WO2018141231A1 - 一种用于无线通信中的用户设备、基站中的方法和装置 - Google Patents

一种用于无线通信中的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2018141231A1
WO2018141231A1 PCT/CN2018/074399 CN2018074399W WO2018141231A1 WO 2018141231 A1 WO2018141231 A1 WO 2018141231A1 CN 2018074399 W CN2018074399 W CN 2018074399W WO 2018141231 A1 WO2018141231 A1 WO 2018141231A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless signal
wireless
time
occupied
signal
Prior art date
Application number
PCT/CN2018/074399
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018141231A1 publication Critical patent/WO2018141231A1/zh
Priority to US16/524,181 priority Critical patent/US11032050B2/en
Priority to US17/244,966 priority patent/US11632217B2/en
Priority to US18/115,776 priority patent/US11895056B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a Grant-Free transmission scheme and apparatus.
  • a Resource Block Assignment Field in the DCI (Downlink Control Information) corresponding to the uplink grant is used to dynamically indicate at least one of ⁇ frequency domain resources, time domain resources ⁇ occupied by the uplink data.
  • the present application provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa.
  • the present application discloses a method for a UE in a wireless communication, which includes:
  • the first wireless signal includes M1 first wireless sub-signals, a first sequence is used to generate the first wireless sub-signal; and the second wireless signal includes M2 second wireless sub-signals, a first bit a block is used to generate the second wireless sub-signal; the M1 is a positive integer, the M2 is a positive integer in the target set, each element in the target set is a positive integer; the target set and the ⁇ Said M1, at least one of said first sequence ⁇ is related.
  • the target set is implicitly configured, and uplink control information is saved.
  • the M1 and the target set are both related to the channel quality between the UE and the receiver of the first wireless signal, so the M1 and the target set can be associated.
  • the first sequence is a pseudo-random sequence.
  • the first sequence is a Zadoff-Chu sequence.
  • the first sequence comprises a CP (Cyclic Prefix).
  • the first wireless signal is transmitted on a PRACH (Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the target set consists of one element (ie the M2).
  • the target set consists of a plurality of elements.
  • the recipient of the second wireless signal determines the M2 from the set of targets by blind detection.
  • the target set is associated with the M1, the first sequence being used to determine an index of the M2 in the target set.
  • an index of the first sequence in the candidate sequence set is equal to an index of the M2 in the target set; and the candidate sequence set includes a plurality of candidate sequences.
  • the length of the candidate sequence is related to the number of REs (Resource Elements) occupied by the first wireless signal.
  • the lengths (ie, the number of elements) of all of the candidate sequences in the set of candidate sequences are the same.
  • the first bit block is delivered by a higher layer of the UE to a physical layer of the UE.
  • the upper layer is a MAC (Media Access Control) layer.
  • MAC Media Access Control
  • the upper layer is an RLC (Radio Link Control) layer.
  • RLC Radio Link Control
  • the M1 is a positive integer power of two or one.
  • the M2 is a positive integer power of two or one.
  • the first bit block is a TB (Transmission Block).
  • the first bit block is transmitted on an UL-SCH (UpLink Shared Channel).
  • UL-SCH UpLink Shared Channel
  • the second wireless signal is transmitted on a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second wireless signal is sequentially subjected to channel coding, a modulation mapper, a layer mapper, and a precoding by the first bit block.
  • Resource Element Mapper output after OFDM (Orthogonal Frequency Division Multiplexing) signal generation.
  • the channel coding includes rate matching.
  • the sending of the first wireless signal is Grant-Free.
  • the transmission of the first wireless signal is Contention-Based.
  • the transmission of the second wireless signal is exempt.
  • the transmission of the second wireless signal is contention based.
  • the above method is characterized by further comprising:
  • the third wireless signal is used to ⁇ determine whether the first bit block needs to be retransmitted, adjust a transmission timing of the UE, and allocate at least one of resources for uplink transmission to the UE ⁇ ; M3 is used to determine at least one of ⁇ the start time of the time domain resource occupied by the third wireless signal, the time domain resource occupied by the third wireless signal ⁇ , and the M3 is the target set An element in the middle.
  • the target set is used to determine a time domain resource occupied by the third wireless signal.
  • the above aspects save the transmission of uplink control information.
  • the M3 is a maximum value in the target set.
  • the above embodiment avoids the uncertainty of the starting moment of the third wireless signal caused by a plurality of elements in the target set.
  • the M3 is a minimum value in the set of targets.
  • the above embodiment avoids the uncertainty of the starting moment of the third wireless signal caused by multiple elements in the target set, and can support Early Decoding.
  • the termination time of the time domain resource occupied by the third wireless signal is related to the maximum value in the target set.
  • the location of the M3 in the set of targets is determined.
  • the M3 is the M2.
  • the M3 is used to determine a start time of a time domain resource occupied by the third wireless signal.
  • the first time window occupied by the third wireless signal is the Kth time window after the reference time window, and the K is a positive integer.
  • the reference time window is the last one of the time windows occupied by the M3th second wireless sub-signal of the second wireless signal.
  • the K is a positive integer.
  • the K is associated with the M3.
  • the K is associated with the M1.
  • the duration of the time window is less than 1 millisecond.
  • the time window is a subframe.
  • the time window includes a positive integer number of OFDM symbols.
  • the third wireless signal is transmitted on a physical layer control channel (ie, a physical layer channel that can only carry physical layer control information).
  • a physical layer control channel ie, a physical layer channel that can only carry physical layer control information.
  • the third wireless signal comprises a DCI.
  • the third wireless signal is transmitted on a physical layer data channel (ie, a physical layer channel capable of carrying physical layer data).
  • a physical layer data channel ie, a physical layer channel capable of carrying physical layer data.
  • the third wireless signal includes a RAR (Random Access Response).
  • RAR Random Access Response
  • the above method is characterized by further comprising:
  • the first signaling is used to determine a first type of time-frequency resource set; the first type of time-frequency resource set includes P1 first-type resource subsets; and the first wireless signal occupies one of the first a subset of resources; the P1 is a positive integer; the first type of resource occupied by the first wireless signal is used to determine ⁇ the air interface resource occupied by the second wireless signal, in the M1 ⁇ At least one of the air interface resources includes at least the former of ⁇ time-frequency resources, code domain resources ⁇ .
  • the above aspect saves control information for resource allocation of the second wireless signal, and improves transmission efficiency.
  • the first type of resource subset includes a positive integer number of PRBs (Psical Resource Blocks).
  • the first signaling is physical layer signaling.
  • the first signaling is high layer signaling.
  • the first signaling is RRC (Radio Resource Control) layer signaling.
  • the first signaling is common to the cell.
  • the first type of resource subset includes a positive integer number of REs (Resource Elements).
  • the RE includes one subcarrier in the frequency domain and one multicarrier symbol in the time domain.
  • the multicarrier symbol is an OFDM symbol.
  • the multi-carrier symbol is an FBMC (Filtering Bank Multile Carrier) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • any two of the first type of time-frequency resources of the P1 first-class time-frequency resources include different numbers of REs.
  • the M1 is related to the number of REs in the first type of resource subset occupied by the first wireless signal.
  • the length of the first sequence is configured by downlink high layer signaling.
  • the first type of resource subset occupies at most one subcarrier in the frequency domain.
  • the number of subcarriers occupied by all the first type of time-frequency resources in the P1 first-type time-frequency resources is the same.
  • the above method is characterized by further comprising:
  • the second signaling is used to determine a second type of time-frequency resource set; the second type of time-frequency resource set includes P2 second-class resource subsets; and the second wireless signal occupies a time-frequency resource.
  • the number of subcarriers occupied by the second wireless signal is implicitly indicated, which saves corresponding control information and improves transmission efficiency.
  • the number of subcarriers occupied by the radio signals transmitted by the P2 second type resource subsets is in one-to-one correspondence with P2 positive integers.
  • any two positive integers of the P2 positive integers are not equal.
  • the subcarriers occupied by the second wireless signal are continuous in the frequency domain.
  • the second signaling is high layer signaling.
  • the second signaling is RRC layer signaling.
  • the second signaling is common to the cell.
  • the second signaling is TRP (Transmission Reception Point).
  • the second signaling is BEA-specific, or the first signaling is BEA-Group-specific.
  • the method is characterized in that the first sequence is used to determine a subcarrier spacing corresponding to a subcarrier occupied by the second wireless signal; or the second wireless signal is occupied by The second type of resource subset is used to determine a subcarrier spacing corresponding to the subcarrier occupied by the second wireless signal.
  • the above aspect saves control information for configuring subcarrier spacing, and improves transmission efficiency.
  • the subcarrier spacing corresponding to the subcarrier occupied by the second wireless signal is ⁇ 2.5 kHz (kilohertz), 3.75 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz ⁇ One.
  • the subcarrier spacing corresponding to the subcarrier occupied by the second wireless signal is associated with an index of the first sequence in the candidate sequence set.
  • a plurality of candidate sequences are included in the candidate sequence set.
  • the length of the candidate sequence is independent of the number of REs occupied by the first wireless signal.
  • the lengths of all of the candidate sequences in the set of candidate sequences are the same.
  • the above method is characterized by further comprising:
  • the measurement for the fourth wireless signal is used to determine the M1.
  • both M1 and the set of targets are related to measurements for the fourth wireless signal.
  • the above aspects minimize scheduling constraints due to the association of the M1 and the target set.
  • the fourth wireless signal includes at least one of a ⁇ PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • ⁇ PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the fourth wireless signal includes a CSI-RS (Channel Status Information Reference Signal).
  • CSI-RS Channel Status Information Reference Signal
  • the present application discloses a method for use in a base station in wireless communication, including:
  • the first wireless signal includes M1 first wireless sub-signals, a first sequence is used to generate the first wireless sub-signal; and the second wireless signal includes M2 second wireless sub-signals, a first bit a block is used to generate the second wireless sub-signal; the M1 is a positive integer, the M2 is a positive integer in the target set, each element in the target set is a positive integer; the target set and the ⁇ Said M1, at least one of said first sequence ⁇ is related.
  • the base station determines the target set according to the M1.
  • the base station determines the target set according to the first sequence.
  • the above method is characterized by further comprising:
  • the third wireless signal is used to: ⁇ determine whether the first bit block needs to be retransmitted, adjust a transmission timing of a receiver of the third wireless signal, and allocate the receiver for the third wireless signal.
  • At least one of the resources transmitted in the uplink; M3 is used to determine ⁇ the starting time of the time domain resource occupied by the third wireless signal, the time domain resource occupied by the third wireless signal ⁇
  • At least one of the M3s is one of the target sets.
  • the above method is characterized by further comprising:
  • the first signaling is used to determine a first type of time-frequency resource set; the first type of time-frequency resource set includes P1 first-type resource subsets; and the first wireless signal occupies one of the first a subset of resources; the P1 is a positive integer; the first type of resource occupied by the first wireless signal is used to determine ⁇ the air interface resource occupied by the second wireless signal, in the M1 ⁇ At least one of the air interface resources includes at least the former of ⁇ time-frequency resources, code domain resources ⁇ .
  • the above method is characterized by further comprising:
  • the second signaling is used to determine a second type of time-frequency resource set; the second type of time-frequency resource set includes P2 second-class resource subsets; and the second wireless signal occupies a time-frequency resource.
  • the method is characterized in that the first sequence is used to determine a subcarrier spacing corresponding to a subcarrier occupied by the second wireless signal; or the second wireless signal is occupied by The second type of resource subset is used to determine a subcarrier spacing corresponding to the subcarrier occupied by the second wireless signal.
  • the above method is characterized by further comprising:
  • the measurement for the fourth wireless signal is used to determine the M1.
  • the present application discloses a user equipment used in wireless communication, which includes:
  • the first transceiver module sends the first wireless signal
  • a first transmitter module that transmits a second wireless signal
  • the first wireless signal includes M1 first wireless sub-signals, a first sequence is used to generate the first wireless sub-signal; and the second wireless signal includes M2 second wireless sub-signals, a first bit a block is used to generate the second wireless sub-signal; the M1 is a positive integer, the M2 is a positive integer in the target set, each element in the target set is a positive integer; the target set and the ⁇ Said M1, at least one of said first sequence ⁇ is related.
  • the user equipment used in the wireless communication is characterized in that:
  • a first receiver module that receives a third wireless signal
  • the third wireless signal is used to ⁇ determine whether the first bit block needs to be retransmitted, adjust a transmission timing of the UE, and allocate at least one of resources for uplink transmission to the UE ⁇ ; M3 is used to determine at least one of ⁇ the start time of the time domain resource occupied by the third wireless signal, the time domain resource occupied by the third wireless signal ⁇ , and the M3 is the target set An element in the middle.
  • the user equipment used in the wireless communication is characterized in that the first transceiver module further receives the first signaling; wherein the first signaling is used to determine the first type of time-frequency resource.
  • the first type of time-frequency resource set includes P1 first-class resource subsets; and the first wireless signal occupies one of the first-type resource subsets.
  • the P1 is a positive integer; the first type of resource subset occupied by the first wireless signal is used to determine at least one of ⁇ the air interface resource occupied by the second wireless signal, the M1 ⁇ ;
  • the air interface resource includes at least the former of ⁇ time-frequency resources, code domain resources ⁇ .
  • the user equipment used in the wireless communication is characterized in that the first transceiver module further receives second signaling, wherein the second signaling is used to determine a second type of time-frequency resource.
  • the second type of time-frequency resource set includes P2 second-class resource subsets; the second-frequency resource occupied by the second wireless signal belongs to one of the second-type resource subsets; and the P2 is a positive integer;
  • the second type of resource subset to which the second wireless signal belongs is used to determine the number of subcarriers occupied by the second wireless signal.
  • the above user equipment for wireless communication is characterized in that the first transceiver module further receives a fourth wireless signal; wherein the measurement for the fourth wireless signal is used to determine the M1 .
  • the user equipment used in the wireless communication is characterized in that the first sequence is used to determine a subcarrier spacing corresponding to a subcarrier occupied by the second wireless signal; or the second The second type of resource subset occupied by the wireless signal is used to determine a subcarrier spacing corresponding to the subcarrier occupied by the second wireless signal.
  • the present application discloses a base station device used in wireless communication, which includes:
  • a second transceiver module receiving the first wireless signal
  • a second receiver module that receives the second wireless signal
  • the first wireless signal includes M1 first wireless sub-signals, a first sequence is used to generate the first wireless sub-signal; and the second wireless signal includes M2 second wireless sub-signals, a first bit a block is used to generate the second wireless sub-signal; the M1 is a positive integer, the M2 is a positive integer in the target set, each element in the target set is a positive integer; the target set and the ⁇ Said M1, at least one of said first sequence ⁇ is related.
  • the base station determines the target set according to the M1.
  • the base station determines the target set according to the first sequence.
  • the base station device used in the wireless communication is characterized in that:
  • a second transmitter module that transmits a third wireless signal
  • the third wireless signal is used to: ⁇ determine whether the first bit block needs to be retransmitted, adjust a transmission timing of a receiver of the third wireless signal, and allocate the receiver for the third wireless signal.
  • At least one of the resources transmitted in the uplink; M3 is used to determine ⁇ the starting time of the time domain resource occupied by the third wireless signal, the time domain resource occupied by the third wireless signal ⁇
  • At least one of the M3s is one of the target sets.
  • the base station device used in wireless communication is characterized in that the second transceiver module further sends first signaling; wherein the first signaling is used to determine the first type of time a frequency resource set; the first type of time-frequency resource set includes P1 first-class resource subsets; the first wireless signal occupies one of the first-type resource subsets; and the P1 is a positive integer; the first The first type of resource subset occupied by the wireless signal is used to determine at least one of ⁇ the air interface resource occupied by the second wireless signal, the M1 ⁇ ; the air interface resource includes ⁇ time-frequency resource, code At least the former in the domain resource ⁇ .
  • the base station device used in wireless communication is characterized in that the second transceiver module further sends second signaling; wherein the second signaling is used to determine the second type of time a set of frequency resources; the second set of time-frequency resources includes P2 second-class resource subsets; the time-frequency resources occupied by the second wireless signal belong to one of the second-type resource subsets; and the P2 is a positive integer
  • the second type of resource subset to which the second wireless signal belongs is used to determine the number of subcarriers occupied by the second wireless signal.
  • the base station device used in the wireless communication is characterized in that the first sequence is used to determine a subcarrier spacing corresponding to a subcarrier occupied by the second wireless signal; or The second type of resource subset occupied by the second wireless signal is used to determine a subcarrier spacing corresponding to the subcarrier occupied by the second wireless signal.
  • the base station device used in wireless communication is characterized in that the second transceiver module further transmits a fourth wireless signal; wherein the measurement for the fourth wireless signal is used to determine Said M1.
  • the present application has the following technical advantages over the prior art:
  • FIG. 1 shows a flow chart of transmission of a first wireless signal and a second wireless signal in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a user equipment according to an embodiment of the present application
  • FIG. 5 shows a flow chart of an uplink transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a first type of time-frequency resource set according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of a first type of resource subset in accordance with one embodiment of the present application.
  • FIG. 8 shows a schematic diagram of time domain resources associated with a first wireless signal, in accordance with one embodiment of the present application.
  • FIG. 9 is a schematic diagram showing a start time of a time domain resource occupied by a third wireless signal according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of M1 and a corresponding set of targets in accordance with one embodiment of the present application
  • Figure 11 shows a schematic diagram of a second type of resource subset in accordance with one embodiment of the present application.
  • FIG. 12 is a schematic diagram showing a second type of time-frequency resource set according to an embodiment of the present application.
  • FIG. 13 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 14 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of a first wireless signal and a second wireless signal in accordance with one embodiment of the present application, as shown in FIG.
  • each box represents a step.
  • the user equipment in the present application first transmits a first wireless signal, and then transmits a second wireless signal; wherein the first wireless signal includes M1 first wireless sub-signals, and the first sequence is used to generate The first wireless sub-signal; the second wireless signal includes M2 second wireless sub-signals, the first bit block is used to generate the second wireless sub-signal; the M1 is a positive integer, and the M2 is a target A positive integer in the set, each element in the set of targets being a positive integer; the set of goals being associated with at least one of ⁇ the M1, the first sequence ⁇ .
  • the first sequence is a pseudo-random sequence.
  • the first sequence is a Zadoff-Chu sequence.
  • the first sequence comprises a CP (Cyclic Prefix).
  • the first wireless signal is transmitted on a PRACH (Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the target set consists of one element (ie the M2).
  • the target set consists of a plurality of elements.
  • the recipient of the second wireless signal determines the M2 from the set of targets by blind detection.
  • the target set is associated with the M1, the first sequence being used to determine an index of the M2 in the target set.
  • an index of the first sequence in the candidate sequence set is equal to an index of the M2 in the target set; and the candidate sequence set includes a plurality of candidate sequences.
  • the length of the candidate sequence is related to the number of REs (Resource Elements) occupied by the first wireless signal.
  • the lengths (ie, the number of elements) of all of the candidate sequences in the set of candidate sequences are the same.
  • the first bit block is delivered by a higher layer of the UE to a physical layer of the UE.
  • the upper layer is a MAC (Media Access Control) layer.
  • MAC Media Access Control
  • the upper layer is an RLC (Radio Link Control) layer.
  • RLC Radio Link Control
  • the M1 is a positive integer power of two or one.
  • the M2 is a positive integer power of two or one.
  • the first bit block is a TB (Transmission Block).
  • the first bit block is transmitted on an UL-SCH (UpLink Shared Channel).
  • UL-SCH UpLink Shared Channel
  • the second wireless signal is transmitted on a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second wireless signal is sequentially subjected to channel coding, a modulation mapper, a layer mapper, and a precoding by the first bit block.
  • Resource Element Mapper output after OFDM (Orthogonal Frequency Division Multiplexing) signal generation.
  • the channel coding includes rate matching.
  • the sending of the first wireless signal is Grant-Free.
  • the transmission of the first wireless signal is Contention-Based.
  • the transmission of the second wireless signal is exempt.
  • the transmission of the second wireless signal is contention based.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced), NB-IoT (NarrowBand Internet of Things, Narrowband Internet of Things), and a future 5G system network architecture 200.
  • LTE Long-Term Evolution
  • LTE-A Long-Term Evolution Advanced
  • NB-IoT NarrowBand Internet of Things, Narrowband Internet of Things
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core) 210, and HSS (Home Subscriber Server, Home subscriber network server 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN includes an evolved Node B (eNB) 203 and other eNBs 204.
  • eNB evolved Node B
  • the eNB 203 provides user and control plane protocol termination towards the UE 201.
  • the eNB 203 can connect to other eNBs 204 via an X2 interface (e.g., backhaul).
  • the eNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception point), or some other suitable terminology.
  • the eNB 203 provides the UE 201 with an access point to the EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband IoT device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, an MP3 player
  • a camera for example, an MP3 player
  • a game console a drone
  • a drone an aircraft
  • a narrowband IoT device a machine type communication device
  • a land vehicle a car
  • a wearable device or any other similar functional device.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the eNB 203 is connected to the EPC 210 through an S1 interface.
  • the EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to a user equipment in this application.
  • the eNB 203 corresponds to a base station in the present application.
  • the UE 201 supports grant-free transmission.
  • the eNB 203 supports grant-free transmission.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the eNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the eNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between eNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and the eNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layers using RRC signaling between the eNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station equipment in this application.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated in the RRC 306.
  • the third wireless signal in the present application is generated by the PHY 301.
  • the third wireless signal in the present application is generated by the MAC 302.
  • the third wireless signal in the present application is generated by the PHY 301.
  • the fourth wireless signal in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated by the MAC 302.
  • the first signaling in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated by the MAC 302.
  • the second signaling in the present application is generated by the PHY 301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB/eNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467 are included in the user equipment (UE 450), and the transmitter/receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the L2 layer protocol for the user plane and the control plane is implemented, and the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the various signal reception processing functions implemented by the receive processor 452 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller/processor 440, which provides header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling (including PBCH, PDCCH). , reference signal) generation, etc.
  • the various signal reception processing functions implemented by the receive processor 412 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received by the antenna 420 into a baseband signal and provide the signal to the receiving processor 412.
  • the upper layer packet DL-SCH includes the first signaling in the present application, and the second signaling and the third wireless signal are provided to the controller/processor 440.
  • Controller/processor 440 implements the functionality of the L2 layer.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer), and the fourth wireless signal in the present application is generated at transmit processor 415.
  • Signal processing functions include decoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)).
  • FEC forward error correction
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to a corresponding multi-carrier subcarrier and/or multi-carrier symbol, which is then transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal. Go out.
  • the first signaling in the present application, the physical layer transmission of the second signaling and the third wireless signal, and the fourth wireless signal are mapped by the transmitting processor 415 onto the target air interface resource and mapped to the antenna 420 via the transmitter 416 as a radio frequency signal.
  • the form is launched.
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing function includes the measurement of the fourth wireless signal and the carrying of the first signaling, the second signaling, and the reception of the physical layer signal of the third wireless signal, etc.
  • the carrier symbols are demodulated based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)), followed by decoding and deinterleaving to recover data transmitted by the eNB 410 on the physical channel.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • control is followed by data and control signals to controller/processor 490.
  • the controller/processor 490 implements the L2 layer.
  • the controller/processor can be associated with a memory 480 that stores program codes and data. Memory 480 can be referred to as a computer readable medium.
  • data source 467 is used to provide the second wireless signal in the present application to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 490 implements L2 for the user plane and the control plane by providing header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the radio resource allocation of the eNB 410. Layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 410.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer), which is generated by transmit processor 455.
  • Signal transmission processing functions include encoding and interleaving to facilitate forward error correction (FEC) at the UE 350 and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)).
  • FEC forward error correction
  • the baseband signal is modulated, the modulation symbols are divided into parallel streams and each stream is mapped to a corresponding multi-carrier subcarrier and/or multi-carrier symbol, which is then transmitted by the transmit processor 455 via the transmitter 456 to the antenna 460 in the form of a radio frequency signal.
  • Receiver 416 receives radio frequency signals through its respective antenna 420, each receiver 416 recovers baseband information modulated onto the radio frequency carrier, and provides baseband information to receive processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer), the signal receiving processing function includes acquiring a multi-carrier symbol stream, and then performing multi-carrier modulation based on various modulations in the multi-carrier symbol stream. Demodulation of schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK)), followed by decoding and deinterleaving to recover data and/or control signals originally transmitted by the UE 450 over the physical channel, Receiving the first wireless signal in the present application is completed at the receiving processor 412. Data and/or control signals are then provided to controller/processor 440.
  • the L2 layer is implemented at the receive processor controller/processor 440.
  • the controller/processor can be associated with a memory 430 that stores program codes and data. Memory 430 can be a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together, the UE 450 device at least: transmitting a first wireless signal; transmitting a second wireless signal; wherein the first wireless signal includes M1 first wireless sub-signals, and the first sequence is used to generate the first a wireless sub-signal; the second radio signal includes M2 second radio sub-signals, the first bit block is used to generate the second radio sub-signal; the M1 is a positive integer, and the M2 is one of the target sets A positive integer, each element in the set of targets is a positive integer; the set of targets is associated with at least one of ⁇ the M1, the first sequence ⁇ .
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting a first wireless signal; Transmitting a second wireless signal; wherein the first wireless signal includes M1 first wireless sub-signals, a first sequence is used to generate the first wireless sub-signal; and the second wireless signal includes M2 second wireless signals a sub-signal, a first bit block is used to generate the second wireless sub-signal; the M1 is a positive integer, the M2 is a positive integer in the target set, and each element in the target set is a positive integer; The target set is associated with at least one of ⁇ the M1, the first sequence ⁇ .
  • the eNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the gNB410 device at least: receiving a first wireless signal; receiving a second wireless signal; wherein the first wireless signal includes M1 first wireless sub-signals, and the first sequence is used to generate the first wireless sub-signal;
  • the second wireless signal includes M2 second wireless sub-signals, the first bit block is used to generate the second wireless sub-signal;
  • the M1 is a positive integer
  • the M2 is a positive integer in the target set,
  • Each element in the set of targets is a positive integer; the set of targets is associated with at least one of ⁇ the M1, the first sequence ⁇ .
  • the eNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving a first wireless signal; Receiving a second wireless signal; wherein the first wireless signal comprises M1 first wireless sub-signals, a first sequence is used to generate the first wireless sub-signal; and the second wireless signal comprises M2 second wireless signals a sub-signal, a first bit block is used to generate the second wireless sub-signal; the M1 is a positive integer, the M2 is a positive integer in the target set, and each element in the target set is a positive integer; The target set is associated with at least one of ⁇ the M1, the first sequence ⁇ .
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • transmitter 456 (including antenna 460) and transmit processor 455 are used for the transmission of the first wireless signal in this application.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used for the transmission of the second wireless signal in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used for the reception of the third wireless signal described herein.
  • receiver 456 (including antenna 460) and receive processor 452 are used for the reception of the fourth wireless signal in this application.
  • a receiver 456 (including antenna 460), a receive processor 452, and a controller/processor 490 are used in the present application to receive the first signaling.
  • a receiver 456 (including antenna 460), a receive processor 452, and a controller/processor 490 are used in the present application to receive the second signaling.
  • a receiver 416 (including antenna 420) and a receive processor 412 are used to receive the first wireless signal in the present application.
  • a receiver 416 (including antenna 420), a receive processor 412, and a controller/processor 440 are used to receive the second wireless signal in the present application.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the third wireless signal in the present application.
  • a transmitter 416 (including antenna 420) and a transmit processor 415 are used to transmit the fourth wireless signal in the present application.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the first signaling in the present application.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the second signaling in this application.
  • Embodiment 5 illustrates a flow chart of uplink transmission, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the UE U2.
  • the steps identified in block F0, block F1 and block F2 are optional, respectively.
  • the base station N1 in a step S10, a first transmitting signaling the second signaling transmitted in step S11, the fourth radio signal transmitted in step S12, the first radio signal received in step S13, the step S14 in the first receiving
  • the second wireless signal transmits a third wireless signal in step S15.
  • the first signaling is received in step S20
  • the second signaling is received in step S21
  • the fourth wireless signal is received in step S22
  • the first wireless signal is transmitted in step S23
  • the first wireless signal is transmitted in step S24.
  • the second wireless signal receives the third wireless signal in step S25.
  • the first wireless signal includes M1 first wireless sub-signals, and the first sequence is used to generate the first wireless sub-signal.
  • the second wireless signal includes M2 second wireless sub-signals, and the first bit block is used to generate the second wireless sub-signal.
  • the M1 is a positive integer
  • the M2 is a positive integer in the target set
  • each element in the target set is a positive integer.
  • the target set is associated with at least one of ⁇ the M1, the first sequence ⁇ .
  • the third wireless signal is used by the UE U2 to ⁇ determine whether the first bit block needs to be retransmitted, adjust transmission timing, and determine a resource for uplink transmission ⁇ .
  • the M3 is used to determine at least one of ⁇ the start time of the time domain resource occupied by the third wireless signal, the time domain resource occupied by the third wireless signal ⁇ , and the M3 is the target set An element in the middle.
  • the first signaling is used by the UE U2 to determine a first type of time-frequency resource set.
  • the first type of time-frequency resource set includes P1 first-class resource subsets.
  • the first wireless signal occupies one of the first subset of resources.
  • the P1 is a positive integer.
  • the first type of resource subset occupied by the first wireless signal is used to determine at least one of ⁇ the air interface resource occupied by the second wireless signal, the M1 ⁇ .
  • the air interface resource includes at least a former one of ⁇ time-frequency resources, code domain resources ⁇ .
  • the second signaling is used by the UE U2 to determine a second type of time-frequency resource set.
  • the second type of time-frequency resource set includes P2 second-class resource subsets.
  • the time-frequency resource occupied by the second wireless signal belongs to one of the second type of resource subsets.
  • the P2 is a positive integer.
  • the second type of resource subset to which the second wireless signal belongs is used to determine the number of subcarriers occupied by the second wireless signal.
  • the measurement for the fourth wireless signal is used to determine the M1.
  • the second wireless signal includes a DMRS (DeModulation Reference Signal).
  • DMRS Demodulation Reference Signal
  • the time domain resources occupied by the M1 first wireless sub-signals are orthogonal to each other.
  • the time domain resources occupied by the M2 second wireless sub-signals are orthogonal to each other.
  • the second wireless signal is transmitted on a physical layer control channel.
  • the first bit block includes uplink control information.
  • the first sequence is used to determine a subcarrier spacing corresponding to a subcarrier occupied by the second wireless signal; or the second subset of resources occupied by the second wireless signal is used And determining a subcarrier spacing corresponding to the subcarrier occupied by the second wireless signal.
  • the M2 is greater than or equal to the M1.
  • the target set consists of one element, namely the M2.
  • the first signaling is RRC layer signaling.
  • the second signaling is RRC layer signaling.
  • the first sequence is a PRACH preamble.
  • the first block of bits includes a positive integer number of bits.
  • the first bit block is a TB (Transport Block).
  • the third wireless signal includes a HARQ_ACK, and the HARQ_ACK indicates whether the base station N1 correctly decodes the second wireless signal.
  • the third wireless signal includes a DCI
  • the DCI is used for an uplink grant (UpLink Grant) of the UE U2
  • the uplink transmission scheduled by the DCI and the second wireless signal belong to the same A HARQ (Hybrid Automatic Repeat ReQuest) process
  • the DCI includes ⁇ NDI (New Data Indicator) field, RA (Resource Allocation, Resource Allocation) field
  • NDI New Data Indicator
  • RA Resource Allocation, Resource Allocation
  • At least one of the NDI fields in the DCI indicates whether the UE U2 retransmits the first bit block
  • the RA field in the DCI indicates an air interface resource allocated for the UE U2 for uplink transmission.
  • the third wireless signal includes an RAR (Random Access Response) for the first wireless signal, where the RAR indicates a Timing Adjustment for the UE U2, User ID, uplink transmission resource ⁇ .
  • RAR Random Access Response
  • the user identifier is a C-RNTI (Cell Radio Network Temporary Identifier).
  • C-RNTI Cell Radio Network Temporary Identifier
  • the user identification comprises 16 binary bits.
  • the corresponding multiple access mode of the second wireless signal is SCMA (Sparse Code Multiple Access)
  • the air interface resource includes a time-frequency resource and a code domain resource.
  • At least two of the P2 second-class resource subsets have shared sub-carriers in the frequency domain.
  • the P2 second type resource subsets belong to 12 consecutive subcarriers in the frequency domain.
  • any two of the P2 second-class resource subsets are orthogonal in the frequency domain (ie, there is no shared sub-carrier).
  • a time domain location of the first type of resource subset occupied by the first wireless signal is related to Q candidate moments, and the second type of resource subset occupied by the second wireless signal is used.
  • the starting time in the time domain is one of the Q candidate moments.
  • the Q is a positive integer.
  • the Q candidate moments are after a cutoff time of the first type of resource subset occupied by the first wireless signal.
  • the Q is greater than 1, and the Q candidate moments are equally spaced.
  • Embodiment 6 illustrates a schematic diagram of a first type of time-frequency resource set, as shown in FIG.
  • the first type of time-frequency resource set includes P1 first-class resource subsets, and any two of the first-type resource subsets of the P1 first-class resource subsets are positive in the time domain. Intersected (ie not overlapping).
  • the P1 first type resource subsets occupy time resources ⁇ #1, #2, ..., #P1 ⁇ in the time domain, respectively.
  • the multi-carrier symbols occupied by the first type of resource subset in the time domain are continuous.
  • the length of time occupied by the first type of resource subset occupied by the first wireless signal in the present application is linearly related to the M1 in the present application.
  • the length of time occupied by the P1 first type resource subsets is sequentially increased.
  • the length of time occupied by any one of the first type of resource subsets in the P1 first type resource subset is a positive integer multiple of the time resource #1.
  • the M1 in the present application is 1.
  • Embodiment 7 illustrates a schematic diagram of a first type of resource subset, as shown in FIG. 7, in accordance with one embodiment of the present application.
  • the slash filled squares represent time-frequency resources belonging to a first subset of resources.
  • the subcarriers occupied by the first type of resource subsets at different times are variable.
  • the first subset of resources occupies only one subcarrier in the frequency domain.
  • all subcarriers occupied by the first type of resource subsets at different times belong to a target subcarrier set, and the target subcarrier set is composed of 12 consecutive subcarriers.
  • the subcarrier spacing of the subcarriers is 3.75 kHz.
  • the subcarrier spacing of the subcarriers is 15 kHz.
  • the subcarrier spacing of the subcarriers is a positive integer multiple of 15 kHz.
  • the change of the subcarrier occupied by the first type of resource subset is used to determine ⁇ the M1 in the present application, the user identifier of the sender of the first wireless signal in this application, At least one of subcarrier spacings of subcarriers occupied by the second wireless signal in the present application.
  • Embodiment 8 illustrates a schematic diagram of time domain resources associated with a first wireless signal, as shown in FIG. 8, in accordance with one embodiment of the present application.
  • the resources occupied by the first wireless signal in the time domain implicitly indicate the first associated time domain resource.
  • the resources occupied by the second wireless signal in the time domain belong to the first associated time domain resource.
  • the P2 second type resource subsets in the application belong to the first associated time domain resource in the time domain.
  • the first wireless signal in the present application and the second signaling in the present application are used to determine the P2 second type resource subsets in the present application.
  • the resources occupied by the first wireless signal in the time domain and the first associated time domain resource are continuous.
  • the resources occupied by the first wireless signal in the time domain and the first associated time domain resources are orthogonal (ie, do not overlap).
  • the length of time of the first associated time domain resource and the length of time of the resource occupied by the first wireless signal in the time domain are related.
  • the length of time of the first associated time domain resource increases as the length of time of the resource occupied by the first wireless signal in the time domain increases.
  • the length of time of the first associated time domain resource and the length of time of the resource occupied by the first wireless signal in the time domain are linearly related.
  • the target set in the present application is composed of multiple positive integers.
  • the M2 in the present application is equal to the largest positive integer in the target set, the second wireless signal in the present application. All multi-carrier symbols in the first associated time domain resource are occupied.
  • Embodiment 9 exemplifies a starting time of a time domain resource occupied by a third wireless signal according to an embodiment of the present application, as shown in FIG.
  • the first time interval and the second time interval are included between the start time of the time domain resource occupied by the third wireless signal and the time limit of the time domain resource occupied by the first wireless signal.
  • the time domain resource occupied by the second wireless signal belongs to the first time interval.
  • the first time interval is the first associated time domain resource in the foregoing Embodiment 4.
  • the length of the second time interval is greater than or equal to 4 milliseconds.
  • the length of the second time interval is related to the length of the first time interval.
  • the sender of the first wireless signal maintains zero transmit power during the second time interval.
  • the first time interval is M3 times the reference time interval, where the reference time interval is the length of the time domain resource occupied by the second wireless sub-signal in the present application.
  • the M3 is an element in the target set.
  • the M3 is a minimum value in the target set.
  • the length of time between the termination time of the time domain resource occupied by the third wireless signal and the reference time is the second time interval, and the termination time of the time domain resource occupied by the third wireless signal is After the reference time.
  • the reference time is after the first time interval, and the time length between the reference time and the end time of the first time interval is M4 times of the reference time interval, and the M4 is in the target set.
  • the maximum value is after the first time interval.
  • the M3 is the maximum value in the target set.
  • the M3 is M2.
  • Embodiment 10 illustrates a schematic diagram of M1 and a corresponding set of targets in accordance with one embodiment of the present application, as shown in FIG.
  • the possible values of M1 are 1, 4, 16; the corresponding target sets are ⁇ 1, 2 ⁇ , ⁇ 2, 8 ⁇ , ⁇ 8, 32 ⁇ , respectively.
  • Embodiment 11 illustrates a schematic diagram of a second subset of resources in accordance with one embodiment of the present application, as shown in FIG. In Fig. 11, the squares of the slash filled and the squares of the thick line frame represent the second type of resource subset #1 and the second type of resource subset #2, respectively.
  • the second type resource subset #1 and the second type resource subset #2 are two of the second type resources in the P2 second type resource subsets in the present application. Subset. There are shared subcarriers between the second type of resource subset #1 and the second type of resource subset #2.
  • the second type resource subset #1 and the second type resource subset #2 belong to the same RB (Resource Block).
  • the RB consists of 12 consecutive subcarriers.
  • Embodiment 12 illustrates a schematic diagram of a second type of time-frequency resource set according to one embodiment of the present application, as shown in FIG.
  • a number-filled square represents a time unit
  • two digitally filled squares represent two time units
  • eight digitally filled squares represent eight time units
  • a square in Figure 8 represents a resource occupied by a second subset of resources in the time domain.
  • the second type of time-frequency resource set includes 53 second-class resource subsets:
  • -32 of the second type of resource subset consists of one time unit, corresponding to squares 0 to 31;
  • -16 of the second type of resource subset consists of 2 time units, corresponding to the squares ⁇ 0, 1 ⁇ , ⁇ 2, 3 ⁇ , ..., ⁇ 30, 31 ⁇ ;
  • the second type of resource subset consists of 8 time units, corresponding to the squares ⁇ 0, 1, 2, ..., 7 ⁇ , ⁇ 8, 9, ..., 15 ⁇ , ..., ⁇ 24, 25,...,31 ⁇ ;
  • the second type of resource subset consists of 32 time units, corresponding to the square ⁇ 0, 1, 2, ..., 31 ⁇ .
  • the base station detects the first wireless signal determination M1, and then determines a corresponding target set according to Embodiment 10.
  • the base station determines M2 from the set of targets by means of blind detection.
  • the base station determines, according to the target set, the second type of resource subset occupied by the second wireless signal by means of blind detection.
  • a hopping pattern of a subcarrier occupied by the first wireless signal or an index of the first sequence in the candidate sequence set is used by the base station to determine the second type of resource occupied by the second wireless signal. set.
  • Embodiment 13 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 1300 is mainly composed of a first transceiver module 1301, a first transmitter module 1302, and a first receiver module 1303.
  • the first transceiver module 1301 includes the transmitter/receiver 456 (including the antenna 460) of the present application, the receiving processor 452 and the controller/processor 490; the first transmitter module 1302 includes the drawing 4 of the present application.
  • Transmitter/receiver 456 (including antenna 460) and transmit processor 455 and data source 467;
  • first receiver module 1303 includes transmitter/receiver 456 (including antenna 460) in FIG. 4 of the present application, receiving Processor 452 and controller/processor 490.
  • the first transceiver module 1301 transmits a first wireless signal; the first transmitter module 1302 transmits a second wireless signal; and the first receiver module 1303 receives the third wireless signal.
  • the first wireless signal includes M1 first wireless sub-signals, and the first sequence is used to generate the first wireless sub-signal.
  • the second wireless signal includes M2 second wireless sub-signals, and the first bit block is used to generate the second wireless sub-signal.
  • the M1 is a positive integer
  • the M2 is a positive integer in the target set
  • each element in the target set is a positive integer.
  • the set of goals is related to the M1.
  • the third wireless signal is used to ⁇ determine whether the first bit block needs to be retransmitted, adjust a transmission timing of the UE, and allocate at least one of resources for uplink transmission to the UE ⁇ .
  • M3 is used to determine a time domain resource occupied by the third wireless signal, the M3 being an element in the target set.
  • the target set consists of a plurality of elements.
  • the M3 is a minimum value in the set of targets.
  • the length of time between the end time of the time domain resource occupied by the third wireless signal and the reference time is a second time interval, and the end time of the time domain resource occupied by the third wireless signal is at the reference time after that.
  • the reference time is after the first time interval, and the time length between the reference time and the end time of the first time interval is M4 times the reference time interval, and the M4 is the maximum value in the target set. .
  • the reference time interval, the second time interval and the first time interval are described in Embodiment 9.
  • the M3 is a maximum value in the target set.
  • the length of time between the end time of the time domain resource occupied by the third wireless signal and the reference time is a second time interval, and the end time of the time domain resource occupied by the third wireless signal is at the reference time after that.
  • the reference time is after the first time interval, and the length of time between the reference time and the end time of the first time interval is M3 times of the reference time interval.
  • the length of the time domain resource occupied by the third wireless signal increases as the above increases.
  • an index of the first sequence in the candidate sequence set is used to determine a subcarrier spacing corresponding to a subcarrier occupied by the second wireless signal.
  • the second type of resource subset occupied by the second wireless signal is used to determine a subcarrier spacing corresponding to a subcarrier occupied by the second wireless signal.
  • Embodiment 14 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 1400 is mainly composed of a second transceiver module 1401, a second receiver module 1402, and a second transmitter module 1403.
  • the second transceiver module 1401 includes the transmitter/receiver 416 (including the antenna 420), the transmit processor 415, and the controller/processor 440 of FIG. 4 of the present application.
  • the second receiver module 1402 includes the transmitter/receiver 416 (including the antenna 420) of the present application, the receiving processor 412 and the controller/processor 440; the second transmitter module 1403 includes the drawing 4 of the present application. Transmitter/receiver 416 (including antenna 420), transmit processor 415 and controller/processor 440.
  • the second transceiver module 1401 receives the first wireless signal; the second receiver module 1402 receives the second wireless signal; and the second transmitter module 1403 transmits the third wireless signal.
  • the first wireless signal includes M1 first wireless sub-signals, and the first sequence is used to generate the first wireless sub-signal.
  • the second wireless signal includes M2 second wireless sub-signals, and the first bit block is used to generate the second wireless sub-signal.
  • the M1 is a positive integer
  • the M2 is a positive integer in the target set
  • each element in the target set is a positive integer.
  • the target set is associated with at least one of ⁇ the M1, the first sequence ⁇ .
  • the third wireless signal is used to ⁇ determine whether the first bit block needs to be retransmitted, adjust a transmission timing of a receiver of the third wireless signal, and allocate an uplink for a receiver of the third wireless signal At least one of the transferred resources ⁇ .
  • M3 is used to determine at least one of ⁇ the start time of the time domain resource occupied by the third wireless signal, the time domain resource occupied by the third wireless signal ⁇ , and the M3 is the target set An element in the middle.
  • the first wireless signal is transmitted on the PRACH.
  • the transport channel corresponding to the second wireless signal is a UL-SCH (UpLink Shared Channel).
  • UL-SCH UpLink Shared Channel
  • the second transceiver module 1401 is further used for at least one of the following:
  • the first signaling is used to determine a first type of time-frequency resource set.
  • the first type of time-frequency resource set includes P1 first-class resource subsets.
  • the first wireless signal occupies one of the first subset of resources.
  • the P1 is a positive integer.
  • the first type of resource subset occupied by the first wireless signal is used to determine at least one of ⁇ the air interface resource occupied by the second wireless signal, the M1 ⁇ .
  • the air interface resource includes at least a former one of ⁇ time-frequency resources, code domain resources ⁇ .
  • the first signaling is high layer signaling.
  • the second signaling is used to determine a second type of time-frequency resource set.
  • the second type of time-frequency resource set includes P2 second-class resource subsets.
  • the time-frequency resource occupied by the second wireless signal belongs to one of the second type of resource subsets.
  • the P2 is a positive integer.
  • the second type of resource subset to which the second wireless signal belongs is used to determine the number of subcarriers occupied by the second wireless signal.
  • the second signaling is high layer signaling.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present application include but are not limited to mobile phones, tablet computers, notebooks, vehicle communication devices, wireless sensors, network cards, Internet of things terminals, RFID terminals, NB-IOT terminals, and MTC (Machine Type Communication).
  • the base station in the present application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于无线通信中的用户设备、基站中的方法和装置。UE首先发送第一无线信号,然后发送第二无线信号;其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。本发明能节省控制信息所带来的开销,提高上行传输的频谱效率。

Description

一种用于无线通信中的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及免授权(Grant-Free)的传输方案和装置。
背景技术
现有的LTE(Long Term Evolution,长期演进)***中,上行数据的动态调度基于上行授权(Grant)完成。上行授权对应的DCI(Downlink Control Information,下行控制信息)中存在资源块分配域(Resource Block Assignment Field)以动态指示上行数据所占据的{频域资源,时域资源}中的至少之一。
未来移动通信***中,为节约控制信令开销以及降低调度延迟,基于免授权(Grant-Free)的上行数据传输将会被采用,相应的资源分配的方式也需要被重新设计。免授权上行传输中,一种简单的实现方式就是每个UE在传输数据时均占用相同大小的时频资源。此种方式虽然降低了基站接收的复杂度,对于UE(User Equipment,用户设备)而言,一次上行传输只能传输固定的比特数,降低了上行传输的灵活性。
发明内容
针对上述问题,本申请提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本申请公开了一种用于无线通信中的UE中的方法,其特征在于,包括:
发送第一无线信号;
发送第二无线信号;
其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,上述方法中,所述目标集合是隐式的配置的,节省了上行控制信息。
作为一个实施例,所述M1和所述目标集合都和所述UE到所述第一无线信号的接收者之间的信道质量有关,因此所述M1和所述目标集合能被关联起来。
作为一个实施例,所述第一序列是伪随机序列。
作为一个实施例,所述第一序列是Zadoff-Chu序列。
作为一个实施例,所述第一序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一无线信号在PRACH(Physical Random Access Channel,物理随机介入信道)上传输。
作为一个实施例,所述目标集合由一个元素(即所述M2)组成。
作为一个实施例,所述目标集合由多个元素组成。
作为一个实施例,所述第二无线信号的接收者通过盲检测从所述目标集合中确定所述M2。
作为一个实施例,所述目标集合和所述M1相关,所述第一序列被用于确定所述M2在所述目标集合中的索引。
作为上述实施例的一个子实施例,所述第一序列在候选序列集合中的索引等于所述所述M2在所述目标集合中的索引;所述候选序列集合中包括多个候选序列。
作为一个实施例,所述候选序列的长度和所述第一无线信号所占用的RE(Resource Element,资源粒子)的数量有关。
作为一个实施例,所述候选序列集合中的所有所述候选序列的长度(即元素的数量)是相同的。
作为一个实施例,所述第一比特块是由所述UE的高层传递给所述UE的物理层的。
作为一个实施例,所述高层是MAC(Media Access Control,媒体接入控制)层。
作为一个实施例,所述高层是RLC(Radio Link Control,无线链路控制)层。
作为一个实施例,所述M1是2的正整数次幂或者1。
作为一个实施例,所述M2是2的正整数次幂或者1。
作为一个实施例,所述第一比特块是一个TB(Transmission Block,传输块)。
作为一个实施例,所述第一比特块在UL-SCH(UpLink Shared Channel,上行共享信道)上传输。
作为一个实施例,所述第二无线信号在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上传输。
作为一个实施例,所述第二无线信号是由所述第一比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)信号发生(Generation)之后的输出。
作为一个实施例,所述信道编码包括速率匹配。
作为一个实施例,所述第一无线信号的发送是免授权的(Grant-Free)。
作为一个实施例,所述第一无线信号的发送是基于竞争的(Contention-Based)。
作为一个实施例,所述第二无线信号的发送是免授权的。
作为一个实施例,所述第二无线信号的发送是基于竞争的。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三无线信号;
其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述UE的发送定时,为所述UE分配用于上行传输的资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
作为一个实施例,上述方面中,所述目标集合被用于确定所述第三无线信号所占用的时域资源。上述方面节省了上行控制信息的发送。
作为一个实施例,所述M3是所述目标集合中的最大值。
上述实施例避免了目标集合中的多个元素引起的第三无线信号的起始时刻的不确定性。
作为一个实施例,所述M3是所述目标集合中的最小值。
上述实施例避免了目标集合中的多个元素引起的第三无线信号的起始时刻的不确定性,同时能支持早译码(Early Decoding)。
作为上述实施例的一个子实施例,所述第三无线信号所占用时域资源的终止时刻和所述目标集合中的最大值有关。
作为一个实施例,所述M3在所述目标集合中的位置是确定的。
作为一个实施例,所述M3是所述M2。
作为上述实施例的一个子实施例,所述M3被用于确定所述所述第三无线信号所占用的时域资源的起始时刻。
作为一个实施例,所述第三无线信号所占用的第一个时间窗是参考时间窗之后的第K个所述时间窗,所述K是正整数。所述参考时间窗是所述第二无线信号中的第M3个第 二无线子信号所占用的最后一个所述时间窗。所述K是正整数。
作为上述实施例的一个子实施例,所述K是和所述M3相关的。
作为上述实施例的一个子实施例,所述K是和所述M1相关的。
作为上述实施例的一个子实施例,所述时间窗的持续时间小于1毫秒。
作为上述实施例的一个子实施例,所述时间窗是子帧。
作为上述实施例的一个子实施例,所述时间窗中包括正整数个OFDM符号。
作为一个实施例,所述第三无线信号在物理层控制信道(即只能承载物理层控制信息的物理层信道)上传输。
作为上述实施例的一个子实施例,所述第三无线信号包括DCI。
作为一个实施例,所述第三无线信号在物理层数据信道(即能承载物理层数据的物理层信道)上传输。
作为上述实施例的一个子实施例,所述第三无线信号包括RAR(Random Access Response,随机接入应答)。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第一信令;
其中,所述第一信令被用于确定第一类时频资源集合;所述第一类时频资源集合包括P1个第一类资源子集;所述第一无线信号占用一个所述第一类资源子集;所述P1是正整数;所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一;所述空口资源包括{时频资源,码域资源}中的至少前者。
作为一个实施例,上述方面节省了用于所述第二无线信号的资源分配的控制信息,提高了传输效率。
作为一个实施例,所述第一类资源子集包括正整数个PRB(Pysical Resource Block,物理资源块)。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)层信令。
作为一个实施例,所述第一信令是小区公共的。
作为一个实施例,所述第一类资源子集包括正整数个RE(Resource Element,资源粒子)。所述RE在频域包括一个子载波,在时域包括一个多载波符号。
作为一个实施例,所述多载波符号是OFDM符号。
作为一个实施例,所述多载波符号是FBMC(Filtering Bank Multile Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述P1个第一类时频资源中的任意两个所述第一类时频资源所包括的RE的数量不同。
作为一个实施例,所述M1和所述第一无线信号所占用的所述第一类资源子集中的RE的数量有关。
作为上述实施例的一个子实施例,所述第一序列的长度是由下行高层信令配置的。
作为一个实施例,对于给定时刻,所述第一类资源子集在频域上最多占用一个子载波。
作为一个实施例,所述P1个第一类时频资源中的所有所述第一类时频资源所占用的子载波的数量是相同的。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信令;
其中,所述第二信令被用于确定第二类时频资源集合;所述第二类时频资源集合包括P2个第二类资源子集;所述第二无线信号占用的时频资源属于一个所述第二类资源子集;所述P2是正整数;所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。
作为一个实施例,上述方面中,所述所述第二无线信号所占用的子载波的数量是被隐式指示的,节省了相应的控制信息,提高了传输效率。
作为一个实施例,所述P2个第二类资源子集中传输的无线信号所占用的子载波的数量和P2个正整数一一对应。
作为一个实施例,所述P2个正整数中的任意两个正整数不相等。
作为一个实施例,所述所述第二无线信号所占用的子载波在频域上是连续的。
作为一个实施例,所述第二信令是高层信令。
作为一个实施例,所述第二信令是RRC层信令。
作为一个实施例,所述第二信令是小区公共的。
作为一个实施例,所述第二信令是TRP(Transmission Reception Point,发送接收点)专属的。
作为一个实施例,所述第二信令是Beam(波束)专属的,或者所述第一信令是Beam-Group(波束组)专属的。
根据本申请的一个方面,上述方法的特征在于,所述第一序列被用于确定所述第二无线信号所占用的子载波所对应的子载波间距;或者所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
作为一个实施例,上述方面节省了用于配置子载波间距的控制信息,提高了传输效率。
作为一个实施例,所述所述第二无线信号所占用的子载波所对应的子载波间距是{2.5kHz(千赫兹),3.75kHz,15kHz,30kHz,60kHz,120kHz,240kHz,480kHz}中的一种。
作为一个实施例,所述所述第二无线信号所占用的子载波所对应的子载波间距和所述第一序列在候选序列集合中的索引相关联。所述候选序列集合中包括多个候选序列。
作为一个实施例,所述候选序列的长度和所述第一无线信号所占用的RE的数量无关。
作为一个实施例,所述候选序列集合中的所有所述候选序列的长度是相同的。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第四无线信号;
其中,针对所述第四无线信号的测量被用于确定所述M1。
作为一个实施例,所述M1和所述目标集合都与针对所述第四无线信号的测量有关。上述方面最小化由于所述M1和所述目标集合的关联而导致的调度限制。
作为一个实施例,所述第四无线信号包括{PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号)}中的至少之一。
作为一个实施例,所述第四无线信号包括CSI-RS(Channel Status Information Reference Signal,信道状态信息参考信号)。
本申请公开了一种用于无线通信中的基站中的方法,其特征在于,包括:
接收第一无线信号;
接收第二无线信号;
其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相 关。
作为一个实施例,所述基站根据所述M1确定所述目标集合。
作为一个实施例,所述基站根据所述第一序列确定所述目标集合。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三无线信号;
其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述第三无线信号的接收者的发送定时,为所述第三无线信号的接收者分配用于上行传输的资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第一信令;
其中,所述第一信令被用于确定第一类时频资源集合;所述第一类时频资源集合包括P1个第一类资源子集;所述第一无线信号占用一个所述第一类资源子集;所述P1是正整数;所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一;所述空口资源包括{时频资源,码域资源}中的至少前者。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信令;
其中,所述第二信令被用于确定第二类时频资源集合;所述第二类时频资源集合包括P2个第二类资源子集;所述第二无线信号占用的时频资源属于一个所述第二类资源子集;所述P2是正整数;所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。
根据本申请的一个方面,上述方法的特征在于,所述第一序列被用于确定所述第二无线信号所占用的子载波所对应的子载波间距;或者所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第四无线信号;
其中,针对所述第四无线信号的测量被用于确定所述M1。
本申请公开了一种用于无线通信中的用户设备,其特征在于,包括:
第一收发机模块,发送第一无线信号;
第一发射机模块,发送第二无线信号;
其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,上述用于无线通信中的用户设备的特征在于,还包括:
第一接收机模块,接收第三无线信号;
其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述UE的发送定时,为所述UE分配用于上行传输的资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
作为一个实施例,上述用于无线通信中的用户设备的特征在于,所述第一收发机模块还接收第一信令;其中,所述第一信令被用于确定第一类时频资源集合;所述第一类时频资源集合包括P1个第一类资源子集;所述第一无线信号占用一个所述第一类资源子 集。所述P1是正整数;所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一;所述空口资源包括{时频资源,码域资源}中的至少前者。
作为一个实施例,上述用于无线通信中的用户设备的特征在于,所述第一收发机模块还接收第二信令;其中,所述第二信令被用于确定第二类时频资源集合;所述第二类时频资源集合包括P2个第二类资源子集;所述第二无线信号占用的时频资源属于一个所述第二类资源子集;所述P2是正整数;所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。
作为一个实施例,上述用于无线通信中的用户设备的特征在于,所述第一收发机模块还接收第四无线信号;其中,针对所述第四无线信号的测量被用于确定所述M1。
作为一个实施例,上述用于无线通信中的用户设备的特征在于,所述第一序列被用于确定所述第二无线信号所占用的子载波所对应的子载波间距;或者所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
本申请公开了一种用于无线通信中的基站设备,其特征在于,包括:
第二收发机模块,接收第一无线信号;
第二接收机模块,接收第二无线信号;
其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,所述基站根据所述M1确定所述目标集合。
作为一个实施例,所述基站根据所述第一序列确定所述目标集合。
作为一个实施例,所述的用于无线通信中的基站设备的特征在于,还包括:
第二发射机模块,发送第三无线信号;
其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述第三无线信号的接收者的发送定时,为所述第三无线信号的接收者分配用于上行传输的资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
作为一个实施例,所述的用于无线通信中的基站设备的特征在于,所述第二收发机模块还发送第一信令;其中,所述第一信令被用于确定第一类时频资源集合;所述第一类时频资源集合包括P1个第一类资源子集;所述第一无线信号占用一个所述第一类资源子集;所述P1是正整数;所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一;所述空口资源包括{时频资源,码域资源}中的至少前者。
作为一个实施例,所述的用于无线通信中的基站设备的特征在于,所述第二收发机模块还发送第二信令;其中,所述第二信令被用于确定第二类时频资源集合;所述第二类时频资源集合包括P2个第二类资源子集;所述第二无线信号占用的时频资源属于一个所述第二类资源子集;所述P2是正整数;所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。
作为一个实施例,所述的用于无线通信中的基站设备的特征在于,所述第一序列被用于确定所述第二无线信号所占用的子载波所对应的子载波间距;或者所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
作为一个实施例,所述的用于无线通信中的基站设备的特征在于,所述第二收发机模块还发送第四无线信号;其中,针对所述第四无线信号的测量被用于确定所述M1。
作为一个实施例,相比现有公开技术,本申请具有如下技术优势:
-.减少免授权通信中的上行控制信息所占用的空口资源,提高传输效率
-.最小化由于减少了上行控制信息所导致的调度限制。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号和第二无线信号的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的基站设备和用户设备的示意图;
图5示出了根据本申请的一个实施例的上行传输的流程图;
图6示出了根据本申请的一个实施例的第一类时频资源集合的示意图;
图7示出了根据本申请的一个实施例的一个第一类资源子集的示意图;
图8示出了根据本申请的一个实施例的和第一无线信号关联的时域资源的示意图;
图9示出了根据本申请的一个实施例的第三无线信号所占用的时域资源的起始时刻的示意图;
图10示出了根据本申请的一个实施例的M1和对应的目标集合的示意图;
图11示出了根据本申请的一个实施例的第二类资源子集的示意图;
图12示出了根据本申请的一个实施例的第二类时频资源集合的示意图;
图13示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的基站中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一无线信号和第二无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的用户设备首先发送第一无线信号,接着发送第二无线信号;其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,所述第一序列是伪随机序列。
作为一个实施例,所述第一序列是Zadoff-Chu序列。
作为一个实施例,所述第一序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一无线信号在PRACH(Physical Random Access Channel,物理随机介入信道)上传输。
作为一个实施例,所述目标集合由一个元素(即所述M2)组成。
作为一个实施例,所述目标集合由多个元素组成。
作为一个实施例,所述第二无线信号的接收者通过盲检测从所述目标集合中确定所述M2。
作为一个实施例,所述目标集合和所述M1相关,所述第一序列被用于确定所述M2在所述目标集合中的索引。
作为上述实施例的一个子实施例,所述第一序列在候选序列集合中的索引等于所述 所述M2在所述目标集合中的索引;所述候选序列集合中包括多个候选序列。
作为一个实施例,所述候选序列的长度和所述第一无线信号所占用的RE(Resource Element,资源粒子)的数量有关。
作为一个实施例,所述候选序列集合中的所有所述候选序列的长度(即元素的数量)是相同的。
作为一个实施例,所述第一比特块是由所述UE的高层传递给所述UE的物理层的。
作为一个实施例,所述高层是MAC(Media Access Control,媒体接入控制)层。
作为一个实施例,所述高层是RLC(Radio Link Control,无线链路控制)层。
作为一个实施例,所述M1是2的正整数次幂或者1。
作为一个实施例,所述M2是2的正整数次幂或者1。
作为一个实施例,所述第一比特块是一个TB(Transmission Block,传输块)。
作为一个实施例,所述第一比特块在UL-SCH(UpLink Shared Channel,上行共享信道)上传输。
作为一个实施例,所述第二无线信号在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上传输。
作为一个实施例,所述第二无线信号是由所述第一比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)信号发生(Generation)之后的输出。
作为一个实施例,所述信道编码包括速率匹配。
作为一个实施例,所述第一无线信号的发送是免授权的(Grant-Free)。
作为一个实施例,所述第一无线信号的发送是基于竞争的(Contention-Based)。
作为一个实施例,所述第二无线信号的发送是免授权的。
作为一个实施例,所述第二无线信号的发送是基于竞争的。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进),NB-IoT(NarrowBandInternetofThings,窄带物联网)及未来5G***网络架构200的图。LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN(演进UMTS陆地无线电接入网络)202,EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN包括演进节点B(eNB)203和其它eNB204。eNB203提供朝向UE201的用户和控制平面协议终止。eNB203可经由X2接口(例如,回程)连接到其它eNB204。eNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。eNB203为UE201提供对EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订 户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。eNB203通过S1接口连接到EPC210。EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的用户设备。
作为一个实施例,所述eNB203对应本申请中的基站。
作为一个实施例,所述UE201支持免授予传输。
作为一个实施例,所述eNB203支持免授予传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与eNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的eNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供eNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和eNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用eNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的基站设备。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第三无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第四无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB/eNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令(包括PBCH,PDCCH,参考信号)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包DL-SCH包括本申请中的第一信令,第二信令和第三无线信号提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,本申请中的第四无线信号在发射处理器415生成。信号处理功能包括译码和交织以促进UE450处的前向纠错(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信令,第二信令和第三无线信号的物理层传输以及第四无线信号由发射处理器415映射到目标空口资源上并经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中对第四无线信号的测量和携带第一信令,第二信信令,和第三无线信号的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由eNB410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,使用数据源467来将本申请中的第二无线信号提供到控制器/处理器490。数据源467表示L2层之上的所有协议层。控制器/处理器490通过基于eNB410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到eNB410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,本申请中的第一无线信号由发射处理器455生成。信号发射处理功能包括编码和交织以促进UE350处的前向错误校正(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由UE450原始发射的数据和/或控制信号,本申请中的接收第一无线信号在接收处理器412完成。随后将数据和/或控制信号提供到控制器/处理器440。在接收处理器控制器/处理器440实施L2层。控制器/处理器可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:发送第一无线信号;发送第二无线信号;其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一无线信号;发送第二无线信号;其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,所述eNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:接收第一无线信号;接收第二无线信号;其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,所述eNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一无线信号;接收第二无线信号;其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,发射器456(包括天线460)和发射处理器455被用于本申请中的所述第一无线信号的发送。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中的所述第二无线信号的发送。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中所述第三无线信号的接收。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中的所述第四无线信号的接收。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信令。
作为一个实施例,接收器416(包括天线420)和接收处理器412被用于接收本申请中的所述第一无线信号。
作为一个实施例,接收器416(包括天线420),接收处理器412和和控制器/处理器440被用于接收本申请中的所述第二无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三无线信号。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的所述第四无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信令。
实施例5
实施例5示例了上行传输的流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站。方框F0,方框F1和方框F2中标识的步骤分别是可选的。
对于 基站N1,在步骤S10中发送第一信令,在步骤S11中发送第二信令,在步骤S12中发送第四无线信号,在步骤S13中接收第一无线信号,在步骤S14中接收第二无线信号,在步骤S15中发送第三无线信号。
对于 UE U2,在步骤S20中接收第一信令,在步骤S21中接收第二信令,在步骤S22中接收第四无线信号,在步骤S23中发送第一无线信号,在步骤S24中发送第二无线信号,在步骤S25中接收第三无线信号。
实施例5中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号。所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号。所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数。所述目标集合和{所述M1,所述第一序列}中的至少之一相关。所述第三无线信号被所述UE U2用于{确定所述第一比特块是否需要重新发送,调整发送定时,确定用于上行传输的资源}中的至少之一。M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。所述第一信令被所述UE U2用于确定第一类时频资源集合。所述第一类时频资源集合包括P1个第一类资源子集。所述第一无线信号占用一个所述第一类资源子集。所述P1是正整数。所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一。所述空口资源包括{时频资源,码域资源}中的至少前者。所述第二信令被所述UE U2用于确定第二类时频资源集合。所述第二类时频资源集合包括P2个第二类资源子集。所述第二无 线信号占用的时频资源属于一个所述第二类资源子集。所述P2是正整数。所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。针对所述第四无线信号的测量被用于确定所述M1。
作为一个实施例,所述第二无线信号包括DMRS(DeModulation Reference Signal,解调参考信号)。
作为一个实施例,所述M1个第一无线子信号所占用的时域资源是两两正交的。
作为一个实施例,所述M2个第二无线子信号所占用的时域资源是两两正交的。
作为一个实施例,所述第二无线信号在物理层控制信道上传输。
作为一个实施例,所述第一比特块包括上行控制信息。
作为一个实施例,所述第一序列被用于确定所述第二无线信号所占用的子载波所对应的子载波间距;或者所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
作为一个实施例,所述M2大于或者等于所述M1。
作为一个实施例,所述目标集合由一个元素组成,即所述M2。
作为一个实施例,所述第一信令是RRC层信令。
作为一个实施例,所述第二信令是RRC层信令。
作为一个实施例,所述第一序列是PRACH前导(Preamble)。
作为一个实施例,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块是一个TB(传输块)。
作为一个实施例,所述第三无线信号包括HARQ_ACK,所述HARQ_ACK指示基站N1是否正确译码所述第二无线信号。
作为一个实施例,所述第三无线信号包括DCI,所述DCI被用于所述UE U2的上行授权(UpLink Grant),所述DCI所调度的上行传输和所述第二无线信号属于同一个HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程(Process),所述DCI包括{NDI(New Data Indicator,新数据指示)域(field),RA(Resource Allocation,资源分配)域}中的至少之一,所述DCI中的NDI域指示所述UE U2是否重传所述第一比特块,所述DCI中的RA域指示为所述UE U2分配的用于上行传输的空口资源
作为一个实施例,所述第三无线信号包括针对所述第一无线信号的RAR(Random Access Response,随机接入应答),所述RAR指示针对所述UE U2的{定时调整(Timing Adjustment),用户标识,上行传输资源}。
作为一个实施例,所述用户标识是C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络标识)。
作为一个实施例,所述用户标识包括16个二进制比特。
作为一个实施例,所述第二无线信号的对应的多址方式是SCMA(Sparse Code Multiple Access,稀疏码多址),所述空口资源包括时频资源和码域资源。
作为一个实施例,所述P2个第二类资源子集中至少有两个所述第二类资源子集在频域上存在共享的子载波。
作为一个实施例,所述P2个第二类资源子集在频域上属于12个连续的子载波。
作为一个实施例,所述P2个第二类资源子集中的任意两个所述第二类资源子集在频域上是正交的(即不存在共享的子载波)。
作为一个实施例,所述第一无线信号所占用的所述第一类资源子集的时域位置和Q个候选时刻相关,所述第二无线信号所占用的所述第二类资源子集在时域上的起始时刻是所述Q个候选时刻中的一个所述候选时刻。所述Q是正整数。作为一个子实施例,所述Q个候选时刻在所述所述第一无线信号所占用的所述第一类资源子集的截止时刻之后。作为一个子实施例,所述Q大于1,所述Q个候选时刻是等间隔分布的。
实施例6
实施例6示例了第一类时频资源集合的示意图,如附图6所示。
实施例6中,第一类时频资源集合包括P1个第一类资源子集,所述P1个第一类资源子集中的任意两个所述第一类资源子集在时域上是正交的(即不重叠)。
如附图6所示,所述P1个第一类资源子集在时域上分别占用时间资源{#1,#2,…,#P1}。
作为一个实施例,所述第一类资源子集在时域上占用的多载波符号是连续的。
作为一个实施例,本申请中的所述第一无线信号所占用的第一类资源子集所占用的时间长度和本申请中的所述M1是线性相关的。
作为一个实施例,所述P1个第一类资源子集所占用的时间长度是依次增加的。
作为上述实施例的一个子实施例,所述P1个第一类资源子集中任意一个所述第一类资源子集所占用的时间长度是时间资源#1的正整数倍。
作为上述实施例的一个子实施例,如果所述第一无线信号在时间资源#1中传输,本申请中的所述M1为1。
实施例7
实施例7示例了根据本申请的一个实施例的一个第一类资源子集的示意图,如附图7所示。附图7中,斜线填充的方格代表属于一个第一类资源子集的时频资源。
如附图7所示,所述第一类资源子集在不同时刻所占用的子载波是可变的。
作为一个实施例,对于给定时刻,所述第一类资源子集在频域上仅占用一个子载波。
作为一个实施例,所述第一类资源子集在不同时刻占用的所有子载波属于目标子载波集合,所述目标子载波集合由12个连续的子载波组成。
作为一个实施例,所述子载波的子载波间隔为3.75kHz。
作为一个实施例,所述子载波的子载波间隔为15kHz。
作为一个实施例,所述子载波的子载波间隔为15kHz的正整数倍。
作为一个实施例,所述第一类资源子集所占用的子载波的变化被用于确定{本申请中的所述M1,本申请中的所述第一无线信号的发送者的用户标识,本申请中的所述第二无线信号所占用的子载波的子载波间隔}中的至少之一。
实施例8
实施例8示例了根据本申请的一个实施例的和第一无线信号关联的时域资源的示意图,如附图8所示。
附图8中,第一无线信号在时域上所占用的资源隐式的指示第一关联时域资源。第二无线信号在时域上所占用的资源属于所述第一关联时域资源。
作为一个实施例,本申请中的所述P2个第二类资源子集在时域上都属于所述第一关联时域资源。
作为上述实施例的一个子实施例,本申请中的所述第一无线信号和本申请中的所述第二信令被用于确定本申请中的所述P2个第二类资源子集。
作为一个实施例,所述第一无线信号在时域上所占用的资源和所述第一关联时域资源是连续的。
作为一个实施例,所述第一无线信号在时域上所占用的资源和所述第一关联时域资源是正交的(即不重叠)。
作为一个实施例,所述第一关联时域资源的时间长度和所述第一无线信号在时域上所占用的资源的时间长度是相关的。
作为上述实施例的一个子实施例,所述第一关联时域资源的时间长度随着所述第一无线信号在时域上所占用的资源的时间长度的增加而增加。
作为一个实施例,所述第一关联时域资源的时间长度和所述第一无线信号在时域上所占用的资源的时间长度是线性相关的。
作为一个实施例,本申请中的所述目标集合由多个正整数组成,当本申请中的所述 M2等于所述目标集合中的最大正整数时,本申请中的所述第二无线信号占用所述第一关联时域资源中的所有多载波符号。
实施例9
实施例9示例了根据本申请的一个实施例的第三无线信号所占用的时域资源的起始时刻的示意图,如附图9所示。
附图9中,第三无线信号所占用的时域资源的起始时刻和第一无线信号所占用的时域资源的截止时刻之间包括第一时间间隔和第二时间间隔。
作为一个实施例,第二无线信号所占用的时域资源属于所述第一时间间隔。
作为一个实施例,所述第一时间间隔是上述实施例4中的所述第一关联时域资源。
作为一个实施例,所述第二时间间隔的长度大于或者等于4毫秒。
作为一个实施例,所述第二时间间隔的长度和所述第一时间间隔的长度有关。
作为一个实施例,所述第一无线信号的发送者在所述第二时间间隔中保持零发送功率。
作为一个实施例,所述第一时间间隔是参考时间间隔的M3倍,所述参考时间间隔是本申请中的所述第二无线子信号所占用的时域资源的长度。所述M3是目标集合中的一个元素。
作为上述实施例的一个子实施例,所述M3是所述目标集合中的最小值。所述第三无线信号所占用时域资源的终止时刻到参考时刻之间的时间长度是所述第二时间间隔,并且所述所述第三无线信号所占用时域资源的终止时刻在所述参考时刻之后。所述参考时刻在所述第一时间间隔之后,所述参考时刻到所述第一时间间隔的终止时刻之间的时间长度是上述参考时间间隔的M4倍,所述M4是所述目标集合中的最大值。
作为上述实施例的一个子实施例,所述M3是所述目标集合中的最大值。
作为上述实施例的一个子实施例,所述M3是M2。
实施例10
实施例10示例了根据本申请的一个实施例的M1和对应的目标集合的示意图,如附图10所示。
附图10中,所述M1可能的值为1,4,16;相应的目标集合分别为{1,2},{2,8},{8,32}。
实施例11
实施例11示例了根据本申请的一个实施例的第二类资源子集的示意图,如附图11所示。附图11中,斜线填充的方格和粗线框标识的方格分别代表第二类资源子集#1和第二类资源子集#2。
实施例11中,所述第二类资源子集#1和所述第二类资源子集#2是本申请中的所述P2个第二类资源子集中的两个所述第二类资源子集。所述第二类资源子集#1和所述第二类资源子集#2之间存在着共享的子载波。
作为一个实施例,所述第二类资源子集#1和所述第二类资源子集#2属于同一个RB(Resource Block)。所述RB由12个连续的子载波组成。
实施例12
实施例12示例了根据本申请的一个实施例的第二类时频资源集合的示意图,如附图12所示。附图12中,一个数字填充的方格代表一个时间单元,两个数字填充的方格代表两个时间单元,八个数字填充的方格代表八个时间单元,依次类推。附图8中的一个方格代表一个第二类资源子集在时域上占用的资源。
实施例12中,第二类时频资源集合包括53个第二类资源子集:
-.32个所述第二类资源子集由1个时间单元组成,分别对应方格0~31;
-.16个所述第二类资源子集由2个时间单元组成,分别对应方格{0,1},{2,3},…,{30,31};
-.4个所述第二类资源子集由8个时间单元组成,分别对应方格{0,1,2,…,7},{8,9,…,15},…,{24,25,…,31};
-.1个所述第二类资源子集由32个时间单元组成,对应方格{0,1,2,…,31}。
实施例12中,基站检测所述第一无线信号确定M1,然后根据实施例10确定相应的目标集合。
作为一个实施例,基站通过盲检测的方式从所述目标集合中确定M2。
作为一个实施例,基站通过盲检测的方式根据所述目标集合确定第二无线信号所占用的所述第二类资源子集。
作为一个实施例,第一无线信号所占用的子载波的调频(hopping)图案或者第一序列在候选序列集合中的索引被基站用于确定第二无线信号所占用的所述第二类资源子集。
实施例13
实施例13示例了一个UE中的处理装置的结构框图,如附图13所示。附图13中,UE处理装置1300主要由第一收发机模块1301,第一发射机模块1302和第一接收机模块1303组成。第一收发机模块1301包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一发射机模块1302包括本申请附图4中的发射器/接收器456(包括天线460)和发射处理器455和数据源467;第一接收机模块1303包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490。
实施例13中,第一收发机模块1301发送第一无线信号;第一发射机模块1302发送第二无线信号;第一接收机模块1303接收第三无线信号。
实施例13中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号。所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号。所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数。所述目标集合和所述M1相关。所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述UE的发送定时,为所述UE分配用于上行传输的资源}中的至少之一。M3被用于确定所述第三无线信号所占用的时域资源,所述M3是所述目标集合中的一个元素。
作为一个实施例,所述目标集合由多个元素组成。
作为一个实施例,所述M3是所述目标集合中的最小值。所述第三无线信号所占用时域资源的终止时刻到参考时刻之间的时间长度是第二时间间隔,并且所述所述第三无线信号所占用时域资源的终止时刻在所述参考时刻之后。所述参考时刻在第一时间间隔之后,所述参考时刻到所述第一时间间隔的终止时刻之间的时间长度是参考时间间隔的M4倍,所述M4是所述目标集合中的最大值。所述参考时间间隔,所述第二时间间隔和所述第一时间间隔在实施例9中被描述。
作为一个实施例,所述M3是所述目标集合中的最大值。所述第三无线信号所占用时域资源的终止时刻到参考时刻之间的时间长度是第二时间间隔,并且所述所述第三无线信号所占用时域资源的终止时刻在所述参考时刻之后。所述参考时刻在第一时间间隔之后,所述参考时刻到所述第一时间间隔的终止时刻之间的时间长度是上述参考时间间隔的M3倍。
作为一个实施例,所述第三无线信号所占用时域资源的长度随着所述的增加而增加。
作为一个实施例,所述第一序列在候选序列集合中的索引被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
作为一个实施例,所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
实施例14
实施例14示例了一个基站设备中的处理装置的结构框图,如附图14所示。附图14中,基站设备处理装置1400主要由第二收发机模块1401,第二接收机模块1402和第二发射机模 块1403组成。第二收发机模块1401包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。第二接收机模块1402包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412和控制器/处理器440;第二发射机模块1403包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。
实施例14中,第二收发机模块1401接收第一无线信号;第二接收机模块1402接收第二无线信号;第二发射机模块1403发送第三无线信号。
实施例14中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号。所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号。所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数。所述目标集合和{所述M1,所述第一序列}中的至少之一相关。所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述第三无线信号的接收者的发送定时,为所述第三无线信号的接收者分配用于上行传输的资源}中的至少之一。M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
作为一个实施例,所述第一无线信号在PRACH上传输。
作为一个实施例,所述第二无线信号对应的传输信道(Transport Channel)是UL-SCH(UpLink Shared Channel,上行共享信道)。
作为一个实施例,所述第二收发机模块1401还用于以下至少之一:
-发送第一信令。其中,所述第一信令被用于确定第一类时频资源集合。所述第一类时频资源集合包括P1个第一类资源子集。所述第一无线信号占用一个所述第一类资源子集。所述P1是正整数。所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一。所述空口资源包括{时频资源,码域资源}中的至少前者。所述第一信令是高层信令。
-发送第二信令。其中,所述第二信令被用于确定第二类时频资源集合。所述第二类时频资源集合包括P2个第二类资源子集。所述第二无线信号占用的时频资源属于一个所述第二类资源子集。所述P2是正整数。所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。所述第二信令是高层信令。
-发送第四无线信号。其中,针对所述第四无线信号的测量被用于确定所述M1。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种用于无线通信中的UE中的方法,其特征在于,包括:
    发送第一无线信号;
    发送第二无线信号;
    其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收第三无线信号;
    其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述UE的发送定时,为所述UE分配用于上行传输的资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,还包括:
    接收第一信令;
    其中,所述第一信令被用于确定第一类时频资源集合;所述第一类时频资源集合包括P1个第一类资源子集;所述第一无线信号占用一个所述第一类资源子集;所述P1是正整数;所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一;所述空口资源包括{时频资源,码域资源}中的至少前者。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,还包括:
    接收第二信令;
    其中,所述第二信令被用于确定第二类时频资源集合;所述第二类时频资源集合包括P2个第二类资源子集;所述第二无线信号占用的时频资源属于一个所述第二类资源子集;所述P2是正整数;所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一序列被用于确定所述第二无线信号所占用的子载波所对应的子载波间距;或者所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,还包括:
    接收第四无线信号;
    其中,针对所述第四无线信号的测量被用于确定所述M1。
  7. 一种用于无线通信中的基站中的方法,其特征在于,包括:
    接收第一无线信号;
    接收第二无线信号;
    其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    发送第三无线信号;
    其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述第三无线信号的接收者的发送定时,为所述第三无线信号的接收者分配用于上行传输的 资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
  9. 根据权利要求7或8中任一权利要求所述的方法,其特征在于,还包括:
    发送第一信令;
    其中,所述第一信令被用于确定第一类时频资源集合;所述第一类时频资源集合包括P1个第一类资源子集;所述第一无线信号占用一个所述第一类资源子集;所述P1是正整数;所述第一无线信号占用的所述第一类资源子集被用于确定{所述第二无线信号所占用的空口资源,所述M1}中的至少之一;所述空口资源包括{时频资源,码域资源}中的至少前者。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,还包括:
    发送第二信令;
    其中,所述第二信令被用于确定第二类时频资源集合;所述第二类时频资源集合包括P2个第二类资源子集;所述第二无线信号占用的时频资源属于一个所述第二类资源子集;所述P2是正整数;所述第二无线信号所属的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波的数量。
  11. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,所述第一序列被用于确定所述第二无线信号所占用的子载波所对应的子载波间距;或者所述第二无线信号占用的所述第二类资源子集被用于确定所述第二无线信号所占用的子载波所对应的子载波间距。
  12. 根据权利要求7至11中任一权利要求所述的方法,其特征在于,还包括:
    发送第四无线信号;
    其中,针对所述第四无线信号的测量被用于确定所述M1。
  13. 一种用于无线通信中的用户设备,其特征在于,包括:
    第一收发机模块,发送第一无线信号;
    第一发射机模块,发送第二无线信号;
    其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
  14. 根据权利要求13所述的用于无线通信中的用户设备,其特征在于,还包括:
    第一接收机模块,接收第三无线信号;
    其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述UE的发送定时,为所述UE分配用于上行传输的资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
  15. 一种用于无线通信中的基站设备,其特征在于,包括:
    第二收发机模块,接收第一无线信号;
    第二接收机模块,接收第二无线信号;
    其中,所述第一无线信号包括M1个第一无线子信号,第一序列被用于生成所述第一无线子信号;所述第二无线信号包括M2个第二无线子信号,第一比特块被用于生成所述第二无线子信号;所述M1是正整数,所述M2是目标集合中的一个正整数,所述目标集合中的每一个元素是正整数;所述目标集合和{所述M1,所述第一序列}中的至少之一相关。
  16. 根据权利要求15所述的用于无线通信中的基站设备,其特征在于,还包括:
    第二发射机模块,发送第三无线信号;
    其中,所述第三无线信号被用于{确定所述第一比特块是否需要重新发送,调整所述第三无线信号的接收者的发送定时,为所述第三无线信号的接收者分配用于上行传输的资源}中的至少之一;M3被用于确定{所述第三无线信号所占用的时域资源的起始时刻,所述第三无线信号所占用的时域资源}中的至少之一,所述M3是所述目标集合中的一个元素。
PCT/CN2018/074399 2017-01-31 2018-01-29 一种用于无线通信中的用户设备、基站中的方法和装置 WO2018141231A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/524,181 US11032050B2 (en) 2017-01-31 2019-07-29 Method and device for grant-free transmission in UE and base station for wireless communication
US17/244,966 US11632217B2 (en) 2017-01-31 2021-04-30 Method and device for grant-free transmission in UE and base station for wireless communication
US18/115,776 US11895056B2 (en) 2017-01-31 2023-03-01 Method and device in UE and base station for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710062143.9 2017-01-31
CN201710062143.9A CN108377555B (zh) 2017-01-31 2017-01-31 一种用于无线通信中的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/524,181 Continuation US11032050B2 (en) 2017-01-31 2019-07-29 Method and device for grant-free transmission in UE and base station for wireless communication

Publications (1)

Publication Number Publication Date
WO2018141231A1 true WO2018141231A1 (zh) 2018-08-09

Family

ID=63015726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074399 WO2018141231A1 (zh) 2017-01-31 2018-01-29 一种用于无线通信中的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (3) US11032050B2 (zh)
CN (1) CN108377555B (zh)
WO (1) WO2018141231A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757394A (zh) * 2019-03-29 2020-10-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377555B (zh) * 2017-01-31 2020-09-01 上海朗帛通信技术有限公司 一种用于无线通信中的用户设备、基站中的方法和装置
CN109842478A (zh) * 2017-11-26 2019-06-04 华为技术有限公司 一种序列确定方法和装置
CN110831136B (zh) * 2018-08-08 2022-11-25 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111405503B (zh) * 2019-01-02 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114126031A (zh) 2019-04-26 2022-03-01 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
US11726162B2 (en) 2021-04-16 2023-08-15 Rockwell Collins, Inc. System and method for neighbor direction and relative velocity determination via doppler nulling techniques
US11737121B2 (en) 2021-08-20 2023-08-22 Rockwell Collins, Inc. System and method to compile and distribute spatial awareness information for network
US11665658B1 (en) * 2021-04-16 2023-05-30 Rockwell Collins, Inc. System and method for application of doppler corrections for time synchronized transmitter and receiver
US11977173B2 (en) 2019-11-27 2024-05-07 Rockwell Collins, Inc. Spoofing and denial of service detection and protection with doppler nulling (spatial awareness)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580797A (zh) * 2012-08-03 2014-02-12 电信科学技术研究院 上行控制信息uci的传输方法和设备
CN104902560A (zh) * 2014-03-06 2015-09-09 电信科学技术研究院 一种下行定时同步方法及装置
CN105376009A (zh) * 2014-08-27 2016-03-02 华为技术有限公司 一种上行数据传输方法及装置
WO2016047904A1 (en) * 2014-09-25 2016-03-31 Lg Electronics Inc. Method for handling of data transmission and reception for senb related bearer release at a user equipment in a dual connectivity system and device therefor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852959B2 (en) * 2007-05-30 2010-12-14 Lg Electronics Inc. Method of transmitting control signal in wireless communication system
JP5156485B2 (ja) * 2008-05-28 2013-03-06 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム
WO2010011083A2 (ko) * 2008-07-22 2010-01-28 엘지전자 주식회사 상향링크 전송 시, 다중 코드워드 기반 단일 사용자 mimo가 사용되는 시스템에 있어서, phich 할당 및 참조 신호 생성 방법
JP5180163B2 (ja) * 2009-08-05 2013-04-10 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置及び無線通信方法
JP5344045B2 (ja) * 2009-09-30 2013-11-20 富士通株式会社 無線通信装置および無線通信方法
US8656243B2 (en) * 2010-01-13 2014-02-18 Intel Mobile Communications GmbH Radio receiver and method for channel estimation
PL2540019T3 (pl) * 2010-02-22 2019-05-31 Samsung Electronics Co Ltd Zastosowanie kodów przeskakiwania sekwencji i pokrywania ortogonalnego do sygnałów odniesienia łącza wysyłania
US8369280B2 (en) * 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
CN103580703B (zh) * 2012-07-30 2017-04-12 华为技术有限公司 发射电路、收发机、通信***和发射数据的方法
US20150222402A1 (en) * 2012-09-27 2015-08-06 Sharp Kabushiki Kaisha Terminal, communication method, and integrated circuit
JP2016039381A (ja) * 2014-08-05 2016-03-22 富士通株式会社 受信装置、受信方法、及び、無線通信システム
WO2016030827A1 (en) * 2014-08-25 2016-03-03 Telefonaktiebolaget L M Ericsson (Publ) Improved capacity for narrow-band hybrid modulation
WO2017000145A1 (zh) * 2015-06-30 2017-01-05 华为技术有限公司 数据传输方法和装置
CN108377555B (zh) * 2017-01-31 2020-09-01 上海朗帛通信技术有限公司 一种用于无线通信中的用户设备、基站中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580797A (zh) * 2012-08-03 2014-02-12 电信科学技术研究院 上行控制信息uci的传输方法和设备
CN104902560A (zh) * 2014-03-06 2015-09-09 电信科学技术研究院 一种下行定时同步方法及装置
CN105376009A (zh) * 2014-08-27 2016-03-02 华为技术有限公司 一种上行数据传输方法及装置
WO2016047904A1 (en) * 2014-09-25 2016-03-31 Lg Electronics Inc. Method for handling of data transmission and reception for senb related bearer release at a user equipment in a dual connectivity system and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757394A (zh) * 2019-03-29 2020-10-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
US11895056B2 (en) 2024-02-06
US20210250151A1 (en) 2021-08-12
US20190349172A1 (en) 2019-11-14
US11632217B2 (en) 2023-04-18
US20230208599A1 (en) 2023-06-29
US11032050B2 (en) 2021-06-08
CN108377555A (zh) 2018-08-07
CN108377555B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2018141231A1 (zh) 一种用于无线通信中的用户设备、基站中的方法和装置
US11877317B2 (en) Method and device used for wireless communication
WO2019149050A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US11382070B2 (en) Method and device in UE and base station used for wireless communication
WO2019157974A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018059185A1 (zh) 一种用于随机接入的用户设备、基站中的方法和装置
WO2019119411A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018024152A1 (zh) 一种无线通信中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
CN110505706B (zh) 一种被用于无线通信的通信节点中的方法和装置
CN111065164B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119479A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN111148238B (zh) 一种被用于无线通信的节点中的方法和装置
CN115767583A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN116261118A (zh) 一种被用于无线通信的节点中的方法和装置
WO2019144822A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019006578A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
WO2018095199A1 (zh) 一种无线通信中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2023138485A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 05/12/2019 )

122 Ep: pct application non-entry in european phase

Ref document number: 18748433

Country of ref document: EP

Kind code of ref document: A1