echo signal which is an electrical reception signal, is received from the acoustic transducer 21.
  • the frequency band of the pulse signal transmitted by the transmission / reception unit 301 may be a wide band that substantially covers the linear response frequency band of the electroacoustic conversion of the pulse signal to the ultrasonic pulse in the ultrasonic transducer 21.
  • the transmission / reception unit 301 transmits various control signals output from the control unit 312 to the ultrasonic endoscope 2 and receives various types of information including an identification ID from the ultrasonic endoscope 2 to receive the control unit 312. It also has a function to transmit to.
  • the addition phasing unit 302 receives the echo signal from the transmission / reception unit 301 and generates and outputs digital radio frequency (RF) data (hereinafter referred to as RF data).
  • RF data digital radio frequency
  • the addition phasing unit 302 performs STC (Sensitivity Time Control) correction that amplifies an echo signal having a larger reception depth at a higher amplification rate, and performs processing such as filtering on the amplified echo signal, and then performs A / D. By performing the conversion, time domain RF data is generated and output to the signal processing unit 303.
  • STC Sesitivity Time Control
  • the addition phasing unit 302 is used for beam synthesis corresponding to the plurality of elements. Multi-channel circuit.
  • the signal processing unit 303 generates digital B-mode reception data based on the RF data received from the transmission / reception unit 301.
  • the signal processing unit 303 performs known processing such as bandpass filter, envelope detection, and logarithmic conversion on the RF data to generate digital B-mode reception data. In logarithmic conversion, the common logarithm of the amount obtained by dividing RF data by the reference voltage Vc is taken and expressed in decibel values.
  • the signal processing unit 303 outputs the generated B-mode reception data to the image processing unit 305.
  • the signal processing unit 303 is realized using a CPU (Central Processing Unit), various arithmetic circuits, and the like.
  • the scan converter 304 converts the scan direction of the B-mode reception data received from the signal processing unit 303 to generate frame data. Specifically, the scan converter 304 converts the scan direction of the B-mode reception data from the ultrasonic scan direction to the display direction of the display device 4.
  • the image processing unit 305 generates B-mode image data (hereinafter also simply referred to as image data) including an ultrasound image that is a B-mode image to be displayed by converting the amplitude of the echo signal into luminance.
  • the image processing unit 305 performs signal processing using known techniques such as gain processing and contrast processing on the frame data from the scan converter 304 and sets the data step width to be determined according to the image display range in the display device 4.
  • B-mode image data is generated by thinning out the corresponding data.
  • the B-mode image is a grayscale image in which values of R (red), G (green), and B (blue), which are variables when the RGB color system is adopted as a color space, are matched.
  • the image processing unit 305 performs coordinate conversion to rearrange the scanning range so that the scanning range can be spatially correctly represented on the B-mode reception data from the signal processing unit 303, and then performs interpolation processing between the B-mode reception data.
  • the gap between the B mode reception data is filled, and B mode image data is generated.
  • the frame memory 306 is realized by using, for example, a ring buffer, and stores a predetermined amount (a predetermined number of frames N) of ultrasonic images generated by the image processing unit 305 in time series.
  • a predetermined number of frames N a predetermined number of frames N
  • the oldest B-mode image data is overwritten with the latest B-mode image data, so that the latest ultrasound image has a predetermined number of frames in time series.
  • the frame memory 306 includes a plurality of ultrasonic images (a number of frames back from a predetermined number of frames from the ultrasonic image IM n of the nth frame (n is a natural number of 2 or more) which is the latest ultrasonic image).
  • the frame memory 306 stores the motion amount calculated by the motion amount calculation unit 308 described later and the reliability calculated by the reliability determination unit 309 described later in association with the ultrasonic image.
  • FIG. 2 is a diagram illustrating measurement areas (blocks) set in an image in order to calculate a motion amount.
  • the block setting unit 307 displays blocks of vertical p ⁇ horizontal q (p and q are natural numbers of 2 or more) from B11 to Bpq on the ultrasonic image IM n which is the latest ultrasonic image. Set in a grid.
  • the block setting unit 307 is realized using a CPU, various arithmetic circuits, and the like.
  • the motion amount calculation unit 308 is an amount by which the subject captured in the ultrasound image IM n of the latest frame moves relative to the subject captured in the ultrasound image of the past frame among the plurality of ultrasound images stored in the frame memory 306. A certain amount of movement is calculated. Specifically, the motion amount calculation unit 308 calculates the motion amount by, for example, a known block matching method using a sum of absolute difference (SAD) value of pixel values, which is a kind of correlation value. To do.
  • the motion amount calculation unit 308 is realized using a CPU, various arithmetic circuits, and the like.
  • FIG. 3 is a diagram illustrating how the motion amount is calculated.
  • FIG. 3 is a diagram illustrating a state in which the motion amount of the block Bmn in FIG. 2 is calculated.
  • the motion amount calculation unit 308 is in the same position as the block Bmn set in the ultrasonic image IM n and has the block Bmn set in the previous ultrasonic image IM n ⁇ 1 .
  • Blocks Bmn ′ included in the search area SA set on the outer periphery are sequentially set along the arrows shown in FIG. 3, and correlation values SAD indicating the similarity between the set block Bmn ′ and the block Bmn are sequentially calculated.
  • the motion amount calculation unit 308 calculates a vector from the center of the block Bmn to the block center having the smallest correlation value SAD as the motion amount. Then, the motion amount calculation unit 308 repeatedly calculates the motion amount of each block, and calculates the motion amounts of all the blocks in the ultrasonic image IM n .
  • SAD is used as a correlation value in the block matching method, but other correlation values (for example, SSD: Sum of Squared Difference) may be used.
  • the motion amount calculation unit 308 calculates a frame motion amount indicating the motion of the entire image from the statistical values (average value, mode value, etc.) of the motion amounts of a plurality of blocks. In addition, the frame motion amount may be calculated using only the motion amount of a block with high reliability of the motion amount described later.
  • the reliability determination unit 309 determines the reliability of the motion amount calculated by the motion amount calculation unit 308.
  • Various methods for determining the reliability of the correctness of the result of block matching are known, but here the distribution of correlation values SAD approximates a paraboloid near the minimum position based on the continuity of pixel values in the image. The method of using the property to be explained.
  • the reliability determination unit 309 uses the following equation (1) as a curved surface obtained by approximating the correlation value SAD of each block near the minimum correlation value position in the search area SA calculated by the motion amount calculation unit 308 by the least square method. Calculate the elliptical paraboloid function represented.
  • SAD (x, y) (x ⁇ xc) 2 / a 2 + (y ⁇ yc) 2 / b 2 + c (1)
  • the reliability determination unit 309 determines that the reliability of the motion amount is high when the distribution of the correlation value SAD is similar to an elliptic paraboloid. In other words, the reliability determination unit 309 determines that the reliability is high when the residual between the actual correlation value SAD and the calculated elliptic paraboloid function is smaller than the predetermined threshold, and when the residual is larger than the threshold. Determines that the reliability is low. This is because the correlation value SAD is not distributed parabolically when the region similar to the block Bmn on IM n does not exist in the search region SA on IM n ⁇ 1 .
  • the coefficients a and b of the elliptic paraboloid function are larger than a predetermined threshold, it may be determined that the reliability is low because the region is low contrast and unsuitable for block matching. Further, when the coordinate (xc, yc) is outside the search area SA, the movement destination is estimated to be outside the search area SA and is also unsuitable, so it may be determined that the reliability is low.
  • Reliability determining unit 309 performs determination of the reliability for all the blocks in the ultrasound image IM n, determines the motion amount of the reliability of all the blocks included in the ultrasound image IM n.
  • the reliability determination unit 309 is realized using a CPU, various arithmetic circuits, and the like.
  • the movement of the ultrasonic transducer 21 of the ultrasonic endoscope 2 includes movement along a direction parallel to the scanning plane of the ultrasonic transducer 21 (hereinafter referred to as parallel movement). Also includes a component due to movement in a direction orthogonal to the scanning plane (hereinafter also referred to as orthogonal movement), and a component due to rotation about the rotation axis that intersects the scanning plane.
  • the frame motion amount that can be calculated by the motion amount calculation unit 308 by the block matching method is the amount of the component due to the parallel movement of the ultrasonic transducer 21.
  • the reliability calculated by the reliability determination unit 309 is an index for determining whether or not the ultrasonic transducer 21 includes a component other than parallel movement (orthogonal movement and rotation). This is because if the movement of the ultrasonic transducer 21 includes a component other than parallel movement, the temporally moving frames scan different sections of the subject, and the block is determined to have low reliability. Because there will be more.
  • the freeze image selection unit 310 selects a freeze image from a plurality of ultrasonic images stored in the frame memory 306 based on the frame motion amount and the reliability. To do. Specifically, the freeze image selection unit 310 evaluates each ultrasound image using an evaluation function having the variable of the frame motion amount of the ultrasound image and the proportion of blocks with high motion amount reliability. A highly evaluated ultrasonic image is selected as a freeze image. In other words, the freeze image selection unit 310 uses the freeze image based on the information related to the movement other than the parallel movement of the ultrasonic transducer 21 and the parallel movement of the ultrasonic transducer 21 evaluated based on the reliability. Select.
  • the freeze image selection unit 310 is realized using a CPU, various arithmetic circuits, and the like.
  • the input unit 311 is realized using a user interface such as a keyboard, a mouse, a touch panel, etc., and accepts input of various information.
  • the input unit 311 receives an input of a freeze instruction signal that is an instruction input for displaying a freeze image on the display device 4 by the pre-freeze function.
  • the control unit 312 controls the entire ultrasound diagnostic system 1.
  • the control unit 312 is realized by using a CPU having various calculation and control functions, various arithmetic circuits, and the like.
  • the control unit 312 controls the ultrasonic observation apparatus 3 in an integrated manner by reading information stored and stored in the storage unit 313 from the storage unit 313 and executing various arithmetic processes related to the operation method of the ultrasonic observation apparatus 3. To do.
  • the control unit 312 may be configured using a CPU or the like that is common to the signal processing unit 303, the block setting unit 307, the motion amount calculation unit 308, the reliability determination unit 309, and the freeze image selection unit 310.
  • the storage unit 313 stores various programs including an operation program for executing the operation method of the ultrasound observation apparatus 3.
  • the operation program can be recorded on a computer-readable recording medium such as a hard disk, a flash memory, a CD-ROM, a DVD-ROM, or a flexible disk and widely distributed.
  • the various programs described above can also be obtained by downloading via a communication network.
  • the communication network here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network) or the like, and may be wired or wireless.
  • the storage unit 313 having the above-described configuration is realized using a ROM (Read Only Memory) in which various programs are installed in advance, and a RAM (Random Access Memory) that stores calculation parameters and data of each process. .
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the freeze image selection unit 310 selects a freeze image based on the frame motion amount and the reliability.
  • the freeze image selection unit 310 is an image in which the parallel movement of the ultrasonic transducer 21 that is an image with a small amount of motion is small, and is an image that includes a large amount of motion with high reliability. It is possible to select an image with a small movement other than parallel movement as a freeze image. Therefore, the ultrasonic observation apparatus 3 is an ultrasonic observation apparatus with improved accuracy in selecting an image with little movement when selecting an image by the pre-freeze function.
  • a frame correlation image obtained by synthesizing ultrasonic images arranged in time series may be generated and stored in the frame memory 306 along the time series.
  • the frame correlation image is generated by performing addition averaging processing with weights associated with time series applied to time-series ultrasonic images.
  • the motion amount calculation unit 308 and the reliability determination unit 309 calculate the motion amount and reliability of the frame correlation image
  • the freeze image selection unit 310 selects a freeze image from the frame correlation images.
  • the convex-type / linear-type ultrasonic transducer 21 has been described as an example.
  • the ultrasonic transducer 21 has a scanning surface of the ultrasonic wave and the distal end of the insertion portion of the ultrasonic endoscope 2.
  • a radial type may be used.
  • the motion amount calculated by the motion amount calculation unit 308 is a movement amount in each direction orthogonal to the insertion unit
  • the reliability calculated by the reliability determination unit 309 is This is an index indicating whether or not movement in the direction along the insertion portion and rotation around the rotation axis intersecting the scanning plane are included.
  • the freeze image selection unit 310 selects a freeze image using an evaluation function with the amount of motion and reliability as variables, and thus selects an image with little motion as a freeze image, similarly to the convex type and linear type. can do.
  • the ultrasonic observation apparatus according to the second embodiment is different from the first embodiment in the processing in the ultrasonic observation apparatus, and the configuration is the same as that in the first embodiment, and thus description thereof will be omitted as appropriate.
  • FIG. 4 is a diagram illustrating how an area is set in an ultrasonic image.
  • the freeze image selection unit 310 divides the ultrasonic image IM n into a region A1 near the ultrasonic transducer 21 and a region A2 farther from the ultrasonic transducer 21 than the region A1. Then, freeze image selection unit 310 calculates the proportion of blocks with high motion amount reliability in each of region A1 and region A2. Furthermore, the freeze image selection unit 310 converts each ultrasonic image using an evaluation function whose variable is the frame motion amount of the ultrasound image and the ratio of blocks with high reliability of the motion amount of the regions A1 and A2. Evaluate and select the ultrasound image with the highest evaluation as the freeze image.
  • the region A2 farther from the ultrasonic transducer 21 in the ultrasonic image IM n is more susceptible to the rotation. Since different areas of the subject are scanned, the reliability of the amount of movement tends to be lowered. That is, the reliability of the region A2 is more likely to decrease than the region A1. Therefore, according to the second embodiment, since the ratio of blocks with high reliability of motion amounts different for each region is substituted into the evaluation function used when the freeze image selection unit 310 selects a freeze image, the insertion unit An image with little movement due to rotation about the tip can be selected as a freeze image.
  • the freeze image selection unit 310 may select a freeze image based on the reliability distribution in the ultrasonic image.
  • the freeze image selection unit 310 may select a freeze image using only the reliability of the area A2. That is, the freeze image selection unit 310 selects, as a freeze image, an ultrasound image with high reliability in a region where the depth of the observation target with respect to the ultrasound transducer 21 is large (a region away from the ultrasound transducer 21). Also good.
  • a region A1 near the ultrasonic transducer 21 and a region A2 farther from the ultrasonic transducer 21 than the region A1 are defined as an upper region in the ultrasonic image. The lower region was used.
  • the ultrasonic transducer 21 is a radial type, the region A1 close to the ultrasonic transducer 21 and the region A2 farther from the ultrasonic transducer 21 than the region A1 are defined as the ultrasonic transducer 21. What is necessary is just to make it the area
  • the ultrasonic observation apparatus according to the third embodiment is different from the first embodiment in the processing in the ultrasonic observation apparatus, and the configuration is the same as in the first embodiment, and thus the description thereof will be omitted as appropriate.
  • the freeze image selection unit 310 divides the ultrasonic image IM n into a region A1 close to the ultrasonic transducer 21 and a region A2 farther from the ultrasonic transducer 21 than the region A1, as in the second embodiment. Then, freeze image selection unit 310 calculates the proportion of blocks with high motion amount reliability in each of region A1 and region A2. Furthermore, the freeze image selection unit 310 uses each evaluation function using an evaluation function whose variables are the frame motion amount of the ultrasound image and the ratio of the entire image, the motion amount of the region A1 and the region A2 with high reliability. The sound image is evaluated, and the ultrasonic image having the highest evaluation is selected as the freeze image. As a result, an image with little motion can be more accurately selected as a freeze image.
  • FIG. 5 is a block diagram showing a configuration of an ultrasonic diagnostic system including an ultrasonic observation apparatus according to a reference example of the present invention.
  • An ultrasound diagnostic system 1A illustrated in FIG. 5 includes an ultrasound observation apparatus 3A including a frame correlation image generation unit 321A and an edge intensity calculation unit 322A.
  • the frame correlation image generation unit 321A generates a frame correlation image obtained by synthesizing ultrasonic images arranged in time series, and stores the frame correlation image in the frame memory 306 along the time series.
  • the frame correlation image is generated by performing addition averaging processing with weights associated with time series applied to time-series ultrasonic images.
  • the frame correlation image generation unit 321A is realized using a CPU, various arithmetic circuits, and the like.
  • the edge strength calculation unit 322A calculates the edge strength of each frame correlation image.
  • the edge strength calculation unit 322A is realized using a CPU, various arithmetic circuits, and the like.
  • the freeze image selection unit 310 selects a freeze image from the frame correlation images based on the edge strength calculated by the edge strength calculation unit 322A.
  • the freeze image selection unit 310 selects the freeze image based on the edge strength, it is possible to accurately select an image with little movement.
  • freeze image selection unit 310 may select a freeze image based on the amount of a specific frequency component out of the spatial frequency calculated by performing Fourier transform on the frame correlation image instead of the edge strength.
  • the ultrasonic image may be divided into a plurality of regions, and the edge intensity and the spatial frequency may be calculated for each region.
  • an example is described as an ultrasonic endoscope.
  • the ultrasonic observation apparatus of the present invention is applied to an external ultrasonic probe that emits ultrasonic waves from the body surface of a subject. Also good.
  • the extracorporeal ultrasonic probe is usually used for observing an abdominal organ (liver, gallbladder, bladder), breast (particularly mammary gland), and thyroid gland.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波観測装置(3)は、超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて、時系列に沿って複数の超音波画像を生成する超音波観測装置であって、前記複数の超音波画像のうち、最新フレームの超音波画像に写る被写体が過去のフレームの超音波画像に写る前記被写体に対して動いた量である動き量を算出する動き量算出部(308)と、前記動き量算出部が算出した前記動き量の信頼性を判定する信頼性判定部(309)と、フリーズ指示信号の入力を受け付けた場合、前記動き量と前記信頼性とに基づいて、前記複数の超音波画像の中からフリーズ画像を選択するフリーズ画像選択部(310)と、を備える。これにより、プリフリーズ機能により画像を選択する際に、動きが少ない画像を的確に選択することができる超音波観測装置を提供する。

Description

超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
 本発明は、超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムに関する。
 従来、医療分野において、被検体内に挿入する挿入部の先端に配置された超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて被検体断面の走査像である超音波画像を生成する超音波観測装置が用いられている。この超音波観測装置では、表示装置が被検体画像をライブ表示している最中にユーザが所望のタイミングの画像を指定して表示させるフリーズ機能を有するものが知られている。さらに、常に一定期間の被検体画像を一時記憶しておき、ユーザがフリーズスイッチを押した時点で一時記憶されている画像から相対的に動きによるブレが少ない画像をフリーズ画像として選択するプリフリーズ機能を有するものも知られている(例えば、特許文献1を参照)。
 プリフリーズ機能により動きが少ない画像を選択する技術として、超音波画像内の動きの情報に基づいてフリーズ画像を選択する超音波観測装置が知られている(例えば、特許文献2を参照)。この技術では、超音波画像の撮像時において、超音波画像が示す走査面に平行な方向への超音波振動子の移動量を超音波画像から算出し、この移動量が最も小さい画像をフリーズ画像として選択する。
特開2004-24559号公報 特開2015-131100号公報
 しかしながら、特許文献2の技術では、超音波振動子が走査面に平行な方向と異なる方向に移動したときに撮像された画像や、超音波振動子が回転したときに撮像された画像をフリーズ画像として選択してしまう場合があった。
 本発明は、上記に鑑みてなされたものであって、プリフリーズ機能により画像を選択する際に、動きが少ない画像を的確に選択することができる超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る超音波観測装置は、超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて、時系列に沿って複数の超音波画像を生成する超音波観測装置であって、前記複数の超音波画像のうち、最新フレームの超音波画像に写る被写体が過去のフレームの超音波画像に写る前記被写体に対して動いた量である動き量を算出する動き量算出部と、前記動き量算出部が算出した前記動き量の信頼性を判定する信頼性判定部と、フリーズ指示信号の入力を受け付けた場合、前記動き量と前記信頼性とに基づいて、前記複数の超音波画像の中からフリーズ画像を選択するフリーズ画像選択部と、を備えることを特徴とする。
 また、本発明の一態様に係る超音波観測装置は、前記超音波振動子は、被検体内に挿入される挿入部の先端に配置されており、前記フリーズ画像選択部は、前記動き量に基づいて前記超音波振動子の走査面に平行な方向への移動に関する情報を算出し、前記信頼性に基づいて前記超音波振動子の前記走査面に平行な方向と異なる方向への移動又は回転に関する情報を算出し、前記フリーズ画像を選択することを特徴とする。
 また、本発明の一態様に係る超音波観測装置は、前記フリーズ画像選択部は、前記超音波画像内における前記信頼性が高い領域が多い画像を前記フリーズ画像として選択することを特徴とする。
 また、本発明の一態様に係る超音波観測装置は、前記フリーズ画像選択部は、前記超音波画像内における前記信頼性の分布に基づいて、前記フリーズ画像を選択することを特徴とする。
 また、本発明の一態様に係る超音波観測装置は、前記フリーズ画像選択部は、前記超音波振動子に対する観測対象の深度が大きい領域において前記信頼性が高い前記超音波画像を前記フリーズ画像として選択することを特徴とする。
 また、本発明の一態様に係る超音波観測装置は、前記動き量算出部は、前記超音波画像に設定した測定領域を中心とした所定の領域内に含まれる複数の領域と前記測定領域との類似度を算出し、該類似度が高い領域を検出することにより前記動き量を算出し、前記信頼性判定部は、前記動き量算出部が算出した前記類似度の分布に基づいて、前記信頼性を判定することを特徴とする。
 また、本発明の一態様に係る超音波観測装置の作動方法は、超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて、時系列に沿って複数の超音波画像を生成する超音波観測装置の作動方法であって、動き量算出部が、前記複数の超音波画像のうち、最新フレームの超音波画像に写る被写体が過去のフレームの超音波画像に写る前記被写体に対して動いた量である動き量を算出する動き量算出ステップと、信頼性判定部が、前記動き量算出部が算出した前記動き量の信頼性を判定する信頼性判定ステップと、フリーズ指示信号の入力を受け付けた場合、フリーズ画像選択部が、前記動き量と前記信頼性とに基づいて、前記複数の超音波画像の中からフリーズ画像を選択するフリーズ画像選択ステップと、を含むことを特徴とする。
 また、本発明の一態様に係る超音波観測装置の作動プログラムは、超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて、時系列に沿って複数の超音波画像を生成する超音波観測装置の作動プログラムであって、動き量算出部が、前記複数の超音波画像のうち、最新フレームの超音波画像に写る被写体が過去のフレームの超音波画像に写る前記被写体に対して動いた量である動き量を算出する動き量算出ステップと、信頼性判定部が、前記動き量算出部が算出した前記動き量の信頼性を判定する信頼性判定ステップと、フリーズ指示信号の入力を受け付けた場合、フリーズ画像選択部が、前記動き量と前記信頼性とに基づいて、前記複数の超音波画像の中からフリーズ画像を選択するフリーズ画像選択ステップと、を超音波観測装置に実行させることを特徴とする。
 本発明によれば、プリフリーズ機能により画像を選択する際に、動きが少ない画像を的確に選択することができる超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムを実現することができる。
図1は、本発明の実施の形態1に係る超音波観測装置を備える超音波診断システムの構成を示すブロック図である。 図2は、動き量を算出するために画像に設定される測定領域(ブロック)を示す図である。 図3は、動き量を算出する様子を表す図である。 図4は、超音波画像に領域を設定する様子を示す図である。 図5は、本発明の参考例に係る超音波観測装置を備える超音波診断システムの構成を示すブロック図である。
 以下に、図面を参照して本発明に係る超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラムの実施の形態を説明する。なお、これらの実施の形態により本発明が限定されるものではない。本発明は、プリフリーズ機能を有する超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム一般に適用することができる。
 また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態1)
 図1は、本発明の実施の形態1に係る超音波観測装置を備える超音波診断システムの構成を示すブロック図である。図1に示す超音波診断システム1は、観測対象である被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波内視鏡2と、超音波内視鏡2が取得した超音波信号に基づいて超音波画像を生成する超音波観測装置3と、超音波観測装置3が生成した超音波画像を表示する表示装置4と、を備える。
 超音波内視鏡2は、その先端部に、超音波観測装置3から受信した電気的なパルス信号を超音波パルス(音響パルス)に変換して被検体へ照射するとともに、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する超音波振動子21を有する。超音波振動子21は、被検体内に挿入される挿入部の先端に配置されている。超音波振動子21は、ここでは、超音波振動子21の走査面が内視鏡の挿入部先端の軸方向と平行になるコンベックス型、又は、リニア型とする。超音波内視鏡2は、超音波振動子21をメカ的に走査させるものであってもよいし、超音波振動子21として複数の素子をアレイ状に設け、送受信にかかわる素子を電子的に切り替えたり、各素子の送受信に遅延をかけたりすることで、電子的に走査させるものであってもよい。
 超音波内視鏡2は、通常は撮像光学系及び撮像素子を有しており、被検体の消化管(食道、胃、十二指腸、大腸)、又は呼吸器(気管、気管支)へ挿入され、消化管、呼吸器やその周囲臓器(膵臓、胆嚢、胆管、胆道、リンパ節、縦隔臓器、血管等)を撮像することが可能である。また、超音波内視鏡2は、撮像時に被検体へ照射する照明光を導くライトガイドを有する。このライトガイドは、先端部が超音波内視鏡2の被検体への挿入部の先端まで達している一方、基端部が照明光を発生する光源装置に接続されている。
 超音波観測装置3は、送受信部301、加算整相部302、信号処理部303、スキャンコンバーター304、画像処理部305、フレームメモリ306、ブロック設定部307、動き量算出部308、信頼性判定部309、フリーズ画像選択部310、入力部311、制御部312及び記憶部313を有する。
 送受信部301は、超音波内視鏡2と電気的に接続され、所定の波形及び送信タイミングに基づいて高電圧パルスからなる送信信号(パルス信号)を超音波振動子21へ送信するとともに、超音波振動子21から電気的な受信信号であるエコー信号を受信する。
 送受信部301が送信するパルス信号の周波数帯域は、超音波振動子21におけるパルス信号の超音波パルスへの電気音響変換の線型応答周波数帯域をほぼカバーする広帯域にするとよい。
 送受信部301は、制御部312が出力する各種制御信号を超音波内視鏡2に対して送信するとともに、超音波内視鏡2から識別用のIDを含む各種情報を受信して制御部312へ送信する機能も有する。
 加算整相部302は、送受信部301からエコー信号を受信してデジタルの高周波(RF:Radio Frequency)信号のデータ(以下、RFデータという)を生成、出力する。加算整相部302は、受信深度が大きいエコー信号ほど高い増幅率で増幅するSTC(Sensitivity Time Control)補正を行い、増幅されたエコー信号に対してフィルタリング等の処理を施した後、A/D変換することによって時間ドメインのRFデータを生成し、信号処理部303へ出力する。なお、超音波内視鏡2が複数の素子をアレイ状に設けた超音波振動子21を電子的に走査させる構成を有する場合、加算整相部302は、複数の素子に対応したビーム合成用の多チャンネル回路を有する。
 信号処理部303は、送受信部301から受信したRFデータをもとにデジタルのBモード用受信データを生成する。信号処理部303は、RFデータに対してバンドパスフィルタ、包絡線検波、対数変換など公知の処理を施し、デジタルのBモード用受信データを生成する。対数変換では、RFデータを基準電圧Vcで除した量の常用対数をとってデシベル値で表現する。信号処理部303は、生成したBモード用受信データを、画像処理部305へ出力する。信号処理部303は、CPU(Central Processing Unit)や各種演算回路等を用いて実現される。
 スキャンコンバーター304は、信号処理部303から受信したBモード用受信データに対してスキャン方向を変換してフレームデータを生成する。具体的には、スキャンコンバーター304は、Bモード用受信データのスキャン方向を、超音波のスキャン方向から表示装置4の表示方向に変換する。
 画像処理部305は、エコー信号の振幅を輝度に変換して表示するBモード画像である超音波画像を含むBモード画像データ(以下、単に画像データともいう)を生成する。画像処理部305は、スキャンコンバーター304からフレームデータに対してゲイン処理、コントラスト処理等の公知の技術を用いた信号処理を行うとともに、表示装置4における画像の表示レンジに応じて定まるデータステップ幅に応じたデータの間引き等を行うことによってBモード画像データを生成する。Bモード画像は、色空間としてRGB表色系を採用した場合の変数であるR(赤)、G(緑)、B(青)の値を一致させたグレースケール画像である。
 画像処理部305は、信号処理部303からのBモード用受信データに走査範囲を空間的に正しく表現できるよう並べ直す座標変換を施した後、Bモード用受信データ間の補間処理を施すことによってBモード用受信データ間の空隙を埋め、Bモード画像データを生成する。
 フレームメモリ306は、例えばリングバッファを用いて実現され、画像処理部305により生成された一定量(所定フレーム数N)の超音波画像を時系列に沿って記憶する。容量が不足すると(所定のフレーム数のBモード画像データを記憶すると)、最も古いBモード画像データを最新のBモード画像データで上書きすることで、最新の超音波画像を時系列順に所定フレーム数記憶する。フレームメモリ306は、図1に示すように、最新の超音波画像であるn番目のフレーム(nは2以上の自然数)の超音波画像IMから所定のフレーム数遡った複数の超音波画像(IMn-1,IMn-2,IMn-3,・・・)を記憶する。さらに、フレームメモリ306は、後述する動き量算出部308が算出した動き量と、後述する信頼性判定部309が算出した信頼性とを超音波画像に関連づけて記憶する。
 図2は、動き量を算出するために画像に設定される測定領域(ブロック)を示す図である。図2に示すように、ブロック設定部307は、最新の超音波画像である超音波画像IM上にB11~Bpqまでの縦p×横q(p,qは2以上の自然数)のブロックを格子状に設定する。ブロック設定部307は、CPUや各種演算回路等を用いて実現される。
 動き量算出部308は、フレームメモリ306が記憶する複数の超音波画像のうち、最新フレームの超音波画像IMに写る被写体が過去のフレームの超音波画像に写る被写体に対して動いた量である動き量を算出する。具体的には、動き量算出部308は、例えば、相関値の一種である画素値の差分絶対値和(SAD:Sum of Absolute Difference)値を用いた公知のブロックマッチング法によって、動き量を算出する。動き量算出部308は、CPUや各種演算回路等を用いて実現される。
 図3は、動き量を算出する様子を表す図である。図3は、図2のブロックBmnの動き量を算出する様子を表す図である。図3に示すように、動き量算出部308は、超音波画像IMに設定されたブロックBmnと同位置であって、1つ前の超音波画像IMn-1に設定されたブロックBmnの外周に設定されたサーチ領域SAに含まれるブロックBmn’を図3に示す矢印に沿って順次設定し、設定したブロックBmn’とブロックBmnとの類似度を示す相関値SADを順次算出する。動き量算出部308は、サーチ領域SAに含まれる全てのブロックの相関値SADを算出すると、ブロックBmnの中心から最も相関値SADが小さいブロック中心までのベクトルを動き量として算出する。そして、動き量算出部308は、各ブロックの動き量の算出を繰り返し、超音波画像IM内の全てのブロックの動き量を算出する。なお、ここではブロックマッチング法における相関値としてSADを利用したが、その他の相関値(例えばSSD:Sum of Squared Difference)を用いてもよい。最後に、動き量算出部308は、複数のブロックの動き量の統計値(平均値、最頻値等)から、画像全体の動きを示すフレーム動き量を算出する。また、ここで後述の動き量の信頼性が高いブロックの動き量のみを用いてフレーム動き量を算出してもよい。
 信頼性判定部309は、動き量算出部308が算出した動き量の信頼性を判定する。ブロックマッチングの結果の正しさを示す信頼性の判定方法は種々知られているが、ここでは、画像内画素値の連続性を基に相関値SADの分布が最小位置近傍で放物面に近似する性質を利用する方法を説明する。まず、信頼性判定部309は、動き量算出部308が算出したサーチ領域SA内の相関値最小位置近傍の各ブロックの相関値SADを最小二乗法により近似した曲面として下記の式(1)で表される楕円放物面関数を算出する。
 SAD(x,y)=(x-xc)/a+(y-yc)/b+c・・・(1)
 そして、信頼性判定部309は、相関値SADの分布が楕円放物面に類似している場合には動き量の信頼性が高いと判定する。換言すると、信頼性判定部309は、実際の相関値SADと算出した楕円放物面関数との残差が、所定の閾値より小さい場合には信頼性が高いと判定し、閾値より大きい場合には信頼性が低いと判定する。これは、IM上のブロックBmnと類似した領域がIMn-1上のサーチ領域SA内に存在しない場合、相関値SADが放物面状に分布しないことによる。また、他にも、楕円放物面関数の係数a,bが所定の閾値より大きい場合には、領域が低コントラストでブロックマッチングに不適であるため、信頼性が低いと判定してもよい。また、座標(xc,yc)がサーチ領域SA外の場合は移動先がサーチ領域SA外と推定され同じく不適であるため、信頼性が低いと判定してもよい。
 なお、動き量の信頼性は、上述した方法に限られず、画像間で類似した領域が存在しない場合に信頼性が低いと判定される他の公知の方法を用いてもよい。信頼性判定部309は、この信頼性の判定を超音波画像IM内の全てのブロックに対して行い、超音波画像IM内に含まれる全てのブロックの動き量の信頼性を判定する。信頼性判定部309は、CPUや各種演算回路等を用いて実現される。
 超音波内視鏡2を用いた観察時に、超音波内視鏡2の超音波振動子21の動きには、超音波振動子21の走査面に平行な方向に沿った移動(以下、平行移動ともいう)による成分と、走査面に直交する方向への移動(以下、直交移動ともいう)による成分と、走査面に交わる回転軸を中心とする回転による成分と、が含まれる。そして、動き量算出部308がブロックマッチング法によって算出することができるフレーム動き量は、超音波振動子21の平行移動による成分の量である。
 これに対して、信頼性判定部309が算出する信頼性は、超音波振動子21が平行移動以外(直交移動及び回転)による成分を含むか否かを判定する指標である。なぜなら、超音波振動子21の動きに平行移動以外の成分が含まれると、時間的に前後するフレームが被検体の異なる断面を走査していることになり、信頼性が低いと判定されるブロックが多くなるからである。
 フリーズ画像選択部310は、入力部311がフリーズ指示信号の入力を受け付けた場合、フレーム動き量と信頼性とに基づいて、フレームメモリ306が記憶する複数の超音波画像の中からフリーズ画像を選択する。具体的には、フリーズ画像選択部310は、超音波画像のフレーム動き量と、動き量の信頼性が高いブロックの割合とを変数とする評価関数を用いて各超音波画像を評価し、最も評価の高い超音波画像をフリーズ画像として選択する。換言すると、フリーズ画像選択部310は、動き量により評価される超音波振動子21の平行移動及び信頼性により評価される超音波振動子21の平行移動以外の動きに関する情報に基づいて、フリーズ画像を選択する。フリーズ画像選択部310は、CPUや各種演算回路等を用いて実現される。
 入力部311は、キーボード、マウス、タッチパネル等のユーザインタフェースを用いて実現され、各種情報の入力を受け付ける。入力部311は、プリフリーズ機能によりフリーズ画像を表示装置4に表示させる指示入力であるフリーズ指示信号の入力を受け付ける。
 制御部312は、超音波診断システム1全体を制御する。制御部312は、演算及び制御機能を有するCPUや各種演算回路等を用いて実現される。制御部312は、記憶部313が記憶、格納する情報を記憶部313から読み出し、超音波観測装置3の作動方法に関連した各種演算処理を実行することによって超音波観測装置3を統括して制御する。なお、制御部312を信号処理部303、ブロック設定部307、動き量算出部308、信頼性判定部309、フリーズ画像選択部310と共通のCPU等を用いて構成することも可能である。
 記憶部313は、超音波観測装置3の作動方法を実行するための作動プログラムを含む各種プログラムを記憶する。作動プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。なお、上述した各種プログラムは、通信ネットワークを介してダウンロードすることによって取得することも可能である。ここでいう通信ネットワークは、例えば既存の公衆回線網、LAN(Local Area Network)、WAN(Wide Area Network)などによって実現されるものであり、有線、無線を問わない。
 以上の構成を有する記憶部313は、各種プログラム等が予めインストールされたROM(Read Only Memory)、及び各処理の演算パラメータやデータ等を記憶するRAM(Random Access Memory)等を用いて実現される。
 以上説明した実施の形態1によれば、フリーズ画像選択部310がフレーム動き量と信頼性とに基づいてフリーズ画像を選択する。その結果、フリーズ画像選択部310は、動き量が小さい画像である超音波振動子21の平行移動が小さい画像であり、かつ信頼性が高い動き量が多く含まれる画像である超音波振動子21の平行移動以外の動きが小さい画像をフリーズ画像として選択することができる。従って、超音波観測装置3は、プリフリーズ機能により画像を選択する際に、動きが少ない画像を選択する精度が向上した超音波観測装置である。
 なお、超音波画像の替わりに、時系列に並んだ超音波画像を合成したフレーム相関画像を生成して、フレームメモリ306に時系列に沿って記憶させてもよい。フレーム相関画像は、時系列に並んだ超音波画像に対して、時系列に関連づけられた重みを付けた加算平均処理を行うことにより生成される。この場合、動き量算出部308及び信頼性判定部309は、フレーム相関画像の動き量及び信頼性をそれぞれ算出し、フリーズ画像選択部310は、フレーム相関画像の中からフリーズ画像を選択する。
 また、実施の形態1では、コンベックス型・リニア型の超音波振動子21を例に説明したが、超音波振動子21は、超音波の走査面が超音波内視鏡2の挿入部先端と垂直になるラジアル型であってもよい。超音波振動子21がラジアル型の場合には、動き量算出部308が算出する動き量は、挿入部に直交する各方向への移動量であり、信頼性判定部309が算出する信頼性は、挿入部に沿った方向の移動と、走査面に交わる回転軸を中心とする回転と、が含まれるか否かを示す指標である。そして、フリーズ画像選択部310が動き量と信頼性とを変数とする評価関数を用いてフリーズ画像を選択することにより、コンベックス型・リニア型と同様に動きが少ない画像をフリーズ画像として的確に選択することができる。
(実施の形態2)
 実施の形態2に係る超音波観測装置は、超音波観測装置における処理が実施の形態1と異なり、構成は実施の形態1と同様であるので適宜説明を省略する。
 図4は、超音波画像に領域を設定する様子を示す図である。図4に示すように、フリーズ画像選択部310は、超音波画像IMを超音波振動子21に近い領域A1と領域A1より超音波振動子21から離れた領域A2とに分ける。そして、フリーズ画像選択部310は、領域A1と領域A2とのそれぞれにおいて、動き量の信頼性が高いブロックの割合を算出する。さらに、フリーズ画像選択部310は、超音波画像のフレーム動き量と、領域A1、及び領域A2の動き量の信頼性が高いブロックの割合とを変数とする評価関数を用いて各超音波画像を評価し、最も評価の高い超音波画像をフリーズ画像として選択する。
 コンベックス型・リニア型の超音波振動子21が挿入部の先端部を軸とした回転をすると、超音波画像IMにおいて超音波振動子21より遠い領域A2ほど、回転の影響を受けやすく、すなわち、被検体の異なる領域を走査することになるため、動き量の信頼性が低下しやすい。すなわち、領域A1より領域A2の方が、信頼性が低下しやすい。従って、実施の形態2によれば、フリーズ画像選択部310がフリーズ画像を選択する際に用いる評価関数に、領域毎に異なる動き量の信頼性が高いブロックの割合を代入するため、挿入部の先端部を軸とした回転による動きが少ない画像をフリーズ画像として的確に選択することができる。
 このように、フリーズ画像選択部310は、超音波画像内における信頼性の分布に基づいて、フリーズ画像を選択してもよい。
 また、フリーズ画像選択部310は、領域A2の信頼性のみを用いてフリーズ画像を選択してもよい。すわなち、フリーズ画像選択部310は、超音波振動子21に対する観察対象の深度が大きい領域(超音波振動子21から離れた領域)において信頼性が高い超音波画像をフリーズ画像として選択してもよい。
 また、超音波振動子21がコンベックス型の場合には、超音波振動子21に近い領域A1と、領域A1より超音波振動子21から離れた領域A2とを、超音波画像における上側の領域と下側の領域とした。これに対し、超音波振動子21がラジアル型の場合には、超音波振動子21に近い領域A1と、領域A1より超音波振動子21から離れた領域A2とを、超音波振動子21に近い同心円状に拡がる領域と、その領域の外周の同心円状に拡がる領域とすればよい。
(実施の形態3)
 実施の形態3に係る超音波観測装置は、超音波観測装置における処理が実施の形態1と異なり、構成は実施の形態1と同様であるので適宜説明を省略する。
 フリーズ画像選択部310は、実施の形態2と同様に、超音波画像IMを超音波振動子21に近い領域A1と領域A1より超音波振動子21から離れた領域A2とに分ける。そして、フリーズ画像選択部310は、領域A1と領域A2とのそれぞれにおいて、動き量の信頼性が高いブロックの割合を算出する。さらに、フリーズ画像選択部310は、超音波画像のフレーム動き量と、画像全体、領域A1、及び領域A2の動き量の信頼性が高いブロックの割合とを変数とする評価関数を用いて各超音波画像を評価し、最も評価の高い超音波画像をフリーズ画像として選択する。これにより、動きが少ない画像をフリーズ画像としてさらに的確に選択することができる。
(参考例)
 図5は、本発明の参考例に係る超音波観測装置を備える超音波診断システムの構成を示すブロック図である。図5に示す超音波診断システム1Aは、フレーム相関画像生成部321A及びエッジ強度算出部322Aを有する超音波観測装置3Aを備える。
 フレーム相関画像生成部321Aは、時系列に並んだ超音波画像を合成したフレーム相関画像を生成して、フレームメモリ306に時系列に沿って記憶させる。フレーム相関画像は、時系列に並んだ超音波画像に対して、時系列に関連づけられた重みを付けた加算平均処理を行うことにより生成される。フレーム相関画像生成部321Aは、CPUや各種演算回路等を用いて実現される。
 エッジ強度算出部322Aは、各フレーム相関画像のエッジ強度を算出する。エッジ強度算出部322Aは、CPUや各種演算回路等を用いて実現される。
 フリーズ画像選択部310は、エッジ強度算出部322Aが算出したエッジ強度に基づいて、フレーム相関画像の中からフリーズ画像を選択する。
 フレーム相関画像を生成する際に、時系列に並べられた画像が超音波振動子21の移動によりずれている場合、エッジがぼやけるためエッジ強度が低下する。従って、参考例によれば、フリーズ画像選択部310がエッジ強度に基づいてフリーズ画像を選択するため、動きが少ない画像を的確に選択することができる。
 なお、フリーズ画像選択部310は、エッジ強度の替わりに、フレーム相関画像にフーリエ変換を行うことにより算出される空間周波数のうち、特定周波数成分の量に基づいてフリーズ画像を選択してもよい。
 また、実施の形態2及び実施の形態3と同様に、超音波画像を複数の領域に分割し、領域毎にエッジ強度や空間周波数を算出してもよい。
 なお、上述した実施の形態において、超音波内視鏡として一例を記載したが、本発明の超音波観測装置は、被検体の体表から超音波を照射する体外式超音波プローブに適用してもよい。体外式超音波プローブは、通常、腹部臓器(肝臓、胆嚢、膀胱)、***(特に乳腺)、甲状腺を観察する際に用いられる。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、以上のように表し、かつ記述した特定の詳細及び代表的な実施の形態に限定されるものではない。従って、添付のクレーム及びその均等物によって定義される総括的な発明の概念の精神又は範囲から逸脱することなく、様々な変更が可能である。
 1、1A 超音波診断システム
 2 超音波内視鏡
 3、3A 超音波観測装置
 4 表示装置
 21 超音波振動子
 301 送受信部
 302 加算整相部
 303 信号処理部
 304 スキャンコンバーター
 305 画像処理部
 306 フレームメモリ
 307 ブロック設定部
 308 動き量算出部
 309 信頼性判定部
 310 フリーズ画像選択部
 311 入力部
 312 制御部
 313 記憶部
 321A フレーム相関画像生成部
 322A エッジ強度算出部

Claims (8)

  1.  超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて、時系列に沿って複数の超音波画像を生成する超音波観測装置であって、
     前記複数の超音波画像のうち、最新フレームの超音波画像に写る被写体が過去のフレームの超音波画像に写る前記被写体に対して動いた量である動き量を算出する動き量算出部と、
     前記動き量算出部が算出した前記動き量の信頼性を判定する信頼性判定部と、
     フリーズ指示信号の入力を受け付けた場合、前記動き量と前記信頼性とに基づいて、前記複数の超音波画像の中からフリーズ画像を選択するフリーズ画像選択部と、
     を備えることを特徴とする超音波観測装置。
  2.  前記超音波振動子は、被検体内に挿入される挿入部の先端に配置されており、
     前記フリーズ画像選択部は、
     前記動き量に基づいて前記超音波振動子の走査面に平行な方向への移動に関する情報を算出し、
     前記信頼性に基づいて前記超音波振動子の前記走査面に平行な方向と異なる方向への移動又は回転に関する情報を算出し、
     前記フリーズ画像を選択することを特徴とする請求項1に記載の超音波観測装置。
  3.  前記フリーズ画像選択部は、前記超音波画像内における前記信頼性が高い領域が多い画像を前記フリーズ画像として選択することを特徴とする請求項1又は2に記載の超音波観測装置。
  4.  前記フリーズ画像選択部は、前記超音波画像内における前記信頼性の分布に基づいて、前記フリーズ画像を選択することを特徴とする請求項1~3のいずれか1つに記載の超音波観測装置。
  5.  前記フリーズ画像選択部は、前記超音波振動子に対する観測対象の深度が大きい領域において前記信頼性が高い前記超音波画像を前記フリーズ画像として選択することを特徴とする請求項1~4のいずれか1つに記載の超音波観測装置。
  6.  前記動き量算出部は、前記超音波画像に設定した測定領域を中心とした所定の領域内に含まれる複数の領域と前記測定領域との類似度を算出し、該類似度が高い領域を検出することにより前記動き量を算出し、
     前記信頼性判定部は、前記動き量算出部が算出した前記類似度の分布に基づいて、前記信頼性を判定することを特徴とする請求項1~5のいずれか1つに記載の超音波観測装置。
  7.  超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて、時系列に沿って複数の超音波画像を生成する超音波観測装置の作動方法であって、
     動き量算出部が、前記複数の超音波画像のうち、最新フレームの超音波画像に写る被写体が過去のフレームの超音波画像に写る前記被写体に対して動いた量である動き量を算出する動き量算出ステップと、
     信頼性判定部が、前記動き量算出部が算出した前記動き量の信頼性を判定する信頼性判定ステップと、
     フリーズ指示信号の入力を受け付けた場合、フリーズ画像選択部が、前記動き量と前記信頼性とに基づいて、前記複数の超音波画像の中からフリーズ画像を選択するフリーズ画像選択ステップと、
     を含むことを特徴とする超音波観測装置の作動方法。
  8.  超音波振動子が観測対象に対して送受信して得られた超音波信号に基づいて、時系列に沿って複数の超音波画像を生成する超音波観測装置の作動プログラムであって、
     動き量算出部が、前記複数の超音波画像のうち、最新フレームの超音波画像に写る被写体が過去のフレームの超音波画像に写る前記被写体に対して動いた量である動き量を算出する動き量算出ステップと、
     信頼性判定部が、前記動き量算出部が算出した前記動き量の信頼性を判定する信頼性判定ステップと、
     フリーズ指示信号の入力を受け付けた場合、フリーズ画像選択部が、前記動き量と前記信頼性とに基づいて、前記複数の超音波画像の中からフリーズ画像を選択するフリーズ画像選択ステップと、
     を超音波観測装置に実行させることを特徴とする超音波観測装置の作動プログラム。
PCT/JP2018/006256 2017-03-07 2018-02-21 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム WO2018163827A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019504452A JP6707175B2 (ja) 2017-03-07 2018-02-21 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
US16/532,724 US20190357878A1 (en) 2017-03-07 2019-08-06 Ultrasound observation device and operation method of ultrasound observation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017042554 2017-03-07
JP2017-042554 2017-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/532,724 Continuation US20190357878A1 (en) 2017-03-07 2019-08-06 Ultrasound observation device and operation method of ultrasound observation device

Publications (1)

Publication Number Publication Date
WO2018163827A1 true WO2018163827A1 (ja) 2018-09-13

Family

ID=63448398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006256 WO2018163827A1 (ja) 2017-03-07 2018-02-21 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Country Status (3)

Country Link
US (1) US20190357878A1 (ja)
JP (1) JP6707175B2 (ja)
WO (1) WO2018163827A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189774A1 (ja) * 2019-03-19 2020-09-24 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095941B1 (fr) * 2019-05-17 2021-04-16 Supersonic Imagine Procédé pour déterminer par ultrasons une image corrigée d’un milieu, et dispositif pour mettre en œuvre ce procédé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024559A (ja) * 2002-06-26 2004-01-29 Aloka Co Ltd 超音波診断装置
JP2012105950A (ja) * 2010-10-28 2012-06-07 Konica Minolta Medical & Graphic Inc 超音波診断装置及びプログラム
JP2015131100A (ja) * 2013-12-12 2015-07-23 コニカミノルタ株式会社 超音波診断装置、超音波画像記録方法、及びコンピュータ読み取り可能な非一時的な記録媒体
JP2015167777A (ja) * 2014-03-10 2015-09-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024559A (ja) * 2002-06-26 2004-01-29 Aloka Co Ltd 超音波診断装置
JP2012105950A (ja) * 2010-10-28 2012-06-07 Konica Minolta Medical & Graphic Inc 超音波診断装置及びプログラム
JP2015131100A (ja) * 2013-12-12 2015-07-23 コニカミノルタ株式会社 超音波診断装置、超音波画像記録方法、及びコンピュータ読み取り可能な非一時的な記録媒体
JP2015167777A (ja) * 2014-03-10 2015-09-28 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189774A1 (ja) * 2019-03-19 2020-09-24 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
CN113556979A (zh) * 2019-03-19 2021-10-26 奥林巴斯株式会社 超声波观测装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
JPWO2020189774A1 (ja) * 2019-03-19 2021-12-02 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP7112588B2 (ja) 2019-03-19 2022-08-03 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
US11998394B2 (en) 2019-03-19 2024-06-04 Olympus Corporation Ultrasound imaging system, operation method of ultrasound imaging system, and computer-readable recording medium

Also Published As

Publication number Publication date
JPWO2018163827A1 (ja) 2019-12-26
JP6707175B2 (ja) 2020-06-10
US20190357878A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2016098429A1 (ja) 超音波観測装置
WO2018163827A1 (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
US20180333139A1 (en) Ultrasound observation device, method of operating ultrasound observation device, and program computer-readable recording medium
US20210338200A1 (en) Ultrasound imaging apparatus, operating method of ultrasound imaging apparatus, and computer-readable recording medium
US20180210080A1 (en) Ultrasound observation apparatus
WO2018163793A1 (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP6892320B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US20210236091A1 (en) Ultrasound imaging system, operation method of ultrasound imaging system, and computer-readable recording medium
WO2020189774A1 (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP6530660B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP7155394B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6726744B2 (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP5932189B1 (ja) 超音波観測装置
JP6563800B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP7289211B2 (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP2017217359A (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP6379059B2 (ja) 超音波観測装置、超音波観測装置の作動方法、超音波観測装置の作動プログラムおよび超音波診断システム
JP2017035300A (ja) 超音波観測装置、超音波観測装置の作動方法、超音波観測装置の作動プログラム及び超音波観測システム
JP2017164371A (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JPWO2020144745A1 (ja) 超音波観測装置、超音波観測システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764168

Country of ref document: EP

Kind code of ref document: A1