WO2018143191A1 - エチレン重合体、延伸成形体、微多孔膜、及び繊維 - Google Patents

エチレン重合体、延伸成形体、微多孔膜、及び繊維 Download PDF

Info

Publication number
WO2018143191A1
WO2018143191A1 PCT/JP2018/002961 JP2018002961W WO2018143191A1 WO 2018143191 A1 WO2018143191 A1 WO 2018143191A1 JP 2018002961 W JP2018002961 W JP 2018002961W WO 2018143191 A1 WO2018143191 A1 WO 2018143191A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene polymer
minutes
rate
less
temperature
Prior art date
Application number
PCT/JP2018/002961
Other languages
English (en)
French (fr)
Inventor
賢哉 田中
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201880000330.7A priority Critical patent/CN109071712A/zh
Priority to JP2018518532A priority patent/JP6366888B1/ja
Priority to US15/778,985 priority patent/US10544240B2/en
Priority to CN202010361811.XA priority patent/CN111574647B/zh
Priority to EP18723389.5A priority patent/EP3578576B1/en
Priority to KR1020187011909A priority patent/KR101904705B1/ko
Publication of WO2018143191A1 publication Critical patent/WO2018143191A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0088Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Definitions

  • the present invention relates to an ethylene polymer, and a stretched molded product, a microporous membrane, and a fiber including the same.
  • Ethylene polymers are used in a wide variety of applications such as films, sheets, microporous membranes, fibers, foams, and pipes.
  • the reason why the ethylene polymer is used is that melt processing is easy and the obtained molded body has high mechanical strength and excellent chemical resistance and rigidity.
  • the ultra high molecular weight ethylene polymer has a high molecular weight, and therefore has higher mechanical strength, excellent sliding properties and wear resistance, and excellent chemical stability and long-term reliability.
  • the ultrahigh molecular weight ethylene polymer has low fluidity even when the crystal is melted at a temperature equal to or higher than the melting point and cannot be easily melt-molded. Therefore, after filling the mold with ultra-high molecular weight ethylene polymer powder, the molded block is produced by compressing at high pressure, and the block is cut to form a film or sheet. Used (see, for example, Patent Document 1). As another processing method, a method is selected in which an ultrahigh molecular weight ethylene polymer is processed in a state dissolved in a solvent, and then the solvent is removed.
  • microporous membranes and high-strength fibers are kneaded with an extruder together with a solvent such as liquid paraffin and decalin, and processed into a membrane or thread while cooling. Thereafter, the solvent is removed by extraction or the like, followed by reheating to the vicinity of the melting point, and stretching or heat setting (for example, see Patent Document 2).
  • a solvent such as liquid paraffin and decalin
  • the ultra-high molecular weight ethylene polymer controls the physical properties of the molded body by performing temperature control with high accuracy and performing precise processing while repeating melting and solidification.
  • the physical properties of the molded body are greatly affected by the degree of crystallinity, crystal size, molecular orientation, etc., and the speed at which the ethylene polymer crystallizes following changes in temperature. Is extremely important.
  • Patent Document 3 in a microporous membrane, when the isothermal crystallization time at a temperature 25 ° C. lower than the melting point of the polyolefin resin is 200 seconds or less, Further, it is disclosed that the balance of the film forming property at a low draft ratio is good and the raw film can be formed easily. Further, for example, in Patent Document 4, in a microporous film, by adding a crystal nucleating agent to a polyolefin resin composition composed of a polyolefin resin and a film-forming solvent, the crystallization time is shortened. It is disclosed that the pore structure becomes more uniform and denser, and its mechanical strength and withstand voltage characteristics are improved.
  • Patent Document 3 only describes an ultrahigh molecular weight ethylene polymer having a relatively high crystallization rate, and does not mention the influence of changes in the crystallization rate when the temperature is changed on physical properties. In addition, the heat setting time tends to be long in order to balance physical properties, and there is a problem in productivity. Patent Document 4 also mentions only to increase the crystallization speed, and further introduces a crystal nucleating agent to increase the crystallization speed. Problems such as inability to work, crushing of the pores by the crystal nucleating agent, or inferior film uniformity due to a high crystallization rate only in the vicinity of the crystal nucleating agent.
  • the present invention has been made in view of the above problems, an ethylene polymer having a quick temperature response of a crystallization rate, excellent workability and production stability, and strength and dimensions including such an ethylene polymer.
  • An object is to provide a stretch-formed body, a microporous membrane, and a fiber excellent in accuracy.
  • the present inventor has determined that ethylene weight having a predetermined viscosity average molecular weight, a predetermined crystallinity, and a ratio of a predetermined isothermal crystallization time of 125 ° C. and 123 ° C. The combination has found that the above-mentioned problems can be solved, and the present invention has been completed.
  • the viscosity average molecular weight is 100 ⁇ 10 4 or more and 1,000 ⁇ 10 4 or less
  • the ratio of the isothermal crystallization time of 125 ° C. and 123 ° C. determined by the following isothermal crystallization time measurement conditions is 3.5 or more and 10.0 or less
  • the degree of crystallinity determined from a differential scanning calorimeter (DSC) is 40.0% or more and 75.0% or less.
  • Ethylene polymer (Conditions for isothermal crystallization time measurement) 1) Hold at 50 ° C. for 1 minute, then heat up to 180 ° C. at a rate of 200 ° C./min 2) Hold at 180 ° C.
  • the temperature response of the crystallization speed is fast, the ethylene polymer having excellent workability and production stability, and the stretched molded article, the microporous film, including the ethylene polymer having excellent strength and dimensional accuracy, and Fiber can be realized.
  • Example 1 isotherm crystallization time measurement chart of 125 ° C. and 123 ° C.
  • the present embodiment a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to this embodiment, It can implement in various deformation
  • the ethylene polymer of this embodiment has a viscosity average molecular weight of 100 ⁇ 10 4 or more and 1,000 ⁇ 10 4 or less, and a ratio of isothermal crystallization time of 125 ° C. and 123 ° C. is 3.5 or more and 10.0.
  • the crystallinity obtained from a differential scanning calorimeter (DSC) is 40.0% or more and 75.0% or less.
  • ethylene polymer of this embodiment For example, the ethylene homopolymer or the copolymer of ethylene and another comonomer etc. are mentioned suitably.
  • Other comonomers are not particularly limited, and examples include ⁇ -olefins and vinyl compounds.
  • the ⁇ -olefin is not particularly limited, and examples thereof include ⁇ -olefins having 3 to 20 carbon atoms. Specific examples include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, Examples include 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene and the like.
  • the vinyl compound is not particularly limited, and examples thereof include vinylcyclohexane, styrene and derivatives thereof. If necessary, non-conjugated polyenes such as 1,5-hexadiene and 1,7-octadiene can be used as other comonomers.
  • the copolymer may be a ternary random polymer. Another comonomer may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the other comonomer is preferably 0.20 mol% or less, more preferably 0.15 mol% or less, still more preferably 0.10 mol% or less based on the ethylene polymer.
  • the crystallinity can be increased, and the ratio of the isothermal crystallization time between 125 ° C. and 123 ° C. is 3.5 or more and 10.0 or less. It tends to be easy to adjust to the range.
  • the comonomer amount of the ethylene polymer can be confirmed by infrared analysis, NMR, or the like.
  • the density of the ethylene polymer of the present embodiment is not particularly limited, but is preferably 910 kg / cm 3 or more and 980 kg / cm 3 or less, more preferably 915 kg / m 3 or more and 970 kg / cm 3 or less, and further preferably It is 920 kg / m 3 or more and 965 kg / cm 3 or less.
  • the density of the ethylene polymer is 910 kg / cm 3 or more and 980 kg / cm 3 or less, the ratio of the isothermal crystallization time of 125 ° C. and 123 ° C. of the ethylene polymer tends to be 3.5 or more and 10.0 or less.
  • the stretched molded product, the microporous membrane, and the fiber including the ethylene polymer of the present embodiment also have excellent strength.
  • the density of the ethylene polymer was determined by JIS K 7112 according to JIS K 7112 using a sample cut from an ethylene polymer powder press sheet at 120 ° C. for 1 hour and then cooled at 25 ° C. for 1 hour as a sample for density measurement. It can obtain
  • the press sheet of the ethylene polymer powder can be produced according to ASTM D 1928 Procedure C using a mold having a length of 60 mm, a width of 60 mm, and a thickness of 2 mm. More specifically, the density of the ethylene polymer can be measured by the method described in the examples.
  • the viscosity average molecular weight (Mv) of the ethylene polymer of this embodiment is 100 ⁇ 10 4 or more and 1,000 ⁇ 10 4 or less, preferably 120 ⁇ 10 4 or more and 900 ⁇ 10 4 or less, more preferably 140. ⁇ 10 4 or more and 800 ⁇ 10 4 or less.
  • the viscosity average molecular weight (Mv) is 100 ⁇ 10 4 or more, the ratio of the isothermal crystallization time of 125 ° C. and 123 ° C. of the ethylene polymer described later tends to increase, and the melting start temperature of the first melting peak And the difference between the melting start temperatures of the second melting peak tends to increase.
  • the amount of the low molecular weight component contained in the ethylene polymer can be reduced. Furthermore, the stretched molded product, the microporous membrane, and the fiber containing the ethylene polymer of the present embodiment have excellent strength. On the other hand, when the viscosity average molecular weight (Mv) is 1,000 ⁇ 10 4 or less, melt fluidity, solubility in a solvent, stretchability, and the like are improved, and processing becomes easy.
  • Mv viscosity average molecular weight
  • the viscosity average molecular weight (Mv) of the ethylene polymer can be adjusted by appropriately adjusting the polymerization conditions and the like using a catalyst described later.
  • the viscosity average molecular weight can be adjusted by allowing hydrogen to exist in the polymerization system and / or changing the polymerization temperature.
  • the viscosity average molecular weight (Mv) of the ethylene polymer of this embodiment solutions prepared by dissolving an ethylene polymer in decalin at different concentrations are prepared, and the solution viscosity at 135 ° C. of the solution is measured.
  • the reduced viscosity calculated from the solution viscosity thus measured is extrapolated to a concentration of 0, the intrinsic viscosity is determined, and the calculated intrinsic viscosity [ ⁇ ] (dL / g) can be calculated by the following formula A. it can. More specifically, it can be measured by the method described in the examples.
  • the isothermal crystallization time is a value obtained by measuring the solidification time (crystallization rate) when the polymer is once melted at a temperature exceeding the melting point and then the temperature is lowered and fixed at a certain temperature. Specifically, using a differential scanning calorimeter (DSC), an aluminum pan containing an ethylene polymer is placed in a heating furnace, held at 50 ° C. for 1 minute in a nitrogen atmosphere, and then heated to 200 ° C./min. The ethylene polymer is melted by raising the temperature to 180 ° C. at a rate and holding at 180 ° C. for 5 minutes. Next, the temperature is decreased to 122 ° C.
  • DSC differential scanning calorimeter
  • the time at which the peak top of the exothermic peak due to crystallization is obtained can be measured as the isothermal crystallization time at 122 ° C., starting from the time at which the temperature reached 122 ° C. (0 minutes). Subsequently, the temperature rise and fall are repeated in the same manner, and isothermal crystallization times at 123 ° C., 124 ° C., and 125 ° C. are measured.
  • the ratio of the isothermal crystallization time between 125 ° C. and 123 ° C. in this embodiment is as follows: 1) Hold at 50 ° C. for 1 minute, then increase the temperature to 180 ° C. at a temperature increase rate of 200 ° C./min; 2) 5 at 180 ° C. 3 minutes, then cooled to 122 ° C. at a rate of 80 ° C./min; 3) held at 122 ° C. for 5 minutes, then raised to 180 ° C. at a rate of 200 ° C./min; 4) 5 at 180 ° C. 5 minutes, and then cooled to 123 ° C. at a rate of 80 ° C./min; 5) held at 123 ° C.
  • the isothermal crystallization time at 125 ° C. is measured from the time when 125 ° C. is reached as the starting point of 0 minute. That is, the ratio of the 125 ° C. and 123 ° C. isothermal crystallization time in this embodiment is determined by the following isothermal crystallization time measurement conditions. (Conditions for isothermal crystallization time measurement) 1) Hold at 50 ° C. for 1 minute, then heat up to 180 ° C. at a rate of 200 ° C./min 2) Hold at 180 ° C. for 5 minutes, then cool to 122 ° C. at a rate of 80 ° C./min 3) 122 ° C.
  • the ratio of the 125 ° C. and 123 ° C. isothermal crystallization time of the ethylene polymer of the present embodiment is a value obtained by dividing the 125 ° C. isothermal crystallization time by the 123 ° C. isothermal crystallization time, and near the melting point of the ethylene polymer.
  • the ratio of the isothermal crystallization time to the temperature difference is an important value that determines the physical properties of the molded product in various molding processes.
  • a large ratio means that the crystallization speed or the melting speed varies greatly depending on a slight temperature difference, and “temperature response of crystallization speed is fast” or “temperature response of crystallization speed”. It can also be said to be “excellent”.
  • the ratio of the isothermal crystallization time of 125 ° C. and 123 ° C. of the ethylene polymer of the present embodiment is 3.5 or more and 10.0 or less, preferably 3.7 or more and 9.0 or less, more preferably 3. 9 or more and 8.0 or less.
  • the ratio of the isothermal crystallization time between 125 ° C and 123 ° C is 3.5 or more, so that the processability when melt spinning is excellent, and the gel containing the ethylene polymer is quickly discharged from the nozzle and cooled. Since crystallization proceeds and the gel becomes highly viscous, it can be wound at a high speed and the yarn diameter tends to be stable.
  • the gel containing the ethylene polymer is quickly solidified in the process of exiting the T-die and air-cooled, so that not only the adhesion of additives and the like to the cooling roll is reduced. Also, dripping of the solvent can be suppressed. Further, even during heat setting, the orientation can be relaxed in a short time, and not only the production rate can be increased, but also heat shrinkage can be suppressed, and the heat resistance tends to increase. Furthermore, even in compression molding, the orientation can be relaxed in a short time, and solidification proceeds rapidly only by lowering the temperature a little, so that the cooling time can be shortened and high-speed molding becomes possible.
  • the ratio of the isothermal crystallization time between 125 ° C. and 123 ° C. is 10.0 or less, the crystallization rate does not change too much with respect to the temperature change, and the stability of the film formation tends to be excellent.
  • the isothermal crystallization time at 125 ° C. of the ethylene polymer of the present embodiment is not limited, but is preferably within 20 minutes, more preferably within 15 minutes, and even more preferably within 10 minutes. .
  • the isothermal crystallization time of the ethylene polymer at 125 ° C. is within 20 minutes, the molding time can be shortened, which is economically preferable.
  • the amount of the solvent contained in the catalyst is 70% by mass or less based on the weight of the ethylene polymer; the deactivation of the catalyst is performed after separating the solvent as much as possible by a centrifugal separation method; It is the over weight or less 0.2 mol%; and the like.
  • the degree of crystallinity obtained from the differential scanning calorimeter (DSC) of the ethylene polymer of this embodiment is 40.0% to 75.0%, preferably 42.0% to 65.0%. More preferably, it is 44.0% or more and 60.0% or less.
  • DSC differential scanning calorimeter
  • the degree of crystallinity is 40.0% or more, in the case of a microporous film, mechanical strength such as puncture strength and tensile rupture strength tends to increase, and heat resistance tends to increase.
  • a fiber having a high elastic modulus and a high breaking strength can be obtained.
  • the degree of crystallinity is 75.0% or less, there is a tendency to be a molded article excellent in flexibility and impact resistance.
  • the method for adjusting the crystallinity to the above range is to control the molecular weight and molecular weight distribution of the ethylene polymer; to control the entanglement of the molecular chain according to the polymerization conditions; the ethylene polymer to ethylene and other comonomers And the like; and the like.
  • the difference (Tm1 ⁇ Tm2) between the melting point (Tm1) of the first melting peak and the melting point (Tm2) of the second melting peak determined from the differential scanning calorimeter (DSC) of the ethylene polymer of this embodiment is preferably 0 ° C. It is more than 10.0 degreeC above, More preferably, it is 1.0 degreeC or more and less than 9.5 degreeC, More preferably, it is 2.0 degreeC or more and less than 9.0 degreeC.
  • the melting point (Tm1) of the first melting peak is, for example, the melting point when the ethylene polymer melts from the powder state, and the melting point (Tm2) of the second melting peak is once melted and recrystallized.
  • Tm1 and Tm2 are 0 ° C. or more, a molded product having high strength, excellent chemical resistance and wear resistance tends to be obtained.
  • Tm1 and Tm2 is less than 10.0 ° C., a molded body that is easily dissolved in a solvent, excellent in workability, and excellent in creep resistance tends to be obtained.
  • the melting point of the melting peak of the ethylene polymer obtained from a differential scanning calorimeter (DSC) was maintained at 50 ° C. for 1 minute, and then heated to 190 ° C. at a rate of 10 ° C./min.
  • the melting point (Tm1) of the peak was measured, then held at 190 ° C. for 5 minutes, then cooled to 50 ° C. at a cooling rate of 10 ° C./min, then held at 50 ° C. for 5 minutes, and then the heating rate of 10 ° C./min.
  • Tm2 melting point
  • the temperature is raised to 190 ° C., it can be measured under conditions for measuring the melting point (Tm2) of the second melting peak.
  • Tm2 As a method for setting the difference between Tm1 and Tm2 in this embodiment to 0 ° C. or higher and lower than 10.0 ° C., for example, ethylene and hydrogen are supplied from the gas phase; the catalyst is introduced by cooling to 10 ° C. ⁇ 3 ° C.
  • the ethylene polymer and the solvent are separated by a centrifugal separation method, and the amount of the solvent contained in the ethylene polymer before drying is 70% by mass or less based on the weight of the ethylene polymer; the amount of the comonomer is 0.2 mol. % Or less; and the like.
  • the difference between the melting start temperature of the first melting peak and the melting start temperature of the second melting peak determined from the differential scanning calorimeter (DSC) of the ethylene polymer of the present embodiment is preferably 5.0 ° C. or more, More preferably, it is 6.0 degreeC or more, More preferably, it is 7.0 degreeC or more.
  • the melting start temperature of the first melting peak is also referred to as Tm1 onset, and is, for example, a temperature at which the ethylene polymer starts melting from a powder state.
  • the melting start temperature of the second melting peak, also referred to as Tm2 onset is the temperature at which the ethylene polymer once melted and recrystallized starts to remelt.
  • the melting start temperature of the first melting peak tends to be higher than the melting start temperature of the second melting peak, and the difference is less than 5.0 ° C.
  • this difference becomes larger, it can be said that the molecular chains are more entangled by melting once and then recrystallizing than in the powder state, or the molecular chains are more difficult to be entangled. Therefore, an ethylene polymer in which the difference between the melting start temperature of the first melting peak and the melting start temperature of the second melting peak is 5.0 ° C. or more has much molecular chain entanglement, and the microporous structure containing the ethylene polymer The film tends to have high mechanical strength such as puncture strength and tensile rupture strength, and high heat resistance.
  • the difference between the melting start temperature of the first melting peak and the melting start temperature of the second melting peak is preferably 20.0 ° C. or less, more preferably 15.0 ° C. or less, from the viewpoint of workability. Yes, more preferably 12.0 ° C or less.
  • the melting start temperature of the first melting peak and the melting start temperature of the second melting peak of the ethylene polymer determined from a differential scanning calorimeter (DSC) are maintained at 50 ° C. for 1 minute, and then increased by 10 ° C./min.
  • the first melting peak was measured when the temperature was increased to 190 ° C., then held at 190 ° C. for 5 minutes, then decreased to 50 ° C. at a temperature decrease rate of 10 ° C./min, then held at 50 ° C. for 5 minutes and then 10 It can be measured according to the condition for measuring the second melting peak when the temperature is raised to 190 ° C. at a temperature raising rate of ° C./min.
  • the total content of titanium (Ti) and aluminum (Al) in the ethylene polymer of the present embodiment is preferably 1.0 ppm or more and 30.0 ppm or less, more preferably 1.1 ppm or more and 20.0 ppm or less, More preferably, it is 1.2 ppm or more and 10.0 ppm or less.
  • the total content of Ti and Al mainly refers to the amount of catalyst residue.
  • the ratio of the isothermal crystallization time at 125 ° C. and 123 ° C. is increased.
  • the presence of a small amount of Ti-modified product and Al-modified product generated by catalyst deactivation leads to 125 ° C and 123 ° C.
  • the ratio of the isothermal crystallization time tends to increase.
  • the total content of Ti and Al is 30.0 ppm or less, an ethylene polymer with less coloration is obtained.
  • the total content of Ti and Al in the ethylene polymer of this embodiment can be controlled by the productivity of the ethylene polymer per unit catalyst.
  • the productivity of the ethylene polymer can be controlled by the polymerization temperature, polymerization pressure, and slurry concentration of the reactor during production. That is, examples of the method for increasing the productivity of the ethylene polymer of the present embodiment include increasing the polymerization temperature; increasing the polymerization pressure; and increasing the slurry concentration.
  • the catalyst to be used is not particularly limited, and a general Ziegler-Natta catalyst or a metallocene catalyst can be used, but it is preferable to use a catalyst described later.
  • the polyethylene powder and the solvent are separated by a centrifugal separation method, and the amount of the solvent contained in the polyethylene powder before drying is set to 70% by mass or less with respect to the weight of the polyethylene powder; Ti and Al can also be removed from the ethylene polymer powder by separating the solvent as much as possible; washing the ethylene polymer powder with water or a weakly acidic aqueous solution; The total content of Ti and Al can be measured by the method described in the examples described later.
  • the chlorine content of the ethylene polymer of the present embodiment is preferably 30 ppm or less, more preferably 20 ppm or less, and even more preferably 10 ppm or less with respect to the total amount of the ethylene polymer.
  • the lower limit of the chlorine content is not particularly limited, but it is preferably as small as possible, and more preferably 0 ppm.
  • the chlorine content is 30 ppm or less, deterioration of the ethylene polymer is suppressed, and embrittlement, discoloration, deterioration of mechanical properties and the like hardly occur, and the ethylene polymer is excellent in long-term stability.
  • the chlorine content of 30 ppm or less makes it difficult for the rolls and molds to be corroded during the molding process, and the corrosive components can also be prevented from contaminating the contacted objects.
  • the chlorine content of the ethylene polymer of this embodiment can be controlled by adjusting the productivity of polyolefin per unit catalyst.
  • the productivity of the ethylene polymer can be controlled by the polymerization temperature, polymerization pressure, and slurry concentration of the reactor during production. That is, examples of a method for increasing the productivity of the ethylene polymer used in the present embodiment include increasing the polymerization temperature; increasing the polymerization pressure; and increasing the slurry concentration.
  • the chlorine content of an ethylene polymer can also be reduced by using a catalyst with a small amount of components containing chlorine.
  • the catalyst to be used is not particularly limited, and a general Ziegler-Natta catalyst or a metallocene catalyst can be used. From the viewpoint of reducing the chlorine content, it is preferable to use a metallocene catalyst described later. In addition, chlorine content can be measured by the method as described in the Example mentioned later.
  • the total content of C16 and C18 hydrocarbon components extracted with hexane contained in the ethylene polymer of the present embodiment is preferably 200 ppm or less, more preferably 160 ppm or less, even more preferably. Is 120 ppm or less.
  • the ratio of the isothermal crystallization time at 125 ° C. and 123 ° C. tends to be small.
  • ethylene polymers are difficult to plasticize and the movement of molecular chains is restricted, so that the strength and heat resistance tend to be improved.
  • the lower limit of the total content of the hydrocarbon components having 16 carbon atoms and 18 carbon atoms extracted with hexane is not particularly limited, but it is preferably as small as possible, more preferably 0 ppm.
  • an ethylene polymer having a total content of hydrocarbon components of 16 carbon atoms and 18 carbon atoms extracted with hexane of 200 ppm or less for example, in the production of an ethylene polymer, it has 16 carbon atoms and 18 carbon atoms.
  • Use a catalyst that does not easily generate hydrocarbon components continuously supply ethylene gas, solvent, catalyst, etc. into the polymerization system, and continuously discharge ethylene gas, solvent, catalyst, etc. along with the generated ethylene polymer.
  • Stirring is performed at a rotation speed of 50 rpm or less using a Max blend blade; use of a hydrocarbon medium having 6 to 10 carbon atoms as a polymerization solvent; ethylene and hydrogen from the gas phase Supply the catalyst; cool and introduce the catalyst to 10 ° C. ⁇ 3 ° C .; separate the ethylene polymer and the solvent by a centrifugal separation method and include in the ethylene polymer before drying. It is 70 mass% or less is the amount of solvent relative to the weight of the ethylene polymer; and the like; catalyst deactivation, be carried out after separation as possible of the solvent by centrifugal separation method.
  • the total content of the hydrocarbon components having 16 and 18 carbon atoms extracted with hexane was measured by gas chromatography of the components extracted from the ethylene polymer, and the standard materials having 16 and 18 carbon atoms were obtained. It can be obtained from the peak overlapping with.
  • the polymerization method in the method for producing an ethylene polymer of the present embodiment is not limited to the following, but for example, a slurry polymerization method, a gas phase polymerization method, a solution polymerization method, or the like, may be used. Co) polymerization method may be mentioned. Among these, the slurry polymerization method that can efficiently remove the heat of polymerization is preferable. In the slurry polymerization method, an inert hydrocarbon medium can be used as the medium, and the olefin itself can also be used as the medium.
  • the inert hydrocarbon medium is not particularly limited, but specific examples include propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, kerosene and other aliphatic hydrocarbons; cyclopentane, And alicyclic hydrocarbons such as cyclohexane and methylcyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethyl chloride, chlorobenzene and dichloromethane; and mixtures thereof. .
  • an inert hydrocarbon medium having 6 to 10 carbon atoms. If the number of carbon atoms is 6 or more, side-reactions during ethylene polymerization and low molecular weight components generated by deterioration of the ethylene polymer are relatively easy to dissolve and can be easily removed in the process of separating the ethylene polymer and the polymerization medium. Can be. By reducing the low molecular weight component in the ethylene polymer, the ratio of the isothermal crystallization time between 125 ° C. and 123 ° C. can be adjusted to 3.5 or more and 10.0 or less. On the other hand, if the number of carbon atoms is 10 or less, adhesion of the ethylene polymer to the reaction vessel is suppressed, and industrially stable operation tends to be performed.
  • the polymerization temperature in the method for producing an ethylene polymer of the present embodiment is usually preferably 30 ° C. or higher and 100 ° C. or lower, more preferably 35 ° C. or higher and 95 ° C. or lower, and further preferably 40 ° C. or higher and 90 ° C. or lower. If the polymerization temperature is 30 ° C. or higher, industrially efficient production tends to be performed. On the other hand, if the polymerization temperature is 100 ° C. or lower, there is a tendency that continuous operation can be performed continuously.
  • the polymerization pressure in the method for producing an ethylene polymer is usually preferably from normal pressure to 2.0 MPa, more preferably from 0.1 MPa to 1.5 MPa, and even more preferably from 0.1 MPa to 1.0 MPa. It is as follows.
  • the polymerization reaction can be carried out by any of batch, semi-continuous and continuous methods, among which polymerization is preferred.
  • By continuously supplying ethylene gas, solvent, catalyst, etc. into the polymerization system, and continuously discharging ethylene gas, solvent, catalyst, etc. along with the generated ethylene polymer powder it is possible to achieve a partial reaction due to rapid ethylene reaction. It becomes possible to suppress a high temperature state, and the inside of the polymerization system tends to become more stable.
  • ethylene is polymerized in a uniform state in the system, the isothermal crystallization time of the ethylene polymer is made uniform, so that the temperature response of the crystallization rate tends to be accelerated.
  • the stirring blade of the polymerization reactor can be selected from various stirring blades, but it is preferable to use a Max blend blade.
  • the rotation speed of the stirring blade is preferably 50 rpm or less, more preferably 48 rpm or less, and further preferably 46 rpm or less.
  • the inside of the polymerization system is made more uniform by stirring at 50 rpm or less using a Max Blend blade having high stirring efficiency.
  • the ethylene polymer powder can be polymerized without being pulverized, and can be produced without changing the characteristics of each powder.
  • the catalyst component used for the production of the ethylene polymer of the present embodiment for example, a Ziegler-Natta catalyst, a metallocene catalyst, a Phillips catalyst and the like can be preferably exemplified.
  • a Ziegler-Natta catalyst those described in Japanese Patent No. 5767202 can be suitably used, and the metallocene catalyst is not limited to the following, but for example, Japanese Patent Application Laid-Open No. 2006-273997 and Patent The thing of 4868853 can be used conveniently.
  • the catalyst component used in the production of the ethylene polymer of the present embodiment may contain a co-catalyst such as triisobutylaluminum or a Tebbe reagent.
  • the average particle diameter of the catalyst is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.2 ⁇ m or more and 16 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 12 ⁇ m or less. If the average particle diameter is 0.1 ⁇ m or more, problems such as scattering and adhesion of the resulting ethylene polymer particles tend to be prevented. On the other hand, if it is 10 ⁇ m or less, the ethylene polymer particles become too large and tend to settle in the polymerization system, and problems such as line blockage in the post-treatment step of the ethylene polymer can be prevented.
  • the catalyst particle size distribution is preferably as narrow as possible. Fine particles and coarse particles can be removed by sieving, centrifugation, or cyclone.
  • the catalyst introduction temperature is preferably cooled to 10 ° C. ⁇ 3 ° C. for introduction.
  • the catalyst introduction temperature is preferably cooled to 10 ° C. ⁇ 3 ° C. for introduction.
  • the method for deactivating the catalyst used for synthesizing the ethylene polymer is not particularly limited, but it is preferable to carry out the method after separating the ethylene polymer powder and the solvent.
  • a chemical to deactivate the catalyst after separating it from the solvent it is possible to suppress the precipitation of the catalyst component dissolved in the solvent, and to reduce Ti, Al, chlorine, etc. derived from the catalyst component can do.
  • agents that deactivate the catalyst system include, but are not limited to, oxygen, water, alcohols, glycols, phenols, carbon monoxide, carbon dioxide, ethers, carbonyl compounds, alkynes, and the like. Can do.
  • ethylene gas is preferably introduced into the gas phase at the top of the polymerization reactor.
  • ethylene gas is introduced into the liquid phase at the bottom of the polymerization reactor, but the ethylene concentration near the outlet of the ethylene introduction line increases, causing a rapid ethylene reaction, resulting in molecular weight and isothermal crystallization time. Are easily produced, and the temperature response of the crystallization rate is slow. Therefore, it is preferable to introduce ethylene gas into the gas phase.
  • the molecular weight of the ethylene polymer is adjusted by, for example, allowing hydrogen to be present in the polymerization system or changing the polymerization temperature, as described in West German Patent Application Publication No. 3127133. Can do.
  • the molecular weight can be easily controlled within an appropriate range.
  • the molar fraction of hydrogen is preferably 0 mol% or more and 30 mol% or less, more preferably 0 mol% or more and 25 mol% or less, and further preferably 0 mol% or more and 20 mol% or less.
  • the hydrogen concentration with respect to ethylene in the gas phase is preferably 1 to 10,000 ppm, more preferably 10 to 7,000 ppm, and still more preferably 30 to 6,000 ppm.
  • the solvent separation method in the method for producing an ethylene polymer of the present embodiment can be performed, for example, by a decantation method, a centrifugal separation method, a filter filtration method, etc., from the viewpoint of good separation efficiency between the ethylene polymer and the solvent. Centrifugation is preferred.
  • the amount of the solvent contained in the ethylene polymer after the solvent separation is not particularly limited, but is preferably 70% by mass or less, more preferably 60% by mass or less, and further preferably 50% by mass or less with respect to the mass of the ethylene polymer. It is. When the solvent contained in the ethylene polymer is removed by drying in a small amount, catalyst residues such as Al, Ti, chlorine, etc. contained in the solvent tend not to remain in the ethylene polymer. Molecular weight components can also be reduced. Since these components do not remain, the ratio of the isothermal crystallization time at 125 ° C. and 123 ° C. can be adjusted to 3.5 or more and 10.0 or less.
  • the drying temperature in the method for producing an ethylene polymer of the present embodiment is usually preferably 50 ° C. or higher and 150 ° C. or lower, more preferably 50 ° C. or higher and 140 ° C. or lower, and further preferably 50 ° C. or higher and 130 ° C. or lower. If the drying temperature is 50 ° C. or higher, efficient drying is possible. On the other hand, when the drying temperature is 150 ° C. or lower, it is possible to dry in a state in which the aggregation and thermal deterioration of the ethylene polymer are suppressed.
  • the ethylene polymer of this embodiment can contain other well-known components useful for manufacture of polyethylene other than each above-mentioned component.
  • the ethylene polymer of the present embodiment may further contain additives such as a neutralizer, an antioxidant, and a light stabilizer.
  • the neutralizing agent is used as a catcher of chlorine contained in the ethylene polymer or a molding processing aid.
  • a neutralizing agent Specifically, the stearate of alkaline-earth metals, such as calcium, magnesium, barium, is mentioned.
  • content of a neutralizing agent is not specifically limited, Preferably it is 5,000 ppm or less with respect to the ethylene polymer whole quantity, More preferably, it is 4,000 ppm or less, More preferably, it is 3,000 ppm or less.
  • the ethylene polymer of this embodiment is an ethylene polymer obtained by a slurry polymerization method using a metallocene catalyst, it is possible to exclude a halogen component from the catalyst constituent components, and no neutralizer is used. Also good.
  • the antioxidant is not particularly limited, and specific examples thereof include dibutylhydroxytoluene, pentaeryristyl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3 And phenolic antioxidants such as-(3,5-di-t-butyl-4-hydroxyphenyl) propionate.
  • content of antioxidant is not specifically limited, Preferably it is 5,000 ppm or less, More preferably, it is 4,000 ppm or less, More preferably, it is 3,000 ppm or less.
  • the light-resistant stabilizer is not particularly limited. Specifically, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl)- Benzotriazole light stabilizers such as 5-chlorobenzotriazole; bis (2,2,6,6-tetramethyl-4-piperidine) sebacate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl ) Amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl) Hindered amine light stabilizers such as -4-piperidyl) imino ⁇ ] and the like.
  • content of a light-resistant stabilizer is not specifically limited, Preferably it is 5,000 ppm or less, More preferably, it is 4,000 ppm or less, More preferably, it is 3,000
  • the content of the additive contained in the ethylene polymer of the present embodiment is such that the additive in the ethylene polymer is extracted by Soxhlet extraction using tetrahydrofuran (THF) for 6 hours, and the extract is separated by liquid chromatography. Can be determined by quantification.
  • THF tetrahydrofuran
  • the ethylene polymer of the present embodiment can be blended with ethylene polymers having different viscosity average molecular weights, molecular weight distributions, etc., and other resins such as low density polyethylene, linear low density polyethylene, polypropylene, and polystyrene are blended. You can also Moreover, the ethylene polymer of this embodiment can be used conveniently even if it is a powder form or a pellet form.
  • the ethylene polymer excellent in temperature responsiveness of the crystallization speed obtained as described above can be applied to various uses by various processing methods. Since the molded body containing the ethylene polymer of the present embodiment is excellent in strength and dimensional accuracy, and further excellent in heat resistance, it can be suitably used as a microporous film or fiber. Examples of such a molded body include secondary battery separators, particularly lithium ion secondary battery separators, lead storage battery separators, and high-strength fibers. Taking advantage of the characteristics of high molecular weight ethylene polymers such as wear resistance, high slidability, high strength, and high impact properties, the ethylene polymer of this embodiment can be used for extrusion molding, press molding and cutting.
  • the ethylene polymer of this embodiment can be used for the molded object obtained by sintering an ethylene polymer, a filter, a dust trap material, etc.
  • Viscosity average molecular weight First, 20 mg of ethylene polymer was added to 20 mL of decalin (decahydronaphthalene) and stirred at 150 ° C. for 2 hours to dissolve the polymer. The drop time (t s ) between the marked lines was measured using a Ubbelohde type viscometer for the solution in a thermostatic bath at 135 ° C. Similarly, three-point solutions with different weights of the ethylene polymer were prepared, and the dropping time was measured. The falling time (t b ) of only decalin without an ethylene polymer as a blank was measured.
  • Each of the reduced viscosities ( ⁇ sp / C) of the polymer determined according to the following formula A is plotted to derive a linear expression of the concentration (C) (unit: g / dL) and the reduced viscosity ( ⁇ sp / C) of the polymer,
  • the intrinsic viscosity ([ ⁇ ]) extrapolated to a concentration of 0 was determined.
  • ⁇ sp / C (t s / t b -1) / C ( unit: dL / g)
  • Mv viscosity average molecular weight
  • the density of the ethylene polymer was determined by JIS K using a sample cut from an ethylene polymer powder press sheet at 120 ° C. for 1 hour and then cooled at 25 ° C. for 1 hour as a sample for density measurement. It was determined by measuring according to 7112.
  • the press sheet of the ethylene polymer powder was prepared according to ASTM D 1928 Procedure C using a mold having a length of 60 mm, a width of 60 mm, and a thickness of 2 mm.
  • Ratio of 125 ° C and 123 ° C isothermal crystallization time The isothermal crystallization time was measured using DSC (trade name: DSC8000, manufactured by Perkin Elmer) under nitrogen. 8-10 mg of ethylene polymer was inserted into an aluminum pan and placed on the DSC. Then, the time when the exothermic peak top resulting from crystallization was obtained at 123 ° C. and 125 ° C. was measured under the following measurement conditions, and the time was defined as the isothermal crystallization time.
  • the ratio of the 125 ° C and 123 ° C isothermal crystallization times was determined by dividing the 125 ° C isothermal crystallization time by the 123 ° C isothermal crystallization time.
  • Step 2 Hold at 190 ° C. for 5 minutes, then lower the temperature to 50 ° C. at a rate of 10 ° C./min
  • Step 3 After holding at 50 ° C for 5 minutes, the temperature is raised to 190 ° C at a rate of 10 ° C / min.
  • the melting point difference Tm1-Tm2 and the melting start temperature difference were also measured according to the measurement conditions for the crystallinity described above.
  • Total content of Ti and Al The ethylene polymer was subjected to pressure decomposition using a microwave decomposition apparatus (model ETHOS TC, manufactured by Milestone General Co.), and ICP-MS (inductively coupled plasma mass) was performed by an internal standard method.
  • the element concentration of Ti and Al as the metal in the polyethylene powder was measured with an analyzer, model X series X7, manufactured by Thermo Fisher Scientific.
  • the total content of Ti and Al is a value obtained by adding the element concentrations of Ti and Al.
  • Total content of hydrocarbon components having 16 and 18 carbon atoms extracted with hexane is ethylene.
  • the components extracted from the polymer were measured by gas chromatography as follows and determined from the peaks overlapping with 16 and 18 carbon atoms of the standard substance.
  • An ethylene polymer (5 g) and Wako Pure Chemical Industries PCB test hexane (20 mL) were placed in a 100 mL volume SUS container and sealed. The entire SUS container was immersed in a 60 ° C. hot water bath and extracted for 5 hours while shaking at a speed of 50 min ⁇ 1 , and then immersed in 20 ° C. water and rapidly cooled.
  • This solution was spun at a single hole discharge rate of 1.1 g / min using a spinneret with a pore diameter of 0.7 mm set at 180 ° C.
  • the extruded melt (yarn) was taken up while being cooled to a width of about 1.0 m with an air stream, and wound around a roll installed at a place where the spinneret was 1.5 m.
  • the take-up speed and the blocking of the yarn wound on the roll that is, the presence or absence of the sticking of the yarns were observed.
  • the case where the maximum take-up speed was 60 m / min or more and there was no yarn blocking was rated as ⁇ .
  • This solution was extruded from a T-die installed at the tip of an extruder set at 210 ° C., and then cooled and solidified with a cast roll cooled to 25 ° C., thereby forming a gel sheet having a thickness of 1,000 ⁇ m.
  • the adhesion state to the cast roll at that time and the dripping state from the cast roll were observed.
  • the case where there was little deposit on the cast roll and there was no dripping was marked with ⁇ .
  • a film having a shrinkage ratio of less than 1% and a good film state was marked as ⁇ .
  • a film having a shrinkage ratio of 1% or more and less than 2% and having a good film state was evaluated as “ ⁇ ”.
  • a film having a shrinkage ratio of 2% or more and a film having a slight undulation was evaluated as ⁇ .
  • the film was wavy and was marked with x.
  • titanium complex [(Nt-butylamide) (tetramethyl- ⁇ 5-cyclopentadienyl) dimethylsilane] titanium-1,3-pentadiene (hereinafter referred to as “titanium complex”) Trade name of hydrocarbon mixture manufactured by the company (USA)] 1 mol of the formula AlMg 6 (C 2 H 5 ) 3 (nC 4 H 9 ) 12 dissolved in 1,000 mL and previously synthesized from triethylaluminum and dibutylmagnesium 20 mL of / L hexane solution was added, and further hexane was added to adjust the titanium complex concentration to 0.1 mol / L to obtain component [b].
  • borate bis (hydrogenated tallow alkyl) methylammonium-tris (pentafluorophenyl) (4-hydroxyphenyl) borate (hereinafter referred to as “borate”) was added to 50 mL of toluene and dissolved, and borate Of 100 mmol / L in toluene was obtained.
  • borate toluene solution 5 mL of a 1 mol / L hexane solution of ethoxydiethylaluminum was added at room temperature, and further hexane was added so that the borate concentration in the solution was 70 mmol / L.
  • Example 1 Polymerization of ethylene polymer
  • Hexane, ethylene, hydrogen, and catalyst were continuously fed to a Bessel type 300 L polymerization reactor equipped with a Max blend stirring blade.
  • the polymerization pressure was 0.8 MPa.
  • the polymerization temperature was kept at 75 ° C. by jacket cooling.
  • Hexane was adjusted to 20 ° C. and fed from the bottom of the polymerization vessel at 32 L / hr.
  • the solid catalyst component [A] was added from the bottom of the polymerization vessel at a rate of 0.2 g / hr, adjusted to 10 ° C. using the solvent hexane as a transfer liquid, and triisobutylaluminum was adjusted to 20 ° C.
  • the polymerization slurry was continuously drawn into a flash drum having a pressure of 0.05 Mpa and a temperature of 60 ° C. so that the level of the polymerization reactor was kept constant, and unreacted ethylene and hydrogen were separated.
  • the polymerization slurry was continuously sent to a centrifuge so that the level of the polymerization reactor was kept constant, and the polymer and other solvents were separated.
  • the solvent content relative to the polymer at that time was 45%.
  • the separated ethylene polymer powder was dried while blowing nitrogen at 95 ° C. In this drying step, the catalyst and the cocatalyst were deactivated by spraying steam on the polymerized powder.
  • FIG. 1 shows an isothermal crystallization time measurement chart of the obtained ethylene polymer at 125 ° C. and 123 ° C.
  • Example 2 In the polymerization step, the polymerization temperature is 75 ° C., the polymerization pressure is 0.35 MPa, the solid catalyst component [B] is used instead of the solid catalyst component [A], the Teve reagent is not used, triisobutylaluminum is 3 mmol / hr,
  • the ethylene polymer of Example 2 having a viscosity average molecular weight of 200 ⁇ 10 4 g / mol was obtained in the same manner as in Example 1, except that the hydrogen concentration was 4,200 ppm.
  • the physical properties of the obtained ethylene polymer are shown in Table 1.
  • Example 3 In the polymerization step, the polymerization temperature is 69 ° C., the polymerization pressure is 0.40 MPa, the solid catalyst component [B] is used instead of the solid catalyst component [A], the Teve reagent is not used, triisobutylaluminum is 3 mmol / hr, A viscosity average molecular weight of 300 ⁇ 10 4 g / mol was obtained in the ethylene polymer in the same manner as in Example 1 except that hydrogen was 600 ppm and 1-butene was introduced from a gas phase of 0.11 mol% with respect to ethylene. The ethylene polymer of Example 3 having a 1-butene content of 0.03 mol% was obtained. The physical properties of the obtained ethylene polymer are shown in Table 1.
  • Example 4 In the polymerization step, the polymerization temperature is 66 ° C., the polymerization pressure is 0.35 MPa, the solid catalyst component [B] is used instead of the solid catalyst component [A], the Teve reagent is not used, triisobutylaluminum is 3 mmol / hr, A viscosity average molecular weight of 600 ⁇ 10 4 g / mol was obtained in the ethylene polymer in the same manner as in Example 1 except that hydrogen was adjusted to 100 ppm and 1-butene was introduced from a gas phase of 0.10 mol% with respect to ethylene. The ethylene polymer of Example 4 was obtained with a 1-butene content of 0.03 mol%. The physical properties of the obtained ethylene polymer are shown in Table 1.
  • Example 5 In the polymerization step, the ethylene weight of Example 5 having a viscosity average molecular weight of 750 ⁇ 10 4 g / mol was obtained in the same manner as in Example 1, except that the Tube reagent was 5.0 ⁇ mol / hr and the hydrogen concentration was 75 ppm. Coalescence was obtained. The physical properties of the obtained ethylene polymer are shown in Table 1.
  • Example 6 In the polymerization step, the same procedure as in Example 1 was performed, except that the Tube reagent was 3.5 ⁇ mol / hr, the hydrogen concentration was 80 ppm, and 1-butene was introduced from the gas phase in an amount of 0.06 mol% with respect to ethylene.
  • An ethylene polymer of Example 6 having a viscosity average molecular weight of 750 ⁇ 10 4 g / mol and a 1-butene content in the ethylene polymer of 0.06 mol% was obtained.
  • the physical properties of the obtained ethylene polymer are shown in Table 1.
  • Comparative Example 3 In the polymerization step, the viscosity average molecular weight was determined by the same procedure as in Example 1 except that the Tube reagent was 3.5 ⁇ mol / hr, the hydrogen concentration was 80 ppm, and 1-butene was introduced in an amount of 0.16 mol% with respect to ethylene. An ethylene polymer of Comparative Example 3 was obtained having 550 ⁇ 10 4 g / mol and 1-butene content in the ethylene polymer of 0.14 mol%. The physical properties of the obtained ethylene polymer are shown in Table 1.
  • Example 4 In the polymerization step, Example 1 except that the polymerization temperature was 55 ° C., the polymerization pressure was 0.3 MPa, the solid catalyst component [B] was used instead of the solid catalyst component [A], and the Teve reagent and hydrogen were not used.
  • an ethylene polymer of Comparative Example 4 having a viscosity average molecular weight of 1,050 ⁇ 10 4 g / mol was obtained.
  • the physical properties of the obtained ethylene polymer are shown in Table 1.
  • the peak top of the exothermic peak due to crystallization did not appear within 30 minutes at 125 ° C.
  • the polymerization slurry was continuously drawn into a flash drum having a pressure of 0.05 Mpa and a temperature of 60 ° C. so that the level of the polymerization reactor was kept constant, and unreacted ethylene and hydrogen were separated.
  • the solvent was removed by filtration. Content of the solvent etc. with respect to the polymer after filtration was 195%.
  • the separated and filtered ethylene polymer powder was dried at 95 ° C. while blowing nitrogen.
  • the ethylene polymer of the present invention Since the ethylene polymer of the present invention has a quick temperature response of the crystallization speed, the resin viscosity rises quickly, and the yarn diameter does not become too small or the yarn does not break even when pulled quickly. It is possible to increase the speed. In addition, since the ethylene polymer of the present invention has a fast temperature response of the crystallization speed, the resin solidification speed is fast, the tackiness is lowered in a short time, and the yarns are prevented from being attracted (blocking). Furthermore, since the ethylene polymer of the present invention has a fast crystallization speed temperature response, the resin viscosity increases immediately after the resin is extruded from the T die, the solvent is easily retained, and pressure is applied by the cooling roll. However, the rate at which the solvent exudes is small, and roll deposits and dripping are suppressed. As described above, the ethylene polymer of the present invention can be produced and processed efficiently and without problems, and is excellent in processability and production stability.
  • the ethylene polymer of the present invention has a quick temperature response of the crystallization rate, excellent workability, and excellent productivity and production stability. Furthermore, stretched molded articles, microporous membranes, fibers and the like containing an ethylene polymer are excellent in strength and dimensional accuracy, and thus have high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明は、粘度平均分子量が、100×104以上1,000×104以下であり、特定の等温結晶化時間測定条件により求められる、125℃と123℃の等温結晶化時間の比が、3.5以上10.0以下であり、示差走査熱量計(DSC)から求められる結晶化度が、40%以上75%以下である、エチレン重合体を提供する。

Description

エチレン重合体、延伸成形体、微多孔膜、及び繊維
 本発明は、エチレン重合体、並びにこれを含む延伸成形体、微多孔膜、及び繊維に関する。
 エチレン重合体は、フィルム、シート、微多孔膜、繊維、発泡体、パイプ等多種多様な用途に用いられている。エチレン重合体が用いられている理由としては、溶融加工が容易で、得られた成形体は、機械強度が高く、耐薬品性、剛性等にも優れるからである。中でも超高分子量エチレン重合体は、分子量が大きいため、より機械強度が高く、摺動性や耐摩耗性に優れ、化学的安定性や長期信頼性にも優れる。
 しかしながら、超高分子量エチレン重合体は、融点以上の温度で結晶を溶融させても流動性が低く、容易に溶融成形することができない。そのため、金型に超高分子量エチレン重合体パウダーを充填させた後、高圧で圧縮することで成形体ブロックを作製し、そのブロックを切削することでフィルムやシート状に加工する方法が一般的に用いられる(例えば、特許文献1参照)。その他の加工方法としては、超高分子量エチレン重合体を溶剤に溶解した状態で加工して、その後、溶媒を除去する方法が選択される。例えば、微多孔膜や高強度繊維等では、流動パラフィンやデカリン等の溶剤と共に押出機で加熱混練され、冷却しながら膜や糸状に加工される。その後、溶剤を抽出等で除去し、続いて融点近傍まで再加熱して、延伸や熱固定する方法がとられている(例えば、特許文献2参照)。
 このように、超高分子量エチレン重合体は、温度制御を高精度に行い、溶融と固化を繰り返しながら緻密な加工を行うことで成形体の物性を制御している。成形体の物性は、半結晶性樹脂であるエチレン重合体の場合、結晶化度、結晶サイズや分子配向等によって大きな影響を受け、エチレン重合体が温度変化に追随して結晶化する時の速度が、極めて重要となる。
 結晶化速度を制御した公知文献としては、例えば、特許文献3に、微多孔膜において、ポリオレフィン樹脂の融点より25℃低い温度における等温結晶化時間が200秒以下であると、原料の結晶性と、低ドラフト比での製膜性のバランスが良好で、原反製膜が容易になることが開示されている。
 また、例えば、特許文献4には、微多孔膜において、ポリオレフィン樹脂と成膜用溶剤からなるポリオレフィン樹脂組成物に結晶造核剤を添加することで、結晶化時間が短くなり、微多孔膜の細孔構造が、より均一で、より緻密になり、その機械的強度と耐電圧特性が向上することが開示されている。
特許第2566112号 特開平2-21559号公報 特開2013-32490号公報 国際公開2016/104791号パンフレット
 しかしながら、特許文献3では、結晶化速度が比較的速い超高分子量エチレン重合体に関する記述だけであり、温度が変化したときにおける結晶化速度の変化が、物性に及ぼす影響については言及されていない。また、物性のバランスをとるために熱固定時間が長くなる傾向にあり、生産性に問題がある。
 特許文献4においても、結晶化速度を速めることのみに言及しており、さらに結晶化速度を速めるために結晶核剤を導入するため、結晶核剤が残存して膜に凸部が形成され塗工ができないことや、結晶核剤により細孔が潰れることや、或いは、結晶核剤近傍のみ結晶化速度が速いため膜の均一性に劣ること等の問題が生じる。
 本発明は、上記問題点に鑑みてなされたものであり、結晶化速度の温度応答が早く、加工性、及び生産安定性に優れるエチレン重合体、並びに、かかるエチレン重合体を含む、強度及び寸法精度に優れた、延伸成形体、微多孔膜、及び繊維を提供することを目的とする。
 本発明者は、前記課題を解決するために鋭意研究を進めた結果、所定の粘度平均分子量、所定の結晶化度、及び所定の125℃と123℃の等温結晶化時間の比を有するエチレン重合体が、上記の課題を解決することができることを見出し、本発明を完成するに至った。
 即ち、本発明は以下のとおりである。
[1]
 粘度平均分子量が、100×10以上1,000×10以下であり、
 以下の等温結晶化時間測定条件により求められる、125℃と123℃の等温結晶化時間の比が、3.5以上10.0以下であり、
 示差走査熱量計(DSC)から求められる結晶化度が、40.0%以上75.0%以下である、
エチレン重合体。
(等温結晶化時間測定条件)
1)50℃で1分間保持後、200℃/minの昇温速度で180℃まで昇温
2)180℃で5分間保持後、80℃/minの降温速度で122℃まで冷却
3)122℃で5分間保持後、200℃/minの昇温速度で180℃まで昇温
4)180℃で5分間保持後、80℃/minの降温速度で123℃まで冷却
5)123℃で10分間保持後、200℃/minの昇温速度で180℃まで昇温
(123℃に達した時間を起点0分として123℃の等温結晶化時間を測定)
6)180℃で5分間保持後、80℃/minの降温速度で124℃まで冷却
7)124℃で15分間保持後、200℃/minの昇温速度で180℃まで昇温
8)180℃で5分間保持後、80℃/minの降温速度で125℃まで冷却
9)125℃で30分間保持後、200℃/minの昇温速度で180℃まで昇温
(125℃に達した時間を起点0分として125℃の等温結晶化時間を測定)
[2]
 示差走査熱量計(DSC)から求められる第1融解ピークの融点(Tm1)と第2融解ピークとの融点(Tm2)の差が、0℃以上10.0℃未満である、[1]に記載のエチレン重合体。
[3]
 示差走査熱量計(DSC)から求められる第1融解ピークの融解開始温度と第2融解ピークの融解開始温度との差が、5.0℃以上である、[1]又は[2]に記載のエチレン重合体。
[4]
 TiとAlの総含有量が、1.0ppm以上30.0ppm以下である、[1]~[3]のいずれかに記載のエチレン重合体。
[5]
 塩素含有量が、30ppm以下である、[1]~[4]のいずれかに記載のエチレン重合体。
[6]
 ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量が、200ppm以下である、[1]~[5]のいずれかに記載のエチレン重合体。
[7]
 [1]~[6]のいずれかに記載のエチレン重合体を含む、延伸成形体。
[8]
 [1]~[6]のいずれかに記載のエチレン重合体を含む、微多孔膜。
[9]
 [1]~[6]のいずれかに記載のエチレン重合体を含む、繊維。
 本発明によれば、結晶化速度の温度応答が早く、加工性、及び生産安定性に優れるエチレン重合体、並びにこれを含む、強度及び寸法精度に優れた、延伸成形体、微多孔膜、及び繊維を実現することができる。
実施例1の125℃と123℃の等温結晶化時間測定チャート
 以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について詳細に説明する。なお、本発明は、本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[エチレン重合体]
 本実施形態のエチレン重合体は、粘度平均分子量が、100×10以上1,000×10以下であり、125℃と123℃の等温結晶化時間の比が、3.5以上10.0以下であり、示差走査熱量計(DSC)から求められる結晶化度が、40.0%以上75.0%以下である。以下、上記要件について説明する。
 本実施形態のエチレン重合体としては、特に限定されないが、例えば、エチレン単独重合体、又は、エチレンと、他のコモノマーとの共重合体等が好適に挙げられる。他のコモノマーとしては、特に限定されないが、例えば、α-オレフィン、ビニル化合物等が挙げられる。
 上記α-オレフィンとしては、特に限定されないが、例えば、炭素数3~20のα-オレフィンが挙げられ、具体的には、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン等が挙げられる。さらに、上記ビニル化合物としては、特に限定されないが、例えば、ビニルシクロヘキサン、スチレン及びその誘導体等が挙げられる。また、必要に応じて、他のコモノマーとして、1,5-ヘキサジエン、1,7-オクタジエン等の非共役ポリエンを使用することもできる。
 上記共重合体は3元ランダム重合体であってもよい。他のコモノマーは1種単独で用いてもよく、2種以上を併用してもよい。
 他のコモノマーの量は、エチレン重合体に対し、好ましくは0.20mol%以下であり、より好ましくは0.15mol%以下であり、さらに好ましくは0.10mol%以下である。他のコモノマーの量が0.20mol%以下であることにより、結晶化度を高くすることが可能で、125℃と123℃の等温結晶化時間の比を、3.5以上10.0以下の範囲に調整しやすい傾向にある。尚、エチレン重合体のコモノマー量は、赤外分析法、NMR法等で確認することができる。
 本実施形態のエチレン重合体の密度は、特に限定されないが、好ましくは910kg/cm以上980kg/cm以下であり、より好ましくは915kg/m以上970kg/cm以下であり、さらに好ましくは920kg/m以上965kg/cm以下である。エチレン重合体の密度が910kg/cm以上980kg/cm以下であることにより、エチレン重合体の125℃と123℃の等温結晶化時間の比が3.5以上10.0以下になる傾向にあり、本実施形態のエチレン重合体を含む、延伸成形体、微多孔膜、及び繊維も、優れた強度を有するものとなる。尚、エチレン重合体の密度は、エチレン重合体パウダーのプレスシートから切り出した切片を120℃で1時間アニーリングし、その後25℃で1時間冷却したものを密度測定用サンプルとして用い、JIS K 7112に準じて測定することによって求めることができる。エチレン重合体パウダーのプレスシートは、縦60mm、横60mm、厚み2mmの金型を用い、ASTM D 1928 Procedure Cに準じて作製することができる。より具体的には、エチレン重合体の密度は、実施例に記載の方法により測定することができる。
(粘度平均分子量(Mv))
 本実施形態のエチレン重合体の粘度平均分子量(Mv)は、100×10以上1,000×10以下であり、好ましくは120×10以上900×10以下であり、より好ましくは140×10以上800×10以下である。粘度平均分子量(Mv)が100×10以上であることにより、後述するエチレン重合体の125℃と123℃の等温結晶化時間の比が大きくなる傾向にあり、第1融解ピークの融解開始温度と第2融解ピークの融解開始温度の差も大きくなる傾向にある。また、エチレン重合体中に含有される低分子量成分の量を少なくすることができる。さらに、本実施形態のエチレン重合体を含む、延伸成形体、微多孔膜、及び繊維は、優れた強度を有するものとなる。一方で、粘度平均分子量(Mv)が1,000×10以下であることにより、溶融流動性、溶媒への溶解性や延伸性等が向上し、加工が容易になる。
 エチレン重合体の粘度平均分子量(Mv)は、後述する触媒を用い、重合条件等を適宜調整することで調整することができる。重合条件としては、具体的には、重合系に水素を存在させること、及び/又は重合温度を変化させること等によって粘度平均分子量を調節することができる。
 本実施形態のエチレン重合体の粘度平均分子量(Mv)は、デカリン中にエチレン重合体を異なる濃度で溶解した溶液を用意し、該溶液の135℃における溶液粘度を測定する。このようにして測定された溶液粘度から計算される還元粘度を濃度0に外挿し、極限粘度を求め、求めた極限粘度[η](dL/g)から、以下の数式Aにより算出することができる。より具体的には、実施例に記載の方法により測定することができる。
  Mv=(5.34×10)×[η]1.49         ・・・数式A
(125℃と123℃の等温結晶化時間の比)
 等温結晶化時間とは、融点を超える温度でポリマーを一度溶融した後、温度を下げて、ある温度に固定した時の固化時間(結晶化速度)を測定した値のことをいう。具体的には、示差走査熱量計(DSC)を用いて、エチレン重合体を入れたアルミパンを加熱炉に入れ、窒素雰囲気下で50℃、1分間保持した後、200℃/minの昇温速度で180℃まで昇温して、180℃にて5分間保持することでエチレン重合体を溶融させる。次に、80℃/minの降温速度で122℃まで降温し、122℃にて保持する。122℃に達した時間を起点(0分)として、結晶化に起因する発熱ピークのピークトップが得られた時間を122℃での等温結晶化時間として測定することができる。続いて、同様に昇温、降温を繰り返して123℃、124℃、125℃の等温結晶化時間を測定する。
 本実施形態における125℃と123℃の等温結晶化時間の比は、1)50℃で1分間保持後、200℃/minの昇温速度で180℃まで昇温し;2)180℃で5分間保持後、80℃/minの降温速度で122℃まで冷却し;3)122℃で5分間保持後、200℃/minの昇温速度で180℃まで昇温し;4)180℃で5分間保持後、80℃/minの降温速度で123℃まで冷却し;5)123℃で10分間保持後、200℃/minの昇温速度で180℃まで昇温し、ここで、123℃に達した時間を起点0分として123℃の等温結晶化時間を測定し;6)180℃で5分間保持後、80℃/minの降温速度で124℃まで冷却し;7)124℃で15分間保持後、200℃/minの昇温速度で180℃まで昇温し;8)180℃で5分間保持後、80℃/minの降温速度で125℃まで冷却し;9)125℃で30分間保持後、200℃/minの昇温速度で180℃まで昇温し、ここで、125℃に達した時間を起点0分として125℃の等温結晶化時間を測定する;ことによって、測定される。
 すなわち、本実施形態における125℃と123℃の等温結晶化時間の比は、以下の等温結晶化時間測定条件により求められる。
(等温結晶化時間測定条件)
1)50℃で1分間保持後、200℃/minの昇温速度で180℃まで昇温
2)180℃で5分間保持後、80℃/minの降温速度で122℃まで冷却
3)122℃で5分間保持後、200℃/minの昇温速度で180℃まで昇温
4)180℃で5分間保持後、80℃/minの降温速度で123℃まで冷却
5)123℃で10分間保持後、200℃/minの昇温速度で180℃まで昇温
(123℃に達した時間を起点0分として123℃の等温結晶化時間を測定)
6)180℃で5分間保持後、80℃/minの降温速度で124℃まで冷却
7)124℃で15分間保持後、200℃/minの昇温速度で180℃まで昇温
8)180℃で5分間保持後、80℃/minの降温速度で125℃まで冷却
9)125℃で30分間保持後、200℃/minの昇温速度で180℃まで昇温
(125℃に達した時間を起点0分として125℃の等温結晶化時間を測定)
 本実施形態のエチレン重合体の125℃と123℃の等温結晶化時間の比は、125℃の等温結晶化時間を123℃の等温結晶化時間で除した値であり、エチレン重合体の融点近傍の温度差における等温結晶化時間の比は、各種成形加工において、その成形品の物性を決める重要な値である。この比が大きいことは、わずかな温度差により結晶化する速度、或いは溶融する速度が大きく変化することを意味し、「結晶化速度の温度応答が早い」、又は、「結晶化速度の温度応答性に優れる」ということもできる。
 本実施形態のエチレン重合体の125℃と123℃の等温結晶化時間の比は、3.5以上10.0以下であり、好ましく3.7以上9.0以下であり、より好ましくは3.9以上8.0以下である。125℃と123℃の等温結晶化時間の比が3.5以上であることにより、溶融紡糸したときの加工性に優れ、エチレン重合体を含むゲルがノズルから出て冷却される過程で、素早く結晶化が進行し、ゲルが高粘度化するため高速で巻き取ることができ、糸径も安定する傾向にある。また、微多孔膜の製造においても、エチレン重合体を含むゲルがTダイから出て空冷される過程で、ゲルが素早く固化するため、冷却ロールへの添加剤等の付着が少なくなるだけでなく、溶剤の液だれも抑制することができる。また、熱固定時においても、短時間で配向緩和することが可能で、生産速度を上げられるだけでなく、熱収縮も抑制することができ、耐熱性も高くなる傾向にある。さらに、圧縮成形においても短時間で配向緩和でき、温度を少し下げるだけで固化が急速に進むため冷却時間が短縮でき、高速成形が可能となる。一方、125℃と123℃の等温結晶化時間の比が10.0以下であることにより、温度変化に対して結晶化速度の変化が大きすぎず、製膜の安定性に優れる傾向にある。
 本実施形態のエチレン重合体の125℃の等温結晶化時間は、限定されるものではないが、好ましくは20分以内であり、より好ましくは15分以内であり、さらに好ましくは10分以内である。エチレン重合体の125℃の等温結晶化時間が20分以内であることにより、成形時間を短縮することができ、経済的にも好ましい。
 本実施形態のエチレン重合体の125℃と123℃の等温結晶化時間の比を3.5以上10.0以下に調整する方法としては、エチレン重合体の製造において、エチレンガス、溶媒、触媒等を連続的に重合系内に供給し、生成したエチレン重合体と共に、エチレンガス、溶媒、触媒等を連続的に排出する連続式重合を行うこと;撹拌を、マックスブレンド翼を用いて回転速度50rpm以下で行うこと;エチレンと水素を気相から供給すること;触媒を10℃±3℃に冷却して導入すること;遠心分離法によってエチレン重合体と溶媒を分離し、乾燥前のエチレン重合体に含まれる溶媒量をエチレン重合体の重量に対して70質量%以下にすること;触媒の失活を、遠心分離法によって溶媒を可能な限り分離した後に実施すること;コモノマー量を0.2mol%以下とすること;等が挙げられる。
(結晶化度)
 本実施形態のエチレン重合体の示差走査熱量計(DSC)から求められる結晶化度は、40.0%以上75.0%以下であり、好ましくは42.0%以上65.0%以下であり、より好ましくは44.0%以上60.0%以下である。結晶化度が40.0%以上であることにより、微多孔膜の場合、突刺し強度や引張破断強度等の機械強度が高くなり、耐熱性も高くなる傾向にある。また、繊維では弾性率が高く、破断強度の高い糸が得られる。一方、結晶化度が75.0%以下であることにより、柔軟性や耐衝撃性に優れる成形体になる傾向がある。
 結晶化度を上記範囲に調整する方法としては、エチレン重合体の分子量、及び分子量分布を制御すること;重合条件により分子鎖の絡み合いを制御すること;エチレン重合体を、エチレンと、他のコモノマーとの共重合体とすること;等が挙げられる。
 尚、示差走査熱量計(DSC)から求められるエチレン重合体の結晶化度は、50℃で1分間保持後、10℃/minの昇温速度で190℃まで昇温、次に190℃で5分間保持後、10℃/minの降温速度で50℃まで降温、次に50℃で5分間保持後10℃/minの昇温速度で190℃まで昇温する条件で測定したピーク面積から求められる吸熱量ΔHm(J/g)から、次式により結晶化度を求めることができる。
結晶化度(%)=ΔHm/ΔH × 100
 ここで、ΔHは完全結晶での融解熱量であり、ポリエチレンの場合ΔH=293J/gとして計算することができる。
(融点差Tm1-Tm2)
 本実施形態のエチレン重合体の示差走査熱量計(DSC)から求められる第1融解ピークの融点(Tm1)と第2融解ピークの融点(Tm2)の差(Tm1-Tm2)は、好ましくは0℃以上10.0℃未満であり、より好ましくは1.0℃以上9.5℃未満であり、さらに好ましくは2.0℃以上9.0℃未満である。第1融解ピークの融点(Tm1)とは、例えば、エチレン重合体がパウダーの状態から溶融するときの融点であり、第2融解ピークの融点(Tm2)とは、一度溶融させて再結晶化したエチレン重合体が再溶融したときの融点である。
 Tm1とTm2との差が0℃以上であることにより、高強度で、耐薬品性、耐摩耗性に優れる成形体が得られる傾向にある。一方、Tm1とTm2との差が10.0℃未満であることにより、溶媒に溶解しやすく、加工性に優れ、耐クリープ性に優れる成形体が得られる傾向にある。
 尚、示差走査熱量計(DSC)から求められるエチレン重合体の融解ピークの融点は、50℃で1分間保持後、10℃/minの昇温速度で190℃まで昇温したところで、第1融解ピークの融点(Tm1)を測定し、次に190℃で5分間保持後、10℃/minの降温速度で50℃まで降温、次に50℃で5分間保持後10℃/minの昇温速度で190℃まで昇温したところで、第2融解ピークの融点(Tm2)を測定する条件により、測定することができる。
 本実施形態におけるTm1とTm2との差を0℃以上10.0℃未満とする方法としては、例えば、エチレン及び水素を気相から供給すること;触媒を10℃±3℃に冷却して導入すること;遠心分離法によってエチレン重合体と溶媒を分離し、乾燥前のエチレン重合体に含まれる溶媒量をエチレン重合体の重量に対して70質量%以下にすること;コモノマー量を0.2mol%以下とすること;等が挙げられる。
(融解開始温度差)
 本実施形態のエチレン重合体の示差走査熱量計(DSC)から求められる第1融解ピークの融解開始温度と第2融解ピークの融解開始温度との差は、好ましくは5.0℃以上であり、より好ましくは6.0℃以上であり、さらに好ましくは7.0℃以上である。第1融解ピークの融解開始温度は、Tm1オンセットともいい、例えば、エチレン重合体がパウダーの状態から溶融を開始する時の温度である。第2融解ピークの融解開始温度は、Tm2オンセットともいい、一度溶融させて再結晶化したエチレン重合体が再溶融を開始する時の温度である。
 一般的に第1融解ピークの融解開始温度の方が、第2融解ピークの融解開始温度よりも高くなる傾向にあり、その差は5.0℃未満である。この差が大きくなるということは、パウダー状態のときよりも、一度溶融させて再結晶化することで分子鎖の絡み合いがより多い、又は、分子鎖の絡み合いが解けにくいといえる。そのため、第1融解ピークの融解開始温度と第2融解ピークの融解開始温度との差が5.0℃以上であるエチレン重合体は、分子鎖の絡み合いが多く、当該エチレン重合体を含む微多孔膜は、突刺し強度や引張破断強度等の機械強度が高くなり、耐熱性も高くなる傾向にある。さらに、エチレン重合体パウダーの溶解性も良くなる傾向にある。
 また、前記第1融解ピークの融解開始温度と第2融解ピークの融解開始温度との差は、加工性の観点から、好ましくは20.0℃以下であり、より好ましくは15.0℃以下であり、さらに好ましくは12.0℃以下である。
 尚、示差走査熱量計(DSC)から求められるエチレン重合体の第1融解ピークの融解開始温度及び第2融解ピークの融解開始温度は、50℃で1分間保持後、10℃/minの昇温速度で190℃まで昇温するところで第1融解ピークを測定し、次に190℃で5分間保持後、10℃/minの降温速度で50℃まで降温、次に50℃で5分間保持後10℃/minの昇温速度で190℃まで昇温するところで第2融解ピークを測定する条件によって測定することができる。
(TiとAlの総含有量)
 本実施形態のエチレン重合体のチタン(Ti)とアルミニウム(Al)の総含有量は、好ましくは1.0ppm以上30.0ppm以下であり、より好ましくは1.1ppm以上20.0ppm以下であり、さらに好ましくは1.2ppm以上10.0ppm以下である。TiとAlの総含有量とは、主に触媒残渣の量のことをいう。
 TiとAlの総含有量が1.0ppm以上であることにより、125℃と123℃の等温結晶化時間の比が大きくなる。一般的に、エチレン重合体は、結晶核剤によって結晶速度を制御するのが困難であり、触媒失活により生成する微量のTi変性物とAl変性物が存在することで、125℃と123℃の等温結晶化時間の比が大きくなる傾向にある。
 一方、TiとAlの総含有量が30.0ppm以下であることにより、着色の少ないエチレン重合体となり、成形した場合には、エチレン重合体の劣化が抑制されて、脆化や変色、機械的物性の低下等が起こりにくくなり、長期安定性により優れるものとなる傾向にある。
 本実施形態のエチレン重合体のTiとAlの総含有量は、単位触媒あたりのエチレン重合体の生産性により制御することが可能である。エチレン重合体の生産性は、製造する際の反応器の重合温度、重合圧力、スラリー濃度により制御することが可能である。つまり、本実施形態のエチレン重合体の生産性を高くする方法としては、例えば、重合温度を高くすること;重合圧力を高くすること;及びスラリー濃度を高くすること;等が挙げられる。使用する触媒としては、特に限定されず、一般的なチーグラー・ナッタ触媒やメタロセン触媒を使用することができるが、後述する触媒を使用することが好ましい。さらに、遠心分離法によってポリエチレンパウダーと溶媒とを分離し、乾燥前のポリエチレンパウダーに含まれる溶媒量をポリエチレンパウダーの重量に対して70質量%以下にすること;触媒の失活を遠心分離法によって溶媒を可能な限り分離した後に実施すること;エチレン重合体パウダーを水、又は弱酸性水溶液で洗浄すること;等の方法によって、TiとAlをエチレン重合体パウダーから除去することもできる。
 尚、TiとAlの総含有量は、後述する実施例に記載の方法により測定することができる。
(塩素含有量)
 本実施形態のエチレン重合体の塩素含有量は、エチレン重合体全量に対して、好ましくは30ppm以下であり、より好ましくは20ppm以下であり、さらに好ましくは10ppm以下である。
 また、塩素含有量の下限は、特に限定されないが、少ないほど好ましく、より好ましくは0ppmである。
 塩素含有量が30ppm以下であると、エチレン重合体の劣化が抑制されて脆化や変色、機械的物性の低下等が起こりにくくなり、エチレン重合体は長期安定性により優れる。また、塩素含有量が30ppm以下であることは、成形加工時のロールや金型等の腐食起こりにくくし、腐食成分が被接触物を汚染することも抑制できる。
 本実施形態のエチレン重合体の塩素含有量は、単位触媒あたりのポリオレフィンの生産性を調整することにより制御することができる。
 エチレン重合体の生産性は、製造する際の反応器の重合温度や重合圧力やスラリー濃度により制御することができる。つまり、本実施形態で用いるエチレン重合体の生産性を高くする方法としては、例えば、重合温度を高くすること;重合圧力を高くすること;及びスラリー濃度を高くすること;等が挙げられる。また、塩素を含む成分の量が少ない触媒を使用することにより、エチレン重合体の塩素含有量を低減することもできる。
 使用する触媒としては、特に限定されず、一般的なチーグラー・ナッタ触媒やメタロセン触媒を使用することができるが、塩素含有量を低減する観点から、後述するメタロセン触媒を使用することが好ましい。
 なお、塩素含有量は、後述する実施例に記載の方法により測定することができる。
(ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量)
 本実施形態のエチレン重合体に含まれる、ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量は、好ましくは200ppm以下であり、より好ましくは160ppm以下であり、さらに好ましくは120ppm以下である。ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量が200ppm以下であることにより、125℃と123℃の等温結晶化時間の比が小さくなる傾向にある。さらに、エチレン重合体は、可塑化されにくく、分子鎖の運動が拘束されるため、強度や耐熱性が向上する傾向にある。
 また、ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量の下限は、特に限定されないが、少ないほど好ましく、より好ましくは0ppmである。
 ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量が200ppm以下のエチレン重合体を得る方法としては、例えば、エチレン重合体の製造において、炭素数16と炭素数18の炭化水素成分が生成し難い触媒を使用すること;エチレンガス、溶媒、触媒等を連続的に重合系内に供給し、生成したエチレン重合体と共にエチレンガス、溶媒、触媒等を連続的に排出する連続式重合にすること;撹拌を、マックスブレンド翼を用いて回転速度50rpm以下で行うこと;重合溶媒として炭素数が6以上10以下の炭化水素媒体を使用すること;エチレンと水素を気相から供給すること;触媒を10℃±3℃に冷却して導入すること;遠心分離法によってエチレン重合体と溶媒を分離し、乾燥前のエチレン重合体に含まれる溶媒量をエチレン重合体の重量に対して70質量%以下にすること;触媒の失活を、遠心分離法によって溶媒を可能な限り分離した後に実施すること;等が挙げられる。
 尚、ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量は、エチレン重合体から抽出された成分をガスクロマトグラフィーによって測定し、標準物質の炭素数16と炭素数18に重なるピークより求めることができる。
[エチレン重合体の製造方法]
 本実施形態のエチレン重合体の製造方法における重合法としては、以下に限定されないが、例えば、スラリー重合法、気相重合法、溶液重合法等により、エチレン、又はエチレンを含む単量体を(共)重合させる方法が挙げられる。このなかでも、重合熱を効率的に除熱できるスラリー重合法が好ましい。スラリー重合法においては、媒体として不活性炭化水素媒体を用いることができ、さらにオレフィン自身を媒体として用いることもできる。
 上記不活性炭化水素媒体としては、特に限定されないが、具体例としては、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチルクロライド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素;及び、これらの混合物等を挙げることができる。
 本実施形態では、炭素数が6以上かつ10以下の不活性炭化水素媒体を用いることが好ましい。炭素数が6以上であれば、エチレン重合時の副反応や、エチレン重合体の劣化によって生じる低分子量成分が、比較的溶解しやすく、エチレン重合体と重合媒体とを分離する工程で除去を容易にできる。エチレン重合体中の低分子量成分を低減することで、125℃と123℃の等温結晶化時間の比を、3.5以上10.0以下に調整することが可能となる。一方、炭素数が10以下であれば、反応槽へのエチレン重合体の付着等が抑制されて、工業的に安定的な運転が行える傾向にある。
 本実施形態のエチレン重合体の製造方法における重合温度は、通常、30℃以上100℃以下が好ましく、35℃以上95℃以下がより好ましく、40℃以上90℃以下がさらに好ましい。重合温度が30℃以上であれば、工業的に効率的な製造が行える傾向にある。一方、重合温度が100℃以下であれば、連続的に安定的な運転が行える傾向にある。
 本実施形態において、エチレン重合体の製造方法における重合圧力は、通常、常圧以上2.0MPa以下が好ましく、より好ましくは0.1MPa以上1.5MPa以下、さらに好ましくは0.1MPa以上1.0MPa以下である。
 重合反応は、回分式、半連続式、連続式のいずれの方法でも行なうことができ、中でも、連続式で重合することが好ましい。エチレンガス、溶媒、触媒等を連続的に重合系内に供給し、生成したエチレン重合体パウダーと共にエチレンガス、溶媒、触媒等を連続的に排出することで、急激なエチレンの反応による部分的な高温状態を抑制することが可能となり、重合系内がより安定化する傾向にある。系内が均一な状態でエチレンが重合すると、エチレン重合体の等温結晶化時間も均一化されるので、結晶化速度の温度応答も早くなる傾向にある。
 本実施形態のエチレン重合体の製造方法においては、重合を反応条件の異なる2段以上に分けて行なうことが好ましい。
 重合反応器の撹拌翼は、種々の撹拌翼から選択することができるが、マックスブレンド翼を使用することが好ましい。マックスブレンド翼を使用することで、重合系内がより均一化される傾向にある。撹拌翼の回転速度は、好ましくは50rpm以下であり、より好ましくは48rpm以下であり、さらに好ましくは46rpm以下である。撹拌効率の高いマックスブレンド翼を用いて50rpm以下で撹拌することにより、重合系内がより均一化される。また、エチレン重合体パウダーが粉砕されることなく重合することができ、パウダー毎に特性が変化することなく製造することができる。
 本実施形態のエチレン重合体の製造に使用される触媒成分としては、例えば、チーグラー・ナッタ触媒、メタロセン触媒、フィリップス触媒等を好適に挙げることができる。チーグラー・ナッタ触媒としては、特許第5767202号明細書に記載のものを好適に使用することができ、メタロセン触媒としては、以下に限定されないが、例えば、特開2006-273977号公報、及び、特許4868853号に記載のものを好適に使用することができる。また、本実施形態のエチレン重合体の製造に使用される触媒成分には、トリイソブチルアルミニウ、Tebbe試薬等の助触媒が含まれていてもよい。
 本実施形態において、触媒の平均粒子径は、好ましくは0.1μm以上20μm以下、より好ましくは0.2μm以上16μm以下、さらに好ましくは0.5μm以上12μm以下である。平均粒径が0.1μm以上であれば、得られるエチレン重合体粒子の飛散や付着といった問題を防止できる傾向にある。また、10μm以下であると、エチレン重合体粒子が大きくなりすぎて、重合系内で沈降すること、及び、エチレン重合体の後処理工程でのラインの閉塞等の問題を防止できる傾向にある。触媒の粒径分布は可能な限り狭い方が好ましく、篩や遠心分離、サイクロンによって、微粉粒子と粗粉粒子を除去することができる。
 本実施形態において、触媒の導入温度は、10℃±3℃に冷却して導入することが好ましい。触媒の導入温度を10℃±3℃とすることで、触媒の活性が最も高くなる導入初期の急激な反応を抑制することができ、重合系内がより安定化する傾向にある。
 エチレン重合体を合成するために使用した触媒の失活方法は、特に限定されないが、エチレン重合体パウダーと溶媒とを分離した後に実施することが好ましい。溶媒と分離した後に触媒を失活させるための薬剤を投入することで、溶媒中に溶解している触媒成分等の析出を抑制することができ、触媒成分由来のTi、Al、塩素等を低減することができる。触媒系を失活させる薬剤としては、以下に限定されないが、例えば、酸素、水、アルコール類、グリコール類、フェノール類、一酸化炭素、二酸化炭素、エーテル類、カルボニル化合物、アルキン類等を挙げることができる。
 本実施形態において、エチレンガスは重合反応器の上部にある気相へ導入することが好ましい。一般的には、エチレンガスは、重合反応器の底部の液相に導入されるが、エチレン導入ライン出口付近のエチレン濃度が高くなることで、急激なエチレンの反応が起こり、分子量や等温結晶時間の異なるエチレン重合体が生成しやすく、結晶化速度の温度応答が遅くなる。そのため、エチレンガスは気相へ導入することが好ましい。
 エチレン重合体の分子量の調整は、例えば、***国特許出願公開第3127133号明細書に記載されているように、重合系に水素を存在させることや、重合温度を変化させること等によって調節することができる。重合系内に連鎖移動剤として水素を添加することにより、分子量を適切な範囲に制御しやすくなる。重合系内に水素を添加する場合、水素のモル分率は、好ましくは0mol%以上30mol%以下、より好ましくは0mol%以上25mol%以下、さらに好ましくは0mol%以上20mol%以下である。
 また、本実施形態における粘度平均分子量(Mv)や125℃と123℃の等温結晶化時間の比を調節する観点から、エチレンと水素を気相から供給することが好ましい。気相のエチレンに対する水素濃度は、好ましくは1~10,000ppm、より好ましくは10~7,000ppm、さらに好ましくは30~6,000ppmである。
 本実施形態のエチレン重合体の製造方法における溶媒分離方法は、例えば、デカンテーション法、遠心分離法、フィルター濾過法等によって行うことができ、エチレン重合体と溶媒との分離効率が良い観点から、遠心分離法が好ましい。溶媒分離後にエチレン重合体に含まれる溶媒の量は、特に限定されないが、エチレン重合体の質量に対して、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。エチレン重合体に含まれる溶媒が、少量の状態で溶媒を乾燥除去することにより、溶媒中に含まれるAl、Ti、塩素等の触媒残渣がエチレン重合体中に残存しにくい傾向にあり、さらに低分子量成分も低減することができる。これらの成分が残存しないことにより、125℃と123℃の等温結晶化時間の比を3.5以上10.0以下に調整することが可能となる。
 本実施形態のエチレン重合体の製造方法における乾燥温度は、通常、好ましくは50℃以上150℃以下、より好ましくは50℃以上140℃以下が、さらに好ましくは50℃以上130℃以下である。乾燥温度が50℃以上であれば、効率的な乾燥が可能である。一方、乾燥温度が150℃以下であれば、エチレン重合体の凝集や熱劣化を抑制した状態で乾燥することが可能である。
[添加剤]
 本実施形態のエチレン重合体は、上記のような各成分以外にもポリエチレンの製造に有用な他の公知の成分を含むことができる。本実施形態のエチレン重合体は、例えば、さらに、中和剤、酸化防止剤、及び耐光安定剤等の添加剤を含有してもよい。
 中和剤は、エチレン重合体中に含まれる塩素のキャッチャー、又は成形加工助剤等として使用される。中和剤としては、特に限定されないが、具体的には、カルシウム、マグネシウム、バリウム等のアルカリ土類金属のステアリン酸塩が挙げられる。中和剤の含有量は、特に限定されないが、エチレン重合体全量に対し、好ましくは5,000ppm以下、より好ましくは4,000ppm以下、さらに好ましくは3,000ppm以下である。本実施形態のエチレン重合体がメタロセン触媒を用いてスラリー重合法により得られるエチレン重合体である場合、触媒構成成分中からハロゲン成分を除外することも可能であり、中和剤は使用しなくてもよい。
 酸化防止剤としては、特に限定されないが、具体的には、ジブチルヒドロキシトルエン、ペンタエリスチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のフェノール系酸化防止剤が挙げられる。酸化防止剤の含有量は、特に限定されないが、好ましくは5,000ppm以下、より好ましくは4,000ppm以下、さらに好ましくは3,000ppm以下である。
 耐光安定剤としては、特に限定されないが、具体的には、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール等のベンゾトリアゾール系耐光安定剤;ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]等のヒンダードアミン系耐光安定剤;等が挙げられる。耐光安定剤の含有量は、特に限定されないが、好ましくは5,000ppm以下、より好ましくは4,000ppm以下、さらに好ましくは3,000ppm以下である。
 本実施形態のエチレン重合体中に含まれる添加剤の含有量は、エチレン重合体中の添加剤を、テトラヒドロフラン(THF)を用いてソックスレー抽出により6時間抽出し、抽出液を液体クロマトグラフィーにより分離、定量することにより求めることができる。
 本実施形態のエチレン重合体には、粘度平均分子量や分子量分布等が異なるエチレン重合体をブレンドすることもできるし、低密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、ポリスチレン等の他の樹脂をブレンドすることもできる。また、本実施形態のエチレン重合体は、パウダー状、またはペレット状であっても好適に使用することができる。
[用途]
 上記により得られる結晶化速度の温度応答性に優れるエチレン重合体は、種々の加工方法により、種々の用途に応用されることができる。本実施形態のエチレン重合体を含む成形体は、強度や寸法精度に優れ、さらには耐熱性にも優れることから、微多孔膜、又は繊維として好適に用いることができる。このような成形体としては、例えば、二次電池用セパレータ、特にはリチウムイオン二次電池セパレータ、鉛蓄電池セパレータ、高強度繊維等が挙げられる。また、高分子量のエチレン重合体の特性である耐摩耗性、高摺動性、高強度、高衝撃性に優れた特徴を活かし、本実施形態のエチレン重合体は、押出し成形やプレス成形や切削加工等の、ソリッドでの成形により、ギアやロール、カーテンレール、パチンコ球のレール、穀物等の貯蔵サイロの内張りシート、ゴム製品等の摺動付与コーティング、スキー板材及びスキーソール、トラックやシャベルカー等の重機のライニング材に使用することが挙げられる。また、本実施形態のエチレン重合体は、エチレン重合体を焼結して得られる成形体、フィルターや粉塵トラップ材等に使用できる。
 以下、実施例及び比較例を用いて本発明をさらに詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。
〔各種特性及び物性の測定方法〕
(1)粘度平均分子量(Mv)
 まず、20mLのデカリン(デカヒドロナフタレン)中にエチレン重合体20mgを加え、150℃で2時間攪拌してポリマーを溶解させた。その溶液を135℃の恒温槽で、ウベローデタイプの粘度計を用いて、標線間の落下時間(t)を測定した。同様に、エチレン重合体の重量を変えた3点の溶液を作製し、落下時間を測定した。ブランクとしてエチレン重合体を入れていない、デカリンのみの落下時間(t)を測定した。以下の数式Aに従って求めたポリマーの還元粘度(ηsp/C)をそれぞれプロットして濃度(C)(単位:g/dL)とポリマーの還元粘度(ηsp/C)の直線式を導き、濃度0に外挿した極限粘度([η])を求めた。
   ηsp/C=(t/t-1)/C (単位:dL/g)
 次に下記式Aを用いて、上記極限粘度([η])の値を用い、粘度平均分子量(Mv)を算出した。
   Mv=(5.34×10)×[η]1.49     ・・・数式A
(2)密度
 エチレン重合体の密度は、エチレン重合体パウダーのプレスシートから切り出した切片を120℃で1時間アニーリングし、その後25℃で1時間冷却したものを密度測定用サンプルとして用い、JIS K 7112に準じて測定することによって求めた。エチレン重合体パウダーのプレスシートは、縦60mm、横60mm、厚み2mmの金型を用い、ASTM D 1928 Procedure Cに準じて作製した。
(3)125℃と123℃の等温結晶化時間の比
 等温結晶化時間の測定は、窒素下でDSC(パーキンエルマー社製、商品名:DSC8000)を用いて行なった。8~10mgのエチレン重合体をアルミニウムパンに挿填し、DSCに設置した。その後、以下の測定条件により123℃と125℃において結晶化に起因する発熱ピークトップが得られた時間を測定し、その時間を等温結晶化時間とした。125℃と123℃の等温結晶化時間の比は、125℃の等温結晶化時間を123℃の等温結晶化時間で除して求めた。
1)50℃で1分間保持後、200℃/minの昇温速度で180℃まで昇温
2)180℃で5分間保持後、80℃/minの降温速度で122℃まで冷却
3)122℃で5分間保持後、200℃/minの昇温速度で180℃まで昇温
4)180℃で5分間保持後、80℃/minの降温速度で123℃まで冷却
5)123℃で10分間保持後、200℃/minの昇温速度で180℃まで昇温
(123℃に達した時間を起点0分として123℃の等温結晶化時間を測定)
6)180℃で5分間保持後、80℃/minの降温速度で124℃まで冷却
7)124℃で15分間保持後、200℃/minの昇温速度で180℃まで昇温
8)180℃で5分間保持後、80℃/minの降温速度で125℃まで冷却
9)125℃で30分間保持後、200℃/minの昇温速度で180℃まで昇温
(125℃に達した時間を起点0分として125℃の等温結晶化時間を測定)
(4)結晶化度
 結晶化度の測定は、窒素下でDSC(パーキンエルマー社製、商品名:DSC8000)を用いて行なった。8~10mgのエチレン重合体をアルミニウムパンに挿填し、DSCに設置した。その後、以下の測定条件により、ステップ3の昇温過程におけるピーク面積から求められる吸熱量ΔHm(J/g)から下記数式Bにより結晶化度を求めた。
結晶化度(%)=100×ΔHm/ΔH      ・・・数式B
 ここでΔHは完全結晶での融解熱量であり、ΔH=293J/gとして計算した。
 ステップ1:50℃で1分間保持後、10℃/minの昇温速度で190℃まで昇温
 ステップ2:190℃で5分間保持後、10℃/minの降温速度で50℃まで降温
 ステップ3:50℃で5分間保持後、10℃/minの昇温速度で190℃まで昇温
 融点差Tm1-Tm2、及び融解開始温度差も、上述した結晶化度における測定条件に準じて測定した。
(5)TiとAlの総含有量
 エチレン重合体をマイクロウェーブ分解装置(型式ETHOS TC、マイルストーンゼネラル社製)を用い加圧分解し、内部標準法にて、ICP-MS(誘導結合プラズマ質量分析装置、型式Xシリーズ X7、サーモフィッシャーサイエンティフィック社製)にて、ポリエチレンパウダー中の金属としてTiとAlの元素濃度を測定した。TiとAlの総含有量は、TiとAlの元素濃度を足した値である。
(6)塩素含有量
 エチレン重合体を自動試料燃焼装置(三菱化学アナリテック社製 AQF-100)で燃焼後、吸収液(NaCOとNaHCOとの混合溶液)に吸収させ、その吸収液をイオンクロマトグラフ装置(ダイオネクス社製、ICS1500、カラム(分離カラム:AS12A、ガードカラム:AG12A)サプレッサー ASRS300)に注入させ塩素含有量を測定した。
(7)ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量
 エチレン重合体のヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量は、エチレン重合体から抽出された成分をガスクロマトグラフィーによって以下のように測定し、標準物質の炭素数16と18に重なるピークより求めた。
 エチレン重合体5g、和光純薬社製PCB試験用ヘキサン20mLを100mL容積のSUS製容器中に入れて密閉した。このSUS製容器全体を60℃の湯浴に浸し、50min-1速度で振とうしながら5時間抽出した後、20℃の水に浸し急冷した。
 上澄み液を、0.2μmフィルター(PTFE製)を取り付けたガラスシリンジで濾過し、サンプルとした。炭素数16と18の標準物質は、シグマアルドリッチ社製ASTM D5442 C16-C44 Qualitative Retention Time Mixを和光純薬社製PCB試験用ヘキサンに溶解して標準物質として用いた。
 装置:島津GC2014
 温度:INJ 300℃;OVEN280℃(インジェクション量:2μL)
 カラム:Silicone OV-1、1.1m
 キャリアガス:窒素
 検出器:FID
(8)引取り速度とブロッキング評価
 エチレン重合体パウダー100質量部に、酸化防止剤としてn-オクタデシル-3-(4-ヒドロキ-3,5-ジ-t-ブチルフェニル)プロピオネートを0.2質量部添加し、タンブラーブレンダーを用いてドライブレンドすることにより、エチレン重合体混合物を得た。得られたエチレン重合体混合物は窒素で置換を行った後に、デカリン(広島和光社製)95部(エチレン重合体混合物5部)を導入してスラリー状液体を調製した。このスラリー状液体を、温度280℃、溶融滞留時間15分に設定した押出機に投入して均一溶液を形成させた。この溶液を180℃に設定した孔径0.7mmの紡糸口金を用いて、単孔吐出量1.1g/分で紡糸した。押し出した溶解物(糸)は、空気流で約1.0mの幅で冷却させながら引き取り、紡糸口金が1.5mの場所に設置したロールに巻き取った。その際の引取り速度とロールに巻き取った糸のブロッキング、すなわち、糸同士の引付きの有無を観察した。
 最大引取り速度が60m/min以上であって、糸のブロッキングが無いものを◎とした。
 最大引取り速度が50m/min以上60m/min未満であって、糸のブロッキングが無いものを○とした。
 最大引取り速度が50m/min未満であって、糸のブロッキングがわずかにあるものを△とした。
 最大引取り速度が50m/min未満であって、糸がブロッキングするものを×とした。
(9)ロール付着物、及び液だれ評価
 エチレン重合体パウダー100質量部に、酸化防止剤としてペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.2質量部添加し、タンブラーブレンダーを用いてドライブレンドすることにより、エチレン重合体混合物を得た。得られたエチレン重合体混合物は窒素で置換を行った後に、流動パラフィン(松村石油(株)製P-350(商標))65部(エチレン重合体混合物35部)を導入してスラリー状液体を調製した。このスラリー状液体を80℃で3時間撹拌した後、温度220℃、溶融滞留時間15分に設定した押出機に投入して均一溶液を形成させた。この溶液を210℃に設定した押出機先端に設置したTダイから押出した後、25℃に冷却したキャストロールで冷却固化させ、厚さ1,000μmのゲル状シートを成形した。その際のキャストロールへの付着状態と、キャストロールからの液だれ状態を観察した。
 キャストロールへの付着物が少なく、液だれの無いものを○とした。
 キャストロールへの付着物が有り、液だれしたものを×とした。
(10)熱収縮率
 (9)で得られたゲル状シートを125℃で同時二軸延伸機を用いて8×8倍に延伸した後、金属枠でシートを固定した。この延伸シートをメチルエチルケトンに浸漬し、流動パラフィンを抽出除去後、50℃で乾燥した。続いて125℃に加温した恒温槽に、この延伸シートを2分間投入して熱固定して、微多孔膜を得た。この微多孔膜を100mm×100mm幅でカットし、カットしたものを123℃熱風オーブンに入れて30分間加熱した。元の面積に対する収縮した面積の割合で熱収縮率(%)を求めた。また、収縮後の膜の状態を観察した。
 収縮率が1%未満であり、膜状態が良好なものを◎とした。
 収縮率が1%以上2%未満であり、膜状態が良好なものを○とした。
 収縮率が2%以上であり、膜がわずかに波打っているものを△とした。
 膜が波打っているものを×とした。
(11)錆試験
 エチレン重合体を、JIS K7139に準拠してプレス成形して、100mm×100mm幅、厚み1mmのエチレン重合体シートを作製した。そのエチレン重合体シートを脱脂処理した鉄板(SUS316)に重ねて、200℃で5分間予熱した後に10MPaで10分間、加熱プレスした。次に、このサンプルを温度60℃、湿度90%の恒温恒湿槽に24時間静置した後、エチレン重合体シートを剥がして鉄板上の錆の評価を行った。
 錆が全く観察されなかったものを◎とした。
 錆の発生は極わずかで、極一部に観察されたものを○とした。
 全面に錆びたものを×とした。
[参考例]触媒合成例
〔担持型メタロセン触媒成分[A]の調製〕
 平均粒子径が8μm、表面積が700m/g、粒子内細孔容積が2.1mL/gの球状シリカを、窒素雰囲気下、500℃で5時間焼成し、脱水した。脱水シリカの表面水酸基の量は、SiO 1gあたり1.85mmol/gであった。窒素雰囲気下、容量1.8Lのオートクレーブ内で、この脱水シリカ40gをヘキサン800mL中に分散させ、スラリーを得た。得られたスラリーを攪拌下50℃に保ちながらトリエチルアルミニウムのヘキサン溶液(濃度1mol/L)を80mL加え、その後2時間攪拌し、トリエチルアルミニウムとシリカの表面水酸基とを反応させ、トリエチルアルミニウム処理されたシリカと上澄み液とを含み、該トリエチルアルミニウム処理されたシリカの表面水酸基がトリエチルアルミニウムによりキャッピングされている成分[a]を得た。その後、得られた反応混合物中の上澄み液をデカンテーションによって除去することにより、上澄み液中の未反応のトリエチルアルミニウムを除去した。その後、ヘキサンを適量加え、トリエチルアルミニウム処理されたシリカのヘキサンスラリー880mLを得た。
 一方、[(N-t-ブチルアミド)(テトラメチル-η5-シクロペンタジエニル)ジメチルシラン]チタニウム-1,3-ペンタジエン(以下、「チタニウム錯体」と記載する。)200mmolをアイソパーE[エクソンケミカル社(米国)製の炭化水素混合物の商品名]1,000mLに溶解し、予めトリエチルアルミニウムとジブチルマグネシウムより合成した式AlMg(C(n-C12の1mol/Lヘキサン溶液を20mL加え、さらにヘキサンを加えてチタニウム錯体濃度を0.1mol/Lに調整し、成分[b]を得た。
 また、ビス(水素化タロウアルキル)メチルアンモニウム-トリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート(以下、「ボレート」と記載する。)5.7gをトルエン50mLに添加して溶解し、ボレートの100mmol/Lトルエン溶液を得た。このボレートのトルエン溶液にエトキシジエチルアルミニウムの1mol/Lヘキサン溶液5mLを室温で加え、さらにヘキサンを加えて溶液中のボレート濃度が70mmol/Lとなるようにした。その後、室温で1時間攪拌し、ボレートを含む反応混合物を得た。
 ボレートを含むこの反応混合物46mLを、上記で得られた成分[a]のスラリー800mLに15~20℃で攪拌しながら加え、ボレートをシリカに担持した。こうして、ボレートを担持したシリカのスラリーが得られた。さらに上記で得られた成分[b]のうち32mLを加え、3時間攪拌し、チタニウム錯体とボレートとを反応させた。こうしてシリカと上澄み液とを含み、触媒活性種が該シリカ上に形成されている担持型メタロセン触媒[A](以下、固体触媒成分[A]ともいう)を得た。
 その後、得られた反応混合物中の上澄み液をデカンテーションによって除去することにより、上澄み液中の未反応のトリエチルアルミニウムを除去した。
〔固体触媒成分[B]の調製〕
(1)(B-1)担体の合成
 充分に窒素置換された8Lステンレス製オートクレーブに2mol/Lのヒドロキシトリクロロシランのヘキサン溶液1,000mLを仕込み、65℃で攪拌しながら組成式AlMg(C11(OCで表される有機マグネシウム化合物のヘキサン溶液2,550mL(マグネシウム2.68mol相当)を4時間かけて滴下し、さらに65℃で1時間攪拌しながら反応を継続させた。反応終了後、上澄み液を除去し、1,800mLのヘキサンで4回洗浄した。この固体((B-1)担体)を分析した結果、固体1g当たりに含まれるマグネシウムが8.31mmolであった。
(2)固体触媒成分[B]の調製
 上記(B-1)担体110gを含有するヘキサンスラリー1,970mLに10℃で攪拌しながら1mol/Lの四塩化チタンヘキサン溶液110mLと1mol/Lの組成式AlMg(C11(OSiH)で表される有機マグネシウム化合物のヘキサン溶液110mLとを同時に1時間かけて添加した。添加後、10℃で1時間反応を継続させた。反応終了後、上澄み液を1100mL除去し、ヘキサン1,100mLで2回洗浄することにより、固体触媒成分[B]を調製した。この固体触媒成分[B]1g中に含まれるチタン量は0.75mmolであった。
[実施例1](エチレン重合体の重合)
 ヘキサン、エチレン、水素、触媒を、マックスブレンド攪拌翼が付いたベッセル型300L重合反応器に連続的に供給した。重合圧力は0.8MPaであった。重合温度はジャケット冷却により75℃に保った。ヘキサンは20℃に調整して32L/hrで重合器の底部から供給した。固体触媒成分[A]は、上記溶媒ヘキサンを移送液とし、10℃に調整して0.2g/hrの速度で重合器の底部から添加し、トリイソブチルアルミニウムは20℃に調整して5mmol/hrの速度で重合器の中間から添加し、Tebbe試薬は25℃に調整して0.3μmol/hrの速度で重合器の底部から添加した。エチレンと水素は気相に導入し、水素を、気相のエチレンに対する水素濃度が130ppmになるようにポンプで連続的に供給した。撹拌装置内の撹拌翼の回転数は40rpmとした。エチレン重合体の製造速度は10kg/hrであり、触媒活性は11,000g-PE/g-固体触媒成分[A]であった。重合スラリーは、重合反応器のレベルが一定に保たれるように連続的に圧力0.05Mpa、温度60℃のフラッシュドラムに抜き、未反応のエチレン及び水素を分離した。
 次に、重合スラリーは、重合反応器のレベルが一定に保たれるように連続的に遠心分離機に送り、ポリマーとそれ以外の溶媒等を分離した。その時のポリマーに対する溶媒の含有量は45%であった。
 分離されたエチレン重合体パウダーは、95℃で窒素ブローしながら乾燥した。なお、この乾燥工程で、重合後のパウダーに対し、スチームを噴霧して、触媒及び助触媒の失活を実施した。得られたエチレン重合体パウダーに対し、ステアリン酸カルシウム(大日化学社製、C60)を1,000ppm添加し、ヘンシェルミキサーを用いて、均一混合した。得られたエチレン重合体パウダーを目開き425μmの篩を用いて、篩を通過しなかったものを除去することで、粘度平均分子量151×10g/molのエチレン重合体パウダーを得た。得られたエチレン重合体の物性を表1に示す。また、得られたエチレン重合体の125℃と123℃の等温結晶化時間測定チャートを図1に示す。
[実施例2]
 重合工程において、重合温度75℃、重合圧力0.35MPaとし、固体触媒成分[A]の代わりに固体触媒成分[B]を用い、Tebbe試薬は使用せず、トリイソブチルアルミニウムを3mmol/hrとし、水素濃度を4,200ppmとしたこと以外は、実施例1と同様の操作により、粘度平均分子量200×10g/molの実施例2のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
[実施例3]
 重合工程において、重合温度69℃、重合圧力0.40MPaとし、固体触媒成分[A]の代わりに固体触媒成分[B]を用い、Tebbe試薬は使用せず、トリイソブチルアルミニウムを3mmol/hrとし、水素を600ppmとし、1-ブテンをエチレンに対して0.11mol%気相から導入したこと以外は、実施例1と同様の操作により、粘度平均分子量300×10g/mol、エチレン重合体中の1-ブテン含有量が0.03mol%の実施例3のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
[実施例4]
 重合工程において、重合温度66℃、重合圧力0.35MPaとし、固体触媒成分[A]の代わりに固体触媒成分[B]を用い、Tebbe試薬は使用せず、トリイソブチルアルミニウムを3mmol/hrとし、水素を100ppmとし、1-ブテンをエチレンに対して0.10mol%気相から導入したこと以外は、実施例1と同様の操作により、粘度平均分子量600×10g/mol、エチレン重合体中の1-ブテン含有量が0.03mol%実施例4のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
[実施例5]
 重合工程において、Tebbe試薬を5.0μmol/hrとし、水素濃度を75ppmとしたこと以外は、実施例1と同様の操作により、粘度平均分子量750×10g/molの実施例5のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
[実施例6]
 重合工程において、Tebbe試薬を3.5μmol/hrとし、水素濃度を80ppmとし、1-ブテンをエチレンに対して0.06mol%気相から導入したこと以外は、実施例1と同様の操作により、粘度平均分子量750×10g/mol、エチレン重合体中の1-ブテン含有量が0.06mol%の実施例6のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
[比較例1]
 重合工程において、重合温度83℃、重合圧力0.5MPaとし、固体触媒成分[A]の代わりに固体触媒成分[B]を用い、Tebbe試薬は使用せず、水素濃度を190ppmとしたこと以外は実施例1と同様の操作により、粘度平均分子量60×10g/molの比較例1のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
[比較例2]
 重合工程において、重合温度65℃、重合圧力0.2MPaとし、固体触媒成分[A]の代わりに固体触媒成分[B]を用い、Tebbe試薬と水素は使用せず、1-ブテンをエチレンに対して6.5mol%気相から導入したこと以外は、実施例1と同様の操作により、粘度平均分子量380×10g/mol、エチレン重合体中の1-ブテン含有量が0.4mol%の比較例2のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。比較例2のエチレン重合体は、125℃では30分以内に結晶化に起因する発熱ピークのピークトップが現れなかった。
[比較例3]
 重合工程において、Tebbe試薬を3.5μmol/hrとし、水素濃度を80ppmとし、1-ブテンをエチレンに対して0.16mol%導入したこと以外は、実施例1と同様の操作により、粘度平均分子量550×10g/mol、エチレン重合体中の1-ブテン含有量が0.14mol%の比較例3のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
[比較例4]
 重合工程において、重合温度55℃、重合圧力0.3MPaとし、固体触媒成分[A]の代わりに固体触媒成分[B]を用い、Tebbe試薬と水素を使用しなかったこと以外は、実施例1と同様の操作により、粘度平均分子量1,050×10g/molの比較例4のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。比較例4のエチレン重合体は、125℃では30分以内に結晶化に起因する発熱ピークのピークトップが現れなかった。
[比較例5]
 ヘキサン、エチレン、水素、触媒を、錨形攪拌翼が付いたベッセル型300L重合反応器に連続的に供給した。重合圧力は0.4MPaであった。重合温度はジャケット冷却により69℃に保った。ヘキサンは20℃に調整して32L/hrで重合器の底部から供給した。担持型メタロセン触媒成分[A]は、上記溶媒ヘキサンを移送液とし、20℃に調整して0.2g/hrの速度で重合器の底部から添加し、トリイソブチルアルミニウムは20℃に調整して3mmol/hrの速度で重合器の底部から添加し、Tebbe試薬は20℃に調整して0.3μmol/hrの速度で重合器の底部から添加した。エチレンと水素は液相の重合器の底部から導入し、水素を、エチレンに対する水素濃度が600ppm、1-ブテンをエチレンに対して0.11mol%気相からポンプで連続的に供給した。撹拌装置内の撹拌翼回転数は100rpmとした。エチレン重合体の製造速度は10kg/hrであり、触媒活性は11,000g-PE/g-固体触媒成分[A]であった。重合スラリーは、重合反応器のレベルが一定に保たれるように連続的に圧力0.05Mpa、温度60℃のフラッシュドラムに抜き、未反応のエチレン及び水素を分離した。
 次に、得られた重合スラリーに少量のメタノールを添加して触媒を失活させた後、濾過することで溶剤を除去した。濾過後のポリマーに対する溶媒等の含有量は195%であった。
 分離濾過されたエチレン重合体パウダーは、95℃で窒素ブローしながら乾燥した。その後は、実施例1と同様の操作により、粘度平均分子量300×10g/mol、エチレン重合体中の1-ブテン含有量が0.03mol%の比較例5のエチレン重合体を得た。得られたエチレン重合体の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のエチレン重合体は、結晶化速度の温度応答が早いため、樹脂粘度が素早く上昇することで、速く引っ張っても糸径が小さくなり過ぎなかったり、糸が切れなかったりするので、引取り速度を上げることが可能である。
 また、本発明のエチレン重合体は、結晶化速度の温度応答が早いため、樹脂固化速度が速く、短時間で粘着性が下がり、糸同士の引付き(ブロッキング)が防止される。
 さらに、本発明のエチレン重合体は、結晶化速度の温度応答が早いため、Tダイから樹脂が押し出された後すぐに樹脂粘度が上昇し、溶媒が保持されやすく、冷却ロールで圧力がかかっても溶媒が染み出る割合が少なく、ロール付着物や液だれが抑制される。
 以上のように、本発明のエチレン重合体は、効率よく、且つ、問題なく生産及び加工することができ、加工性及び生産安定性に優れる。
 本出願は、2017年2月3日出願の日本特許出願(特願2017-018676号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明のエチレン重合体は、結晶化速度の温度応答が早く、加工性に優れ、生産性、及び生産安定性にも優れる。さらに、エチレン重合体を含む延伸成形体、微多孔膜、繊維等は強度や寸法精度に優れたものとなるため、高い産業上の利用可能性を有する。

Claims (9)

  1.  粘度平均分子量が、100×10以上1,000×10以下であり、
     以下の等温結晶化時間測定条件により求められる、125℃と123℃の等温結晶化時間の比が、3.5以上10.0以下であり、
     示差走査熱量計(DSC)から求められる結晶化度が、40.0%以上75.0%以下である、
    エチレン重合体。
    (等温結晶化時間測定条件)
    1)50℃で1分間保持後、200℃/minの昇温速度で180℃まで昇温
    2)180℃で5分間保持後、80℃/minの降温速度で122℃まで冷却
    3)122℃で5分間保持後、200℃/minの昇温速度で180℃まで昇温
    4)180℃で5分間保持後、80℃/minの降温速度で123℃まで冷却
    5)123℃で10分間保持後、200℃/minの昇温速度で180℃まで昇温
    (123℃に達した時間を起点0分として123℃の等温結晶化時間を測定)
    6)180℃で5分間保持後、80℃/minの降温速度で124℃まで冷却
    7)124℃で15分間保持後、200℃/minの昇温速度で180℃まで昇温
    8)180℃で5分間保持後、80℃/minの降温速度で125℃まで冷却
    9)125℃で30分間保持後、200℃/minの昇温速度で180℃まで昇温
    (125℃に達した時間を起点0分として125℃の等温結晶化時間を測定)
  2.  示差走査熱量計(DSC)から求められる第1融解ピークの融点(Tm1)と第2融解ピークの融点(Tm2)との差が、0℃以上10℃未満である、請求項1に記載のエチレン重合体。
  3.  示差走査熱量計(DSC)から求められる第1融解ピークの融解開始温度と第2融解ピークの融解開始温度との差が、5.0℃以上である、請求項1又は2に記載のエチレン重合体。
  4.  TiとAlの総含有量が、1.0ppm以上30.0ppm以下である、請求項1~3のいずれか1項に記載のエチレン重合体。
  5.  塩素含有量が、30ppm以下である、請求項1~4のいずれか1項に記載のエチレン重合体。
  6.  ヘキサンで抽出される炭素数16と炭素数18の炭化水素成分の合計含有量が、200ppm以下である、請求項1~5のいずれか1項に記載のエチレン重合体。
  7.  請求項1~6のいずれか1項に記載のエチレン重合体を含む、延伸成形体。
  8.  請求項1~6のいずれか1項に記載のエチレン重合体を含む、微多孔膜。
  9.  請求項1~6のいずれか1項に記載のエチレン重合体を含む、繊維。
PCT/JP2018/002961 2017-02-03 2018-01-30 エチレン重合体、延伸成形体、微多孔膜、及び繊維 WO2018143191A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880000330.7A CN109071712A (zh) 2017-02-03 2018-01-30 乙烯聚合物、拉伸成型体、微孔膜和纤维
JP2018518532A JP6366888B1 (ja) 2017-02-03 2018-01-30 エチレン重合体、延伸成形体、微多孔膜、及び繊維
US15/778,985 US10544240B2 (en) 2017-02-03 2018-01-30 Ethylene polymer, stretched molded article, microporous membrane and fiber
CN202010361811.XA CN111574647B (zh) 2017-02-03 2018-01-30 乙烯聚合物、拉伸成型体、微孔膜和纤维
EP18723389.5A EP3578576B1 (en) 2017-02-03 2018-01-30 Ethylene polymer, stretched molded body, microporous film, and fiber
KR1020187011909A KR101904705B1 (ko) 2017-02-03 2018-01-30 에틸렌 중합체, 연신 성형체, 미다공막 및 섬유

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017018676 2017-02-03
JP2017-018676 2017-02-03

Publications (1)

Publication Number Publication Date
WO2018143191A1 true WO2018143191A1 (ja) 2018-08-09

Family

ID=63040629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002961 WO2018143191A1 (ja) 2017-02-03 2018-01-30 エチレン重合体、延伸成形体、微多孔膜、及び繊維

Country Status (6)

Country Link
US (1) US10544240B2 (ja)
EP (1) EP3578576B1 (ja)
KR (1) KR101904705B1 (ja)
CN (1) CN109071712A (ja)
HU (1) HUE060921T2 (ja)
WO (1) WO2018143191A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189443A1 (ja) * 2019-03-18 2020-09-24 旭化成株式会社 ポリエチレンパウダー、及びその成形体
JPWO2021241411A1 (ja) * 2020-05-29 2021-12-02
WO2022270571A1 (ja) * 2021-06-25 2022-12-29 旭化成株式会社 ポリエチレンパウダー、及びその成形体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210113323A (ko) * 2019-03-01 2021-09-15 아사히 가세이 가부시키가이샤 폴리에틸렌 파우더 및 이것을 성형하여 이루어지는 성형체
JP7315369B2 (ja) * 2019-04-26 2023-07-26 旭化成株式会社 エチレン重合体粒子及び成形体

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127133A1 (de) 1981-07-09 1983-01-27 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von polyolefinen und deren copolymerisaten
JPS6257407A (ja) * 1985-09-06 1987-03-13 Mitsui Petrochem Ind Ltd 超高分子量エチレン系共重合体微粉末
JPH0221559A (ja) 1988-07-08 1990-01-24 Nitto Denko Corp 電池用セパレータとその製造法
JPH06509591A (ja) * 1991-07-26 1994-10-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 均質な高モジュラスで超高分子量のポリエチレン複合体およびそれらの製造方法
JP2566112B2 (ja) 1993-03-03 1996-12-25 ヘキスト・アクチェンゲゼルシャフト ポリエチレンから成る安定成形材料、及びその製造方法及びその用途
JP2005029731A (ja) * 2003-07-10 2005-02-03 Asahi Kasei Chemicals Corp 超高分子量ポリエチレン
JP2006273977A (ja) 2005-03-29 2006-10-12 Asahi Kasei Chemicals Corp オレフィン重合用触媒およびオレフィンの重合方法
JP4868853B2 (ja) 2003-03-10 2012-02-01 旭化成ケミカルズ株式会社 超高分子量エチレン系重合体
JP2012229355A (ja) * 2011-04-27 2012-11-22 Asahi Kasei Chemicals Corp 成形性、長期特性に優れた、ボトルキャップに適したポリエチレン樹脂組成物およびボトルキャップ
JP2013032490A (ja) 2011-06-30 2013-02-14 Jnc Corp 微多孔膜
JP5767202B2 (ja) 2012-12-18 2015-08-19 旭化成ケミカルズ株式会社 エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレータ
JP2015172210A (ja) * 2015-07-08 2015-10-01 日本ポリエチレン株式会社 ポリエチレン系樹脂組成物およびその成形体
JP2016007838A (ja) * 2014-06-26 2016-01-18 三井化学株式会社 エチレン系重合体フィルムの製造方法
WO2016104791A1 (ja) 2014-12-26 2016-06-30 東レバッテリーセパレータフィルム株式会社 ポリオレフィン樹脂組成物およびポリオレフィン微多孔膜の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210130A (en) 1990-08-07 1993-05-11 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
US20060287449A1 (en) 2003-03-10 2006-12-21 Koichi Miyamoto Ultrahigh-molecular ethylene polymer
CN100379769C (zh) * 2003-03-10 2008-04-09 旭化成化学株式会社 超高分子量乙烯聚合物
IN2014MU00873A (ja) * 2014-03-15 2015-09-25 Reliance Ind Ltd
JP6520248B2 (ja) * 2014-03-26 2019-05-29 東ソー株式会社 超高分子量ポリエチレン製延伸微多孔膜
CA2870027C (en) * 2014-11-07 2022-04-26 Matthew Zaki Botros Blow molding composition and process
KR102432329B1 (ko) * 2014-12-26 2022-08-11 도레이 카부시키가이샤 폴리올레핀 미세 다공막, 이의 제조 방법 및 전지용 세퍼레이터
KR101656988B1 (ko) 2015-02-26 2016-09-13 인제대학교 산학협력단 셀카 케이스
ES2945358T3 (es) * 2016-09-12 2023-06-30 Thai Polyethylene Co Ltd Composición polimérica para cierres de recipiente

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127133A1 (de) 1981-07-09 1983-01-27 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von polyolefinen und deren copolymerisaten
JPS6257407A (ja) * 1985-09-06 1987-03-13 Mitsui Petrochem Ind Ltd 超高分子量エチレン系共重合体微粉末
JPH0221559A (ja) 1988-07-08 1990-01-24 Nitto Denko Corp 電池用セパレータとその製造法
JPH06509591A (ja) * 1991-07-26 1994-10-27 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 均質な高モジュラスで超高分子量のポリエチレン複合体およびそれらの製造方法
JP2566112B2 (ja) 1993-03-03 1996-12-25 ヘキスト・アクチェンゲゼルシャフト ポリエチレンから成る安定成形材料、及びその製造方法及びその用途
JP4868853B2 (ja) 2003-03-10 2012-02-01 旭化成ケミカルズ株式会社 超高分子量エチレン系重合体
JP2005029731A (ja) * 2003-07-10 2005-02-03 Asahi Kasei Chemicals Corp 超高分子量ポリエチレン
JP2006273977A (ja) 2005-03-29 2006-10-12 Asahi Kasei Chemicals Corp オレフィン重合用触媒およびオレフィンの重合方法
JP2012229355A (ja) * 2011-04-27 2012-11-22 Asahi Kasei Chemicals Corp 成形性、長期特性に優れた、ボトルキャップに適したポリエチレン樹脂組成物およびボトルキャップ
JP2013032490A (ja) 2011-06-30 2013-02-14 Jnc Corp 微多孔膜
JP5767202B2 (ja) 2012-12-18 2015-08-19 旭化成ケミカルズ株式会社 エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレータ
JP2016007838A (ja) * 2014-06-26 2016-01-18 三井化学株式会社 エチレン系重合体フィルムの製造方法
WO2016104791A1 (ja) 2014-12-26 2016-06-30 東レバッテリーセパレータフィルム株式会社 ポリオレフィン樹脂組成物およびポリオレフィン微多孔膜の製造方法
JP2015172210A (ja) * 2015-07-08 2015-10-01 日本ポリエチレン株式会社 ポリエチレン系樹脂組成物およびその成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578576A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189443A1 (ja) * 2019-03-18 2020-09-24 旭化成株式会社 ポリエチレンパウダー、及びその成形体
JPWO2021241411A1 (ja) * 2020-05-29 2021-12-02
WO2021241411A1 (ja) * 2020-05-29 2021-12-02 旭化成株式会社 ポリエチレンパウダー及びその成形体
JP7349022B2 (ja) 2020-05-29 2023-09-21 旭化成株式会社 ポリエチレンパウダー及びその成形体
WO2022270571A1 (ja) * 2021-06-25 2022-12-29 旭化成株式会社 ポリエチレンパウダー、及びその成形体
JP7386380B2 (ja) 2021-06-25 2023-11-24 旭化成株式会社 ポリエチレンパウダー、及びその成形体

Also Published As

Publication number Publication date
EP3578576A4 (en) 2020-02-19
HUE060921T2 (hu) 2023-04-28
KR101904705B1 (ko) 2018-10-04
US20190359740A1 (en) 2019-11-28
EP3578576A1 (en) 2019-12-11
CN109071712A (zh) 2018-12-21
EP3578576B1 (en) 2023-01-18
US10544240B2 (en) 2020-01-28
KR20180100542A (ko) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2018143191A1 (ja) エチレン重合体、延伸成形体、微多孔膜、及び繊維
WO2020189443A1 (ja) ポリエチレンパウダー、及びその成形体
JP5767203B2 (ja) エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレーター
KR102212011B1 (ko) 폴리에틸렌 파우더, 성형체 및 미다공막
JP7190024B2 (ja) ポリエチレンパウダー、並びにこれを成形してなる成形体
JP2014118515A (ja) エチレン重合体並びに延伸成形体、微多孔膜、及び電池用セパレータ
KR20220024727A (ko) 폴리에틸렌 파우더, 성형체
JP6366888B1 (ja) エチレン重合体、延伸成形体、微多孔膜、及び繊維
WO2021241411A1 (ja) ポリエチレンパウダー及びその成形体
JP6454823B2 (ja) エチレン重合体、延伸成形体及び微多孔膜
JP7315369B2 (ja) エチレン重合体粒子及び成形体
JP7330304B2 (ja) ポリエチレンパウダー及びその成形体
WO2022270571A1 (ja) ポリエチレンパウダー、及びその成形体
JP6896397B2 (ja) エチレン系重合体、延伸成形体及び微多孔膜
JP6867187B2 (ja) ポリエチレン粒子及び成形体
JP7496443B2 (ja) ポリエチレンパウダー、及び成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518532

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18723389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018723389

Country of ref document: EP

Effective date: 20190903