WO2019149050A1 - 一种用于无线通信的通信节点中的方法和装置 - Google Patents

一种用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2019149050A1
WO2019149050A1 PCT/CN2019/071531 CN2019071531W WO2019149050A1 WO 2019149050 A1 WO2019149050 A1 WO 2019149050A1 CN 2019071531 W CN2019071531 W CN 2019071531W WO 2019149050 A1 WO2019149050 A1 WO 2019149050A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
wireless signal
identifier
information
signaling
Prior art date
Application number
PCT/CN2019/071531
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019149050A1 publication Critical patent/WO2019149050A1/zh
Priority to US16/937,609 priority Critical patent/US11375512B2/en
Priority to US17/749,119 priority patent/US11711835B2/en
Priority to US18/204,393 priority patent/US20230309130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a transmission scheme and apparatus in non-terrestrial wireless communication.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the new air interface technology was decided at the #72 (3rd Generation Partnership Project) RAN (Radio Access Network) #72 plenary meeting.
  • New Radio or 5G
  • WI Work Item
  • NTN Non-Terrestrial Networks
  • RTT Round Trip Time
  • the present application discloses a method for use in a first type of communication node in wireless communication, including:
  • the first information is used to determine a length of time of the first time window, and a time interval from a sending end time of the first wireless signal to a starting time of the first time window is a first time interval.
  • the second information is used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carries a first An identifier, the second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used Generating a scrambling code of the output bit of the first bit block after channel coding, or the first identifier and the second identifier are the same; the first information, the second information, the first wireless Both the signal and the first signaling are transmitted over the air interface.
  • the location of the first time window may be adjusted according to a delay feature in a large delay network, thereby ensuring user equipment (UE).
  • UE user equipment
  • the method in the present application can simultaneously avoid access failure caused by contention-based random access and non-contention random access due to large delay.
  • the above method is characterized by further comprising:
  • the first signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the second wireless signal, and output bits of the second bit block that are channel-coded are used to generate the second wireless signal.
  • the second bit block carries the first identifier, the second identifier is used to generate a scrambling code of the output bit of the second bit block that is channel coded, and the second bit block includes a positive integer number Bit; the second wireless signal is transmitted over the air interface.
  • the above method is characterized by further comprising:
  • the time interval between the sending end time of the third wireless signal and the starting time of the second time window is a second time interval, a time length of the second time interval, and a time of the first time interval.
  • a third identifier is used for detecting the second signaling, the air interface resource occupied by the third wireless signal is used to determine the third identifier; the third wireless signal and the second Signaling is transmitted over the air interface.
  • the above method is characterized by further comprising:
  • the second signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the fourth wireless signal, and an output bit of the third bit block that is channel-coded is used to generate the fourth wireless signal.
  • the third bit block carries the second identifier, the third bit block further carries a first transmission timing adjustment amount, the third bit block includes a positive integer number of bits; and a sending timing of the first wireless signal is The first transmission timing adjustment amount and the time length of the first time interval are all related; the fourth wireless signal is transmitted through the air interface.
  • the above method is characterized by further comprising:
  • the present application discloses a method for a second type of communication node in wireless communication, which includes:
  • the first information is used to determine a length of time of the first time window, and a time interval from a sending end time of the first wireless signal to a starting time of the first time window is a first time interval.
  • the second information is used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carries a first An identifier, the second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used Generating a scrambling code of the output bit of the first bit block after channel coding, or the first identifier and the second identifier are the same; the first information, the second information, the first wireless Both the signal and the first signaling are transmitted over the air interface.
  • the above method is characterized by further comprising:
  • the time interval between the sending end time of the third wireless signal and the starting time of the second time window is a second time interval, a time length of the second time interval, and a time of the first time interval.
  • a third identifier is used for detecting the second signaling, the air interface resource occupied by the third wireless signal is used to determine the third identifier; the third wireless signal and the second Signaling is transmitted over the air interface.
  • the above method is characterized by further comprising:
  • the second signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the fourth wireless signal, and an output bit of the third bit block that is channel-coded is used to generate the fourth wireless signal.
  • the third bit block carries the second identifier, the third bit block further carries a first transmission timing adjustment amount, the third bit block includes a positive integer number of bits; and a sending timing of the first wireless signal is The first transmission timing adjustment amount and the time length of the first time interval are all related; the fourth wireless signal is transmitted through the air interface.
  • the method is characterized in that the third bit block further carries third information, where the third information is used to indicate time-frequency resources and modulation and coding modes occupied by the first wireless signal.
  • the third identity is used to generate a scrambling code for the channel-coded output bits of the third block of bits.
  • the above method is characterized by further comprising:
  • the third signaling is used to indicate a time-frequency resource occupied by the first wireless signal and a used redundancy version and a modulation coding mode used.
  • the present application discloses a first type of communication node device used in wireless communication, which includes:
  • a first receiver receiving the first information and the second information
  • a first transceiver transmitting a first wireless signal
  • a second receiver detecting the first signaling in the first time window
  • the first information is used to determine a length of time of the first time window, and a time interval from a sending end time of the first wireless signal to a starting time of the first time window is a first time interval.
  • the second information is used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carries a first An identifier, the second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used Generating a scrambling code of the output bit of the first bit block after channel coding, or the first identifier and the second identifier are the same; the first information, the second information, the first wireless Both the signal and the first signaling are transmitted over the air interface.
  • the first type of communication node device is characterized in that the first transceiver further receives a second wireless signal; wherein the first signaling is used to indicate the second wireless signal The occupied time-frequency resource and the modulation and coding mode, the output bit of the second bit block subjected to channel coding is used to generate the second wireless signal, the second bit block carries the first identifier, and the second identifier is A scrambling code for generating the output bits of the second bit block that is channel coded, the second bit block comprising a positive integer number of bits; the second wireless signal being transmitted over the air interface.
  • the first type of communication node device is characterized in that the first transceiver further transmits a third wireless signal; the second receiver further detects the second signaling in a second time window;
  • the time interval between the sending end time of the third wireless signal and the starting time of the second time window is a second time interval, a time length of the second time interval, and a time of the first time interval.
  • a third identifier is used for detecting the second signaling, the air interface resource occupied by the third wireless signal is used to determine the third identifier; the third wireless signal and the second Signaling is transmitted over the air interface.
  • the first type of communication node device is characterized in that the first transceiver further receives a fourth wireless signal; wherein the second signaling is used to indicate the fourth wireless signal The occupied time-frequency resource and the modulation and coding mode, the output bit of the third bit block subjected to channel coding is used to generate the fourth wireless signal, and the third bit block carries the second identifier, the third bit block And carrying a first transmission timing adjustment amount, where the third bit block includes a positive integer number of bits; a transmission timing of the first wireless signal and the first transmission timing adjustment amount and a length of time of the first time interval are both Related to; the fourth wireless signal is transmitted through the air interface.
  • the first type of communication node device is characterized in that the second receiver further receives third signaling; wherein the third signaling is used to indicate the first wireless signal The time-frequency resources occupied and the redundancy version used and the modulation and coding method used.
  • the present application discloses a second type of communication node device used in wireless communication, which includes:
  • a first transmitter transmitting the first information and the second information
  • a second transmitter transmitting the first signaling in the first time window
  • the first information is used to determine a length of time of the first time window, and a time interval from a sending end time of the first wireless signal to a starting time of the first time window is a first time interval.
  • the second information is used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carries a first An identifier, the second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used Generating a scrambling code of the output bit of the first bit block after channel coding, or the first identifier and the second identifier are the same; the first information, the second information, the first wireless Both the signal and the first signaling are transmitted over the air interface.
  • the second type of communication node device is characterized in that the second transceiver further transmits a second wireless signal; wherein the first signaling is used to indicate the second wireless signal The occupied time-frequency resource and the modulation and coding mode, the output bit of the second bit block subjected to channel coding is used to generate the second wireless signal, the second bit block carries the first identifier, and the second identifier is A scrambling code for generating the output bits of the second bit block that is channel coded, the second bit block comprising a positive integer number of bits; the second wireless signal being transmitted over the air interface.
  • the second type of communication node device is characterized in that the second transceiver further receives a third wireless signal; the second transmitter further transmits a second signaling in a second time window;
  • the time interval between the sending end time of the third wireless signal and the starting time of the second time window is a second time interval, a time length of the second time interval, and a time of the first time interval.
  • a third identifier is used for detecting the second signaling, the air interface resource occupied by the third wireless signal is used to determine the third identifier; the third wireless signal and the second Signaling is transmitted over the air interface.
  • the second type of communication node device is characterized in that the second transceiver further transmits a fourth wireless signal; wherein the second signaling is used to indicate the fourth wireless signal The occupied time-frequency resource and the modulation and coding mode, the output bit of the third bit block subjected to channel coding is used to generate the fourth wireless signal, and the third bit block carries the second identifier, the third bit block And carrying a first transmission timing adjustment amount, where the third bit block includes a positive integer number of bits; a transmission timing of the first wireless signal and the first transmission timing adjustment amount and a length of time of the first time interval are both Related to; the fourth wireless signal is transmitted through the air interface.
  • the second type of communication node device is characterized in that the third bit block further carries third information, and the third information is used to indicate a time frequency occupied by the first wireless signal.
  • the third identity being used to generate a scrambling code of the channel-coded output bits of the third bit block.
  • the second type of communication node device is characterized in that the second transmitter further transmits third signaling; wherein the third signaling is used to indicate the first wireless signal The time-frequency resources occupied and the redundancy version used and the modulation and coding method used.
  • the present application has the following main technical advantages compared with the existing random access procedure in Terrestrial Networks:
  • the present application provides a method for the user equipment to flexibly adjust the detection time window of the Msg-4 according to the delay condition, thereby preventing the user equipment (UE) from being Msg-4 in random access due to large delay (including conflict resolution)
  • the detection causes an erroneous judgment and avoids the failure of random access.
  • the method in the present application can simultaneously avoid access failures caused by large delays for contention based random access and non-contention random access.
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first type of communication node and a second type of communication node in accordance with one embodiment of the present application
  • FIG. 5 illustrates a wireless signal transmission flow diagram in accordance with one embodiment of the present application
  • FIG. 6 shows another wireless signal transmission flowchart according to an embodiment of the present application
  • FIG. 7 is a schematic diagram showing a relationship between a first time interval and a first time window according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram showing a relationship between a first signaling and a second wireless signal according to an embodiment of the present application.
  • Figure 10 is a diagram showing the relationship of a second time interval and a second time window in accordance with one embodiment of the present application.
  • FIG. 11 is a diagram showing a relationship between a first wireless signal and a first transmission timing adjustment amount according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing a relationship between a second signaling, a third information, and a first wireless signal according to an embodiment of the present application.
  • FIG. 13 is a block diagram showing the structure of a processing device in a first type of communication node device according to an embodiment of the present application.
  • Figure 14 is a block diagram showing the structure of a processing device in a second type of communication node device in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of first information, second information, first wireless signal and first signaling according to an embodiment of the present application, as shown in FIG.
  • each box represents a step.
  • the first type of communication node in the present application first receives the first information and the second information; then transmits the first wireless signal; and then detects the first signaling in the first time window; wherein a message is used to determine a length of time of the first time window, a time interval from a sending end time of the first wireless signal to a starting time of the first time window is a first time interval, the second Information is used to determine a length of time of the first time interval; output bits of the first bit block that are channel coded are used to generate the first wireless signal, the first bit block carrying a first identity, a second identity Used for detection of the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used to generate the first
  • the first identifier and the second identifier are the same, and the second identifier is used to generate a scrambling code of the output bit of the first bit block that is channel coded.
  • the first identifier and the second identifier are the same, and the TC-RNTI (Temporary Cell Radio Network Temporary Identifier) received by the first type of communication node is used to generate The first bit block is subjected to a scrambling code of the output bits of the channel coding.
  • TC-RNTI Temporary Cell Radio Network Temporary Identifier
  • the first information and the second information are transmitted through the same physical channel.
  • the first information and the second information are transmitted through different physical channels.
  • the first information and the second information are two different fields of the same signaling.
  • the first information and the second information are two different IEs (Information Elements) of the same RRC signaling.
  • the first information and the second information are transmitted by two different signaling.
  • the first information is transmitted through higher layer signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high layer signaling.
  • the first information includes all or part of one physical layer signaling.
  • the first information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the first information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the first information is broadcast.
  • the first information is unicast.
  • the first information is Cell Specific.
  • the first information is user-specific (UE-specific).
  • the first information is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the determining, by the first information, the length of time of the first time window means that the first information is used to directly indicate a length of time of the first time window.
  • the determining, by the first information, the length of time of the first time window means that the first information is used to indirectly indicate a length of time of the first time window.
  • the determining, by the first information, the length of time of the first time window means that the first information is used to explicitly indicate a length of time of the first time window.
  • the determining, by the first information, the length of time of the first time window means that the first information is used to implicitly indicate a length of time of the first time window.
  • the determining, by the first information, the length of time of the first time window means: the first information is used by the first type of communication node to determine the time of the first time window. length.
  • the second information is transmitted through higher layer signaling.
  • the second information is transmitted through physical layer signaling.
  • the second information includes all or part of a high layer signaling.
  • the second information includes all or part of one physical layer signaling.
  • the second information is transmitted through a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the second information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the second information is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the second information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information includes one or more fields in an SIB (System Information Block).
  • SIB System Information Block
  • the second information includes one or more fields in the RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the second information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the second information is broadcast.
  • the second information is unicast.
  • the second information is Cell Specific.
  • the second information is UE-specific.
  • the second information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the determining, by the second information, the length of time of the first time interval means that the second information is used to directly indicate a length of time of the first time interval.
  • the determining, by the second information, the length of time of the first time interval means that the second information is used to indirectly indicate a length of time of the first time interval.
  • the determining, by the second information, the length of time of the first time interval means that the second information is used to explicitly indicate a length of time of the first time interval.
  • the determining, by the second information, the length of time of the first time interval means that the second information is used to implicitly indicate a length of time of the first time interval.
  • the determining, by the second information, the length of time of the first time interval means that the second information is used to indicate whether a length of time of the first time interval is equal to zero.
  • the determining, by the second information, the length of time of the first time interval means that the second information is used to indicate the first time interval in R candidate time lengths
  • the length of time, the R is a positive integer greater than one.
  • the second information is used to determine the length of time of the first time interval, that is, the second information is used to indicate a target time length, and the time length of the first time interval is equal to The sum of the target time length and the target offset length, the target offset length being a predefined or configurable length of time.
  • the determining, by the second information, the length of time of the first time interval means: the second information is used to indicate a height of a sender of the second information, the second The height of the sender of the information is used to determine the length of time of the first time interval.
  • the determining, by the second information, the length of time of the first time interval, the second information is used to indicate that the sender of the second information arrives at the first type of communication
  • a reference RTT (Round Trip Time) delay of the node the reference RTT delay being used to determine the length of time of the first time interval.
  • the determining, by the second information, the length of time of the first time interval is: the second information is used to indicate a height of a sender of the second information, the first The length of time of the time interval is in a positive linear relationship with the height of the sender of the second information.
  • the determining, by the second information, the length of time of the first time interval, the second information is used to indicate that the sender of the second information arrives at the first type of communication
  • the reference RTT (Round Trip Time) delay of the node, the length of time of the first time interval and the reference RTT delay are in a positive linear relationship.
  • the first wireless signal carries Msg-3 (random access information 3).
  • the first wireless signal is used in a random access procedure.
  • the first wireless signal carries a retransmission of Msg-3.
  • the first wireless signal carries an initial transmission of Msg-3.
  • the first wireless signal is transmitted through an UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the first wireless signal is transmitted through a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • an output bit of the first bit block subjected to LDPC (Low Density Parity Check Code) channel coding is used to generate the first wireless signal.
  • LDPC Low Density Parity Check Code
  • the output bits of the first bit block that are coded via a Polar (Polarization Code) channel are used to generate the first wireless signal.
  • the output bits of the first bit block encoded by the turbo code channel are used to generate the first wireless signal.
  • the output bits of the first bit block encoded by the convolutional code channel are used to generate the first wireless signal.
  • the first bit block is subjected to an LDPC (Low Density Parity Check Code) channel coding output bit of 5.3.2 in 3GPP TS 38.212 to generate the first bit.
  • LDPC Low Density Parity Check Code
  • the output bits of the first bit block subjected to channel coding are sequentially subjected to Rate Matching, Concatenation, Scrambling, Modulation Mapper, and Layer Mapper. (Layer Mapper), Precoding, Resource Element Mapper, Baseband Signal Generation, Modulation and Upconversion, the first wireless signal is obtained.
  • the output bits of the first bit block undergoing channel coding are sequentially subjected to Rate Matching, and concatenation with other bits to obtain a target bit block, and the target bit block is sequentially scrambled. (Scrambling), Modulation Mapper, Layer Mapper, Precoding, Resource Element Mapper, Baseband Signal Generation, Modulation Upconversion (Modulation) And Upconversion) then obtaining the first wireless signal.
  • the channel coding is a Polarization code of 5.3.1 in 3GPP TS 38.212 (v2.0.0).
  • the channel coding is Turbo coding in 5.1.3.2 of 3GPP TS 36.212.
  • the channel coding is a convolutional coding of 5.1.3.1 of 3GPP TS 36.212.
  • the first bit block is all or part of a TB (Transport Block).
  • the first bit block is obtained by adding a CRC (Cyclic Redundancy Check) to a TB (Transport Block).
  • CRC Cyclic Redundancy Check
  • the first bit block is obtained by adding a transport block CRC after a TB (Transport Block) and performing segmentation and code block CRC addition.
  • TB Transport Block
  • the first bit block is all or part of a CBG (Code Block Group).
  • the first bit block is all or part of a CB (Code Block).
  • the first block of bits carries a retransmission of Msg-3.
  • the first block of bits carries an initial transmission of Msg-3.
  • the first time window includes a positive integer number of consecutive sub-frames.
  • the first time window includes a positive integer number of consecutive time slots (Slots).
  • the first time window includes a positive integer number of consecutive multi-carrier symbols (OFDM symbols).
  • the unit of time length of the first time window is milliseconds.
  • the unit of the length of time of the first time window is the number of time slots.
  • the length of time of the first time window is equal to the length of time identified by the IE "ra-ContentionResolutionTimer" in 3GPP TS 36.331.
  • the length of time of the first time window is equal to the length of time identified by the IE "ra-ContentionResolutionTimer" in 3GPP TS 38.331.
  • the first type of communication node blindly detects the first signaling based on an RNTI (Radio Network Temporary Identity) in the first time window.
  • RNTI Radio Network Temporary Identity
  • the first type of communication node performs blind detection based on the CRC (Radio Network Temporary Identity) of the CRC scrambling of the first signaling in the first time window. Detecting the first signaling.
  • CRC Radio Network Temporary Identity
  • the first signaling is a physical layer signaling.
  • the first signaling is transmitted through a PDCCH.
  • the first signaling includes all or part of a field in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling is detected in a Common Search Space (CSS).
  • CSS Common Search Space
  • the first signaling is detected in a UE-specific Search Space (USS).
  • USS UE-specific Search Space
  • the length of time of the first time interval is greater than 0 milliseconds.
  • the length of time of the first time interval is equal to 0 milliseconds.
  • the sending end time of the first wireless signal is not later than the starting time of the first time window.
  • the sending end time of the first wireless signal is earlier than the starting time of the first time window.
  • the first identifier and the second identifier are both non-negative integers.
  • the first identifier is a C-RNTI (Cell Radio Network Temporary Identifier) allocated for the first type of communication node.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the first identifier is a UE Contention Resolution Identity of the first type of communication node.
  • the first identifier is a non-negative integer represented by 48 bits.
  • the first identifier is a non-negative integer random number randomly selected by the first type of communication node.
  • the second identifier is a C-RNTI (Cell Radio Network Temporary Identifier) allocated for the first type of communication node.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the second identifier is a TC-RNTI (Temporary Cell Radio Network Temporary Identifier).
  • the second identifier is a TC-RNTI (Temporary Cell Radio Network Temporary Identifier) received by the first type of communication node.
  • TC-RNTI Temporary Cell Radio Network Temporary Identifier
  • the detecting that the second identifier is used for the first signaling means that the second identifier is used for blind detection of the first signaling.
  • the detecting that the second identifier is used for the first signaling is that the second identifier is used to scramble a CRC of a PDCCH carrying the first signaling.
  • the detecting that the second identifier is used for the first signaling is that the second identifier is used to perform a mask (Mask) of a CRC of the PDCCH carrying the first signaling.
  • the detecting, by the first type of communication, by the CRC of the first type of communication node by using the PDCCH carrying the first signaling Whether the first signaling is detected, the second identity is used to scramble the CRC of the PDCCH carrying the first signaling.
  • the second identifier is used to generate a scrambling code of the output bit of the first bit block that is channel coded, that is, the second identifier is used to initialize the first bit block.
  • the scrambling code of the output bits of the channel coding is used to initialize the first bit block.
  • the second identifier is used to generate a scrambling code of the output bit of the first bit block that is channel coded, that is, the second identifier is used to initialize the first bit block.
  • a generation register of the scrambling code of the output bits of the channel coding is used to initialize the first bit block.
  • the second identifier is used to generate a scrambling code of the output bit of the first bit block that is channel coded by using the following formula:
  • n ID ⁇ ⁇ 0, 1, ..., 1023 ⁇ is configured by higher layer signaling or equal to a physical cell ID, and c init is used to initialize the second identifier to be used.
  • the Air Interface is wireless.
  • the air interface includes a wireless channel.
  • the air interface is an interface between a second type of communication node and the first type of communication node.
  • the air interface is a Uu interface.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception node), or some other suitable terminology,
  • the gNB 203 may be a satellite, an aircraft, or a ground base station relayed by satellite.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband IoT device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, an MP3 player
  • a camera for example, an MP3 player
  • a game console a drone
  • a drone an aircraft
  • a narrowband IoT device a machine type communication device
  • a land vehicle a car
  • a wearable device or any other similar functional device.
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes an MME/AMF/UPF 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the first type of communication node device in this application.
  • the gNB 203 corresponds to the second type of communication node device in the present application.
  • the gNB 203 supports transmission over a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 is shown in three layers for a first type of communication node device (UE) and a second type of communication node device (gNB, eNB) Or the radio protocol architecture of a satellite or aircraft in NTN: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the first type of communication node device and the second type of communication node device through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at a second type of communication node device on the network side.
  • the first type of communication node device may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the connection.
  • a network layer eg, an IP layer
  • the application layer at the other end (eg, remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides for communication of the first type of communication node devices between the second type of communication node devices.
  • Cross-country mobile support The RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell among the first type of communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the first type of communication node device and the second type of communication node device is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second type of communication node devices and the first type of communication node devices.
  • the wireless protocol architecture of Figure 3 is applicable to the first type of communication node device in the present application.
  • the wireless protocol architecture of FIG. 3 is applicable to the second type of communication node device in this application.
  • the first information in the present application is generated in the RRC 306.
  • the second information in the present application is generated in the RRC 306.
  • the first wireless signal in the present application is generated in the RRC 306.
  • the first wireless signal in the present application is generated by the MAC 302.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated in the RRC 306.
  • the first signaling in the present application is generated by the MAC 302.
  • the first signaling in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated in the RRC 306.
  • the second wireless signal in the present application is generated by the MAC 302.
  • the second wireless signal in the present application is generated by the PHY 301.
  • the third wireless signal in the present application is generated in the RRC 306.
  • the third wireless signal in the present application is generated by the MAC 302.
  • the third wireless signal in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated in the RRC 306.
  • the second signaling in this application is generated in the MAC 302.
  • the fourth wireless signal in the present application is generated in the RRC 306.
  • the fourth wireless signal in the present application is generated in the MAC 302.
  • the fourth wireless signal in the present application is generated by the PHY 301.
  • the third signaling in the present application is generated in the RRC 306.
  • the third signaling in this application is generated in the MAC 302.
  • the third signaling in the present application is generated by the PHY 301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB/eNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467 are included in the user equipment (UE 450), and the transmitter/receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the L2 layer protocol for the user plane and the control plane is implemented, and the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the various signal reception processing functions implemented by the receive processor 452 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller/processor 440, which provides header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • an upper layer packet (such as the first information in the present application, the second information, the second wireless signal, and the upper layer packet carried by the fourth wireless signal) is provided to the controller/processor 440.
  • Controller/processor 440 implements the functionality of the L2 layer.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450, such as first information, second information, first signaling, second signaling, and third signaling in the present application.
  • Transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer), including signal decoding functions including coding and interleaving to facilitate forward error correction (FEC) at UE 450 and based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) modulates the baseband signal, separates the modulation symbols into parallel streams and maps each stream to a corresponding multicarrier subcarrier and/or multicarrier The symbols are then transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the first information, the first signaling, the second signaling, the third signaling, the second wireless signal, and the fourth wireless signal in the application are mapped by the transmitting processor 415 to the target air interface resource. Mapping to antenna 420 via transmitter 416 is transmitted in the form of a radio frequency signal.
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing function includes the first information, the first signaling, the second signaling, the third signaling, the reception of the second wireless signal and the physical layer signal of the fourth wireless signal, etc.
  • data source 467 is used to provide relevant configuration data for the signal to controller/processor 490.
  • Data source 467 represents all of the protocol layers above the L2 layer, and the first wireless signal in the present application is generated at data source 467.
  • the controller/processor 490 implements the L2 layer for the user plane and the control plane by providing header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the gNB 410's configuration allocation. protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer).
  • Signal transmission processing functions include encoding, modulation, etc., dividing the modulation symbols into parallel streams and mapping each stream to a corresponding multi-carrier subcarrier and/or multi-carrier symbol for baseband signal generation, which is then mapped by transmitter 455 via transmitter 456.
  • the antenna 460 is transmitted in the form of a radio frequency signal, and the signals of the physical layer (including the generation and transmission of the third wireless signal in the present application and the processing of the first wireless signal at the physical layer) are generated by the transmission processor 455.
  • Receiver 416 receives radio frequency signals through its respective antenna 420, each receiver 416 recovers baseband information modulated onto the radio frequency carrier, and provides baseband information to receive processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer), including the reception of the third wireless signal in the present application and the reception of the first wireless signal at the physical layer, the signal receiving processing function including A multi-carrier symbol stream is acquired, followed by demodulation of the multi-carrier symbols in the multi-carrier symbol stream based on various modulation schemes, followed by decoding to recover data and/or control signals originally transmitted by the UE 450 over the physical channel. Data and/or control signals are then provided to controller/processor 440.
  • the L2 layer is implemented at the receive processor controller/processor 440.
  • the controller/processor can be associated with a memory 430 that stores program codes and data. Memory 430 can be a computer readable medium.
  • the UE 450 corresponds to the first type of communication node device in this application.
  • the gNB 410 corresponds to the second type of communication node device in the present application.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together, the UE 450 device at least: receiving first information and second information; transmitting a first wireless signal; detecting first signaling in a first time window; wherein the first information is used to determine the a time interval of the first time window, a time interval from the transmission end time of the first wireless signal to a start time of the first time window is a first time interval, and the second information is used to determine the a length of time interval of a time interval; the output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carries a first identity, and the second identity is used for the first message Detecting, the first bit block includes a positive integer number of bits; the first identifier and the second identifier are the same, or the first identifier and the second Differentiating, the second
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: receiving the first information and the Transmitting the first wireless signal; detecting the first signaling in the first time window; wherein the first information is used to determine a length of time of the first time window, the sending of the first wireless signal a time interval from the end time to the start time of the first time window is a first time interval, the second information is used to determine a time length of the first time interval; the first bit block is subjected to channel coded output a bit is used to generate the first wireless signal, the first bit block carries a first identity, a second identity is used for detection of the first signaling, the first bit block comprises a positive integer number of bits; The first identifier and the second identifier are the same, or the first identifier and the second identifier are different, and the second identifier is used to generate a channel coded first bit block Output
  • the gNB 410 device comprises: at least one processor and at least one memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured to be in process with the at least one Used together.
  • the gNB 410 device at least: transmitting the first information and the second information; receiving the first wireless signal; transmitting the first signaling in the first time window; wherein the first information is used to determine the first time window
  • the time interval, the time interval from the sending end time of the first wireless signal to the starting time of the first time window is a first time interval, and the second information is used to determine the first time interval a length of time; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carries a first identity, and a second identity is used for detection of the first signaling,
  • the first bit block includes a positive integer number of bits; the first identifier and the second identifier are the same, or the first identifier and the second identifier are different, and
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: transmitting the first information and the Receiving a first wireless signal; transmitting the first signaling in a first time window; wherein the first information is used to determine a length of time of the first time window, the sending of the first wireless signal a time interval from the end time to the start time of the first time window is a first time interval, the second information is used to determine a time length of the first time interval; the first bit block is subjected to channel coded output a bit is used to generate the first wireless signal, the first bit block carries a first identity, a second identity is used for detection of the first signaling, the first bit block comprises a positive integer number of bits; The first identifier and the second identifier are the same, or the first identifier and the second identifier are different, and the second identifier is used to generate a channel coded first bit
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive the first information.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to transmit the second information.
  • a transmitter 456 (including antenna 460), a transmit processor 452, and a controller/processor 490 are used in the present application to transmit the first wireless signal.
  • a receiver 456 (including antenna 460) and a receive processor 452 are used in the present application to receive the first signaling.
  • a receiver 456 (including antenna 460), a receive processor 452 and a controller/processor 490 are used in the present application to receive the second wireless signal.
  • a transmitter 456 (including antenna 460), a transmit processor 452 and a controller/processor 490 are used in the present application to transmit the third wireless signal.
  • a receiver 456 (including antenna 460) and a receive processor 452 are used in the present application to receive the second signaling.
  • a receiver 456 (including antenna 460), a receive processor 452, and a controller/processor 490 are used in the present application to receive the fourth wireless signal.
  • a receiver 456 (including antenna 460) and a receive processor 452 are used in the present application to receive the third signaling.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the second information in this application.
  • a receiver 416 (including antenna 420), a receive processor 412 and a controller/processor 440 are used to transmit the first wireless signal in the present application.
  • a transmitter 416 (including antenna 420) and a transmit processor 415 are used to transmit the first signaling in the present application.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the second wireless signal in the present application.
  • a receiver 416 (including antenna 420), a receive processor 412 and a controller/processor 440 are used to transmit the third wireless signal in the present application.
  • a transmitter 416 (including antenna 420) and a transmit processor 415 are used to transmit the second signaling in the present application.
  • a transmitter 416 (including antenna 420), a transmit processor 415, and a controller/processor 440 are used to transmit the fourth wireless signal in the present application.
  • a transmitter 416 (including antenna 420) and a transmit processor 415 are used to transmit the third signaling in the present application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the second type of communication node N1 is the maintenance base station of the serving cell of the first type of communication node U2.
  • a first information transmitted in step S11, the second information transmitted in step S12, receiving a third radio signal in step S13, in step S14 in the second transmission time window of the second channel Let, in step S15, the fourth wireless signal is transmitted, the first wireless signal is received in step S16, the first signaling is transmitted in the first time window in step S17, and the second wireless signal is transmitted in step S18.
  • step S21 For U2, received at step S21, the first information, the second information received in step S22, the third wireless signal transmitted in step S23, step S24 is detected at a second time window of the second channel of the first communication node type
  • step S25 Let, in step S25, receive the fourth wireless signal, transmit the first wireless signal in step S26, detect the first signaling in the first time window in step S27, and receive the second wireless signal in step S28.
  • the first information is used to determine a length of time of the first time window, and a time interval from a transmission end time of the first wireless signal to a start time of the first time window is a first time interval, the second information being used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit The block carries a first identifier, the second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second Identifying a scrambling code used to generate the output bit of the first bit block that is channel coded, or the first identifier and the second identifier are the same; the first information, the second information, The first wireless signal and the first signaling are both transmitted through an air interface; the first signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the second wireless signal, and
  • the third bit block further carries third information, where the third information is used to indicate a time-frequency resource and a modulation and coding mode occupied by the first wireless signal, where the third identifier is used. And generating a scrambling code of the channel-coded output bits of the third bit block.
  • the second signaling is transmitted through a PDCCH.
  • the second signaling includes all or part of a field in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the second signaling is detected in a Common Search Space (CSS).
  • CSS Common Search Space
  • the second signaling is used to indicate that the time-frequency resource and the modulation and coding scheme (MCS) occupied by the fourth wireless signal are: the second signaling is used. Directly indicating the time-frequency resource and modulation and coding mode occupied by the fourth wireless signal.
  • MCS modulation and coding scheme
  • the second signaling is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the fourth wireless signal are: the second signaling is used to indirectly indicate the fourth wireless Time-frequency resources and modulation and coding methods occupied by signals.
  • the second signaling is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the fourth wireless signal are: the second signaling is used to explicitly indicate the fourth Time-frequency resources and modulation and coding methods occupied by wireless signals.
  • the second signaling is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the fourth wireless signal are: the second signaling is used to implicitly indicate the fourth Time-frequency resources and modulation and coding methods occupied by wireless signals.
  • the detecting that the third identifier is used for the second signaling means that the third identifier is used for blind detection of the second signaling.
  • the detecting that the third identifier is used for the second signaling is that the third identifier is used to scramble a CRC of a PDCCH carrying the second signaling.
  • the detecting that the third identifier is used for the second signaling is that the third identifier is used to mask a CRC of a PDCCH carrying the second signaling.
  • the detecting that the third identifier is used for the second signaling is: determining whether the first type of communication node passes the CRC check of the PDCCH carrying the second signaling Whether the second signaling is detected, the third identity is used to scramble the CRC of the PDCCH carrying the second signaling.
  • Embodiment 6 illustrates another wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the second type of communication node N3 is the maintenance base station of the serving cell of the first type of communication node U4.
  • the second type communication node N3 is transmitted in step S31 the first information, second information transmitting step S32, a third radio signal received in step S33, in step S34 in the second transmission time window of the second channel So, the fourth wireless signal is transmitted in step S35, the third signaling is transmitted in step S36, the first wireless signal is received in step S37, and the first signaling is transmitted in the first time window in step S38, in step A second wireless signal is transmitted in S39.
  • step S41 For U4, received at step S41, the first information, the second information received in step S42, transmitting a third radio signal in a step S43, step S44 is detected in the second time window in a first channel in the second communication node type So, the fourth wireless signal is received in step S45, the third signaling is received in step S46, the first wireless signal is transmitted in step S47, and the first signaling is detected in the first time window in step S48, in step A second wireless signal is received in S49.
  • the first information is used to determine a time length of the first time window, and a time interval from a transmission end time of the first wireless signal to a start time of the first time window is a first time interval, the second information being used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit The block carries a first identifier, the second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second Identifying a scrambling code used to generate the output bit of the first bit block that is channel coded, or the first identifier and the second identifier are the same; the first information, the second information, The first wireless signal and the first signaling are both transmitted through an air interface; the first signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the second wireless signal, and the
  • the third bit block further carries third information, where the third information is used to indicate a time-frequency resource and a modulation and coding mode occupied by the first wireless signal, where the third identifier is used. And generating a scrambling code of the channel-coded output bits of the third bit block.
  • the third signaling is a physical layer signaling.
  • the third signaling is transmitted through a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the third signaling carries all of the latter partial fields in one DCI.
  • the third signaling includes an uplink grant.
  • the receiving start time of the third signaling is earlier than the receiving start time of the first signaling.
  • the third signaling is used to schedule retransmission of Msg-3.
  • the third signaling carries a DCI, and an NDI (New Data Indicator) field in the DCI carried by the third signaling is not inverted.
  • NDI New Data Indicator
  • Embodiment 7 illustrates a schematic diagram of the relationship of a first time interval and a first time window in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the obliquely filled rectangle represents the first wireless signal
  • the cross-line filled rectangle represents the first signaling.
  • the first time window includes a positive integer number of consecutive sub-frames.
  • the first time window includes a positive integer number of consecutive time slots (Slots).
  • the first time window includes a positive integer number of consecutive multi-carrier symbols (OFDM symbols).
  • the unit of time length of the first time window is milliseconds.
  • the length of time of the first time window is equal to the length of time identified by the IE "ra-ContentionResolutionTimer" in 3GPP TS 36.331.
  • the first type of communication node in the present application blindly detects the first signaling in the first time window.
  • the first type of communication node in the application blindly detects the first signaling based on an RNTI (Radio Network Temporary Identity) in the first time window.
  • RNTI Radio Network Temporary Identity
  • the first type of communication node in the application is based on the RNTI (Radio Network Temporary Identity) that scrambles the CRC of the first signaling in the first time window. Blind detection is performed to detect the first signaling.
  • RNTI Radio Network Temporary Identity
  • the length of time of the first time interval is equal to 0 milliseconds.
  • the sending end time of the first wireless signal is earlier than the starting time of the first time window.
  • the channel-coded output bits of the first bit block are used to generate the first wireless signal in the present application
  • the first bit block carries a first identifier
  • the second identifier is used in the present application.
  • the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used to generate the first bit
  • the scrambling code of the output bit of the block that is channel coded, or the first identifier and the second identifier are the same.
  • the first identifier and the second identifier are the same, and the second identifier is used to generate a scrambling code of the output bit of the first bit block that is channel coded.
  • the first identifier and the second identifier are the same, and the TC-RNTI (Temporary Cell Radio Network Temporary Identifier) received by the first type of communication node is used to generate The first bit block is subjected to a scrambling code of the output bits of the channel coding.
  • TC-RNTI Temporary Cell Radio Network Temporary Identifier
  • Embodiment 9 illustrates a schematic diagram of the relationship between the first signaling and the second wireless signal according to one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the obliquely filled rectangle represents the first signaling
  • the cross-line filled rectangle represents the second wireless signal.
  • the first signaling in the present application is used to indicate a time-frequency resource and a modulation and coding mode occupied by the second wireless signal in the present application, and the second bit block is subjected to channel coding output.
  • Bits are used to generate the second wireless signal, the second bit block carries the first identity in the present application, and the second identity is used to generate the second bit block that is channel coded A scrambling code of the output bits, the second block of bits comprising a positive integer number of bits; the second wireless signal being transmitted over the air interface.
  • the first signaling is used to indicate that a time-frequency resource and a modulation and coding scheme (MCS) occupied by the second wireless signal are: the first signaling is used. Directly indicating the time-frequency resource and the modulation and coding mode occupied by the second wireless signal.
  • MCS modulation and coding scheme
  • the first signaling is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the second wireless signal are: the first signaling is used to indirectly indicate the second wireless Time-frequency resources and modulation and coding methods occupied by signals.
  • the first signaling is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the second wireless signal are: the first signaling is used to explicitly indicate the second Time-frequency resources and modulation and coding methods occupied by wireless signals.
  • the first signaling is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the second wireless signal are: the first signaling is used to implicitly indicate the second Time-frequency resources and modulation and coding methods occupied by wireless signals.
  • the second wireless signal carries Msg-4 (random access information 4).
  • the second wireless signal is used in a random access procedure.
  • the second wireless signal is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the second wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the output bits of the second bit block encoded by the turbo code channel are used to generate the second wireless signal.
  • the output bits of the second bit block encoded by the convolutional code channel are used to generate the second wireless signal.
  • the output bits of the second bit block subjected to channel coding are sequentially subjected to Rate Matching, Concatenation, Scrambling, Modulation Mapper, and Layer Mapper. (Layer Mapper), Precoding, Resource Element Mapper, Baseband Signal Generation, Modulation and Upconversion, and the second wireless signal is obtained.
  • the output bits of the second bit block undergoing channel coding are subjected to Rate Matching in sequence, concatenation with other bits, followed by scrambling, and a modulation mapper ( Modulation Mapper), Layer Mapper, Precoding, Resource Element Mapper, Baseband Signal Generation, Modulation and Upconversion A wireless signal.
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Precoding
  • Resource Element Mapper Baseband Signal Generation
  • Modulation and Upconversion A wireless signal.
  • the second bit block is all or part of a TB (Transport Block).
  • the second bit block is obtained by adding a transport block CRC after a TB (Transport Block) and performing segmentation and code block CRC addition.
  • the second bit block is all or part of a CBG (Code Block Group).
  • the second block of bits carries one Msg-4.
  • the carrying, by the second bit block, the first identifier is: the first identifier is a predefined field of a part of the second bit block.
  • the carrying the first identifier in the second bit block means that the second bit block includes a MAC (Medium Access Control) SDU (Service Data Unit). And the MAC SDU includes a field of the first identifier.
  • MAC Medium Access Control
  • the second identifier is used to generate a scrambling code of the output bit of the second bit block that is channel coded, that is, the second identifier is used to initialize the second bit block.
  • the scrambling code of the output bits of the channel coding is used to initialize the second bit block.
  • the scrambling code of the second identifier used to generate the output bit of the second bit block that is channel coded is performed by:
  • n ID ⁇ ⁇ 0, 1, ..., 1023 ⁇ is configured by higher layer signaling or equal to a physical cell ID, and c init is used to initialize the second identifier to be used. Generating a generation register of the scrambling code of the output bit of the second bit block subjected to channel coding.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the second time interval and the second time window of one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the obliquely filled rectangle represents the third wireless signal
  • the cross line filled rectangle represents the second signaling.
  • the second signaling in the present application is detected in the second time window in the present application, and the sending end time of the third wireless signal in the present application is to the second time.
  • the time interval of the start time of the window is a second time interval, and the time length of the second time interval is related to the time length of the first time interval;
  • the third identifier is used for detecting the second signaling,
  • the air interface resource occupied by the third wireless signal is used to determine the third identifier; the third wireless signal and the second signaling are both transmitted through the air interface.
  • the sending end time of the third wireless signal is not later than the starting time of the second time window.
  • the sending end time of the third wireless signal is earlier than the starting time of the second time window.
  • the length of time of the second time interval is related to the length of time of the first time interval, that is, the second information is used to simultaneously determine the length of time of the second time interval and the The length of time of the first time interval.
  • the length of time of the second time interval is related to the length of time of the first time interval, that is, the length of time of the second time interval is equal to the length of time of the first time interval.
  • the length of time of the second time interval is related to the length of time of the first time interval, which means that the length of time of the second time interval is linear with the length of time of the first time interval.
  • the length of time of the second time interval is related to the length of time of the first time interval, that is, the length of time of the second time interval is proportional to the length of time of the first time interval.
  • the length of time of the second time interval is related to the length of time of the first time interval, that is, the length of time of the second time interval is equal to the first time length offset and the first time interval.
  • the sum of the lengths of time, the first duration offset is a predefined length of time.
  • the length of time of the second time window is predefined.
  • the length of time of the second time window is a fixed value.
  • the length of time of the second time window is configurable.
  • the second time window is a RAR (Random Access Response) window.
  • the length of time of the second time window is equal to the length configured by the IE "ra-ResponseWindow" in 3GPP TS 38.331.
  • the length of time of the second time window is equal to the length configured by the IE "ra-ResponseWindow" in 3GPP TS 36.331.
  • the third wireless signal is transmitted through a PRACH (Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the third wireless signal carries a preamble.
  • the third wireless signal is transmitted through a RACH (Random Access Channel).
  • RACH Random Access Channel
  • the third wireless signal is generated by a feature sequence, one of a ZC (Zadoff-Chu) sequence or a pseudo-random sequence.
  • the third wireless signal is generated by a feature sequence that is one of an integer number of orthogonal sequences or non-orthogonal sequences.
  • the air interface resource occupied by the third wireless signal refers to at least one of a time-frequency resource and a code domain resource.
  • the air interface resource occupied by the third wireless signal refers to at least one of a feature sequence for generating the third wireless signal and a time-frequency resource for transmitting the third wireless signal.
  • the third identity is a 16-bit binary non-negative integer.
  • the third identifier is a RA-RNTI (Random Access Radio Network Temporary Identity).
  • RA-RNTI Random Access Radio Network Temporary Identity
  • the air interface resource occupied by the third radio signal is used to determine that the third identifier is: the air interface resource occupied by the third radio signal is first according to a given mapping rule.
  • the class communication node is configured to determine the third identity.
  • RA-RNTI 1+s_id+14*t_id+14*X*f_id+14*X*Y*ul_carrier_id
  • the RA-RNTI represents the third identifier
  • the s_id is an index of the first OFDM symbol in the air interface resource occupied by the third radio signal in the associated time slot
  • t_id is the third wireless signal station.
  • An index of the first time slot included in the air interface resource or in the system frame to which the air interface resource belongs f_id is an index of the third wireless signal in the frequency domain
  • ul_carrier_id is an uplink carrier to which the third wireless signal belongs.
  • Index (the index is equal to 0 for normal carriers and 1 for supplementary uplink carriers), the values of X and Y are predefined or configurable.
  • the channel-coded output bits of the third bit block are used to generate the fourth wireless signal in the present application, and the third bit block carries the second identifier in the present application,
  • the third bit block further carries a first transmission timing adjustment amount, the third bit block includes a positive integer number of bits; the transmission timing of the first wireless signal and the first transmission timing adjustment amount in the present application, and the present application
  • the length of time of the first time interval in the middle is related.
  • the fourth wireless signal carries Msg-2 (random access information 2).
  • the fourth wireless signal is transmitted through a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the output bit of the third bit block subjected to LDPC (Low Density Parity Check Code) channel coding is used to generate the fourth wireless signal.
  • LDPC Low Density Parity Check Code
  • the output bits of the third bit block that are encoded by the Polar (Polarization Code) channel are used to generate the fourth wireless signal.
  • the output bits of the third bit block encoded by the turbo code channel are used to generate the fourth wireless signal.
  • the output bits of the third bit block encoded by the convolutional code channel are used to generate the fourth wireless signal.
  • the output bits of the third bit block subjected to channel coding are sequentially subjected to Rate Matching, Concatenation, Scrambling, Modulation Mapper, and Layer Mapper. (Layer Mapper), Precoding, Resource Element Mapper, Baseband Signal Generation, Modulation and Upconversion, and the fourth wireless signal is obtained.
  • the output bits of the third bit block undergoing channel coding are subjected to Rate Matching in sequence, concatenation with other bits, followed by scrambling, and a modulation mapper ( Modulation Mapper), Layer Mapper, Precoding, Resource Element Mapper, Baseband Signal Generation, Modulation and Upconversion Four wireless signals.
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Precoding
  • Resource Element Mapper Baseband Signal Generation
  • the third block of bits is passed from a higher layer to a physical layer.
  • the third bit block is all or part of a TB (Transport Block).
  • the third bit block is obtained by adding a CRC (Cyclic Redundancy Check) to a TB (Transport Block).
  • CRC Cyclic Redundancy Check
  • the third bit block is obtained by adding a transport block CRC after a TB (Transport Block) and performing segmentation and code block CRC addition.
  • the third bit block is all or part of a CBG (Code Block Group).
  • the third bit block is all or part of a CB (Code Block).
  • the third bit block carries one Msg-2.
  • the carrying, by the third bit block, the second identifier is: the second identifier is a predefined field of a part of the third bit block.
  • the first transmission timing adjustment amount is a TA (Timing Advance) included in a RAR (Random Access Response).
  • the unit of the minimum adjustment step size of the first transmission timing adjustment amount is microseconds.
  • the transmission timing of the first wireless signal and the first transmission timing adjustment amount and the time length of the first time interval are related to: the first transmission timing adjustment amount and the first The sum of the lengths of time intervals is used to determine the transmission timing of the first wireless signal.
  • the sending timing of the first wireless signal and the first sending timing adjustment amount and the time length of the first time interval are related to: the first sending timing adjustment amount and the second sending The sum of the timing adjustment amounts is used to determine the transmission timing of the first wireless signal, and the second transmission timing adjustment amount is linear with the length of time of the first time interval.
  • the sending timing of the first wireless signal and the first sending timing adjustment amount and the time length of the first time interval are related to: the first sending timing adjustment amount and the second sending a sum of timing adjustment amounts used to determine a transmission timing of the first wireless signal, the second information indicating a reference time length, the reference time length being simultaneously used to determine the second transmission timing adjustment amount and the The length of time of the first time interval.
  • the transmission timing of the first wireless signal and the first transmission timing adjustment amount and the time length of the first time interval are related to: the relative state of the first wireless signal and the first
  • the timing advance of downlink reception of a type of communication node is related to both the first transmission timing adjustment amount and the time length of the first time interval.
  • Embodiment 12 illustrates a schematic diagram of a second signaling, a relationship between a third information and a first wireless signal, as shown in FIG. 12, in accordance with an embodiment of the present application.
  • the horizontal axis represents time
  • the obliquely filled rectangle represents second signaling
  • the cross-line filled rectangle represents third information
  • the cross-line filled rectangle represents the first wireless signal.
  • the third information includes all or part of an uplink grant.
  • the third information is a MAC layer information.
  • the third information is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the first wireless signal are: the third information is used to directly indicate the first wireless signal. Time-frequency resources and modulation and coding methods occupied.
  • the third information is used to indicate that the time-frequency resource and the modulation and coding mode occupied by the first wireless signal are: the third information is used to indirectly indicate the first wireless signal. Time-frequency resources and modulation and coding methods occupied.
  • the third identifier is used to generate a scrambling code of the output bit of the third bit block that is channel coded, that is, the third identifier is used to initialize the third bit block.
  • the scrambling code of the output bits of the channel coding is used to initialize the third bit block.
  • the third identifier is used to generate a scrambling code of the output bit of the third bit block that is channel coded, that is, the third identifier is used to initialize the third bit block.
  • a generation register of the scrambling code of the output bits of the channel coding is used to initialize the third bit block.
  • Embodiment 13 exemplifies a structural block diagram of a processing device in a first type of communication node device, as shown in FIG.
  • the first type of communication node device processing apparatus 1300 is mainly composed of a first receiver 1301, a first transceiver 1302, and a second receiver 1303.
  • the first receiver 1301 includes the transmitter/receiver 456 (including the antenna 460) of the present application, the receiving processor 452 and the controller/processor 490; the first transceiver 1302 includes the same in FIG. 4 of the present application.
  • Transmitter/receiver 456 (including antenna 460), receive processor 452, transmit processor 455 and controller/processor 490, second receiver 1303 including transmitter/receiver 456 (including antenna 460) and receive processor 452.
  • the first receiver 1301 receives the first information and the second information; the first transceiver 1302 transmits the first wireless signal; and the second receiver 1303 detects the first signaling in the first time window;
  • the first information is used to determine a length of time of the first time window, and a time interval from a sending end time of the first wireless signal to a starting time of the first time window is a first time interval.
  • the second information is used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carrying a first identity, a second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used to generate a a scrambling code of the output bit of the first bit block that is channel-coded, or the first identifier and the second identifier are the same; the first information, the second information, the first wireless signal, and The first signaling is all empty Interface transfer.
  • the first transceiver 1302 further receives a second wireless signal, where the first signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the second wireless signal, and the second bit block
  • the channel coded output bits are used to generate the second wireless signal
  • the second bit block carries the first identity
  • the second identity is used to generate the second bit block channel coded Decoding a bit of the output bit, the second block of bits comprising a positive integer number of bits; the second wireless signal being transmitted over the air interface.
  • the first transceiver 1302 further transmits a third wireless signal; the second receiver 1303 also detects the second signaling in the second time window; wherein the third wireless signal is sent to the end time to the The time interval of the start time of the second time window is a second time interval, and the time length of the second time interval is related to the time length of the first time interval; a third identifier is used for the second signaling The detecting, the air interface resource occupied by the third wireless signal is used to determine the third identifier; the third wireless signal and the second signaling are all transmitted through the air interface.
  • the first transceiver 1302 further receives a fourth wireless signal, where the second signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the fourth wireless signal, and the third bit block
  • the channel-coded output bits are used to generate the fourth wireless signal
  • the third bit block carries the second identifier
  • the third bit block further carries a first transmission timing adjustment amount
  • the third bit The block includes a positive integer number of bits; a transmission timing of the first wireless signal is related to the first transmission timing adjustment amount and a time length of the first time interval; and the fourth wireless signal is transmitted through the air interface .
  • the first transceiver 1302 further receives a fourth wireless signal, where the second signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the fourth wireless signal, and the third bit block
  • the channel-coded output bits are used to generate the fourth wireless signal
  • the third bit block carries the second identifier
  • the third bit block further carries a first transmission timing adjustment amount
  • the third bit The block includes a positive integer number of bits
  • a transmission timing of the first wireless signal is related to the first transmission timing adjustment amount and a time length of the first time interval
  • the fourth wireless signal is transmitted through the air interface
  • the third bit block further carries third information, the third information is used to indicate a time-frequency resource and a modulation and coding mode occupied by the first wireless signal, and the third identifier is used to generate the
  • the third bit block is subjected to a scrambling code of the channel encoded output bits.
  • the second receiver 1303 further receives the third signaling, where the third signaling is used to indicate the time-frequency resource occupied by the first wireless signal and the redundancy version used and The modulation coding method used.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a second type of communication node device, as shown in FIG.
  • the second type of communication node device processing apparatus 1400 is mainly composed of a first transmitter 1401, a second transceiver 1402, and a second transmitter 1403.
  • the first transmitter 1401 includes the transmitter/receiver 416 (including the antenna 420), the transmitting processor 415 and the controller/processor 440 of FIG. 4 of the present application;
  • the second transceiver 1402 includes the same in FIG. 4 of the present application.
  • Transmitter/receiver 416 (including antenna 420), transmit processor 415, receive processor 412 and controller/processor 440;
  • second transmitter 1403 includes transmitter/receiver 416 of FIG. 4 of the present application (including Antenna 420) and transmit processor 415.
  • the first transmitter 1401 transmits the first information and the second information; the second transceiver 1402 receives the first wireless signal; and the second transmitter 1403 transmits the first signaling in the first time window;
  • the first information is used to determine a length of time of the first time window, and a time interval from a sending end time of the first wireless signal to a starting time of the first time window is a first time interval.
  • the second information is used to determine a length of time of the first time interval; an output bit of the first bit block that is channel coded is used to generate the first wireless signal, the first bit block carrying a first identity, a second identifier is used for detecting the first signaling, the first bit block includes a positive integer number of bits; the first identifier is different from the second identifier, and the second identifier is used to generate a a scrambling code of the output bit of the first bit block that is channel-coded, or the first identifier and the second identifier are the same; the first information, the second information, the first wireless signal, and The first signaling is all empty Interface transfer.
  • the second transceiver 1402 further sends a second wireless signal, where the first signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the second wireless signal, and the second bit block
  • the channel coded output bits are used to generate the second wireless signal
  • the second bit block carries the first identity
  • the second identity is used to generate the second bit block channel coded Decoding a bit of the output bit, the second block of bits comprising a positive integer number of bits; the second wireless signal being transmitted over the air interface.
  • the second transceiver 1402 further receives the third wireless signal; the second transmitter 1403 further transmits the second signaling in the second time window; wherein the sending end time of the third wireless signal reaches the The time interval of the start time of the second time window is a second time interval, and the time length of the second time interval is related to the time length of the first time interval; a third identifier is used for the second signaling The detecting, the air interface resource occupied by the third wireless signal is used to determine the third identifier; the third wireless signal and the second signaling are all transmitted through the air interface.
  • the second transceiver 1402 further sends a fourth wireless signal, where the second signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the fourth wireless signal, and the third bit block
  • the channel-coded output bits are used to generate the fourth wireless signal
  • the third bit block carries the second identifier
  • the third bit block further carries a first transmission timing adjustment amount
  • the third bit The block includes a positive integer number of bits; a transmission timing of the first wireless signal is related to the first transmission timing adjustment amount and a time length of the first time interval; and the fourth wireless signal is transmitted through the air interface .
  • the second transceiver 1402 further sends a fourth wireless signal, where the second signaling is used to indicate a time-frequency resource and a modulation and coding mode occupied by the fourth wireless signal, and the third bit block
  • the channel-coded output bits are used to generate the fourth wireless signal
  • the third bit block carries the second identifier
  • the third bit block further carries a first transmission timing adjustment amount
  • the third bit The block includes a positive integer number of bits
  • a transmission timing of the first wireless signal is related to the first transmission timing adjustment amount and a time length of the first time interval
  • the fourth wireless signal is transmitted through the air interface
  • the third bit block further carries third information, the third information is used to indicate a time-frequency resource and a modulation and coding mode occupied by the first wireless signal, and the third identifier is used to generate the
  • the third bit block is subjected to a scrambling code of the channel encoded output bits.
  • the second transmitter 1403 further sends a third signaling, where the third signaling is used to indicate a time-frequency resource occupied by the first wireless signal and a redundancy version used and The modulation coding method used.
  • the first type of communication node device or UE or terminal in the present application includes but is not limited to a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, an in-vehicle communication device, an aircraft, an aircraft, and none.
  • Wireless communication equipment such as man-machines and remote-controlled aircraft.
  • the second type of communication node device or base station or network side device in the present application includes but is not limited to a macro cell base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission and reception node TRP, a relay satellite, and a satellite base station.
  • wireless communication equipment such as an air base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。通信节点首先接收第一信息和第二信息;接着发送第一无线信号;然后在第一时间窗中检测第一信令;所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同。本申请提高随机接入性能。

Description

一种用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其涉及非地面无线通信中的传输方案和装置。
背景技术
未来无线通信***的应用场景越来越多元化,不同的应用场景对***提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始,然后在R16版本中启动WI对相关技术进行标准化。在NTN网络中,传输延时远远超过地面网络。
发明内容
在大传输延时网络中(比如NTN),往返时间(RTT,Round Trip Time)的增加会导致随机接入过程中的已有的设计无法满足要求甚至无法正常工作。针对大传输延时网络中的随机接入的需求,本申请提供了一种解决方案。需要说明的是,在不冲突的情况下,本申请的基站设备中的实施例和实施例中的特征可以应用到用户设备中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信中的第一类通信节点中的方法,其特征在于,包括:
接收第一信息和第二信息;
发送第一无线信号;
在第一时间窗中检测第一信令;
其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,通过所述第一信息和所述第二信息的联合配置,可以根据大延时网络中的延时特征对所述第一时间窗的位置进行调整,从而保证用户设备(UE)由于大延迟对随机接入中的Msg-4(包括了冲突解决)的检测造成错误的判断,避免了随机接入的失败。
作为一个实施例,本申请中的方法能够同时避免基于竞争的随机接入和非竞争的随机接入由于大延时所造成的接入失败。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二无线信号;
其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方 式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三无线信号;
在第二时间窗中检测第二信令;
其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第四无线信号;
其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三信令;
其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
本申请公开了一种用于无线通信中的第二类通信节点中的方法,其特征在于,包括:
发送第一信息和第二信息;
接收第一无线信号;
在第一时间窗中发送第一信令;
其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二无线信号;
其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三无线信号;
在第二时间窗中发送第二信令;
其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第四无线信号;
其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三信令;
其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
本申请公开了一种用于无线通信中的第一类通信节点设备,其特征在于,包括:
第一接收机,接收第一信息和第二信息;
第一收发机,发送第一无线信号;
第二接收机,在第一时间窗中检测第一信令;
其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一收发机还接收第二无线信号;其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一收发机还发送第三无线信号;所述第二接收机还在第二时间窗中检测第二信令;其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一收发机还 接收第四无线信号;其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第二接收机还接收第三信令;其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
本申请公开了一种用于无线通信中的第二类通信节点设备,其特征在于,包括:
第一发射机,发送第一信息和第二信息;
第二收发机,接收第一无线信号;
第二发射机,在第一时间窗中发送第一信令;
其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二收发机还发送第二无线信号;其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二收发机还接收第三无线信号;所述第二发射机还在第二时间窗中发送第二信令;其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二收发机还发送第四无线信号;其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第二发射机还 发送第三信令;其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
作为一个实施例,本申请和现有的针对地面网络(Terrestrial Networks)中的随机接入过程相比具有如下主要技术优势:
-本申请提供了一种用户设备可以根据延时状况灵活调整Msg-4的检测时间窗的方法,从而避免用户设备(UE)由于大延迟对随机接入中的Msg-4(包括了冲突解决)的检测造成错误的判断,避免了随机接入的失败。
-本申请提供了一种用户设备可以根据延时状况灵活调整上行定时以及Msg-2的检测时间窗的方法,保证了Msg-2的正确接收以及后续上行传输的准确定时,提高了链路和***性能。
-本申请中的方法能够同时避免基于竞争的随机接入和非竞争的随机接入由于大延时所造成的接入失败。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第二信息,第一无线信号和第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一类通信节点和第二类通信节点的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的另一幅无线信号传输流程图;
图7示出了根据本申请的一个实施例的第一时间间隔和第一时间窗的关系的示意图;
图8示出了根据本申请的一个实施例的第一标识和第二标识的关系的示意图;
图9示出了根据本申请的一个实施例的第一信令和第二无线信号的关系的示意图;
图10示出了根据本申请的一个实施例的第二时间间隔和第二时间窗的关系的示意图;
图11示出了根据本申请的一个实施例的第一无线信号和第一发送定时调整量的关系的示意图;
图12示出了根据本申请的一个实施例的第二信令,第三信息和第一无线信号的关系的示意图;
图13示出了根据本申请的一个实施例的第一类通信节点设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第二类通信节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息,第二信息,第一无线信号和第一信令的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的第一类通信节点首先接收第一信息和第二信息;接着发送第一无线信号;然后在第一时间窗中检测第一信令;其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输 出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,所述第一标识和所述第二标识相同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码。
作为一个实施例,所述第一标识和所述第二标识相同,所述第一类通信节点接收到的TC-RNTI(Temporary Cell Radio Network Temporary Identifier,临时小区无线网络临时标识)被用于生成所述第一比特块经过信道编码的所述输出比特的扰码。
作为一个实施例,所述第一信息和所述第二信息是通过同一个物理信道传输的。
作为一个实施例,所述第一信息和所述第二信息是通过不同的物理信道传输的。
作为一个实施例,所述第一信息和所述第二信息是同一个信令的两个不同的域(Field)。
作为一个实施例,所述第一信息和所述第二信息是同一个RRC信令的两个不同的IE(Information Element,信息单元)。
作为一个实施例,所述第一信息和所述第二信息通过两个不同的信令传输。
作为一个实施例,所述第一信息通过高层信令传输。
作为一个实施例,所述第一信息通过物理层信令传输。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第一信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息包括一个SIB(System Information Block,***信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括RMSI(Remaining System Information,余下***信息)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是单播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息被用于确定所述第一时间窗的时间长度是指:所述第一信息被用于直接指示所述第一时间窗的时间长度。
作为一个实施例,所述第一信息被用于确定所述第一时间窗的时间长度是指:所述 第一信息被用于间接指示所述第一时间窗的时间长度。
作为一个实施例,所述第一信息被用于确定所述第一时间窗的时间长度是指:所述第一信息被用于显性指示所述第一时间窗的时间长度。
作为一个实施例,所述第一信息被用于确定所述第一时间窗的时间长度是指:所述第一信息被用于隐性指示所述第一时间窗的时间长度。
作为一个实施例,所述第一信息被用于确定所述第一时间窗的时间长度是指:所述第一信息被所述第一类通信节点用于确定所述第一时间窗的时间长度。
作为一个实施例,所述第二信息通过高层信令传输。
作为一个实施例,所述第二信息通过物理层信令传输。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第二信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二信息通过一个DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信息通过一个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二信息包括一个SIB(System Information Block,***信息块)中的一个或多个域(Field)。
作为一个实施例,所述第二信息包括RMSI(Remaining System Information,余下***信息)中的一个或多个域(Field)。
作为一个实施例,所述第二信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第二信息是广播的。
作为一个实施例,所述第二信息是单播的。
作为一个实施例,所述第二信息是小区特定的(Cell Specific)。
作为一个实施例,所述第二信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第二信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第二信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被所述第一类通信节点用于确定所述第一时间间隔的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于直接指示所述第一时间间隔的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于间接指示所述第一时间间隔的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于显性指示所述第一时间间隔的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于隐性指示所述第一时间间隔的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于指示所述第一时间间隔的时间长度是否等于0。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所 述第二信息被用于在R个备选时间长度中指示所述第一时间间隔的时间长度,所述R是大于1的正整数。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于指示目标时间长度,所述第一时间间隔的时间长度等于所述目标时间长度和目标偏移长度的和,所述目标偏移长度是一个预定义或可配置的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于指示所述第二信息的发送者的高度,所述第二信息的发送者的高度被用于确定所述第一时间间隔的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于指示所述第二信息的发送者到达所述第一类通信节点的参考RTT(Round Trip Time,往返时间)延时,所述参考RTT延时被用于确定所述第一时间间隔的时间长度。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于指示所述第二信息的发送者的高度,所述第一时间间隔的时间长度和所述第二信息的发送者的高度成正的线性关系。
作为一个实施例,所述第二信息被用于确定所述第一时间间隔的时间长度是指:所述第二信息被用于指示所述第二信息的发送者到达所述第一类通信节点的参考RTT(Round Trip Time,往返时间)延时,所述第一时间间隔的时间长度和所述参考RTT延时成正的线性关系。
作为一个实施例,所述第一无线信号携带Msg-3(随机接入信息3)。
作为一个实施例,所述第一无线信号被用于随机接入过程。
作为一个实施例,所述第一无线信号携带一个Msg-3的重传。
作为一个实施例,所述第一无线信号携带一个Msg-3的初传。
作为一个实施例,所述第一无线信号通过UL-SCH(Uplink Shared Channel,上行共享信道)传输。
作为一个实施例,所述第一无线信号通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输。
作为一个实施例,所述第一比特块经过LDPC(Low Density Parity Check Code,低密度奇偶校验码)信道编码的输出比特被用于生成所述第一无线信号。
作为一个实施例,所述第一比特块经过Polar(极化码)信道编码的输出比特被用于生成所述第一无线信号。
作为一个实施例,所述第一比特块经过Turbo码信道编码的输出比特被用于生成所述第一无线信号。
作为一个实施例,所述第一比特块经过卷积码信道编码的输出比特被用于生成所述第一无线信号。
作为一个实施例,所述第一比特块经过3GPP TS38.212中的5.3.2节的LDPC(Low Density Parity Check Code,低密度奇偶校验码)信道编码的输出比特被用于生成所述第一无线信号。
作为一个实施例,所述第一比特块经过信道编码的所述输出比特依次经过速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,所述第一比特块经过信道编码的所述输出比特依次经过速率匹配(Rate Matching),与其它比特的串联(Concatenation)得到目标比特块,所述目标比特块依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer  Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,所述信道编码是3GPP TS38.212(v2.0.0)中的5.3.2节的LDPC(Low Density Parity Check Code,低密度奇偶校验码)编码。
作为一个实施例,所述信道编码是3GPP TS38.212(v2.0.0)中的5.3.1节的极化(Polar)编码。
作为一个实施例,所述信道编码是3GPP TS36.212中的5.1.3.2节的Turbo编码。
作为一个实施例,所述信道编码是3GPP TS36.212中的5.1.3.1节的卷积编码。
作为一个实施例,所述第一比特块是从高层传递到物理层的。
作为一个实施例,所述第一比特块是一个TB(Transport Block,传输块)的全部或一部分。
作为一个实施例,所述第一比特块是一个TB(Transport Block,传输块)添加了CRC(循环冗余校验,Cyclic Redundancy Check)后得到的。
作为一个实施例,所述第一比特块是一个TB(Transport Block,传输块)添加了传输块CRC后并进行分段和码块CRC添加得到的。
作为一个实施例,所述第一比特块是一个CBG(Code Block Group,码块组)中的全部或部分。
作为一个实施例,所述第一比特块是一个CB(Code Block,码块)中的全部或部分。
作为一个实施例,所述第一比特块携带一个Msg-3的重传。
作为一个实施例,所述第一比特块携带一个Msg-3的初传。
作为一个实施例,所述第一时间窗包括正整数个连续的子帧(Subframe)。
作为一个实施例,所述第一时间窗包括正整数个连续的时隙(Slot)。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号(OFDM symbol)。
作为一个实施例,所述第一时间窗的时间长度的单位是毫秒。
作为一个实施例,所述第一时间窗的时间长度的单位是时隙的数量。
作为一个实施例,所述第一时间窗的时间长度等于3GPP TS36.331中的IE“ra-ContentionResolutionTimer”所标识的时间长度。
作为一个实施例,所述第一时间窗的时间长度等于3GPP TS38.331中的IE“ra-ContentionResolutionTimer”所标识的时间长度。
作为一个实施例,所述第一类通信节点在所述第一时间窗中盲检测所述第一信令。
作为一个实施例,所述第一类通信节点在所述第一时间窗中基于RNTI(无线网络临时标识,Radio Network Temporary Identity)盲检测所述第一信令。
作为一个实施例,所述第一类通信节点在所述第一时间窗中基于对所述第一信令的CRC加扰的RNTI(无线网络临时标识,Radio Network Temporary Identity))进行盲检测来检测所述第一信令。
作为一个实施例,所述第一信令是一个物理层信令。
作为一个实施例,所述第一信令是通过PDCCH传输的。
作为一个实施例,所述第一信令包括一个DCI(Downlink Control Information,下行控制信息)中的全部或部分域(Field)。
作为一个实施例,所述第一信令是在公共搜索空间(CSS,Common Search Space)中进行检测的。
作为一个实施例,所述第一信令是在用户特有搜索空间(USS,UE-specific Search Space)中进行检测的。
作为一个实施例,所述第一时间间隔的所述时间长度大于0毫秒。
作为一个实施例,所述第一时间间隔的所述时间长度等于0毫秒。
作为一个实施例,所述第一无线信号的发送结束时刻不晚于所述第一时间窗的起始时刻。
作为一个实施例,所述第一无线信号的发送结束时刻早于所述第一时间窗的起始时刻。
作为一个实施例,所述第一标识和所述第二标识都是非负整数。
作为一个实施例,所述第一标识是为所述第一类通信节点所分配的C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)。
作为一个实施例,所述第一标识是所述第一类通信节点的用户设备冲突解决标识(UE Contention Resolution Identity)。
作为一个实施例,所述第一标识是一个通过48比特表示的非负整数。
作为一个实施例,所述第一标识一个所述第一类通信节点随机选择的一个非负整数的随机数。
作为一个实施例,所述第二标识是为所述第一类通信节点所分配的C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)。
作为一个实施例,所述第二标识是一个TC-RNTI(Temporary Cell Radio Network Temporary Identifier,临时小区无线网络临时标识)。
作为一个实施例,所述第二标识是一个所述第一类通信节点接收到的TC-RNTI(Temporary Cell Radio Network Temporary Identifier,临时小区无线网络临时标识)。
作为一个实施例,所述第二标识被用于所述第一信令的检测是指:所述第二标识被用于所述第一信令的盲检测。
作为一个实施例,所述第二标识被用于所述第一信令的检测是指:所述第二标识被用于加扰携带所述第一信令的PDCCH的CRC。
作为一个实施例,所述第二标识被用于所述第一信令的检测是指:所述第二标识被用于携带所述第一信令的PDCCH的CRC的掩码(Mask)。
作为一个实施例,所述第二标识被用于所述第一信令的检测是指:所述第一类通信节点通过携带所述第一信令的PDCCH的CRC校验是否通过判断所述第一信令是否被检测到,所述第二标识被用于加扰携带所述第一信令的PDCCH的CRC。
作为一个实施例,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码是指:所述第二标识被用于初始化所述第一比特块经过信道编码的所述输出比特的扰码。
作为一个实施例,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码是指:所述第二标识被用于初始化所述第一比特块经过信道编码的所述输出比特的扰码的生成寄存器。
作为一个实施例,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码是通过下式完成的:
c init=n RNTI·2 15+n ID
其中n RNTI标识所述第二标识,n ID∈{0,1,...,1023}是通过高层信令配置的或者等于物理小区ID,c init被用于初始化所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码的生成寄存器。
作为一个实施例,所述空中接口(Air Interface)是无线的。
作为一个实施例,所述空中接口(Air Interface)包括无线信道。
作为一个实施例,所述空中接口是第二类通信节点和所述第一类通信节点之间的接口。
作为一个实施例,所述空中接口是Uu接口。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)***网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于第一类通信节点设备(UE)和第二类通信节点设备(gNB,eNB或NTN中的卫星或飞行器)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一类通信节点设备与第二类通信节点设备之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分 组数据汇聚协议)子层304,这些子层终止于网络侧上的第二类通信节点设备处。虽然未图示,但第一类通信节点设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供第二类通信节点设备之间的对第一类通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在第一类通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于第一类通信节点设备和第二类通信节点设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用第二类通信节点设备与第一类通信节点设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一类通信节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二类通信节点设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第三无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第四无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第四无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第四无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述MAC302
作为一个实施例,本申请中的所述第三信令生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB/eNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包 分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包(比如本申请中的第一信息,第二信息,第二无线信号和第四无线信号所携带的上层包)提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到UE450的信令,比如本申请中的第一信息,第二信息,第一信令,第二信令和第三信令均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,信号处理功能包括译码和交织以促进UE450处的前向纠错(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信息,第一信令,第二信令,第三信令,第二无线信号和第四无线信号在物理层的对应信道由发射处理器415映射到目标空口资源上并经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中的第一信息,第一信令,第二信令,第三信令,第二无线信号和第四无线信号的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由gNB410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层,控制器/处理器490对本申请中的第一信息,第二信息,第二无线信号和第四无线信号进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,使用数据源467来将信号的相关配置数据提供到控制器/处理器490。数据源467表示L2层之上的所有协议层,本申请中的第一无线信号在数据源467生成。控制器/处理器490通过基于gNB410的配置分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能,。信号发射处理功能包括编码,调制等,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号进行基带信 号生成,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去,物理层的信号(包括本申请中的第三无线信号的生成与发射以及第一无线信号在物理层的处理)生成于发射处理器455。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括本申请中的第三无线信号的接收以及第一无线信号在物理层的接收,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案的解调,随后解码以恢复在物理信道上由UE450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在接收处理器控制器/处理器440实施L2层。控制器/处理器可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个实施例,所述UE450对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述gNB410对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息和第二信息;发送第一无线信号;在第一时间窗中检测第一信令;其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识相同,或者所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息和第二信息;发送第一无线信号;在第一时间窗中检测第一信令;其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识相同,或者所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息和第二信息;接收第一无线信号;在第一时间窗中发送第一信令;其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识相同,或者所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息和第二 信息;接收第一无线信号;在第一时间窗中发送第一信令;其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识相同,或者所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中发送所述第二信息。
作为一个实施例,发射器456(包括天线460),发射处理器452和控制器/处理器490被用于本申请中发送所述第一无线信号。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二无线信号。
作为一个实施例,发射器456(包括天线460),发射处理器452和控制器/处理器490被用于本申请中发送所述第三无线信号。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中接收所述第二信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第四无线信号。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中接收所述第三信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的所述第一无线信号。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二无线信号。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的所述第三无线信号。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的所述第二信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第四无线信号。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的所述第三信令。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二类通信节点N1是第一类通信节点U2的服务小区的维持基站。
对于 第二类通信节点N1,在步骤S11中发送第一信息,在步骤S12中发送第二信息,在步骤S13中接收第三无线信号,在步骤S14中在第二时间窗中发送第二信令,在步骤S15中发送第四无线信号,在步骤S16中接收第一无线信号,在步骤S17中在第一时间窗中发送第一信令,在步骤S18中发送第二无线信号。
对于 第一类通信节点U2,在步骤S21中接收第一信息,在步骤S22中接收第二信息,在步骤S23中发送第三无线信号,在步骤S24中在第二时间窗中检测第二信令,在步骤S25中接收第四无线信号,在步骤S26中发送第一无线信号,在步骤S27中在第一时间窗中检测第一信令,在步骤S28中接收第二无线信号。
在实施例5中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输;所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输;所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输;所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
作为一个实施例,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
作为一个实施例,所述第二信令是一个物理层信令。
作为一个实施例,所述第二信令是通过PDCCH传输的。
作为一个实施例,所述第二信令包括一个DCI(Downlink Control Information,下行控制信息)中的全部或部分域(Field)。
作为一个实施例,所述第二信令是在公共搜索空间(CSS,Common Search Space)中进行检测的。
作为一个实施例,所述第二信令是在用户特有搜索空间(USS,UE-specific Search Space)中进行检测的。
作为一个实施例,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式(MCS,Modulation and Coding Scheme)是指:所述第二信令被用于直接指示所述第四无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式是指:所述第二信令被用于间接指示所述第四无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式是指:所述第二信令被用于显式指示所述第四无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式是指:所述第二信令被用于隐式指示所述第四无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第三标识被用于所述第二信令的检测是指:所述第三标识被用于所述第二信令的盲检测。
作为一个实施例,所述第三标识被用于所述第二信令的检测是指:所述第三标识被用于加扰携带所述第二信令的PDCCH的CRC。
作为一个实施例,所述第三标识被用于所述第二信令的检测是指:所述第三标识被用于携带所述第二信令的PDCCH的CRC的掩码(Mask)。
作为一个实施例,所述第三标识被用于所述第二信令的检测是指:所述第一类通信节点通过携带所述第二信令的PDCCH的CRC校验是否通过判断所述第二信令是否被检测到,所述第三标识被用于加扰携带所述第二信令的PDCCH的CRC。
实施例6
实施例6示例了根据本申请的一个实施例的另一幅无线信号传输流程图,如附图6所示。在附图6中,第二类通信节点N3是第一类通信节点U4的服务小区的维持基站。
对于 第二类通信节点N3,在步骤S31中发送第一信息,在步骤S32中发送第二信息,在步骤S33中接收第三无线信号,在步骤S34中在第二时间窗中发送第二信令,在步骤S35中发送第四无线信号,在步骤S36中发送第三信令,在步骤S37中接收第一无线信号,在步骤S38中在第一时间窗中发送第一信令,在步骤S39中发送第二无线信号。
对于 第一类通信节点U4,在步骤S41中接收第一信息,在步骤S42中接收第二信息,在步骤S43中发送第三无线信号,在步骤S44中在第二时间窗中检测第二信令,在步骤S45中接收第四无线信号,在步骤S46中接收第三信令,在步骤S47中发送第一无线信号,在步骤S48中在第一时间窗中检测第一信令,在步骤S49中接收第二无线信号。
在实施例6中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输;所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输;所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输;所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输;所述 第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
作为一个实施例,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
作为一个实施例,所述第三信令是一个物理层信令。
作为一个实施例,所述第三信令通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第三信令携带一个DCI中的全部后部分域。
作为一个实施例,所述第三信令包括上行授予(Uplink Grant)。
作为一个实施例,所述第三信令的接收起始时刻早于所述第一信令的接收起始时刻。
作为一个实施例,所述第三信令被用于调度Msg-3的重传。
作为一个实施例,所述第三信令携带一个DCI,所述第三信令所携带的DCI中的NDI(New Data Indicator,新数据指示)域未被翻转。
作为一个实施例,所述第三信令携带一个DCI,所述第三信令所携带的DCI中的NDI(New Data Indicator,新数据指示)域指示所述第一无线信号是一个重传。
作为一个实施例,所述第一无线信号所使用的冗余版本(RV,Redundancy Version)不等于0。
作为一个实施例,所述第一无线信号所使用的冗余版本(RV,Redundancy Version)等于1或2或3中之一。
实施例7
实施例7示例了根据本申请的一个实施例的第一时间间隔和第一时间窗的关系的示意图,如附图7所示。在附图7中,横轴代表时间,斜线填充的矩形代表第一无线信号,交叉线填充的矩形代表第一信令。
在实施例7中,本申请中的所述第一信息被用于确定第一时间窗的时间长度,本申请中的所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,本申请中的所述第二信息被用于确定所述第一时间间隔的时间长度。
作为一个实施例,所述第一时间窗包括正整数个连续的子帧(Subframe)。
作为一个实施例,所述第一时间窗包括正整数个连续的时隙(Slot)。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号(OFDM symbol)。
作为一个实施例,所述第一时间窗的时间长度的单位是毫秒。
作为一个实施例,所述第一时间窗的时间长度的单位是时隙的数量。
作为一个实施例,所述第一时间窗的时间长度等于3GPP TS36.331中的IE“ra-ContentionResolutionTimer”所标识的时间长度。
作为一个实施例,所述第一时间窗的时间长度等于3GPP TS38.331中的IE“ra-ContentionResolutionTimer”所标识的时间长度。
作为一个实施例,本申请中的所述第一类通信节点在所述第一时间窗中盲检测所述第一信令。
作为一个实施例,本申请中的所述第一类通信节点在所述第一时间窗中基于RNTI(无线网络临时标识,Radio Network Temporary Identity)盲检测所述第一信令。
作为一个实施例,本申请中的所述第一类通信节点在所述第一时间窗中基于对所述第一信令的CRC加扰的RNTI(无线网络临时标识,Radio Network Temporary Identity))进行盲检测来检测所述第一信令。
作为一个实施例,所述第一时间间隔的所述时间长度大于0毫秒。
作为一个实施例,所述第一时间间隔的所述时间长度等于0毫秒。
作为一个实施例,所述第一无线信号的发送结束时刻不晚于所述第一时间窗的起始时刻。
作为一个实施例,所述第一无线信号的发送结束时刻早于所述第一时间窗的起始时刻。
实施例8
实施例8示例了根据本申请的一个实施例的第一标识和第二标识的关系的示意图,如附图8所示。在附图8中,情况A对应基于非竞争的随机接入过程,第一标识是一个C-RNTI,第二标识是和第一标识相同的C-RNTI;情况B对应基于竞争的随机接入过程,第一标识是一个冲突解决标识,第二标识是TC-RNTI。
在实施例8中,第一比特块经过信道编码的输出比特被用于生成本申请中的所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于本申请中的所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同。
作为一个实施例,所述第一标识和所述第二标识相同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码。
作为一个实施例,所述第一标识和所述第二标识相同,所述第一类通信节点接收到的TC-RNTI(Temporary Cell Radio Network Temporary Identifier,临时小区无线网络临时标识)被用于生成所述第一比特块经过信道编码的所述输出比特的扰码。
实施例9
实施例9示例了根据本申请的一个实施例的第一信令和第二无线信号的关系的示意图,如附图9所示。在附图9中,横轴代表时间,纵轴代表频率,斜线填充的矩形代表第一信令,十字线填充的矩形代表第二无线信号。
在实施例9中,本申请中的所述第一信令被用于指示本申请中的所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带本申请中的所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
作为一个实施例,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式(MCS,Modulation and Coding Scheme)是指:所述第一信令被用于直接指示所述第二无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式是指:所述第一信令被用于间接指示所述第二无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式是指:所述第一信令被用于显式指示所述第二无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式是指:所述第一信令被用于隐式指示所述第二无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第二无线信号携带Msg-4(随机接入信息4)。
作为一个实施例,所述第二无线信号被用于随机接入过程。
作为一个实施例,所述第二无线信号通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二无线信号通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第二比特块经过LDPC(Low Density Parity Check Code,低密度奇偶校验码)信道编码的输出比特被用于生成所述第二无线信号。
作为一个实施例,所述第二比特块经过Polar(极化码)信道编码的输出比特被用于生成所述第二无线信号。
作为一个实施例,所述第二比特块经过Turbo码信道编码的输出比特被用于生成所述第二无线信号。
作为一个实施例,所述第二比特块经过卷积码信道编码的输出比特被用于生成所述第二无线信号。
作为一个实施例,所述第二比特块经过3GPP TS38.212中的5.3.2节的LDPC(Low Density Parity Check Code,低密度奇偶校验码)信道编码的输出比特被用于生成所述第二无线信号。
作为一个实施例,所述第二比特块经过信道编码的所述输出比特依次经过速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第二无线信号。
作为一个实施例,所述第二比特块经过信道编码的所述输出比特依次经过速率匹配(Rate Matching),与其它比特的串联(Concatenation)后再依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,所述第二比特块是从高层传递到物理层的。
作为一个实施例,所述第二比特块是一个TB(Transport Block,传输块)的全部或一部分。
作为一个实施例,所述第二比特块是一个TB(Transport Block,传输块)添加了CRC(循环冗余校验,Cyclic Redundancy Check)后得到的。
作为一个实施例,所述第二比特块是一个TB(Transport Block,传输块)添加了传输块CRC后并进行分段和码块CRC添加得到的。
作为一个实施例,所述第二比特块是一个CBG(Code Block Group,码块组)中的全部或部分。
作为一个实施例,所述第二比特块是一个CB(Code Block,码块)中的全部或部分。
作为一个实施例,所述第二比特块携带一个Msg-4。
作为一个实施例,所述第二比特块携带所述第一标识是指:所述第一标识作为所述第二比特块中的一部分预定义的字段。
作为一个实施例,所述第二比特块携带所述第一标识是指:所述第二比特块中包括一个MAC(Medium Access Control,媒体接入控制)SDU(Service Data Unit,业务数据单元),所述MAC SDU中包括所述第一标识的字段。
作为一个实施例,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码是指:所述第二标识被用于初始化所述第二比特块经过信道编码的所述输出比特的扰码。
作为一个实施例,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码是指:所述第二标识被用于初始化所述第二比特块经过信道编码的所述输出比特的扰码的生成寄存器。
作为一个实施例,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码是通过下式完成的:
c init=n RNTI·2 15+n ID
其中n RNTI标识所述第二标识,n ID∈{0,1,...,1023}是通过高层信令配置的或者等于物理小区ID,c init被用于初始化所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码的生成寄存器。
实施例10
实施例10示例了本申请的一个实施例的第二时间间隔和第二时间窗的关系的示意图,如附图10所示。在附图10中,横轴代表时间,斜线填充的矩形代表第三无线信号,交叉线填充的矩形代表第二信令。
在实施例10中,本申请中的所述第二信令在本申请中的所述第二时间窗中检测,本申请中的所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
作为一个实施例,所述第三无线信号的发送结束时刻不晚于所述第二时间窗的起始时刻。
作为一个实施例,所述第三无线信号的发送结束时刻早于所述第二时间窗的起始时刻。
作为一个实施例,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关是指:所述第二信息被用于同时确定所述第二时间间隔的时间长度和所述第一时间间隔的时间长度。
作为一个实施例,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关是指:所述第二时间间隔的时间长度和所述第一时间间隔的时间长度相等。
作为一个实施例,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关是指:所述第二时间间隔的时间长度和所述第一时间间隔的时间长度成线性关系。
作为一个实施例,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关是指:所述第二时间间隔的时间长度和所述第一时间间隔的时间长度成正比关系。
作为一个实施例,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关是指:所述第二时间间隔的时间长度等于第一时长偏移和所述第一时间间隔的时间长度的和,所述第一时长偏移是一个预定义的时间长度。
作为一个实施例,所述第二时间窗的时间长度是预定义的。
作为一个实施例,所述第二时间窗的时间长度是一个固定的值。
作为一个实施例,所述第二时间窗的时间长度是可配置的。
作为一个实施例,所述第二时间窗为RAR(Random Access Response)窗。
作为一个实施例,所述第二时间窗的时间长度等于3GPP TS 38.331中的IE“ra-ResponseWindow”所配置的长度。
作为一个实施例,所述第二时间窗的时间长度等于3GPP TS 36.331中的IE“ra-ResponseWindow”所配置的长度。
作为一个实施例,所述第三无线信号通过PRACH(Physical Random Access Channel,物理随机接入信道)传输的。
作为一个实施例,所述第三无线信号携带前导序列(Preamble)。
作为一个实施例,所述第三无线信号通过RACH(Random Access Channel,随机接入信道)传输。
作为一个实施例,所述第三无线信号由一个特征序列生成,所述特征序列是ZC(Zadoff-Chu)序列或伪随机序列中之一。
作为一个实施例,所述第三无线信号由一个特征序列生成,所述特征序列是整数个正交序列或非正交序列中之一。
作为一个实施例,所述第三无线信号所占用的空口资源是指时频资源和码域资源中至少之一。
作为一个实施例,所述第三无线信号所占用的空口资源是指生成所述第三无线信号的特征序列和传输所述第三无线信号的时频资源中至少之一。
作为一个实施例,所述第三标识是一个16位二进制的非负整数。
作为一个实施例,所述第三标识是RA-RNTI(Random Access Radio Network Temporary Identity,随机接入无线网络临时标识)。
作为一个实施例,所述第三无线信号所占用的空口资源被用于确定所述第三标识是指:所述第三无线信号所占用的空口资源被所述第一类通信节点用于确定所述第三标识。
作为一个实施例,所述第三无线信号所占用的空口资源被用于确定所述第三标识是指:所述第三无线信号所占用的空口资源根据给定的映射规则被所述第一类通信节点用于确定所述第三标识。
作为一个实施例,所述第三无线信号所占用的空口资源被用于确定所述第三标识是指:所述第三无线信号所占用的空口资源根据以下运算确定所述第三标识:
RA-RNTI=1+s_id+14*t_id+14*X*f_id+14*X*Y*ul_carrier_id
其中,RA-RNTI代表所述第三标识,s_id是所述第三无线信号所占用的空口资源中的第一个OFDM符号在所属的时隙中的索引,t_id是所述第三无线信号所占用空口资源所包括的或所属的第一个时隙在所属的***帧中的索引,f_id是所述第三无线信号在频域的索引,ul_carrier_id是所述第三无线信号所属的上行载波的索引(对于正常载波该索引等于0,对于补充上行载波该索引等于1),X和Y的值是预定义的或者是可配置的。
实施例11
实施例11示例了根据本申请的一个实施例的第一无线信号和第一发送定时调整量的关系的示意图,如附图11所示。在附图11中,横轴代表时间,在情况A中,第一发送定时调整量被用于确定第一无线信号的发送定时,在情况B中,第一发送定时调整量以及一个和第一时间间隔的时间长度有关的定时调整量共同被用于确定第一无线信号的发送定时。
在实施例11中,第三比特块经过信道编码的输出比特被用于生成本申请中的所述第四无线信号,所述第三比特块携带本申请中的所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;本申请中的所述第一无线信号的发送定时和所述第一发送定时调整量以及本申请中的所述第一时间间隔的时间长度都有关。
作为一个实施例,所述第四无线信号携带Msg-2(随机接入信息2)。
作为一个实施例,所述第四无线信号被用于随机接入过程。
作为一个实施例,所述第四无线信号通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第四无线信号通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三比特块经过LDPC(Low Density Parity Check Code,低密度奇偶校验码)信道编码的输出比特被用于生成所述第四无线信号。
作为一个实施例,所述第三比特块经过Polar(极化码)信道编码的输出比特被用于生成所述第四无线信号。
作为一个实施例,所述第三比特块经过Turbo码信道编码的输出比特被用于生成所述第四无线信号。
作为一个实施例,所述第三比特块经过卷积码信道编码的输出比特被用于生成所述第四无线信号。
作为一个实施例,所述第三比特块经过3GPP TS38.212中的5.3.2节的LDPC(Low Density Parity Check Code,低密度奇偶校验码)信道编码的输出比特被用于生成所述第四无线信号。
作为一个实施例,所述第三比特块经过信道编码的所述输出比特依次经过速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第四无线信号。
作为一个实施例,所述第三比特块经过信道编码的所述输出比特依次经过速率匹配(Rate Matching),与其它比特的串联(Concatenation)后再依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),基带信号发生(Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第四无线信号。
作为一个实施例,所述第三比特块是从高层传递到物理层的。
作为一个实施例,所述第三比特块是一个TB(Transport Block,传输块)的全部或一部分。
作为一个实施例,所述第三比特块是一个TB(Transport Block,传输块)添加了CRC(循环冗余校验,Cyclic Redundancy Check)后得到的。
作为一个实施例,所述第三比特块是一个TB(Transport Block,传输块)添加了传输块CRC后并进行分段和码块CRC添加得到的。
作为一个实施例,所述第三比特块是一个CBG(Code Block Group,码块组)中的全部或部分。
作为一个实施例,所述第三比特块是一个CB(Code Block,码块)中的全部或部分。
作为一个实施例,所述第三比特块携带一个Msg-2。
作为一个实施例,所述第三比特块携带所述第二标识是指:所述第二标识作为所述第三比特块中的一部分预定义的字段。
作为一个实施例,所述第三比特块携带所述第二标识是指:所述第三比特块中包括一个MAC(Medium Access Control,媒体接入控制)PDU(Packet Data Unit,包数据单元),所述MAC PDU中包括所述第一标识的字段。
作为一个实施例,所述第三比特块携带所述第一发送定时调整量是指:所述第第一发送定时调整量作为所述第三比特块中的一部分预定义的字段。
作为一个实施例,所述第三比特块携带所述第一发送定时调整量是指:所述第三比特块中包括一个MAC(Medium Access Control,媒体接入控制)PDU(Packet Data Unit,包数据单元),所述MAC PDU中包括所述第一发送定时调整量的字段。
作为一个实施例,所述第一发送定时调整量是RAR(Random Access Response,随机接入响应)中所包括的TA(Timing Advance,时间提前量)。
作为一个实施例,所述第一无线信号的发送定时由所述第一无线信号的TA值确定的。
作为一个实施例,所述第一发送定时调整量为非负数。
作为一个实施例,所述第一发送定时调整量的单位为毫秒。
作为一个实施例,所述第一发送定时调整量的最小调整步长的单位是毫秒。
作为一个实施例,所述第一发送定时调整量的单位为微秒。
作为一个实施例,所述第一发送定时调整量的最小调整步长的单位是微秒。
作为一个实施例,所述第一发送定时调整量的最小调整步长和所述第四无线信号的子载波间隔(SCS,Subcarrier Spacing)有关。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一发送定时调整量和所述第一时间间隔的时间长度有关,所述第一无线信号的发送定时和所述第一发送定时调整量有关。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一发送定时调整量的调整步长和所述第一时间间隔的时间长度有关,所述第一无线信号的发送定时和所述第一发送定时调整量有关。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一发送定时调整量和所述第一时间间隔的时间长度的和被用于确定所述第一无线信号的发送定时。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一无线信号的发送定时和所述第一发送定时调整量成线性关系,所述第一无线信号的发送定时和所述第一时间间隔的时间长度成线性关系。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一发送定时调整量与第二发送定时调整量的和被用于确定所述第一无线信号的发送定时,所述第二发送定时调整量和所述第一时间间隔的时间长度成线性关系。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一发送定时调整量与第二发送定时调整量的和被用于确定所述第一无线信号的发送定时,所述第二信息被同时用于确定所述第二发送定时调整量和所述第一时间间隔的时间长度。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一发送定时调整量与第二发送定时调整量的和被用于确定所述第一无线信号的发送定时,所述第二信息指示参考时间长度,所述参考时间长度被同时用于确定所述第二发送定时调整量和所述第一时间间隔的时间长度。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一发送定时调整量与第二发送定时调整量的和被用于确定所述第一无线信号的发送定时,所述第二信息指示所述第二信息的发送者的参考高度,所述高度被同时用于确定所述第二发送定时调整量和所述第一时间间隔的时间长度。
作为一个实施例,所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关是指:所述第一无线信号的相对与所述第一类通信节点的下行接收的时间提前量和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关。
实施例12
实施例12示例了根据本申请的一个实施例的第二信令,第三信息和第一无线信号的关系的示意图,如附图12所示。在附图12中,横轴代表时间,斜线填充的矩形代表第二信令,十字线填充的矩形代表第三信息,交叉线填充的矩形代表第一无线信号。
在实施例12中,本申请中的所述第二信令被用于指示本申请中的所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
作为一个实施例,所述第三比特块还携带所述第三信息是指:所述第三信息作为所述第三比特块中的一部分预定义的字段。
作为一个实施例,所述第三比特块还携带所述第三信息是指:所述第三比特块中包括一个MAC(Medium Access Control,媒体接入控制)PDU(Packet Data Unit,包数据单元),所述MAC PDU中包括所述第三信息的字段。
作为一个实施例,所述第三信息包括上行授予(Uplink Grant)中的全部或部分。
作为一个实施例,所述第三信息包括RAR(Random Access Response)中的上行授予(Uplink Grant)中的全部或部分。
作为一个实施例,所述第三信息通过所述第三比特块的MAC负载(payload)传输。
作为一个实施例,所述第三信息是一个MAC层信息。
作为一个实施例,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式是指:所述第三信息被用于直接指示所述第一无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式是指:所述第三信息被用于间接指示所述第一无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式是指:所述第三信息被用于显式指示所述第一无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式是指:所述第三信息被用于隐式指示所述第一无线信号所占用的时频资源和调制编码方式。
作为一个实施例,所述第三标识被用于生成所述第三比特块经过信道编码的所述输出比特的扰码是指:所述第三标识被用于初始化所述第三比特块经过信道编码的所述输出比特的扰码。
作为一个实施例,所述第三标识被用于生成所述第三比特块经过信道编码的所述输出比特的扰码是指:所述第三标识被用于初始化所述第三比特块经过信道编码的所述输出比特的扰码的生成寄存器。
作为一个实施例,所述第三标识被用于生成所述第三比特块经过信道编码的所述输出比特的扰码是通过下式完成的:
c init=n RNTI·2 15+n ID
其中n RNTI标识所述第三标识,n ID∈{0,1,...,1023}是通过高层信令配置的或者等于物理小区ID,c init被用于初始化所述第三标识被用于生成所述第三比特块经过信道编码的所述输出比特的扰码的生成寄存器。
实施例13
实施例13示例了一个第一类通信节点设备中的处理装置的结构框图,如附图13所示。附图13中,第一类通信节点设备处理装置1300主要由第一接收机1301,第一收发机1302和第二接收机1303组成。第一接收机1301包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一收发机1302包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452,发射处理器455和控制器/处理器490,第二接收机1303包括发射器/接收器456(包括天线460)和接收处理器452。
在实施例13中,第一接收机1301接收第一信息和第二信息;第一收发机1302发送第一无线信号;第二接收机1303在第一时间窗中检测第一信令;其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,第一收发机1302还接收第二无线信号;其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
作为一个实施例,第一收发机1302还发送第三无线信号;第二接收机1303还在第二时间窗中检测第二信令;其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
作为一个实施例,第一收发机1302还接收第四无线信号;其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
作为一个实施例,第一收发机1302还接收第四无线信号;其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输;所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
作为一个实施例,第二接收机1303还接收第三信令;其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
实施例14
实施例14示例了一个第二类通信节点设备中的处理装置的结构框图,如附图14所示。在附图14中,第二类通信节点设备处理装置1400主要由第一发射机1401,第二收发机1402和第二发射机1403组成。第一发射机1401包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440;第二收发机1402包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415,接收处理器412和控制器/处理器440;第二发射机1403包括本申请附图4中的发射器/接收器416(包括天线420)和发射处理器415。
在实施例14中,第一发射机1401发送第一信息和第二信息;第二收发机1402接收第一无线信号;第二发射机1403在第一时间窗中发送第一信令;其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
作为一个实施例,第二收发机1402还发送第二无线信号;其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比 特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
作为一个实施例,第二收发机1402还接收第三无线信号;第二发射机1403还在第二时间窗中发送第二信令;其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
作为一个实施例,第二收发机1402还发送第四无线信号;其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
作为一个实施例,第二收发机1402还发送第四无线信号;其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输;所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
作为一个实施例,第二发射机1403还发送第三信令;其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种用于无线通信中的第一类通信节点中的方法,其特征在于,包括:
    接收第一信息和第二信息;
    发送第一无线信号;
    在第一时间窗中检测第一信令;
    其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收第二无线信号;
    其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,还包括:
    发送第三无线信号;
    在第二时间窗中检测第二信令;
    其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,还包括:
    接收第四无线信号;
    其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
  5. 根据权利要求4所述的方法,其特征在于,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
  6. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,还包括:
    接收第三信令;
    其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
  7. 一种用于无线通信中的第二类通信节点中的方法,其特征在于,包括:
    发送第一信息和第二信息;
    接收第一无线信号;
    在第一时间窗中发送第一信令;
    其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息 被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    发送第二无线信号;
    其中,所述第一信令被用于指示所述第二无线信号所占用的时频资源和调制编码方式,第二比特块经过信道编码的输出比特被用于生成所述第二无线信号,所述第二比特块携带所述第一标识,所述第二标识被用于生成所述第二比特块经过信道编码的所述输出比特的扰码,所述第二比特块包括正整数个比特;所述第二无线信号通过所述空中接口传输。
  9. 根据权利要求7或8中任一权利要求所述的方法,其特征在于,还包括:
    接收第三无线信号;
    在第二时间窗中发送第二信令;
    其中,所述第三无线信号的发送结束时刻到所述第二时间窗的起始时刻的时间间隔为第二时间间隔,所述第二时间间隔的时间长度和所述第一时间间隔的时间长度有关;第三标识被用于所述第二信令的检测,所述第三无线信号所占用的空口资源被用于确定所述第三标识;所述第三无线信号和所述第二信令都通过所述空中接口传输。
  10. 根据权利要求7至9中任一权利要求所述的方法,其特征在于,还包括:
    发送第四无线信号;
    其中,所述第二信令被用于指示所述第四无线信号所占用的时频资源和调制编码方式,第三比特块经过信道编码的输出比特被用于生成所述第四无线信号,所述第三比特块携带所述第二标识,所述第三比特块还携带第一发送定时调整量,所述第三比特块包括正整数个比特;所述第一无线信号的发送定时和所述第一发送定时调整量以及所述第一时间间隔的时间长度都有关;所述第四无线信号通过所述空中接口传输。
  11. 根据权利要求10所述的方法,其特征在于,所述第三比特块还携带第三信息,所述第三信息被用于指示所述第一无线信号所占用的时频资源和调制编码方式,所述第三标识被用于生成所述第三比特块经过信道编码的输出比特的扰码。
  12. 根据权利要求7至10中任一权利要求所述的方法,其特征在于,还包括:
    发送第三信令;
    其中,所述第三信令被用于指示所述第一无线信号所占用的时频资源和所使用的冗余版本以及所采用的调制编码方式。
  13. 一种用于无线通信中的第一类通信节点设备,其特征在于,包括:
    第一接收机,接收第一信息和第二信息;
    第一收发机,发送第一无线信号;
    第二接收机,在第一时间窗中检测第一信令;
    其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
  14. 一种用于无线通信中的第二类通信节点设备,其特征在于,包括:
    第一发射机,发送第一信息和第二信息;
    第二收发机,接收第一无线信号;
    第二发射机,在第一时间窗中发送第一信令;
    其中,所述第一信息被用于确定所述第一时间窗的时间长度,所述第一无线信号的发送结束时刻到所述第一时间窗的起始时刻的时间间隔为第一时间间隔,所述第二信息被用于确定所述第一时间间隔的时间长度;第一比特块经过信道编码的输出比特被用于生成所述第一无线信号,所述第一比特块携带第一标识,第二标识被用于所述第一信令的检测,所述第一比特块包括正整数个比特;所述第一标识和所述第二标识不同,所述第二标识被用于生成所述第一比特块经过信道编码的所述输出比特的扰码,或者所述第一标识和所述第二标识相同;所述第一信息,所述第二信息,所述第一无线信号和所述第一信令都通过空中接口传输。
PCT/CN2019/071531 2018-01-30 2019-01-14 一种用于无线通信的通信节点中的方法和装置 WO2019149050A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/937,609 US11375512B2 (en) 2018-01-30 2020-07-24 Method and device in communication node used for wireless communication
US17/749,119 US11711835B2 (en) 2018-01-30 2022-05-19 Method and device in communication node used for wireless communication
US18/204,393 US20230309130A1 (en) 2018-01-30 2023-06-01 Method and device in communication node used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810089649.3A CN110098892B (zh) 2018-01-30 2018-01-30 一种用于无线通信的通信节点中的方法和装置
CN201810089649.3 2018-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/937,609 Continuation US11375512B2 (en) 2018-01-30 2020-07-24 Method and device in communication node used for wireless communication

Publications (1)

Publication Number Publication Date
WO2019149050A1 true WO2019149050A1 (zh) 2019-08-08

Family

ID=67442164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071531 WO2019149050A1 (zh) 2018-01-30 2019-01-14 一种用于无线通信的通信节点中的方法和装置

Country Status (3)

Country Link
US (3) US11375512B2 (zh)
CN (3) CN110098892B (zh)
WO (1) WO2019149050A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021063173A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 定时提前的指示方法、通信装置及存储介质
WO2021143531A1 (en) * 2020-01-13 2021-07-22 Shanghai Langbo Communication Technology Company Limited Method and device used for wireless communication
WO2021228168A1 (en) * 2020-05-13 2021-11-18 Shanghai Langbo Communication Technology Company Limited Method and device in a node for wireless communication
CN113676989A (zh) * 2020-05-13 2021-11-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114124319A (zh) * 2020-08-10 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087462A1 (zh) * 2018-11-01 2020-05-07 北京小米移动软件有限公司 资源位置确定方法、装置、基站及存储介质
CN112054833B (zh) * 2019-06-06 2021-11-23 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN117915359A (zh) * 2019-06-19 2024-04-19 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN113647040B (zh) * 2019-08-14 2024-05-10 Oppo广东移动通信有限公司 数据传输方法、装置及***
EP3975659B1 (en) * 2019-08-21 2024-05-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Channel monitoring method and apparatus, terminal, base station and storage medium
EP4012998B1 (en) * 2019-09-30 2024-06-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method, terminal device, network device and storage medium
US11425760B2 (en) * 2019-10-04 2022-08-23 Qualcomm Incorporated Multi-root preamble techniques for wireless communications systems
CN112689325B (zh) * 2019-10-20 2022-06-21 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN112825497B (zh) * 2019-11-21 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112839384B (zh) * 2019-11-25 2022-08-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112911697B (zh) * 2019-12-03 2022-05-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113079580B (zh) * 2020-01-03 2022-11-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115474288A (zh) * 2020-01-08 2022-12-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116471657A (zh) * 2020-04-30 2023-07-21 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN113853028A (zh) * 2020-06-25 2021-12-28 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN111970765B (zh) * 2020-08-10 2022-05-31 杭州电子科技大学 一种大规模终端接入方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204837A (zh) * 2016-03-17 2017-09-26 上海朗帛通信技术有限公司 一种基于蜂窝网的低延迟通信的方法和装置
CN107343297A (zh) * 2016-05-01 2017-11-10 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107404369A (zh) * 2016-05-21 2017-11-28 上海朗帛通信技术有限公司 一种无线通信中的ue和基站中的方法和装置
CN107623649A (zh) * 2016-07-15 2018-01-23 上海朗帛通信技术有限公司 一种无线传输中的方法和装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
KR100968020B1 (ko) * 2008-06-18 2010-07-08 엘지전자 주식회사 랜덤 액세스 절차를 수행하는 방법 및 그 단말
US8073463B2 (en) * 2008-10-06 2011-12-06 Andrew, Llc System and method of UMTS UE location using uplink dedicated physical control channel and downlink synchronization channel
CN101742682B (zh) * 2008-11-12 2013-03-27 中兴通讯股份有限公司 一种lte***中的随机接入方法
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR101814396B1 (ko) * 2010-04-28 2018-01-03 엘지전자 주식회사 경쟁 기반의 식별자를 이용한 상향링크 신호 전송 방법
JP4928621B2 (ja) * 2010-05-27 2012-05-09 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
US20110310854A1 (en) * 2010-06-17 2011-12-22 Jialin Zou Method of determining access times for wireless communication devices
KR101233186B1 (ko) * 2010-10-21 2013-02-15 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US20130010711A1 (en) * 2011-07-06 2013-01-10 Daniel Larsson Random Access with Primary and Secondary Component Carrier Communications
US9125218B2 (en) * 2011-09-16 2015-09-01 Htc Corporation Method of handling random access procedure on primary cell when random access procedure on secondary cell is ongoing or about to start
WO2013047130A1 (ja) * 2011-09-30 2013-04-04 シャープ株式会社 端末、通信システム、基地局および通信方法
CN104936207A (zh) * 2014-03-21 2015-09-23 上海贝尔股份有限公司 用于建立小数据传输连接的方法
CN105338589A (zh) * 2014-08-11 2016-02-17 中兴通讯股份有限公司 随机接入响应消息的传输方法及装置
US11057921B2 (en) * 2014-10-01 2021-07-06 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
CN106537724B (zh) * 2016-02-05 2020-01-10 Oppo广东移动通信有限公司 充电方法、适配器和移动终端
US10863536B2 (en) * 2016-07-22 2020-12-08 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method, and integrated circuit
JP2019195113A (ja) * 2016-09-02 2019-11-07 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10966127B2 (en) * 2016-11-18 2021-03-30 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method reducing handover delay
JP2020025152A (ja) * 2016-12-09 2020-02-13 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP2020036058A (ja) * 2017-01-10 2020-03-05 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
EP4164158A1 (en) * 2017-02-05 2023-04-12 LG Electronics, Inc. Method and apparatus for transmitting/receiving wireless signal in wireless communication system
JP2020065095A (ja) * 2017-02-20 2020-04-23 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US11419143B2 (en) * 2017-06-08 2022-08-16 Qualcomm Incorporated Random access procedure in a wireless backhaul network
CN109802732B (zh) * 2017-11-17 2021-02-12 华为技术有限公司 下行控制信道的监测方法和相关装置
ES2759624T3 (es) * 2017-12-13 2020-05-11 Asustek Comp Inc Método y aparato de manejo de temporizador de inactividad de BWP durante un procedimiento de acceso aleatorio en un sistema de comunicación inalámbrica
US10701734B2 (en) * 2017-12-28 2020-06-30 Asustek Computer Inc. Method and apparatus of selecting bandwidth part for random access (RA) procedure in a wireless communication system
US10772151B2 (en) * 2018-01-05 2020-09-08 Ofinno, Llc Beam management in discontinuous reception
EP3509373B1 (en) * 2018-01-09 2023-03-08 Comcast Cable Communications LLC Beam selection in beam failure recovery request retransmission
KR102472292B1 (ko) * 2018-01-10 2022-11-30 삼성전자 주식회사 무선 통신 시스템에서 경쟁 및 비경쟁 기반 빔 실패 복구를 수행하는 방법 및 장치
US11234244B2 (en) * 2018-07-05 2022-01-25 Asustek Computer Inc. Method and apparatus for performing random access resource selection in new radio access technology-unlicensed (NR-U) cells in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204837A (zh) * 2016-03-17 2017-09-26 上海朗帛通信技术有限公司 一种基于蜂窝网的低延迟通信的方法和装置
CN107343297A (zh) * 2016-05-01 2017-11-10 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107404369A (zh) * 2016-05-21 2017-11-28 上海朗帛通信技术有限公司 一种无线通信中的ue和基站中的方法和装置
CN107623649A (zh) * 2016-07-15 2018-01-23 上海朗帛通信技术有限公司 一种无线传输中的方法和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021063173A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 定时提前的指示方法、通信装置及存储介质
WO2021143531A1 (en) * 2020-01-13 2021-07-22 Shanghai Langbo Communication Technology Company Limited Method and device used for wireless communication
WO2021228168A1 (en) * 2020-05-13 2021-11-18 Shanghai Langbo Communication Technology Company Limited Method and device in a node for wireless communication
CN113676989A (zh) * 2020-05-13 2021-11-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113676989B (zh) * 2020-05-13 2023-02-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114124319A (zh) * 2020-08-10 2022-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114124319B (zh) * 2020-08-10 2023-06-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
US11375512B2 (en) 2022-06-28
CN111970088A (zh) 2020-11-20
CN110098892B (zh) 2020-09-01
US20230309130A1 (en) 2023-09-28
US20200359386A1 (en) 2020-11-12
CN111970089B (zh) 2024-05-14
CN111970089A (zh) 2020-11-20
US11711835B2 (en) 2023-07-25
US20220279519A1 (en) 2022-09-01
CN110098892A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2019149050A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019119411A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019157974A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN110581748B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2018141231A1 (zh) 一种用于无线通信中的用户设备、基站中的方法和装置
WO2019109270A1 (zh) 一种用于无线通信的通信节点中的方法和装置
US11909520B2 (en) Method and device in communication nodes used for random access in wireless communications
CN111988850B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018072605A1 (zh) 一种用户设备、基站中的随机接入的方法和装置
CN111436157B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019134152A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN111385905B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2022227428A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN110213792B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2021139551A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19747236

Country of ref document: EP

Kind code of ref document: A1