WO2018143221A1 - 嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法 - Google Patents

嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法 Download PDF

Info

Publication number
WO2018143221A1
WO2018143221A1 PCT/JP2018/003044 JP2018003044W WO2018143221A1 WO 2018143221 A1 WO2018143221 A1 WO 2018143221A1 JP 2018003044 W JP2018003044 W JP 2018003044W WO 2018143221 A1 WO2018143221 A1 WO 2018143221A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium hypochlorite
hypochlorite pentahydrate
sodium
crystal particles
aqueous solution
Prior art date
Application number
PCT/JP2018/003044
Other languages
English (en)
French (fr)
Inventor
英夫 嶋津
倫英 岡田
智丈 浅輪
宏倫 伊東
杉山 幸宏
嶋田 薫
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to US16/481,725 priority Critical patent/US20190367360A1/en
Publication of WO2018143221A1 publication Critical patent/WO2018143221A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites
    • C01B11/062Hypochlorites of alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding

Definitions

  • the present invention relates to sodium hypochlorite pentahydrate crystal particles and a method for producing the same.
  • Sodium hypochlorite is generally marketed as an aqueous solution having a mass concentration of about 5 to 13% by mass (effective chlorine concentration of 5 to 12%), and has excellent sterilization and bleaching effects. It is used as a bactericidal agent for food, hot spring facilities, pools, food production, household use, etc., as a bleaching agent for food production, paper industry and textile industry.
  • slime cleaning that prevents slime failures that occur in plant cooling circulating water systems, circulating water, wastewater treatment, etc. in various factories (slimation caused by algae, bacteria, etc., resulting in reduced thermal efficiency, obstruction of water piping, etc.) Used in drug applications.
  • the bactericidal and bleaching effects of these sodium hypochlorites are attributed to their oxidizing power, and this oxidizing power is widely used not only in the field of organic synthesis but also in the production of food additives, electronic materials, pharmaceuticals and agricultural chemicals. ing.
  • sodium hypochlorite is widely used in a wide variety of applications, but when performing an oxidation reaction in the field of organic synthesis on an industrial scale, a general sodium hypochlorite aqueous solution has low volumetric efficiency, There are drawbacks such as poor productivity and a lot of by-product wastewater. These problems seem to be solved by using a high-concentration sodium hypochlorite aqueous solution. However, since the sodium hypochlorite aqueous solution decomposes more rapidly as the concentration is higher at room temperature, it is 13 in Japan. It is not commercially available at a concentration of more than%.
  • sodium hypochlorite crystals are also known, and it has been reported that monohydrate, 2.5 hydrate, pentahydrate, hexahydrate, etc. exist (“soda Handbook 1998, p361 "). Among them, sodium hypochlorite pentahydrate has a theoretical sodium hypochlorite mass concentration of 45%, which is about three times higher than that of sodium hypochlorite solution. Since there is a merit that the transportation volume can be greatly reduced and the transportation cost can be greatly reduced as compared with the aqueous sodium chlorite solution, a number of synthesis examples and application examples have been reported so far.
  • Patent Document 1 discloses a method for industrially producing sodium hypochlorite pentahydrate
  • Patent Document 2 discloses sodium chlorate contained in sodium hypochlorite pentahydrate.
  • Patent Document 3 describes a method for producing a slurry solution of about 25 to 40% effective chlorine containing sodium hypochlorite pentahydrate.
  • the crystal forms of the conventional sodium hypochlorite pentahydrate described in these documents are all described as needle-like (long needle-like) crystals having a large aspect ratio.
  • sodium hypochlorite pentahydrate obtained in the example of Patent Document 1 also contains needle-like crystals having a high aspect ratio with an aspect ratio of 1.7 to 10.
  • Patent Document 2 there is a description that a needle-like crystal having a major axis to minor axis ratio of 8 or more was obtained.
  • sodium hypochlorite pentahydrate most frequently forms acicular crystals.
  • a sodium hypochlorite composition made only from sodium hypochlorite pentahydrate crystals has a high density of needle crystals with high aspect ratio, which cannot be filled tightly into the container.
  • transportation efficiency and storage efficiency are lowered.
  • a crystal with a low aspect ratio can be created by adding a process such as grinding the crystal in the conventional manufacturing process. If it is too fined such as 100 ⁇ m or less, it is difficult to increase the bulk density.
  • a pulverization process it is necessary to introduce a pulverizer or the like, which not only increases labor, but also may cause decomposition of sodium hypochlorite pentahydrate due to frictional heat during pulverization. Therefore, it is hard to say that it is a realistic plan.
  • Patent Document 3 in order to solve the problem of bulk density, a problem is solved by preparing a sodium hypochlorite aqueous solution slurry containing sodium hypochlorite pentahydrate. It contains unnecessary sodium chloride, sodium chlorate and sodium hydroxide, and there is a problem that these components affect the reaction.
  • JP 2000-290003 A JP 2014-169215 A Special table 2015-533775 gazette JP-A-11-255503
  • An object of the present invention is to control the shape of crystal particles of sodium hypochlorite pentahydrate so that the bulk density to the container is high and the transport efficiency is high, and the sodium hypochlorite 5 water with high bulk density is high. It is to provide a hydrate crystal particle and a production method thereof.
  • the present inventors have not increased the number of production steps of the conventional method for producing sodium hypochlorite pentahydrate, and crystals of sodium hypochlorite pentahydrate have been increased. It is possible to produce crystal particles of sodium hypochlorite pentahydrate having a low aspect ratio, a high bulk density, and a nearly spherical shape by pulverizing the precipitated crystals during crystallization.
  • the present invention was completed.
  • the gist of the present invention is as follows. (1) Sodium hypochlorite pentahydrate crystal particles with an average aspect ratio of 2.5 or less and an average minor axis of 0.1 mm to 1.5 mm. (2) The sodium hypochlorite pentahydrate crystal particles according to (1), wherein the bulk density is 0.80 g / cm 3 or more. (3) Sodium hypochlorite pentahydrate crystal particles having a bulk density of 0.80 g / cm 3 or more.
  • the aqueous solution containing sodium hypochlorite pentahydrate recovered in the second step is cooled to a cooling temperature of 0 to 26 ° C.
  • Method for producing sodium acid pentahydrate crystal particles. The production method according to (4), wherein the stirring in the third step is performed at a stirring blade tip speed of 2.1 to 7.5 m / sec. (6) The pump circulation in the third step is performed by circulating a liquid amount 0.5 to 4.0 times the amount of the aqueous solution in the crystallization tank in one hour (4 ) Manufacturing method.
  • the pump circulation in the third step circulates 0.5 to 4.0 times the amount of the aqueous solution in the crystallization tank in 1 hour, and stirring is performed by stirring.
  • the round sodium hypochlorite pentahydrate crystal particles having a low aspect ratio according to the present invention have a high bulk density, and the filling amount into a bag or a container, that is, the volumetric efficiency is remarkably improved as compared with a conventional product. .
  • the transportation volume is reduced and the transportation efficiency and containers are reduced. it can.
  • the digital microscope photograph image of the sodium hypochlorite pentahydrate crystal particle of this invention of Example 1 is shown.
  • the digital microscope photograph image of the sodium hypochlorite pentahydrate crystal particle of this invention of Example 2 is shown.
  • crystallization of the comparative example 1 is shown.
  • crystallization of the comparative example 2 is shown.
  • crystallization of the comparative example 3 is shown.
  • the distribution of the aspect ratio of the sodium hypochlorite pentahydrate crystal particles of Example 1 is shown.
  • the distribution of the aspect ratio of the sodium hypochlorite pentahydrate crystal particles of Example 2 is shown.
  • the distribution of the aspect ratio of the sodium hypochlorite pentahydrate crystal of Comparative Example 1 is shown.
  • the distribution of the aspect ratio of the sodium hypochlorite pentahydrate crystal of Comparative Example 2 is shown.
  • the distribution of the aspect ratio of the sodium hypochlorite pentahydrate crystal of Comparative Example 3 is shown.
  • crystallization is shown.
  • the sodium hypochlorite pentahydrate crystal particles have an average aspect ratio of 2.5 or less and a nearly spherical shape, and the bulk density is 0.80 g / cm 3 or more.
  • the object is to provide sodium hypochlorite pentahydrate crystal particles capable of enhancing volumetric efficiency during transportation and a method for producing the same.
  • the round sodium hypochlorite pentahydrate crystal particles of the present invention have an average aspect ratio represented by the ratio of the major axis L to the minor axis S (L / S) of the digital microscope (stock) Manufactured by Tech Co., Ltd., Hide Micron 3)
  • the range is 1 ⁇ L / S ⁇ 2.5. Since the bulk density tends to be higher as the aspect ratio is smaller, the aspect ratio is more preferably in the range of 1.0 ⁇ L / S ⁇ 2.3, and 1.0 ⁇ L / S ⁇ 2.0. More preferably, it is in the range.
  • Such sodium hypochlorite pentahydrate crystal particles, which are the target substance of the present invention show that the bulk density is remarkably improved as compared with the conventional product when filled into a container as a product.
  • the aspect ratio is determined as the ratio of the minor axis (S) to the major axis (L) of the crystal grains (hereinafter referred to as L / S ratio).
  • the minor axis is a short side of a rectangle that minimizes the length of one side of the circumscribed rectangle of the target region of the observation image of the particle to be measured.
  • the major axis is a long side of a rectangle having a maximum length of one side among the circumscribed rectangles of the target region. These can be measured using generally available image analysis software (eg, “Image-J”).
  • the average aspect ratio value is calculated as the number average of the aspect ratio (L / S) of 300 or more particles measured by the above method.
  • the average minor axis is calculated as the average number of S.
  • crystal grains having a minor diameter of 0.01 mm or less that cannot be observed with a digital microscope are not taken into consideration in the content of the present invention.
  • the round sodium hypochlorite pentahydrate crystal particles of the present invention are rounded by circulating and / or stirring in the crystallization tank during the crystallization of sodium hypochlorite pentahydrate.
  • the shape is close to roundness. Thereby, the angle of repose of the powder is 60 degrees or less, which is in a range that does not cause a problem when the raw material is charged.
  • the circulation by a powerful pump is too strong, the grown crystal particles will collapse, forming fine crystals of 0.1 mm or less and reducing the bulk density. It is preferable to form crystals having an average minor axis of 0.1 mm or more and 1.5 mm or less. More preferably, the size of the crystal grains is 0.3 mm to 0.7 mm in terms of average minor axis.
  • the bulk density of the present invention was measured as heavy bulk density. Specifically, according to JIS R 9301-2-3: 1999 (alumina powder-Part 2: Physical property measurement method-3: Light bulk density and heavy bulk density), a sample is filled in a specified container by a specified method. After that, the cylinder containing the sample was dropped 100 times from a height of about 30 mm to compress the sample, and calculation was performed from the mass and volume of the compressed sample.
  • the method for producing sodium hypochlorite pentahydrate crystal particles of the present invention includes a chlorination step (first step), a sodium chloride separation step (second step), a crystallization step (third step), And a solid-liquid separation step (fourth step).
  • first step a chlorination step
  • second step a sodium chloride separation step
  • third step a crystallization step
  • fourth step a solid-liquid separation step
  • the present invention is not limited to the first to fourth steps, and other steps may be included.
  • a step of partially recycling the separation liquid in the second step or the separation liquid obtained in the fourth step to the chlorination step may be included. It is also possible to add sodium hydroxide to increase the precipitation effect.
  • each step will be described in detail.
  • Chlorination process (1st process) In the chlorination step, a sodium hypochlorite aqueous solution is obtained by reacting an aqueous sodium hydroxide solution with chlorine gas.
  • the reaction process of the present invention may be batch treatment or continuous treatment, but it is desirable to continuously supply sodium hydroxide and chlorine in order to coarsen the sodium chloride particles and increase the productivity.
  • the reaction tank may be a single tank, but in order to prevent the formation of sodium chlorate due to local heat generation in contact with chlorine, a continuous tank reactor in which multiple tanks such as two tanks and three tanks are connected. Thus, it is desirable to divide and supply chlorine to the respective reaction tanks for reaction.
  • chlorine gas may be supplied to the reaction as it is, local heat generation can be suppressed by supplying it diluted with nitrogen or air.
  • the starting sodium hydroxide aqueous solution preferably has a concentration of 40 to 48% by mass, and the reaction temperature is not particularly limited, but is preferably 15 to 32 ° C. If it is this range, the production
  • chlorination proceeds until the sodium hypochlorite concentration is 23 to 27 mass%, the sodium chloride concentration is 22 to 27 mass%, and the sodium hydroxide concentration is 1.0 to 2.0 mass%.
  • the finished liquid is a slurry in which supersaturated sodium chloride is deposited.
  • Sodium chloride separation step (second step)
  • a solution obtained by solid-liquid separation of sodium chloride from the chlorination end solution is used as a mother liquor in the next crystallization step.
  • the sodium hypochlorite aqueous solution produced by chlorination contains a large amount of by-produced sodium chloride crystals.
  • solid-liquid separation is performed by a centrifuge or a filter.
  • the purpose is to reduce the amount of heat removal in the crystallization tank of the next step by pre-cooling, and the filtrate temperature should be within the crystallization start temperature + 2 ° C., more preferably within the crystallization start temperature +0 to + 1 ° C. Is preferred.
  • the precooling temperature is set to be equal to or lower than the crystallization start temperature, crystals are precipitated in the heat exchanger, and line freezing is likely to occur.
  • the concentration of the sodium hypochlorite solution after separation of sodium chloride is preferably 24% by mass or more, more preferably 30% by mass or more and 34% by mass or less. In the case of 34% by mass or more, the sodium hypochlorite solution is supersaturated, so that it scales on the surface of the cooler and may deteriorate the heat transfer efficiency.
  • Crystallization process (third process) In the crystallization step, crystallization is performed by introducing the sodium hypochlorite aqueous solution (mother solution) obtained in the second step into a crystallization apparatus.
  • the crystallization tank is not particularly limited, but a tank-type crystallization apparatus is desirable, and it is further preferable to include a pump and a cooler for circulating the fluid in the crystallization tank. If necessary, soft water is added to the sodium hypochlorite separation liquid obtained in the previous step to adjust the concentration of sodium hypochlorite.
  • the concentration of the sodium hypochlorite solution is preferably 28% or more, and more preferably 28% or more and 34% or less from the viewpoint of crystallization efficiency.
  • Sodium dichlorite pentahydrate is obtained by cooling the diluted and adjusted separation liquid in the subsequent crystallization step.
  • this operation is performed in a batch process, there is no problem even if a seed crystal is not added, but it is preferable to add a seed crystal in order to control the crystal shape.
  • the cooling start temperature (the temperature of the mother liquor) is in the range of 10 to 26 ° C.
  • the mother liquor is continuously added while cooling in the presence of seed crystals.
  • the cooling start temperature for adding the seed crystal is more preferably in the range of 12 to 24 ° C., and further preferably 16 to 24 ° C.
  • the crystallization temperature is not particularly limited, but it may be cooled at a constant temperature or at a constant cooling rate.
  • cooling at a constant cooling rate it is preferably 1 to 4 ° C./hour. With this set speed, it is possible to prevent crystal scales adhering to the wall of the crystallization tank, and not only increase the stirring power due to the formation of fine crystals, but also prevent deterioration of liquid drainage during solid-liquid separation, as well as affect productivity.
  • the mother liquor can be cooled without exerting any effect.
  • the circulation flow rate at the pump is preferably such that a liquid amount of about 0.5 to 4.0 times the amount of the sodium hypochlorite aqueous solution in the crystallization tank is circulated in one hour. It is preferable to circulate a liquid amount of about 1.0 to 3.0 times.
  • the tip speed of the stirring blade is preferably set to 2.1 to 7.5 m / sec.
  • the stirring blade is gently stirred at a tip speed of 2.0 m / second or less, a crystal having a high aspect ratio is generated. In order to achieve the optimum balance, it is particularly preferable that the tip speed of the stirring blade is 3.0 to 7.0 m / sec.
  • the above two agitation, pump circulation and agitation are performed simultaneously, and the circulation flow rate at the pump is about 0.5 to 4.0 times the sodium hypochlorite aqueous solution amount in the crystallization tank in 1 hour.
  • Crystallization may be performed while stirring with the tip speed of the stirring blade set at 2.1 to 7.5 m / sec while circulating the liquid amount.
  • the temperature finally reached in the crystallization step is preferably a temperature at which sodium hypochlorite pentahydrate precipitates but sodium chloride does not precipitate.
  • the temperature finally reached in this step is preferably 0 to 16 ° C. If it is this temperature, a moderate slurry density
  • the cooling end temperature is more preferably 2 to 14 ° C., and further preferably 4 to 12 ° C.
  • the crystallization time is not particularly defined, but considering productivity, it is preferably within 12 hours, particularly preferably within 10 hours.
  • Sodium hypochlorite pentahydrate crystal separation process (4th process)
  • sodium hypochlorite pentahydrate crystals obtained in the crystallization step are separated using a solid-liquid separator such as a centrifuge, and sodium hypochlorite pentahydrate is obtained. Crystal grains are obtained. Crystallization of sodium hypochlorite pentahydrate crystallized from an aqueous solution containing sodium hypochlorite pentahydrate cooled in the crystallization process, using a continuous or batch centrifuge type, centrifugal effect Solid-liquid separation at 1000-3500G. If necessary, the crystal surface is washed with a solution containing water or an inorganic substance and subjected to surface treatment to obtain sodium hypochlorite pentahydrate crystal particles.
  • Example 1 In the chlorination step (first step), a two-stage CSTR (continuous stirred tank reactor) reaction tank (capacity 3.5 m 3 ⁇ 2 tank) equipped with a stirrer, a scrubber and an external circulation type cooler was used. To this, a 48 mass% sodium hydroxide aqueous solution was added at 860 kg / hr as a raw material, and chlorine gas diluted to 1/2 concentration with air was added to the scrubber so that the residual sodium hydroxide concentration was 2 mass%. The solution was introduced while adjusting the supply amount, and chlorination was carried out while cooling to a reaction temperature of 24 to 30 ° C. At this time, the residence time in the reaction vessel was about 720 minutes.
  • CSTR continuous stirred tank reactor
  • the reactant slurry extracted from the reaction tank of the chlorination step at 1188 kg / hr was subjected to solid-liquid separation using a centrifuge.
  • 934 kg of sodium hypochlorite aqueous solution (filtrate 1) consisting of 254 kg / hr of precipitated sodium chloride, sodium hypochlorite having a concentration of 35% by mass, and sodium chloride having a concentration of 5.4% by mass. / Hr was obtained.
  • Soft water was added to the filtrate 1 to adjust the sodium hypochlorite concentration to 31.9 mass%, the sodium chloride concentration 4.9 mass%, and the sodium hydroxide concentration 1.5 mass%.
  • the filtrate 1 is added to a titanium crystallization tank (capacity 7 m 3 ) equipped with a stirrer, jacket, coil cooler and external circulation pump while adjusting the temperature to 22 ° C. 8942 kg was charged, and at this time, the temperature difference ⁇ T between the temperature of the filtrate 1 and the refrigerant temperature was 3 while stirring at a tip speed of 4.5 m / sec with a stirrer at 1.5 times / hr using a spiral pump. Cooling was started so as to reach ⁇ 4 ° C., and cooling was performed over 4 hours until reaching 12 ° C. Crystal formation was observed from 19 ° C. in the crystallization tank.
  • the separation step (fourth step) the slurry extracted from the crystallization tank in the crystallization step (third step) was solid-liquid separated at 1500 G with a centrifugal separator while maintaining the temperature of the crystallization tank at 14 ° C. As a result, 2850 kg of high purity sodium hypochlorite pentahydrate sodium hypochlorite pentahydrate crystals were obtained. The composition and properties of the obtained sodium hypochlorite pentahydrate crystal particles are shown in Table 1. The average aspect ratio was 1.65.
  • Example 2 (Invention Example) The same operations as in the chlorination step (first step) and sodium chloride separation step (second step) in Example 1 were performed, and the sodium hypochlorite concentration was 32.2 mass% and the sodium chloride concentration was 5.1 mass. %, And a filtrate 2 having a sodium hydroxide concentration of 1.3% by mass was obtained.
  • the temperature of the filtrate obtained is adjusted to 22 ° C. in a titanium crystallization tank (capacity 7 m 3 ) equipped with a stirrer, jacket, coil cooler and external circulation pump. Then, 8781 kg of the filtrate 2 was added, and at this time, the mixture was cooled so that the temperature difference ⁇ T between the temperature of the filtrate 2 and the refrigerant temperature became 3 to 4 ° C. while stirring at a tip speed of 7.5 m / sec using a stirrer. And cooled over 4 hours until reaching 12 ° C. Crystal formation was observed from 17 ° C. in the crystallization tank.
  • the separation step (fourth step) the slurry extracted from the crystallization tank in the crystallization step (third step) was solid-liquid separated at 1500 G with a centrifugal separator while maintaining the temperature of the crystallization tank at 14 ° C. As a result, 2790 kg of high-purity sodium hypochlorite pentahydrate sodium hypochlorite pentahydrate crystals were obtained. The composition and properties of the obtained sodium hypochlorite pentahydrate crystal particles are shown in Table 1. The average aspect ratio was 2.16.
  • Comparative Example 1 In order to confirm the effect of the circulation and stirring, a comparative example in which the circulation was not performed in the third step and the stirring speed was slow was examined.
  • the sodium hypochlorite aqueous solution of Table 1 obtained by chlorination of sodium hydroxide in the first step and obtained through the second step was converted from 22 ° C. (cooling start temperature) to 240 ° C. Without circulating until reaching 12 ° C.
  • the distribution of the aspect ratio of the obtained sodium hypochlorite pentahydrate crystal particles is shown in FIG. Crystals with an aspect ratio of 9.0 or more accounted for 60% of the total, and thin needles were obtained.
  • Comparative Example 2 Aspect ratio and bulk density were measured using sodium hypochlorite pentahydrate solid type (product code 15591-65) manufactured by Nacalai Tesque. The composition and properties are shown in Table 1. The average aspect ratio was 4.29.
  • FIG. 9 shows the aspect ratio distribution of the sodium hypochlorite pentahydrate crystal of Comparative Example 2. Thin needles distributed in an aspect ratio range of 2.5 to 6.0 were obtained.
  • the sodium hypochlorite pentahydrate of the present invention is a round sodium hypochlorite pentahydrate crystal particle having a low aspect ratio compared to the conventional production method, Compared with the conventional product whose bulk density is remarkably improved, the transportation efficiency can be improved and the number of containers can be reduced by reducing the volume during transportation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Detergent Compositions (AREA)

Abstract

次亜塩素酸ナトリウム5水和物の結晶形を制御することで、容器への嵩密度が高く、輸送効率の高くなる、嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法を提供する。 晶析工程において、晶析槽内の次亜塩素酸ナトリウム5水和物の水溶液を攪拌またはポンプ循環させることによって、平均アスペクト比が2.5以下の次亜塩素酸ナトリウム5水和物結晶粒子が得られる。

Description

嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法
 本発明は、次亜塩素酸ナトリウム5水和物結晶粒子および、その製造方法に関する。
 次亜塩素酸ナトリウムは、一般的に質量濃度が5~13質量%(有効塩素濃度5~12%)程度の水溶液として市販されており、殺菌、漂白効果などに優れることから、例えば、上下水道用、温泉施設用、プール用、食品製造用、家庭用などの殺菌剤として、食品製造用、製紙工業用、繊維工業用の漂白剤として使用されている。また、各種工場のプラント冷却循環水系、循環水、廃水処理などで発生するスライム障害(藻類、細菌類などによるスライム発生により、熱効率の低下、通水配管の閉塞などの障害)を防止するスライム洗浄剤用途で使用されている。これら次亜塩素酸ナトリウムの殺菌、漂白効果はその酸化力に起因しており、この酸化力を有機合成の分野のみならず、広く食品添加物、電子材料、医薬品や農薬などの製造に利用している。
 このように次亜塩素酸ナトリウムは多種多様な用途で広く利用されているが、工業規模での有機合成分野における酸化反応を行う場合、一般的な次亜塩素酸ナトリウム水溶液は容積効率が低く、生産性に乏しいこと、副生する排水が多い、等の欠点が挙げられる。これらの問題は、高濃度の次亜塩素酸ナトリウム水溶液の利用で解決できるように思われるが、次亜塩素酸ナトリウム水溶液は、常温で濃度が高いほど急速に分解が進むため、日本国内では13%以上の濃度では市販されていない。
 一方、固体の次亜塩素酸ナトリウム結晶も知られており、1水和物、2.5水和物、5水和物、6水和物等が存在する事が報告されている(「ソーダハンドブック1998、p361」)。その中でも、次亜塩素酸ナトリウム5水和物は、理論上の次亜塩素酸ナトリウム質量濃度が45%と次亜塩素酸ナトリウム溶液と比較して3倍程高濃度であり、一般的な次亜塩素酸ナトリウム水溶液と比較して輸送量体積を大きく低減して、輸送コストなどを大幅に削減できるというメリットがあるため、これまでに数々の合成例や応用例が報告されている。
 例えば、特許文献1には、工業的に次亜塩素酸ナトリウム5水和物を製造する方法が開示されており、特許文献2は次亜塩素酸ナトリウム5水和物中に含まれる塩素酸ナトリウムの含有量を低減した例も知られている。特許文献3には、次亜塩素酸ナトリウム5水和物を含む有効塩素25~40%程度のスラリー溶液の製造方法が記載されている。
 これらの文献にある従来の次亜塩素酸ナトリウム5水和物の結晶形は、いずれもアスペクト比の大きい針状(長い針の形状をした)結晶との記載がある。例えば、特許文献1の実施例で得られた次亜塩素酸ナトリウム5水和物はいずれもアスペクト比1.7~10と、アスペクト比の高い針状結晶も含有している記述がある。
 また、特許文献2の段落[0081]には、短軸に対する長軸の比が8以上の針状結晶が得られたとの記述がある。
 特許文献3の段落[0008]に記載があるように、次亜塩素酸ナトリウム5水和物は、針状結晶を最も頻繁に形成する。次亜塩素酸ナトリウム5水和物結晶のみから作られた次亜塩素酸ナトリウム組成物は、アスペクト比の高い針状結晶がランダムに配置してしまい、容器に密に充填できないことから、嵩密度が低くなり、輸送効率、貯蔵効率が低くなるという問題がある。
 針状結晶のアスペクト比を小さくするために、従来の製造工程において、結晶をすり潰す等の工程を入れることでアスペクト比の低い結晶を作成できるが、たとえば、強力に粉砕することで短径が100μm以下のように微粉化しすぎると嵩密度を上げることが難しくなる。また、このような粉砕工程を導入する場合には粉砕機等の導入が必要で、手間が増えるだけでなく、粉砕中の摩擦熱等により次亜塩素酸ナトリウム5水和物が分解する可能性もあるため、現実的な案とは言い難い。特許文献3では嵩密度の問題を解決する為に次亜塩素酸ナトリウム5水和物を含む次亜塩素酸ナトリウム水溶液スラリーを作成する事で問題解決を図っているが、当該方法では、使用時に不必要な塩化ナトリウム、塩素酸ナトリウムや水酸化ナトリウムを含有しており、これらの成分が反応への影響してしまう問題点がある。
特開2000-290003号公報 特開2014-169215号公報 特表2015-533775号公報 特開平11-255503号公報
 本発明の課題は、次亜塩素酸ナトリウム5水和物の結晶粒子形状を制御することで、容器への嵩密度が高く、輸送効率の高くなる、嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討した結果、これまでの次亜塩素酸ナトリウム5水和物の製造方法の製造工程を増やさず、次亜塩素酸ナトリウム5水和物の晶析時に、析出する結晶を粉砕しながら結晶成長させることで、アスペクト比が低く、嵩密度が高い、球状に近い形の次亜塩素酸ナトリウム5水和物の結晶粒子の製造が可能であることを見出し、本発明を完成させた。
 すなわち、本発明は以下の構成を要旨とするものである。
(1) 平均アスペクト比が2.5以下の平均短径で0.1mm以上1.5mm以下の次亜塩素酸ナトリウム5水和物結晶粒子。
(2) 嵩密度が0.80g/cm3以上である前記(1)に記載の次亜塩素酸ナトリウム5水和物結晶粒子。
(3) 嵩密度が0.80g/cm3以上である次亜塩素酸ナトリウム5水和物結晶粒子。
(4) 40~48質量%水酸化ナトリウム水溶液に塩素を導入して反応温度15~32℃で塩素化する第1工程と、
 析出した副生塩化ナトリウムの結晶を分離除去して次亜塩素酸ナトリウム濃度24~34質量%の次亜塩素酸ナトリウム水溶液を回収する第2工程と、
 冷却器と晶出器とが一体となった晶析槽において、前記第2工程で回収された次亜塩素酸ナトリウム5水和物を含む水溶液を冷却温度0~26℃まで冷却して次亜塩素酸ナトリウム5水和物を析出させる第3工程であって、晶析槽内の前記水溶液を攪拌もしくはポンプ循環させる、または攪拌およびポンプ循環させる、第3工程と、
 前記第3工程で析出した次亜塩素酸ナトリウム5水和物結晶を固液分離して次亜塩素酸ナトリウム5水和物結晶粒子を得る第4工程と
を含むことを特徴とする次亜塩素酸ナトリウム5水和物結晶粒子の製造方法。
(5) 前記第3工程での、攪拌が、攪拌翼先端速度を2.1~7.5m/秒で行われる前記(4)に記載の製造方法。
(6) 前記第3工程での、ポンプ循環が、1時間に、前記晶析槽中の水溶液量に対して0.5~4.0倍の液量を循環させることで行われる前記(4)に記載の製造方法。
(7) 前記第3工程での、ポンプ循環が、1時間に、前記晶析槽中の水溶液量に対して0.5~4.0倍の液量を循環し、尚且つ撹拌が、攪拌翼先端速度を2.1~7.5m/秒で行われる前記(4)に記載の製造方法。
 本発明のアスペクト比が低い丸み状の次亜塩素酸ナトリウム5水和物結晶粒子は、嵩密度が高く、従来品と比較して、袋や容器への充填量すなわち、容積効率が著しく向上する。これにより、次亜塩素酸ナトリウム水溶液、あるいは従来製造されている次亜塩素酸ナトリウム5水和物結晶と比較して、輸送時の容積を低下させることで輸送効率化と容器等の削減を達成できる。
実施例1の本発明の次亜塩素酸ナトリウム5水和物結晶粒子のデジタルマイクロスコープ写真画像を示す。 実施例2の本発明の次亜塩素酸ナトリウム5水和物結晶粒子のデジタルマイクロスコープ写真画像を示す。 比較例1の次亜塩素酸ナトリウム5水和物結晶のデジタルマイクロスコープ画像を示す。 比較例2の次亜塩素酸ナトリウム5水和物結晶のデジタルマイクロスコープ画像を示す。 比較例3の次亜塩素酸ナトリウム5水和物結晶のデジタルマイクロスコープ画像を示す。 実施例1の次亜塩素酸ナトリウム5水和物結晶粒子のアスペクト比の分布を示す。 実施例2の次亜塩素酸ナトリウム5水和物結晶粒子のアスペクト比の分布を示す。 比較例1の次亜塩素酸ナトリウム5水和物結晶のアスペクト比の分布を示す。 比較例2の次亜塩素酸ナトリウム5水和物結晶のアスペクト比の分布を示す。 比較例3の次亜塩素酸ナトリウム5水和物結晶のアスペクト比の分布を示す。 次亜塩素酸ナトリウム5水和物結晶のアスペクト比の模式図を示す。
 本発明は、次亜塩素酸ナトリウム5水和物結晶粒子の平均アスペクト比が2.5以下で球状に近い形状を有しており、嵩密度が0.80g/cm3以上であるために、輸送時の容積効率を高めることができる次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法提供することである。
(平均アスペクト比の測定)
 本発明の丸み状の次亜塩素酸ナトリウム5水和物結晶粒子は、粒子の長径Lと短径Sの比(L/S)で表されるアスペクト比の平均値が、デジタルマイクロスコープ(株式会社テック社製、秀マイクロン3)画像を用いた測定において1≦L/S≦2.5の範囲である。アスペクト比が小さいほど嵩密度が高くなる傾向がある為、アスペクト比が1.0≦L/S≦2.3の範囲にあることがより好ましく、1.0≦L/S≦2.0の範囲にあることがさらに好ましい。このような本発明の目的物質である次亜塩素酸ナトリウム5水和物結晶粒子は、製品として容器に充填した際に、従来品と比較して嵩密度が著しく向上している事を示す。
 本発明において、アスペクト比は、結晶粒子の長径(L)に対する短径(S)の比(以下、L/S比という)として決定する。なお、短径とは、図11に示されるように、測定対象となる粒子の観察画像を対象領域の外接矩形のうち、ある一辺の長さが最小となる矩形の短辺である。一方、長径とは、上記対象領域の外接矩形のうち、ある一辺の長さが最大となる矩形の長辺である。これらは一般的に入手可能な画像解析ソフト(例えば「Image-J」)を用いて測定することができる。平均アスペクト比の値は、300個以上の粒子のアスペクト比(L/S)を上記方法により測定し、その個数平均として算出する。また、また、平均短径はSの個数平均として算出する。ただし、デジタルマイクロスコープで観測できない0.01mm以下の短径をもつ結晶粒子に関しては本発明の内容には考慮に入れない。
 本発明の丸み状の次亜塩素酸ナトリウム5水和物結晶粒子は、次亜塩素酸ナトリウム5水和物の晶析中に晶析槽内を循環および/または撹拌したことで角が取れて丸みに近い形状とした。これにより、粉体の安息角は、60度以下と、原料投入時に問題とならない範囲となっている。また、ポンプを用いる場合は、強力なポンプによる循環が強すぎると成長した結晶粒子が崩壊してしまい、0.1mm以下の微細な結晶が形成され、嵩密度が低下する為、ポンプの循環流量を制御して平均短径で0.1mm以上1.5mm以下の結晶を形成させる事が好ましい。より好ましくは、結晶粒の大きさは、平均短径で0.3mm~0.7mmである。
 (嵩密度の測定)
 本発明の嵩密度は重装かさ密度として測定した。具体的には、JIS R 9301-2-3:1999(アルミナ粉末-第2部:物性測定方法-3:軽装かさ密度及び重装かさ密度)に従って、試料を規定の容器に規定の方法で充填した後、試料の入ったシリンダーを約30mmの高さから100回落下させて試料を圧縮し、圧縮後の試料の質量と容積から計算した。
 (安息角の測定)
 安息角は、具体的にはJIS R 9301-2-2(アルミナ粉末-第2部:物性測定方法-2:安息角)に従って、計算した。
 本発明の次亜塩素酸ナトリウム5水和物結晶粒子の製造方法は、塩素化工程(第1工程)と、塩化ナトリウム分離工程(第2工程)と、晶析工程(第3工程)と、固液分離工程(第4工程)とを含む。ただし、第1~第4工程に限定するものではなく、これら以外の工程が入っても構わない。たとえば第二工程の分離液や、第四工程で得られた分離液を塩素化工程へ一部リサイクルする工程が入っても構わない。析出効果を上げるために水酸化ナトリウムを添加することも可能である。以下、各工程について詳しく説明する。
 塩素化工程(第1工程)
 塩素化工程では、水酸化ナトリウム水溶液と塩素ガスを反応させて、次亜塩素酸ナトリウム水溶液を得る。本発明の反応工程はバッチ処理でも連続処理でも構わないが、塩化ナトリウムの粒子を粗大化させ、かつ生産性を高めるためには連続的に水酸化ナトリウムと塩素を供給することが望ましい。その反応槽は、単槽でも構わないが、塩素との接触での局所的な発熱で塩素酸ナトリウムが生成することを防ぐため2槽、3槽等の複数槽を連結した連続槽型反応器で、塩素をそれぞれの反応槽へ分割して供給して反応させることが望ましい。また、塩素ガスはそのまま反応に供給しても良いが、窒素や空気で希釈して供給することで、局所的な発熱を抑えることができる。原料の水酸化ナトリウム水溶液は濃度40~48質量%のものを用いる事が好ましく、反応温度は、特に限定されないが、15~32℃とすることが好ましい。この範囲であれば、不均化反応に伴う塩素酸ナトリウム等の生成を抑制することができ、不純物の少ない次亜塩素酸ナトリウム5水和物結晶粒子を製造することが出来る。具体的に、例えば、特許文献4に記載されている製造方法により次亜塩素酸ナトリウムの反応溶液を得る事が好ましい。反応工程では、次亜塩素酸ナトリウム濃度が23~27質量%、塩化ナトリウム濃度が22~27質量%、水酸化ナトリウム濃度が1.0~2.0質量%に成るまで塩素化を進める。仕上がった液は過飽和分の塩化ナトリウムが析出しているスラリーである。
 塩化ナトリウム分離工程(第2工程)
 塩化ナトリウム分離工程では、塩素化終了液から塩化ナトリウムを固液分離したものを、次の晶析工程での母液とする。具体的には、塩素化されて生成した次亜塩素酸ナトリウム水溶液は、副生した塩化ナトリウム結晶を多量に含有する。そこで塩化ナトリウム分離工程では、特に限定されないが、例えば、遠心分離機または濾過機等によって固液分離する。得られた濾液を次工程の晶析装置に送液する際には予冷することが望ましい。予冷により、次工程の晶析槽での除熱量を低減することが目的であり、濾液温度が晶析開始温度+2℃以内、より好ましくは晶析開始温度+0~+1℃以内となるようにするのが好ましい。予冷温度を晶析開始温度以下とすると、熱交換器内で結晶が析出し、ライン凍結が発生しやすい状況となる。具体的には、特許文献4に記載されている製造方法により固液分離を行い、次亜塩素酸ナトリウム溶液(母液)を得る事が好ましい。
 次工程で行う晶析効率の関係から、塩化ナトリウム分離後の次亜塩素酸ナトリウム溶液の濃度は24質量%以上が好ましく、より好ましくは30質量%以上34質量%以下が好ましい。34質量%以上の場合には、次亜塩素酸ナトリウム溶液が過飽和となることにより冷却器表面でスケーリングし、伝熱効率の悪化を招くことがある。
 晶析工程(第3工程)
 晶析工程では、第2工程で得られた次亜塩素酸ナトリウム水溶液(母液)を晶析装置に導入して晶析を行う。晶析槽については特に限定しないが、タンク式晶析装置が望ましく、さらには晶析槽内の流体を循環させるためのポンプ及び冷却器を備えていることが好ましい。前工程で得られた次亜塩素酸ナトリウムの分離液に、必要に応じて軟水を投入して次亜塩素酸ナトリウムの濃度を調整する。希釈濃度については特に規定しないが、晶析効率の関係から次亜塩素酸ナトリウム溶液の濃度は28%以上が好ましく、28%以上34%以下がさらに好ましい。
 希釈調整された分離液を、続く晶析工程にて冷却する事で次亜塩素酸ナトリウム5水和物を得る。この操作はバッチ処理で行う場合、種結晶を入れなくても問題はないが、結晶形状を制御するために、種結晶を添加することが好ましい。
 種結晶を投入する場合は、母液に種結晶を添加しても次亜塩素酸ナトリウム5水和物および塩素酸ナトリウムが析出しない冷却開始温度の±2℃以内に温度調整した母液に、種結晶を投入することが好ましい。具体的には、冷却開始温度(母液の温度)が10~26℃の範囲にあるときに種結晶を投入することが好ましい。連続処理で行う場合は、種結晶の存在下、冷却しながらで母液を連続的に投入する。晶析するまでに種結晶が若干溶解することを考慮すると、種結晶を添加する冷却開始温度は、12~24℃の範囲がより好ましく、さらに好ましくは16~24℃である。種結晶となる次亜塩素酸ナトリウム5水和物の結晶を、シード添加比Cs=0.04~0.08(Cs=Ws/Wth:Wsシード量、Wth:理論析出量)となるよう投入した。この時、種結晶を入れなくても特に問題はないが、晶析が晶析槽壁面で起こるのを抑制し晶析速度を上げる目的で、上記のような少量の種結晶を使用することも可能である。
 本発明の製造方法では、晶析温度を特に限定はしないが、一定温度で冷却しても、一定の冷却速度で冷却しても構わない。一定の冷却速度で冷却する場合、1~4℃/時とするのが好ましい。この設定速度の場合、晶析タンクの壁面に付着する結晶スケールを防止でき、微細結晶生成による攪拌動力増大および固液分離の際の脱液性の悪化などを防止できるだけでなく、生産性に影響を及ぼすことなく母液を冷却できる。
 本発明の製造方法では、晶析工程で、晶析槽内を攪拌するか、晶析槽内の液をポンプで循環させることが重要である。ポンプ循環と撹拌を単独で行っても組み合わせて行っても構わない。ポンプの種類は特に限定しないが、回転ポンプ等が望ましい。この時、晶出しているアスペクト比の高い次亜塩素酸ナトリウム5水和物の結晶は、ポンプ内で破砕され、球状に近い細かい粒子となる。破砕された細かい粒子は、表面積が大きいため、凝集したり、再溶解して大きな結晶の周りで再析出することで、粒子が粗大化される。また、ポンプの循環流量が多すぎると粗大化された粒子を粉砕してしまい微細な結晶となる為、むやみに循環流量を増やすことは望ましくない。よって、ポンプでの循環流量は、1時間に、晶析槽にある次亜塩素酸ナトリウム水溶液量に対して0.5~4.0倍程度の液量を循環させる事が好ましく、更に好ましくは1.0~3.0倍程度の液量を循環させる事が好ましい。
 また、晶析の際に晶析槽内を攪拌する場合は、攪拌翼先端速度を2.1~7.5m/秒とすることが好ましい。この範囲を選択することにより、晶析槽壁面に付着する結晶スケールを防止でき、そして十分な冷却速度を確保することで、過剰な結晶化熱発生による次亜塩素酸ナトリウム5水和物の分解を抑制でき、結晶形を制御することができる。攪拌翼の先端速度を2.0m/秒以下のような緩やかな攪拌だとアスペクト比が高い結晶が生成してしまう。これらの最適なバランスをとるために、攪拌翼先端速度は、3.0~7.0m/秒とすることが特に好ましい。また、上記二つの撹拌とポンプ循環と撹拌を同時に行い、ポンプでの循環流量を1時間に、晶析槽にある次亜塩素酸ナトリウム水溶液量に対して0.5~4.0倍程度の液量を循環させながら、攪拌翼先端速度を2.1~7.5m/秒として撹拌しながら晶析しても構わない。
 晶析工程において最終到達する温度(冷却終了温度)は、次亜塩素酸ナトリウム5水和物が析出するが、塩化ナトリウムは析出しない温度が好ましい。具体的には母液中の塩化ナトリウム濃度によるが、4~8%程度の塩化ナトリウムを含む母液の場合、本工程において最終到達する温度(冷却終了温度)は、0~16℃が好ましい。この温度であれば、適度なスラリー濃度を維持でき、次工程の固液分離(第4工程)が容易になる。到達温度が低いと、塩化ナトリウム結晶の副生が増加し、また冷却に要するエネルギーが過剰になる。一方、冷却終了温度が高いと、次亜塩素酸ナトリウム5水和物の生成量が不十分で、生産効率が低下する。このバランスから、冷却終了温度は、2~14℃であることがより好ましく、4~12℃であることがさらに好ましい。また、晶析時間については特に規定しないが、生産性を考慮すると、12時間以内が好ましく、10時間以内が特に好ましい。
 次亜塩素酸ナトリウム5水和物結晶分離工程(第4工程)
 第4工程の分離工程では、晶析工程で得られた次亜塩素酸ナトリウム5水和物結晶を遠心分離機などの固液分離装置を用いて分離し、次亜塩素酸ナトリウム5水和物結晶粒子を得る。
 晶析工程にて冷却した次亜塩素酸ナトリウム5水和物を含む水溶液から晶出した次亜塩素酸ナトリウム5水和物の結晶を、連続またはバッチの遠心分離機型を用いて、遠心効果1000~3500Gにて固液分離を実施。必要に応じて、結晶表面を水や無機物を含んだ溶液で洗浄し、表面処理を施すことにより次亜塩素酸ナトリウム5水和物結晶粒子が得られる。
 以下に本発明を実施例によってさらに具体的に説明するが、本発明はこれらに限定されるものではない。なお以下の実施例および比較例において、%は特に断らない限り質量基準である。
 実施例1(発明例)
 塩素化工程(第1工程)では、撹拌器、スクラバーおよび外部循環型冷却器を備えた2段CSTR(continuous stirred tank reactor)反応槽(容量3.5m3×2槽)を用いた。これに、原料として48質量%の水酸化ナトリウム水溶液を860kg/hrで投入すると共に、残水酸化ナトリウム濃度が2質量%となるように、スクラバーに空気で1/2濃度に希釈した塩素ガスを、供給量を調整しながら導入し、反応温度が24~30℃となるように冷却しながら塩素化を行った。この際、反応槽内での滞留時間は約720分であった。
 塩化ナトリウム分離工程(第2工程)では、塩素化工程の反応槽から1188kg/hrで抜き出した反応物スラリーを、遠心分離器で固液分離した。これにより、析出した塩化ナトリウム254kg/hrと、濃度が35質量%である次亜塩素酸ナトリウムと、濃度が5.4質量%である塩化ナトリウムから成る次亜塩素酸ナトリウム水溶液(濾液1)934kg/hrを得た。
 濾液1に軟水を添加し、次亜塩素酸ナトリウム濃度を31.9質量%、塩化ナトリウム濃度4.9質量%、水酸化ナトリウム濃度1.5質量%に調整した。
 晶析工程(第3工程)では、撹拌器、ジャケット、コイル冷却器および外部循環ポンプを備えたチタン製晶析槽(容量7m3)へ、温度を22℃に調整しながら、前記濾液1を8942kg投入し、この時、渦巻き型ポンプを用いて1.5回/hrで循環、攪拌機を用いて先端速度4.5m/秒で撹拌しながら濾液1の温度と冷媒温度の温度差ΔTが3~4℃となるように冷却を開始し、12℃に成るまで4時間かけて冷却した。晶析槽内では19℃から結晶の生成が観察された。
 分離工程(第4工程)では、晶析槽の温度を14℃に保ちながら晶析工程(第3工程)の晶析槽から抜き出したスラリーを1500Gにて遠心分離器で固液分離した。これにより、高純度次亜塩素酸ナトリウム5水和物次亜塩素酸ナトリウム5和物結晶を2850kg得た。得られた次亜塩素酸ナトリウム5水和物結晶粒子の組成と性状を表1に示した。平均アスペクト比は1.65であった。
 得られた次亜塩素酸ナトリウム5水和物のアスペクト比の分布を図6に示す。
 実施例2(発明例)
 実施例1の塩素化工程(第1工程)、塩化ナトリウム分離工程(第2工程)工程と同様の操作を行い、次亜塩素酸ナトリウム濃度を32.2質量%、塩化ナトリウム濃度5.1質量%、水酸化ナトリウム濃度1.3質量%の濾液2を得た。
 得られた濾液に対し、晶析工程(第3工程)では、撹拌器、ジャケット、コイル冷却器および外部循環ポンプを備えたチタン製晶析槽(容量7m3)へ、温度を22℃に調整しながら、前記濾液2を8781kg投入し、この時、攪拌機を用いて先端速度7.5m/秒で撹拌しながら濾液2の温度と冷媒温度の温度差ΔTが3~4℃となるように冷却を開始し、12℃に成るまで4時間かけて冷却した。晶析槽内では17℃から結晶の生成が観察された。
 分離工程(第4工程)では、晶析槽の温度を14℃に保ちながら晶析工程(第3工程)の晶析槽から抜き出したスラリーを1500Gにて遠心分離器で固液分離した。これにより、高純度次亜塩素酸ナトリウム5水和物次亜塩素酸ナトリウム5和物結晶を2790kg得た。得られた次亜塩素酸ナトリウム5水和物結晶粒子の組成と性状を表1に示した。平均アスペクト比は2.16であった。
 得られた次亜塩素酸ナトリウム5水和物のアスペクト比の分布を図7に示す。
 比較例1
 循環・撹拌の効果を確認する為に、第3工程で循環を行なわず、撹拌速度も遅くした比較例を検討した。
 実施例1と同様にして、第1工程の水酸化ナトリウムの塩素化によって得られ、第2工程を経て得られた表1の次亜塩素酸ナトリウム水溶液を、22℃(冷却開始温度)から240分間かけて12℃(冷却終了温度)に到達するまで循環せずに、攪拌機を用いて先端速度2.0m/秒で撹拌しながら冷却し(第3工程)、得られた次亜塩素酸ナトリウム5水和物の結晶を500Gにて遠心分離濾過を実施する事で次亜塩素酸ナトリウム5水和物の結晶粒子を得た(第4工程)。得られた次亜塩素酸ナトリウム5水和物の物性を表1に示した。得られた次亜塩素酸ナトリウム5水和物結晶粒子の組成と性状を表1に示した。平均アスペクト比は9.51であった。
 得られた次亜塩素酸ナトリウム5水和物結晶粒子のアスペクト比の分布を図8に示す。アスペクト比9.0以上の結晶体が全体の6割を占めており、細い針状が得られた。
 比較例2
 ナカライテスク株式会社製の次亜塩素酸ナトリウム5水和物固形タイプ(製品コード15591-65)を用いて、アスペクト比と嵩密度の測定を実施した。その組成と性状を表1に示した。平均アスペクト比は4.29であった。
 比較例2の次亜塩素酸ナトリウム5水和物結晶体のアスペクト比の分布を図9に示す。アスペクト比2.5~6.0の範囲で分布した細い針状が得られた。
 (比較例3)
 和光純薬工業株式会社の次亜塩素酸ナトリウム5水和物(規格:和光一級品、コードナンバー199-17215)特を用いて、アスペクト比と嵩密度の測定を実施した。その組成と性状を表1に示した。平均アスペクト比は2.81であった。
 得られた次亜塩素酸ナトリウム5水和物結晶体のアスペクト比の分布を図10に示す。アスペクト比2.0~3.0の範囲で結晶が全体の6割を占められた針状が得られた。
Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなとおり、本発明の次亜塩素酸ナトリウム5水和物は従来の製法と比較して、アスペクト比が低い丸み状の次亜塩素酸ナトリウム5水和物結晶粒子が得られ、嵩密度が著しく改善されている、従来品と比較して、輸送時の容積を低下させることで輸送効率化と容器等の削減を達成できる。

Claims (7)

  1.  平均アスペクト比が2.5以下であって、平均短径が0.1mm以上1.5mm以下である次亜塩素酸ナトリウム5水和物結晶粒子。
  2.  嵩密度が0.80g/cm3以上である請求項1に記載の次亜塩素酸ナトリウム5水和物結晶粒子。
  3.  嵩密度が0.80g/cm3以上である次亜塩素酸ナトリウム5水和物結晶粒子。
  4.  40~48質量%水酸化ナトリウム水溶液に塩素を導入して反応温度15~32℃で塩素化する第1工程と、
     析出した副生塩化ナトリウムの結晶を分離除去して次亜塩素酸ナトリウム濃度24~34質量%の次亜塩素酸ナトリウム水溶液を回収する第2工程と、
     冷却器と晶出器とが一体となった晶析槽において、前記第2工程で回収された次亜塩素酸ナトリウム5水和物を含む水溶液を冷却温度0~26℃まで冷却して次亜塩素酸ナトリウム5水和物結晶を析出させる第3工程であって、晶析槽内の前記水溶液を攪拌もしくはポンプ循環させる、または攪拌およびポンプ循環させる、第3工程と、
     前記第3工程で析出した次亜塩素酸ナトリウム5水和物結晶を固液分離して次亜塩素酸ナトリウム5水和物結晶粒子を得る第4工程と
    を含むことを特徴とする次亜塩素酸ナトリウム5水和物結晶粒子の製造方法。
  5.  前記第3工程での、攪拌が、攪拌翼先端速度を2.1~7.5m/秒で行われる請求項4に記載の製造方法。
  6.  前記第3工程での、ポンプ循環が、1時間に、前記晶析槽中の水溶液量に対して0.5~4.0倍の液量を循環させることで行われる請求項4に記載の製造方法。
  7.  前記第3工程での、ポンプ循環が、1時間に、前記晶析槽中の水溶液量に対して0.5~4.0倍の液量を循環し、尚且つ撹拌が、攪拌翼先端速度を2.1~7.5m/秒で行われる請求項4に記載の製造方法。
PCT/JP2018/003044 2017-02-02 2018-01-30 嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法 WO2018143221A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/481,725 US20190367360A1 (en) 2017-02-02 2018-01-30 Sodium hypochlorite pentahydrate crystal grains having high bulk density and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-017784 2017-02-02
JP2017017784A JP6477739B2 (ja) 2017-02-02 2017-02-02 嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法

Publications (1)

Publication Number Publication Date
WO2018143221A1 true WO2018143221A1 (ja) 2018-08-09

Family

ID=63040678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003044 WO2018143221A1 (ja) 2017-02-02 2018-01-30 嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法

Country Status (3)

Country Link
US (1) US20190367360A1 (ja)
JP (1) JP6477739B2 (ja)
WO (1) WO2018143221A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294953A (ja) * 1987-01-21 1988-12-01 ノベル・チエミ・アーベー 結晶質物質の製造方法
JP2000290003A (ja) * 1999-04-01 2000-10-17 Nippon Light Metal Co Ltd 次亜塩素酸ソーダ5水和物の製造法
JP2014088276A (ja) * 2012-10-30 2014-05-15 Toagosei Co Ltd 次亜塩素酸ソーダ水溶液の製造方法及び製造装置
JP2014169215A (ja) * 2013-02-06 2014-09-18 Kaneka Corp 次亜塩素酸ナトリウム5水和物結晶およびその製造方法
JP2015124108A (ja) * 2013-12-26 2015-07-06 昭和電工株式会社 高純度次亜塩素酸ナトリウム5水和物および次亜塩素酸ナトリウム水溶液の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10836636B2 (en) * 2015-06-10 2020-11-17 Olin Corporation Sodium hypochlorite compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294953A (ja) * 1987-01-21 1988-12-01 ノベル・チエミ・アーベー 結晶質物質の製造方法
JP2000290003A (ja) * 1999-04-01 2000-10-17 Nippon Light Metal Co Ltd 次亜塩素酸ソーダ5水和物の製造法
JP2014088276A (ja) * 2012-10-30 2014-05-15 Toagosei Co Ltd 次亜塩素酸ソーダ水溶液の製造方法及び製造装置
JP2014169215A (ja) * 2013-02-06 2014-09-18 Kaneka Corp 次亜塩素酸ナトリウム5水和物結晶およびその製造方法
JP2015124108A (ja) * 2013-12-26 2015-07-06 昭和電工株式会社 高純度次亜塩素酸ナトリウム5水和物および次亜塩素酸ナトリウム水溶液の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADAM, L. C.: "Hypochlorite Ion Decomposition: Effects of Temperature, Ionic Strength, and Chloride Ion", INORGANIC CHEMISTRY, vol. 38, 20 February 1999 (1999-02-20), pages 1299 - 1304, XP055530434 *
ASAWA, TOMOTAKE ET AL.: "The Placing of Crystalline Sodium Hypochlorite Pentahydrate on the Market", JOURNAL OF ION EXCHANGE, vol. 27, 21 September 2016 (2016-09-21), pages 42 - 46, XP055530440 *
OOSHIMA, HIROSHI: "Industrial Crystallization : Crystal Size Distribution and Crystal Polymorphs 'MechanismofNucleation", THE SOCIELY OF POWDER TECHNOLOGY, vol. 38, 2001, pages 251 - 259 *
TER HORST, J. H. ET AL.: "Fundamentals of Industrial Crystallization", HANDBOOK OF CRYSTAL GROWTH, 2015, pages 1317 - 1349 *

Also Published As

Publication number Publication date
US20190367360A1 (en) 2019-12-05
JP2018123035A (ja) 2018-08-09
JP6477739B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
CN104736273B (zh) 晶体钛粉末的制备方法
JP2014530160A (ja) 硫酸マグネシウム
TWI635043B (zh) 次氯酸鈉水溶液之製造方法
US4747917A (en) Scale-free process for purifying concentrated alkali metal halide brines containing sulfate ions as an impurity
US8951305B2 (en) Method of producing naturally purified salt products
JP6477739B2 (ja) 嵩密度の高い次亜塩素酸ナトリウム5水和物結晶粒子とその製造方法
JP6443865B2 (ja) 次亜塩素酸ナトリウム5水和物の結晶体およびその製造方法
CA2573628C (en) Manufacture of high-strength, low-salt hypochlorite bleach
WO2019012859A1 (ja) 次亜塩素酸ナトリウム水溶液、及びこれを得るための次亜塩素酸ナトリウム5水和物結晶、並びに次亜塩素酸ナトリウム水溶液の製造方法
US4390512A (en) Process for producing calcium hypochlorite
US20210024355A1 (en) Solid bleach and processes for making solid bleach
CN115066395A (zh) 从不纯的氯化锂溶液开始精炼碳酸锂的工艺和方法
US20210024354A1 (en) Solid bleach and processes for making solid bleach
JP2985362B2 (ja) 臭化マンガン水溶液の製造方法
JPS58135105A (ja) 次亜塩素酸カルシウムの製造法
JP2952726B2 (ja) 臭化マンガン水溶液の製造方法
JPH0239444B2 (ja)
JPS605005A (ja) 次亜塩素酸カルシウムの製法
US4521397A (en) Process for producing calcium hypochlorite hydrate crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747610

Country of ref document: EP

Kind code of ref document: A1