WO2018133511A1 - 混合动力无人机 - Google Patents

混合动力无人机 Download PDF

Info

Publication number
WO2018133511A1
WO2018133511A1 PCT/CN2017/110529 CN2017110529W WO2018133511A1 WO 2018133511 A1 WO2018133511 A1 WO 2018133511A1 CN 2017110529 W CN2017110529 W CN 2017110529W WO 2018133511 A1 WO2018133511 A1 WO 2018133511A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
permanent magnet
power output
rechargeable battery
power supply
Prior art date
Application number
PCT/CN2017/110529
Other languages
English (en)
French (fr)
Inventor
刘江
Original Assignee
北京瑞深航空科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京瑞深航空科技有限公司 filed Critical 北京瑞深航空科技有限公司
Priority to KR1020187023657A priority Critical patent/KR102145118B1/ko
Priority to JP2018544179A priority patent/JP6684359B2/ja
Priority to US16/076,674 priority patent/US10875646B2/en
Publication of WO2018133511A1 publication Critical patent/WO2018133511A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/026Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • B64U30/297Tilting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • B64D2041/002Mounting arrangements for auxiliary power units (APU's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the technical field of drones, in particular to a hybrid drone.
  • Energy density refers to the amount of energy stored in a certain space or mass. The higher the energy density, the more energy can be released under the same mass.
  • the lithium ion battery of the power supply device used on the current unmanned aircraft has an energy density of approximately 150-210 Wh/kg. Due to the limitation of the total weight of the unmanned aircraft itself, the weight of the power supply device (ie lithium-ion battery) installed on the domestic unmanned aircraft is limited, and the lithium-ion battery can only be supplied to the unmanned aerial vehicle for 15 minutes, or the supply is full. The plane flies for 32-45 minutes.
  • Lithium-ion battery is used alone as a power supply device for electrical equipment, and the energy density is low. In the case of equal quality, a lithium ion battery is used alone as a power supply device, and the total amount of electric energy output is low, which cannot meet the long-term life of the electric equipment.
  • Ability
  • the hybrid drone provided by the present invention mainly aims to increase the energy density of the power supply device.
  • the present invention mainly provides the following technical solutions:
  • the hybrid drone provided by the present invention includes:
  • a permanent magnet brushless DC motor having a power input end coupled to the fuel engine power output end;
  • a rechargeable battery assembly the power input end of which is electrically connected to the power output end of the permanent magnet DC brushless motor;
  • control circuit having a power input end connected to the power input end of the rechargeable battery assembly, and a power input end connected to the power input end of the permanent magnet DC brushless motor for controlling the rechargeable battery assembly to the Start and stop of permanent magnet DC brushless motor power supply;
  • Power output of the permanent magnet brushless motor and/or power output of the rechargeable battery assembly The end serves as a power output interface of the power supply device;
  • An electronic governor whose input terminal is simultaneously connected to a permanent magnet DC brushless motor, and a rechargeable battery assembly;
  • a brushless motor having an input end connected to the electronic governor
  • a flight controller for controlling the power generation control unit, and the electronic governor
  • a propeller having an input end connected to the brushless motor.
  • the hybrid drone provided by the technical solution of the present invention has at least the following advantages:
  • the electric power in the rechargeable battery assembly is supplied to the permanent magnet DC brushless motor by starting the control circuit, so that the permanent magnet DC brushless motor drives the fuel engine to operate, and the fuel engine is started to ignite; After the fuel engine is started, the control circuit starts to cut off the rechargeable battery assembly to supply power to the permanent magnet DC brushless motor. At the same time, the fuel engine drives the permanent magnet DC brushless motor to generate electricity, and the permanent magnet DC brushless motor sends the rechargeable battery to the rechargeable battery. The component is charged, and the power output of the permanent magnet DC brushless motor and/or the power output of the rechargeable battery pack serves as a power output interface of the power supply device. Compared with the battery used alone as the power supply device, the hybrid electric power is used as the power supply device, and the energy density is high.
  • FIG. 1 is a schematic diagram of an electrical connection structure of a power supply device applied in a hybrid drone according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an electrical connection structure of a specific hybrid drone provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an electrical connection structure of another specific hybrid drone according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an electrical connection structure of a specific AC-DC power module according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an electrical connection structure of a specific DC-DC power supply module according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of steps of a power supply method of a power supply device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a setting manner of installing a power supply device inside an unmanned helicopter body according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a setting manner of a power supply device installed above a fuselage of a multi-rotor UAV according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a setting manner of a power supply device hoisted under the fuselage of an unmanned helicopter according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing a setting manner of a power supply device hoisted under a fuselage of a multi-rotor UAV according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a setting manner of a power supply device installed in a fuselage of a tilting rotorless drone according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram showing the arrangement of the power supply device installed inside the fuselage of the fixed-wing UAV according to the embodiment of the present invention.
  • a and B in this context is merely an association that describes an associated object, indicating that there may be three relationships, for example, A and/or B.
  • a and B can be included at the same time, and can be separate. If A exists, B may exist alone, and any of the above three cases may be provided.
  • an embodiment of the present invention provides a power supply device, such as an ultra-light portable generator, which includes:
  • a permanent magnet brushless motor 20 having a power input end coupled to a power output end of the fuel engine 10;
  • the rechargeable battery assembly 30 has a power input end electrically connected to a power output end of the permanent magnet DC brushless motor 20;
  • the control circuit 40 has a power input end connected to the power input end of the rechargeable battery assembly 30, and a power input end connected to the power input end of the permanent magnet DC brushless motor 20 for controlling the rechargeable battery assembly 30 to the permanent magnet DC. Starting and stopping the power supply of the brush motor 20;
  • the power output of the permanent magnet brushless DC motor and/or the power output of the rechargeable battery pack serves as a power output interface of the power supply device. That is, the power output end of the permanent magnet brushless motor is used as the power output interface of the power supply device, or the power output end of the rechargeable battery component is used as the power output interface of the power supply device, or the power output terminal of the permanent magnet DC brushless motor and the rechargeable battery The power output end of the component serves as a power output interface of the power supply device;
  • An electronic governor whose input terminal is simultaneously connected to a permanent magnet DC brushless motor, and a rechargeable battery assembly;
  • a brushless motor having an input end connected to the electronic governor
  • a flight controller for controlling the power generation control unit, and the electronic governor
  • a propeller having an input end connected to the brushless motor.
  • the fuel engine may have a fuel tank or an external fuel tank; the fuel engine may be of various types, and the fuel may be selected from gasoline, heavy oil, a mixture of gasoline and lubricating oil, a mixture of heavy oil and lubricating oil, or the like.
  • a fuel-like fuel engine may have a fuel tank or an external fuel tank; the fuel engine may be of various types, and the fuel may be selected from gasoline, heavy oil, a mixture of gasoline and lubricating oil, a mixture of heavy oil and lubricating oil, or the like.
  • the permanent magnet DC brushless motor adopts a high-efficiency permanent magnet brushless motor, and the working speed and torque characteristics of the permanent magnet DC brushless motor are matched with the fuel engine.
  • the electric power in the rechargeable battery assembly is supplied to the permanent magnet DC brushless motor by starting the control circuit, so that the permanent magnet DC brushless motor drives the fuel engine to operate, and the fuel engine is started to ignite; After the fuel engine is started, the control circuit starts to cut off the rechargeable battery assembly to supply power to the permanent magnet DC brushless motor. At the same time, the fuel engine drives the permanent magnet DC brushless motor to generate electricity, and the permanent magnet DC brushless motor sends the rechargeable battery to the rechargeable battery. The component is charged, and the power output of the permanent magnet DC brushless motor and/or the power output of the rechargeable battery pack serves as a power output interface of the power supply device. Compared with the battery used alone as the power supply device, the hybrid electric power is used as the power supply device, and the energy density is high.
  • the permanent magnet brushless motor Since the permanent magnet DC brushless motor has no brush structure, the life is high. At the same time, the permanent magnet brushless motor can also be used as a starting motor for a fuel engine.
  • the start-up control circuit drives the permanent-magnet DC brushless motor to drive the fuel engine to start, thereby eliminating the starter motor and the speed reduction mechanism in the conventional engine starting system, greatly reducing the weight, reducing the system complexity, and improving the system reliability. .
  • the above power supply device As shown in FIG. 2, in the specific implementation, the above power supply device,
  • the rechargeable battery assembly includes: an AC-DC power supply module 31, a DC-DC power supply module 32, and a rechargeable battery pack 33;
  • the power input end of the AC-DC power module 31 is electrically connected to the power output end of the permanent magnet brushless motor 20 for converting the alternating current connected to the permanent magnet brushless motor 20 into direct current;
  • the power input end of the DC-DC power module 32 is electrically connected to the power output end of the AC-DC power module 31 for transforming the DC power input from the AC-DC power module 31;
  • the power input end of the rechargeable battery pack 33 is electrically connected to the power output end of the DC-DC power supply module 32.
  • the AC-DC power module is an AC-to-DC power module that converts the AC power generated by the permanent-magnet DC brushless motor into DC power.
  • the DC-DC power module is a DC transformer module that converts the AC-DC power module. The voltage of the galvanic transformer is transformed to supply power to the rechargeable battery pack.
  • the first power output end of the rechargeable battery pack is connected to the power output end of the DC-DC power supply module, and coupled After that as the first power output interface.
  • the rechargeable battery pack can also be separately powered.
  • the first power output end of the rechargeable battery pack serves as the second power output interface.
  • the fuel engine needs to continuously consume fuel in the work. After the fuel is exhausted, the permanent magnet DC brushless motor no longer outputs electric energy, and the voltage outputted by the first power output interface will be lowered, and the load operation may not be normally driven, for example,
  • the power supply device is used in the unmanned aircraft. After the fuel is exhausted, the voltage output from the first power output interface of the power supply device may not normally drive the normal rotation of the propeller, causing the unmanned aircraft to fall.
  • the power supply device described above, as shown in FIG. 3 further includes:
  • a third power output interface a DC-DC power transformer 50, a power switching circuit 60, an electrical signal acquisition circuit 70;
  • the electrical signal acquisition circuit 70 is connected to the power output end of the DC-DC power supply module 32 or the power input end of the DC-DC power supply module for collecting the power input of the DC-DC power supply module 32 or the power input of the DC-DC power supply module.
  • the first power output end of the rechargeable battery pack 33 is connected to the power output end of the DC-DC power module 32, and is coupled to the first power access end of the power switching circuit 60;
  • the DC-DC power transformer 50 is respectively connected to the second power output end of the rechargeable battery pack 33 and the second power input end of the power switching circuit 60 for changing the rated voltage value outputted by the second power output end of the rechargeable battery pack 33.
  • the voltage is a rated voltage value after the first power output end of the rechargeable battery pack 33 is coupled to the power output end of the DC-DC power module 32;
  • the power output end of the power switching circuit 60 is connected to the third power output interface
  • the signal collecting end of the power switching circuit 60 is connected to the electrical signal collecting circuit 70 for receiving the electrical signal value, and performing the second power access end of the power switching circuit 60 and the second power switching circuit 60 according to the magnitude of the electrical signal value. Switching of the power access terminal.
  • the specific switching judgment process of the power switching circuit is: the power switching circuit determines the magnitude of the electrical signal value;
  • the power switching circuit When the electrical signal value is greater than or equal to the threshold range, the power switching circuit is separately connected to the first power access end of the power switching circuit; that is, the third power output interface is taken from the first power output end of the rechargeable battery pack and the DC-DC power module. The power output is connected to the coupled electrical energy;
  • the power switching circuit When the electrical signal value is less than the threshold range, the power switching circuit is separately connected to the power of the second power access terminal of the power switching circuit. That is, the third power output interface is separately taken from the electrical energy of the first power output end of the rechargeable battery pack.
  • the electrical signal value can include at least one of a voltage value and a current value.
  • the power supply device in order to ensure the power supply efficiency of the power supply device, further includes:
  • the first signal acquisition end of the power generation control unit 80 is electrically connected to the power output end of the DC-DC power supply module 32 for collecting the first electrical signal output by the power output end of the DC-DC power supply module 32;
  • the second signal collecting end of the power generation control unit 80 is electrically connected to the power output end of the rechargeable battery pack 33 for collecting the second electrical signal output by the power output end of the rechargeable battery pack 33;
  • the control end of the power generation control unit 80 is coupled to the throttle actuator of the fuel engine 10 for controlling the operation of the throttle actuator based on the first electrical signal information and/or the second electrical signal information.
  • the power generation control unit collects the output electrical signal values of the DC-DC power module and the rechargeable battery pack in real time, such as the current value and the voltage value; these two parameters will be used as the power generation control unit to judge the working condition of the power supply device, and simultaneously
  • the control unit is connected to the fuel engine through the throttle actuator to achieve precise control of the fuel engine throttle according to the operating conditions of the power supply unit, so that the fuel engine always operates in the most efficient area.
  • the power generation control unit determines the fuel engine operating point through the detection of the load power demand, and realizes the transformation of the engine operating point through the electric signal value of the power supply device working condition and the engine throttle comprehensive adjustment.
  • the first electrical signal includes current information and voltage information
  • the second electrical information includes current information and voltage information
  • the AC-DC power module adjusts the rectification parameters according to the operating conditions of the power supply device, so that the rectification efficiency is always maintained above 95%.
  • the AC-DC power supply module includes: a rectifying portion connected to the power output end of the permanent magnet DC brushless motor 20; and a pulse width modulation portion respectively connected to the permanent magnet DC brushless motor 20 and the rectifying portion;
  • the rectifying part comprises three sets of gold-oxygen half-field effect transistor MOSFETs respectively connected with a permanent magnet DC brushless motor, and three sets of gold-oxygen half-field effect transistor MOSFETs are connected in parallel with each other, and each group of gold-oxygen half-field effect transistor MOSFETs comprises two gold oxides connected in series.
  • Half field effect transistor MOSFET wherein
  • the first gold-oxygen half-field effect transistor MOSFET outputs the positive first gold-oxygen half-field transistor MOSFET S1, the G-pole passes through the first inverting amplifier, and the pulse width modulation portion of the pulse width modulation device PWM first control terminal Connecting, the S-pole of the second gold-oxide half-field transistor MOSFET S2 of the output negative electrode of the first group of the gold-oxygen half-field effect transistor MOSFET is connected to the first regulation end of the pulse width modulation device PWM of the pulse width modulation section;
  • the second gold-oxygen half-field effect transistor MOSFET outputs the positive third metal-oxide half-field transistor MOSFET S3, the G-pole passes through the second inverting amplifier, and the second width of the pulse width modulation device PWM of the pulse width modulation section Connecting, the S-th pole of the fourth gold-oxygen half-field transistor MOSFET S4 of the output negative electrode of the second group of the gold-oxygen half-field effect transistor MOSFET is connected to the second regulation end of the pulse width modulation device PWM of the pulse width modulation section;
  • the third electrode of the third group of gold-oxygen half-field-effect transistor MOSFETs is connected to the third terminal of the pulse width modulation device PWM of the pulse width modulation section.
  • the S-pole of the sixth gold-oxygen half-field transistor MOSFET S6 of the output negative electrode of the third group of gold-oxygen half-field effect transistor MOSFETs is connected to the third regulation terminal of the pulse width modulation device PWM of the pulse width modulation section.
  • the AC-DC power supply module adopts the H-bridge drive of the permanent magnet DC brushless motor, but is different from the conventional diode passive rectification and the active switching of the common switch tube. Compared with the traditional passive diode rectification, the six diodes are replaced with low-on-resistance MOSFETs, so that the MOSFET conduction loss is greatly reduced under high power conditions. Efficiency is improved.
  • the high-power rectifying power filter inductor is first reduced, and the weight of the system is reduced, and the upper and lower tubes (between the first gold-oxygen half field effect transistor MOSFET and the second gold-oxygen half field effect transistor MOSFET) Between the third MOS half-effect transistor MOSFET and the fourth MOS half-effect transistor MOSFET; between the hardware oxygen half field effect transistor MOSFET and the sixth gold oxide half field effect transistor MOSFET)
  • the synchronous freewheeling is realized, the power consumption of the system is greatly reduced, and another point is the control signal of the whole system, that is, three lower tubes (the first metal oxide half field effect transistor MOSFET and the second gold oxide half field effect transistor).
  • the MOSFET; the third gold-oxygen half-field effect transistor MOSFET and the fourth gold-oxygen half-field effect transistor MOSFET; the control signals of the hardware oxygen half field effect transistor MOSFET and the sixth gold oxide half field effect transistor MOSFET share a PWM pulse, The complexity of the control system software is greatly reduced.
  • the DC-DC power supply module includes a plurality of transformer circuits 321 connected in parallel with each other, and the power of each voltage circuit 321 is 400-600 W.
  • Each voltage circuit is connected to a multi-phase controller 322, respectively.
  • DC-DC power supply module which adopts the high-power step-down conversion technology of the active rectification according to the output rectification voltage range of the permanent magnet DC brushless motor. Because the power of the whole hybrid system is relatively large, the single module is difficult to implement, and the heat dissipation is difficult to guarantee. Therefore, multi-phase interleaved parallel mode is adopted, and the power of a single power step-down module (transformer circuit) is controlled at about 500 W. By connecting more than three power modules (transformer circuits) in parallel, a large power output can be realized, and at the same time, rectification can be reduced. Capacitor ripple current at the output. The principle of multiphase interleaving is shown in Figure 4. Due to active rectification and multi-phase interleaved parallel applications, the efficiency of the entire DC-DC power module is above 95%.
  • the permanent magnet brushless motor is connected to the fuel engine through a flexible coupling.
  • the existing movable generator works at a fixed speed state, according to the domestic power supply 50Hz frequency, the engine working speed is basically 3000 rpm. Because the engine works at low speed, the engine efficiency is not high, and the volume and weight are relatively large. In order to improve work efficiency, the above power supply device,
  • the rated rotational speed of permanent magnet DC brushless motor and fuel engine is 6000 ⁇ 15000 rpm, and the energy conversion efficiency of fuel engine and permanent magnet DC brushless motor is above 90%.
  • the above-mentioned power supply device also includes:
  • the fuel engine and the permanent magnet brushless DC motor are mounted on the mounting bracket by a shock absorbing mechanism.
  • the mounting bracket can be mounted on the mounting base of the electrical equipment during installation.
  • the shock absorbing mechanism can provide damping between the power supply device and the external connection (mounting base), and the vibration is transmitted to the outside to ensure the normal operation of the external connected device.
  • the multi-rotor UAV of the electric equipment uses the acceleration sensor and the digital gyroscope to judge the flight attitude. These sensors are sensitive to vibration, and the damping mechanism can ensure the normal operation of the multi-rotor UAV sensors.
  • the lithium iron phosphate battery energy density is roughly 260Wh / kg.
  • the energy density of the glass battery is approximately 490 Wh/kg.
  • the fuel cell energy density is approximately 1000 Wh/kg.
  • the power supply device of the present invention has an energy density of approximately 1500 Wh/kg.
  • a power supply method of a power supply device may be implemented by the power supply device described in the first embodiment, and the method includes:
  • the startup control circuit of S100 controls the charging battery assembly to supply power to the permanent magnet DC brushless motor according to the startup command, so that the permanent magnet DC brushless motor operates the fuel engine;
  • the S200 controls the rechargeable battery pack to stop supplying power to the permanent magnet DC brushless motor.
  • the electric power in the rechargeable battery assembly is supplied to the permanent magnet DC brushless motor by starting the control circuit, so that the permanent magnet DC brushless motor drives the fuel engine to operate, and the fuel engine is started to ignite; After the fuel engine is started, the control circuit starts to cut off the rechargeable battery assembly to supply power to the permanent magnet DC brushless motor. At the same time, the fuel engine drives the permanent magnet DC brushless motor to generate electricity, and the permanent magnet DC brushless motor sends the rechargeable battery to the rechargeable battery. The component is charged, and the power output of the permanent magnet DC brushless motor and/or the power output of the rechargeable battery pack serves as a power output interface of the power supply device. Compared with the battery used alone as the power supply device, the hybrid electric power is used as the power supply device, and the energy density is high.
  • the power supply method of the power supply device described in the second embodiment can directly adopt the foregoing embodiment.
  • the power supply device refer to the related content described in the foregoing Embodiment 1, and details are not described herein again.
  • the drone is selected from the group consisting of a multi-rotor drone having at least three rotors, a tilt rotor drone having at least two propellers, a fixed-wing drone having at least one propeller, and an unmanned helicopter Any one.
  • the fuel engine, the permanent magnet DC brushless motor, the rechargeable battery component, and the start control circuit constitute a power supply device
  • the installation position of the power supply device is selected from the inside of the fuselage (as shown in FIG. 7 , the power supply device D1 is installed inside the unmanned helicopter body J1; as shown in FIG. 11 , the power supply device D5 is installed on the tilt rotor drone machine Inside the J5; as shown in Figure 12, the power supply unit D6 is installed inside the fixed-wing UAV body J6), above the fuselage (as shown in Figure 8, the power supply unit D2 is installed above the multi-rotor UAV body J2 ), or hoisting under the fuselage (as shown in Figure 9, the power supply device D3 is hoisted under the unmanned helicopter fuselage J3; as shown in Figure 10, the power supply device D4 is hoisted under the multi-rotor UAV fuselage J4).
  • the electric power in the rechargeable battery assembly is supplied to the permanent magnet DC brushless motor by starting the control circuit, so that the permanent magnet DC brushless motor drives the fuel engine to operate, and the fuel engine is started to ignite; After the fuel engine is started, the control circuit starts to cut off the rechargeable battery assembly to supply power to the permanent magnet DC brushless motor. At the same time, the fuel engine drives the permanent magnet DC brushless motor to generate electricity, and the permanent magnet DC brushless motor sends the rechargeable battery to the rechargeable battery. The component is charged, and the power output of the permanent magnet DC brushless motor and/or the power output of the rechargeable battery pack serves as a power output interface of the power supply device. Compared with the battery used alone as the power supply device, the hybrid electric power is used as the power supply device, and the energy density is high.
  • the power supply device in the third embodiment can directly adopt the power supply device provided in the first embodiment.
  • the power supply device in the third embodiment can directly adopt the power supply device provided in the first embodiment.
  • the components of the apparatus in the embodiments can be adaptively changed and placed in one or more devices different from the embodiment.
  • the components of the embodiment can be combined into one component and, in addition, they can be divided into a plurality of sub-components.
  • all of the features disclosed in the specification, including the accompanying claims, the abstract and the drawings, and all components of any device so disclosed may be combined in any combination.
  • Each feature disclosed in this specification may be replaced by alternative features that provide the same, equivalent or similar purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种混合动力无人机,涉及无人机技术领域。其包括:燃油发动机(10);永磁直流无刷电机(20)、充电电池组件(30)、启动控制电路(40)、电子调速器,飞行控制器、螺旋桨。其通过启动控制电路(40)将充电电池组件(30)中的电供给永磁直流无刷电机(20),使永磁直流无刷电机(20)驱动燃油发动机(10)运转,并将燃油发动机(10)引燃启动;在燃油发动机(10)引燃启动后,启动控制电路(40)再切断充电电池组件(30)向永磁直流无刷电机(20)供电,同时,燃油发动机(10)驱动永磁直流无刷电机(20)发电,永磁直流无刷电机(20)发的电可向充电电池组件(30)充电,永磁直流无刷电机(20)的电力输出端和/或充电电池组件(30)的电力输出端作为供电装置的电力输出接口。相对于单独使用电池作为供电装置,采用油电混合动力作为供电装置,能量密度较高,可达1000~1500Wh/kg。

Description

混合动力无人机 技术领域
本发明涉及无人机技术领域,特别是涉及一种混合动力无人机。
背景技术
能量密度是指在一定的空间或质量物质中储存能量的大小,能量密度越大,则代表了同等质量下,能够释放更多的能量。
如,目前的无人飞机上使用的供电装置锂离子电池,其能量密度大致在150-210Wh/kg。由于无人飞机本身总重量的限制,家用无人飞机上安装的供电装置(即锂离子电池)的重量受限,锂离子电池只能供给空载无人飞机飞行15分钟,或供给满载无人飞机飞行32-45分钟。
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:
单独使用锂离子电池作为用电设备的供电装置,能量密度较低,在等质量情况下,单独使用锂离子电池作为供电装置,其输出的电能总量较低,无法满足用电设备长时间续航的能力。
发明内容
有鉴于此,本发明提供的混合动力无人机,主要目的在于提高供电装置的能量密度。
为达到上述目的,本发明主要提供如下技术方案:
本发明提供的混合动力无人机包括:
燃油发动机;
永磁直流无刷电机,其动力输入端与所述燃油发动机动力输出端传动连接;
充电电池组件,其电力输入端与所述永磁直流无刷电机的电力输出端电连接;
启动控制电路,其电力输入端与所述充电电池组件的电力输入端连接,其电力输入端与所述永磁直流无刷电机的电力输入端连接,用于控制所述充电电池组件向所述永磁直流无刷电机供电的启停;
所述永磁直流无刷电机的电力输出端和/或所述充电电池组件的电力输出 端作为所述供电装置的电力输出接口;
电子调速器,其输入端同时连接于永磁直流无刷电机,和,充电电池组件;
无刷电机,其输入端连接于所述电子调速器;
飞行控制器,其用于控制所述发电控制单元,和,所述电子调速器;
螺旋桨,其输入端连接于所述无刷电机。
借由上述技术方案,本发明技术方案提供的混合动力无人机至少具有下列优点:
本发明技术方案提供的实施例中,通过启动控制电路将充电电池组件中的电供给永磁直流无刷电机,使永磁直流无刷电机驱动燃油发动机运转,并将燃油发动机引燃启动;在燃油发动机引燃启动后,启动控制电路再切断充电电池组件向永磁直流无刷电机供电,同时,燃油发动机驱动永磁直流无刷电机发电,永磁直流无刷电机发的电可向充电电池组件充电,永磁直流无刷电机的电力输出端和/或充电电池组件的电力输出端作为所述供电装置的电力输出接口。相对于单独使用电池作为供电装置,采用油电混合动力作为供电装置,能量密度较高。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本发明的实施例提供的混合动力无人机中应用的供电装置的电连接结构示意图;
图2是本发明的实施例提供的一种具体的混合动力无人机的电连接结构示意图;
图3是本发明的实施例提供的另一种具体的混合动力无人机的电连接结构示意图;
图4是本发明的实施例提供的一种具体的AC-DC电源模块的电连接结构示意图;
图5是本发明的实施例提供的一种具体的DC-DC电源模块的电连接结构示意图;
图6是本发明实施例提供的供电装置的供电方法步骤流程图;
图7是本发明的实施例提供的供电装置安装在无人直升机机身内部的设置方式示意图;
图8是本发明实施例提供的供电装置安装在多旋翼无人机的机身上方的设置方式示意图;
图9是本发明实施例提供的供电装置吊装在无人直升机机身下方的设置方式示意图;
图10是本发明实施例提供的供电装置吊装在多旋翼无人机的机身下方的设置方式示意图;
图11是本发明实施例提供的供电装置安装在倾转旋翼无人机的机身内部的设置方式示意图;
图12是本发明实施例提供的供电装置安装在固定翼无人机的机身内部的设置方式示意图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的供电装置及其供电方法及设备其具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,具体的理解为:可以同时包含有A与B,可以单独存在A,也可以单独存在B,能够具备上述三种任一种情况。
实施例一
如图1所示,本发明的一个实施例提出的一种供电装置,如超轻型便携发电机,其包括:
燃油发动机10;
永磁直流无刷电机20,其动力输入端与燃油发动机10动力输出端传动连接;
充电电池组件30,其电力输入端与永磁直流无刷电机20的电力输出端电连接;
启动控制电路40,其电力输入端与充电电池组件30的电力输入端连接,其电力输入端与永磁直流无刷电机20的电力输入端连接,用于控制充电电池组件30向永磁直流无刷电机20供电的启停;
永磁直流无刷电机的电力输出端和/或充电电池组件的电力输出端作为供电装置的电力输出接口。即,永磁直流无刷电机的电力输出端作为供电装置的电力输出接口,或充电电池组件的电力输出端作为供电装置的电力输出接口,或永磁直流无刷电机的电力输出端和充电电池组件的电力输出端作为供电装置的电力输出接口;
电子调速器,其输入端同时连接于永磁直流无刷电机,和,充电电池组件;
无刷电机,其输入端连接于所述电子调速器;
飞行控制器,其用于控制所述发电控制单元,和,所述电子调速器;
螺旋桨,其输入端连接于所述无刷电机。
其中,燃油发动机上可具有燃料箱,或连接有外置的燃料箱;燃油发动机的种类可为多种,燃料可选用汽油、重油、汽油与润滑油的混合物、重油与润滑油的混合物或其他类似燃料的燃油发动机。
永磁直流无刷电机采用高效永磁无刷电机,永磁直流无刷电机工作转速和扭矩特性与燃油发动机相匹配。
本发明技术方案提供的实施例中,通过启动控制电路将充电电池组件中的电供给永磁直流无刷电机,使永磁直流无刷电机驱动燃油发动机运转,并将燃油发动机引燃启动;在燃油发动机引燃启动后,启动控制电路再切断充电电池组件向永磁直流无刷电机供电,同时,燃油发动机驱动永磁直流无刷电机发电,永磁直流无刷电机发的电可向充电电池组件充电,永磁直流无刷电机的电力输出端和/或充电电池组件的电力输出端作为供电装置的电力输出接口。相对于单独使用电池作为供电装置,采用油电混合动力作为供电装置,能量密度较高。
由于永磁直流无刷电机无电刷结构,寿命较高。同时,永磁直流无刷电机还可以作为燃油发动机的起动电机来使用。启动控制电路对永磁直流无刷电机进行驱动,带动燃油发动机起动,从而省去了传统发动机起动***中的起动电机和减速机构,大大减轻了重量,降低了***复杂程度,提高了***可靠性。
如图2所示,在具体的实施当中上述的供电装置,
充电电池组件包括:AC-DC电源模块31、DC-DC电源模块32、充电电池组33;
AC-DC电源模块31的电力输入端与永磁直流无刷电机20的电力输出端电连接,用于将从永磁直流无刷电机20接入的交流电转换为直流电;
DC-DC电源模块32的电力输入端与AC-DC电源模块31的电力输出端电连接,用于将从AC-DC电源模块31接入的直流电变压;
充电电池组33的电力输入端与DC-DC电源模块32的电力输出端电连接。
AC-DC电源模块即交流转直流电源模块,将永磁直流无刷电机发出的交流电转变为直流电,DC-DC电源模块即直流变压模块,将AC-DC电源模块转变的直 流电的电压进行变压,可为充电电池组供电。
在永磁直流无刷电机的电力输出端和充电电池组件的电力输出端作为供电装置的电力输出接口时,充电电池组的第一电力输出端与DC-DC电源模块的电力输出端连接,耦合后作为第一电能输出接口。
当然,也可采用充电电池组单独供电,上述的供电装置,充电电池组的第一电力输出端作为第二电能输出接口。
其中,燃油发动机在工作中需要不断消耗燃料,在燃料消耗尽后,永磁直流无刷电机不再输出电能,第一电能输出接口输出的电压将降低,可能无法正常驱动负载运行,如,将供电装置运用在无人飞机上中,在燃料消耗尽后,可能导致供电装置的第一电能输出接口输出的电压无法正常驱动螺旋桨正常转动,导致无人飞机坠落。为了提高供电装置的运行稳定性,上述的供电装置,如图3所示,还包括:
第三电能输出接口、DC-DC电源变压器50、电源切换电路60、电信号采集电路70;
电信号采集电路70与DC-DC电源模块32的电力输出端或DC-DC电源模块的电力输入端连接,用于采集DC-DC电源模块32的电力输出端或DC-DC电源模块的电力输入端的电信号值;
充电电池组33的第一电力输出端与DC-DC电源模块32的电力输出端连接,耦合后与电源切换电路60的第一电能接入端连接;
DC-DC电源变压器50分别连接充电电池组33的第二电力输出端和电源切换电路60的第二电能接入端,用于将充电电池组33的第二电力输出端输出的额定电压值变压为充电电池组33的第一电力输出端与DC-DC电源模块32的电力输出端连接耦合后的额定电压值;
电源切换电路60的电能输出端与第三电能输出接口连接;
电源切换电路60的信号采集端与电信号采集电路70连接,用于接收电信号值,并根据电信号值的大小进行电源切换电路60的第一电能接入端和电源切换电路60的第二电能接入端的切换。
电源切换电路具体切换判断过程为:电源切换电路判断电信号值的大小;
当电信号值大于等于阈值范围,电源切换电路单独接入电源切换电路的第一电能接入端的电能;即第三电能输出接口取自充电电池组的第一电力输出端与DC-DC电源模块的电力输出端连接耦合后的电能;
当电信号值小于阈值范围,电源切换电路单独接入电源切换电路的第二电能接入端的电能。即第三电能输出接口单独取自充电电池组的第一电力输出端的电能。
其***号值可包括电压值和电流值中的至少一种。
在供电装置为用电设备供电中,用电设备的运行工况不一,时而增加负载,时而降低负载;为了保证供电装置的供电效率,上述的供电装置,如图2所示,还包括:
发电控制单元80,
发电控制单元80第一信号采集端与DC-DC电源模块32的电力输出端电连接,用于采集DC-DC电源模块32的电力输出端输出的第一电信号;
发电控制单元80第二信号采集端与充电电池组33的电力输出端电连接,用于采集充电电池组33的电力输出端输出的第二电信号;
发电控制单元80的控制端与燃油发动机10的油门执行机构连接,用于根据第一电信号信息和/或第二电信号信息控制油门执行机构工作。
负载功率在变化中,发电控制单元实时采集DC-DC电源模块和充电电池组的输出电信号值,如电流值和电压值;这两个参数将作为发电控制单元判断供电装置工况,同时电控制单元通过油门执行机构与燃油发动机相连,根据供电装置工况从而实现对燃油发动机油门的精确控制,使得燃油发动机始终工作在最高效区域。发电控制单元通过负载功率需求的检测,判定燃油发动机工作点,通过供电装置工况电信号值和发动机油门综合调节,实现发动机工作点的变换。
具体的,第一电信号包括电流信息和电压信息;第二电信息包括电流信息和电压信息。
具体的,AC-DC电源模块根据供电装置工况调整整流参数,从而使整流效率始终保持在95%以上。
如图4所示,进一步的,为了降低控制***软件的复杂程度,上述的供电装置,
AC-DC电源模块包括:与永磁直流无刷电机20电力输出端连接的整流部、分别与永磁直流无刷电机20和整流部连接的脉冲宽度调制部;
整流部包括分别连接永磁直流无刷电机的三组金氧半场效晶体管MOSFET,三组金氧半场效晶体管MOSFET相互并联,每组金氧半场效晶体管MOSFET包括2个串联的金氧半场效晶体管MOSFET,其中,
第一组金氧半场效晶体管MOSFET中输出正极的第一金氧半场效晶体管MOSFET S1的G极通过第一倒相放大器后与脉冲宽度调制部的脉冲宽度调制器件PWM的第一调控端连接,第一组金氧半场效晶体管MOSFET中输出负极的第二金氧半场效晶体管MOSFET S2的S极与脉冲宽度调制部的脉冲宽度调制器件PWM的第一调控端连接;
第二组金氧半场效晶体管MOSFET中输出正极的第三金氧半场效晶体管MOSFET S3的G极通过第二倒相放大器后与脉冲宽度调制部的脉冲宽度调制器件PWM的第二调控端连接,第二组金氧半场效晶体管MOSFET中输出负极的第四金氧半场效晶体管MOSFET S4的S极与脉冲宽度调制部的脉冲宽度调制器件PWM的第二调控端连接;
第三组金氧半场效晶体管MOSFET中输出正极的第五金氧半场效晶体管MOSFET S5的G极通过第三倒相放大器后与脉冲宽度调制部的脉冲宽度调制器件PWM的第三调控端连接,第三组金氧半场效晶体管MOSFET中输出负极的第六金氧半场效晶体管MOSFET S6的S极与脉冲宽度调制部的脉冲宽度调制器件PWM的第三调控端连接。
该AC-DC电源模块采用永磁直流无刷电机的H桥驱动,但和传统的二极管被动整流以及普通开关管主动整流都不一样。相比传统的被动二极管整流,6个二极管都换成了低导通电阻的金氧半场效晶体管MOSFET,这样在大功率状态下,金氧半场效晶体管MOSFET导通损耗大大减小,***效率得到提高。相比传统的开关管主动整流,首先减少了大功率整流功率滤波电感,减轻了***重量,同时上下位管(第一金氧半场效晶体管MOSFET和第二金氧半场效晶体管MOSFET之间;第三金氧半场效晶体管MOSFET和第四金氧半场效晶体管MOSFET之间;第五金氧半场效晶体管MOSFET和第六金氧半场效晶体管MOSFET之间)采用了反向驱动方式,实现了同步续流,***功耗大大降低,另外还有一点即是整个***的控制信号,也即三个下位管(第一金氧半场效晶体管MOSFET和第二金氧半场效晶体管MOSFET;第三金氧半场效晶体管MOSFET和第四金氧半场效晶体管MOSFET;第五金氧半场效晶体管MOSFET和第六金氧半场效晶体管MOSFET)的控制信号共用了一路PWM脉冲,大大降低了控制***软件的复杂程度。
进一步的,如图5所示,上述的供电装置,DC-DC电源模块包括多个相互并联的变压电路321,每个电压电路321的功率在400-600w。每个电压电路分别连接多相控制器322。
DC-DC电源模块,该模块根据永磁直流无刷电机输出整流电压范围,采用主动整流的大功率降压变换技术,由于整个混合动力***功率比较大,单一模块实现比较困难,散热难以保证,故采用了多相交错并联的方式,单个功率降压模块(变压电路)功率控制在500W左右,通过3个以上功率模块(变压电路)并联可以实现较大功率输出,同时还可以减少整流输出端的电容脉动电流。多相交错并联的原理如图4所示。由于主动整流和多相交错并联的应用,整个DC-DC电源模块的效率在95%以上。
具体的,永磁直流无刷电机通过弹性联轴器与燃油发动机传动连接。
其中,现有的可移动发电机由于工作在定转速状态,按照国内电源的50Hz频率,发动机工作转速基本在3000转/分钟。由于发动机工作在低转速状态下,发动机效率不高,体积重量都比较大。为了提高工作效率,上述的供电装置,
永磁直流无刷电机与燃油发动机的额定转动速度均在6000~15000转/分钟,燃油发动机、永磁直流无刷电机能量转化效率均在90%以上。
燃油发动机本身、燃油发动机与永磁直流无刷电机连接不同轴、永磁直流无刷电机转子的不平衡质量都会使供电装置产生振动,振动会直接传递给用电设备,对用电设备的正常工作造成影响,为了提高其工作稳定性,上述的供电装置,还包括:
安装支架以及减震机构;
燃油发动机和永磁直流无刷电机通过减震机构设置在安装支架上。
安装中可将安装支架安装在用电设备的安装基座上。
减震机构可以在供电装置与外界连接(安装基座)之间提供阻尼,隔断振动向外传播,保证外界连接设备的正常工作。例如,用电设备多旋翼无人机采用加速度传感器以及数字陀螺仪对飞行姿态进行判断,这些传感器对振动都比较敏感,减震机构可以保证多旋翼无人机各传感器的正常工作。
据测算,磷酸铁锂电池能量密度大致在260Wh/kg。琉璃电池能量密度大致在490Wh/kg。燃料电池能量密度大致在1000Wh/kg。而本发明中的供电装置的能量密度大致在1500Wh/kg。
实施例二
如图6所示,本发明的一个实施例提出的一种供电装置的供电方法,可通过上述实施例一中所述的供电装置实现,所述方法包括:
S100所述启动控制电路根据启动指令,控制充电电池组件向所述永磁直流无刷电机供电,使永磁直流无刷电机将燃油发动机运转;
S200控制充电电池组件停止向所述永磁直流无刷电机供电。
本发明技术方案提供的实施例中,通过启动控制电路将充电电池组件中的电供给永磁直流无刷电机,使永磁直流无刷电机驱动燃油发动机运转,并将燃油发动机引燃启动;在燃油发动机引燃启动后,启动控制电路再切断充电电池组件向永磁直流无刷电机供电,同时,燃油发动机驱动永磁直流无刷电机发电,永磁直流无刷电机发的电可向充电电池组件充电,永磁直流无刷电机的电力输出端和/或充电电池组件的电力输出端作为所述供电装置的电力输出接口。相对于单独使用电池作为供电装置,采用油电混合动力作为供电装置,能量密度较高。
具体的,本实施例二中所述的供电装置的供电方法可直接采用上述实施例 一提供的所述供电装置,具体的实现结构可参见上述实施例一中描述的相关内容,此处不再赘述。
其中,所述无人机选自至少具有三个旋翼的多旋翼无人机、至少具有两个螺旋桨的倾转旋翼无人机、至少具有一个螺旋桨的固定翼无人机、无人直升机中的任意一种。
其中,所述燃油发动机、永磁直流无刷电机、充电电池组件、启动控制电路构成供电装置,
所述供电装置的安装位置选自机身内部(如图7所示,供电装置D1安装在无人直升机机身J1内部;如图11所示,供电装置D5安装在倾转旋翼无人机机身J5内部;如图12所示,供电装置D6安装在固定翼无人机机身J6内部)、机身上方(如图8所示,供电装置D2安装在多旋翼无人机机身J2上方)、或者吊装在机身下方(如图9所示,供电装置D3吊装在无人直升机机身J3下方;如图10所示,供电装置D4吊装在多旋翼无人机机身J4下方)。
本发明技术方案提供的实施例中,通过启动控制电路将充电电池组件中的电供给永磁直流无刷电机,使永磁直流无刷电机驱动燃油发动机运转,并将燃油发动机引燃启动;在燃油发动机引燃启动后,启动控制电路再切断充电电池组件向永磁直流无刷电机供电,同时,燃油发动机驱动永磁直流无刷电机发电,永磁直流无刷电机发的电可向充电电池组件充电,永磁直流无刷电机的电力输出端和/或充电电池组件的电力输出端作为所述供电装置的电力输出接口。相对于单独使用电池作为供电装置,采用油电混合动力作为供电装置,能量密度较高。
具体的,本实施例三中所述的供电装置可直接采用上述实施例一提供的所述供电装置,具体的实现结构可参见上述实施例一中描述的相关内容,此处不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
可以理解的是,上述装置中的相关特征可以相互参考。另外,上述实施例中的“第一”、“第二”等是用于区分各实施例,而并不代表各实施例的优劣。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的装置 解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的装置中的部件进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个装置中。可以把实施例中的部件组合成一个部件,以及此外可以把它们分成多个子部件。除了这样的特征中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何装置的所有部件进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。本发明的各个部件实施例可以以硬件实现,或者以它们的组合实现。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或组件。位于部件或组件之前的单词“一”或“一个”不排除存在多个这样的部件或组件。本发明可以借助于包括有若干不同部件的装置来实现。在列举了若干部件的权利要求中,这些部件中的若干个可以是通过同一个部件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种混合动力无人机,其特征在于,包括:
    燃油发动机;
    永磁直流无刷电机,其动力输入端与所述燃油发动机动力输出端传动连接;
    充电电池组件,其电力输入端与所述永磁直流无刷电机的电力输出端电连接;
    启动控制电路,其电力输入端与所述充电电池组件的电力输入端连接,其电力输入端与所述永磁直流无刷电机的电力输入端连接,用于控制所述充电电池组件向所述永磁直流无刷电机供电的启停;
    所述永磁直流无刷电机的电力输出端和/或所述充电电池组件的电力输出端作为所述供电装置的电力输出接口;
    电子调速器,其输入端同时连接于永磁直流无刷电机,和,充电电池组件;
    无刷电机,其输入端连接于所述电子调速器;
    飞行控制器,其用于控制所述发电控制单元,和,所述电子调速器;
    螺旋桨,其输入端连接于所述无刷电机。
  2. 根据权利要求1所述的混合动力无人机,其特征在于,
    所述充电电池组件包括:AC-DC电源模块、DC-DC电源模块、充电电池组;
    所述AC-DC电源模块的电力输入端与所述永磁直流无刷电机的电力输出端电连接,用于将从所述永磁直流无刷电机接入的交流电转换为直流电;
    所述DC-DC电源模块的电力输入端与所述AC-DC电源模块的电力输出端电连接,用于将从所述AC-DC电源模块接入的直流电变压;
    所述充电电池组的电力输入端与所述DC-DC电源模块的电力输出端电连接。
  3. 根据权利要求2所述的混合动力无人机,其特征在于,
    所述充电电池组的第一电力输出端与所述DC-DC电源模块的电力输出端连接,耦合后作为第一电能输出接口。
  4. 根据权利要求3所述的混合动力无人机,其特征在于,所述充电电池组的第一电力输出端作为第二电能输出接口。
  5. 根据权利要求2所述的混合动力无人机,其特征在于,还包括:
    第三电能输出接口、DC-DC电源变压器、电源切换电路、电信号采集电路;
    所述电信号采集电路与所述DC-DC电源模块的电力输出端或所述DC-DC电源模块的电力输入端连接,用于采集所述DC-DC电源模块的电力输出端或所述DC-DC电源模块的电力输入端的电信号值;
    所述充电电池组的第一电力输出端与所述DC-DC电源模块的电力输出端连接,耦合后与所述电源切换电路的第一电能接入端连接;
    所述DC-DC电源变压器分别连接所述充电电池组的第二电力输出端和所述电源切换电路的第二电能接入端,用于将所述充电电池组的第二电力输出端输出的额定电压值变压为所述充电电池组的第一电力输出端与所述DC-DC电源模块的电力输出端连接耦合后的额定电压值;
    所述电源切换电路的电能输出端与所述第三电能输出接口连接;
    所述电源切换电路的信号采集端与所述电信号采集电路连接,用于接收所述电信号值,并根据所述电信号值的大小进行所述电源切换电路的第一电能接入端和所述电源切换电路的第二电能接入端的切换。
  6. 根据权利要求2-5中任一所述的混合动力无人机,其特征在于,还包括:
    发电控制单元,
    所述发电控制单元第一信号采集端与所述DC-DC电源模块的电力输出端电连接,用于采集所述DC-DC电源模块的电力输出端输出的第一电信号;
    所述发电控制单元第二信号采集端与所述充电电池组的电力输出端电连接,用于采集所述充电电池组的电力输出端输出的第二电信号;
    所述发电控制单元的控制端与所述燃油发动机的油门执行机构连接,用于根据所述第一电信号信息和/或所述第二电信号信息控制所述油门执行机构工作。
  7. 根据权利要求6所述的混合动力无人机,其特征在于,
    所述第一电信号包括电流信息和电压信息;
    所述第二电信息包括电流信息和电压信息。
  8. 根据权利要求2所述的混合动力无人机,其特征在于,
    所述AC-DC电源模块包括:与所述永磁直流无刷电机电力输出端连接的整流部、分别与所述永磁直流无刷电机和所述整流部连接的脉冲宽度调制部;
    所述整流部包括分别连接所述永磁直流无刷电机的三组金氧半场效晶体管MOSFET,三组金氧半场效晶体管MOSFET相互并联,每组金氧半场效晶体管MOSFET包括2个串联的金氧半场效晶体管MOSFET,其中,
    第一组金氧半场效晶体管MOSFET中输出正极的第一金氧半场效晶体管MOSFET的G极通过第一倒相放大器后与脉冲宽度调制部的脉冲宽度调制器件的第一调控端连接,第一组金氧半场效晶体管MOSFET中输出负极的第二金氧半场效晶体管MOSFET的S极与脉冲宽度调制部的脉冲宽度调制器件的第一调控端连接;
    第二组金氧半场效晶体管MOSFET中输出正极的第三金氧半场效晶体管 MOSFET的G极通过第二倒相放大器后与脉冲宽度调制部的脉冲宽度调制器件的第二调控端连接,第二组金氧半场效晶体管MOSFET中输出负极的第四金氧半场效晶体管MOSFET的S极与脉冲宽度调制部的脉冲宽度调制器件的第二调控端连接;
    第三组金氧半场效晶体管MOSFET中输出正极的第五金氧半场效晶体管MOSFET的G极通过第三倒相放大器后与脉冲宽度调制部的脉冲宽度调制器件的第三调控端连接,第三组金氧半场效晶体管MOSFET中输出负极的第六金氧半场效晶体管MOSFET的S极与脉冲宽度调制部的脉冲宽度调制器件的第三调控端连接。
  9. 根据权利要求2所述的混合动力无人机,其特征在于,
    所述DC-DC电源模块包括多个相互并联的变压电路,每个电压电路的功率在400-600w。
  10. 根据权利要求1所述的混合动力无人机,其特征在于,
    所述永磁直流无刷电机通过弹性联轴器与所述燃油发动机传动连接;
    作为优选,所述永磁直流无刷电机与所述燃油发动机的额定转动速度均在6000~15000转/分钟;
    作为优选,所述混合动力无人机还包括:
    安装支架以及减震机构;
    所述燃油发动机和所述永磁直流无刷电机通过减震机构设置在所述安装支架上;
    作为优选,所述无人机选自至少具有三个旋翼的多旋翼无人机、至少具有两个螺旋桨的倾转旋翼无人机、至少具有一个螺旋桨的固定翼无人机、无人直升机中的任意一种;
    作为优选,所述燃油发动机、永磁直流无刷电机、充电电池组件、启动控制电路构成供电装置,
    所述供电装置的安装位置选自机身内部、机身上方、或者吊装在机身下方。
PCT/CN2017/110529 2017-01-23 2017-11-10 混合动力无人机 WO2018133511A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187023657A KR102145118B1 (ko) 2017-01-23 2017-11-10 하이브리드 동력 무인기
JP2018544179A JP6684359B2 (ja) 2017-01-23 2017-11-10 ハイブリッド動力源無人機
US16/076,674 US10875646B2 (en) 2017-01-23 2017-11-10 Hybrid-powered unmanned vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710050276.4A CN106892124B (zh) 2017-01-23 2017-01-23 混合动力无人机
CN201710050276.4 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018133511A1 true WO2018133511A1 (zh) 2018-07-26

Family

ID=59198185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110529 WO2018133511A1 (zh) 2017-01-23 2017-11-10 混合动力无人机

Country Status (5)

Country Link
US (1) US10875646B2 (zh)
JP (1) JP6684359B2 (zh)
KR (1) KR102145118B1 (zh)
CN (1) CN106892124B (zh)
WO (1) WO2018133511A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170267338A1 (en) 2014-10-01 2017-09-21 Sikorsky Aircraft Corporation Acoustic signature variation of aircraft utilizing a clutch
CN106892124B (zh) * 2017-01-23 2018-12-07 北京瑞深航空科技有限公司 混合动力无人机
CN107628241A (zh) * 2017-09-25 2018-01-26 安徽瓦尔特机械贸易有限公司 一种无人机混合动力***
CN107672795A (zh) * 2017-09-25 2018-02-09 安徽瓦尔特机械贸易有限公司 一种旋翼飞行器
CN108278173B (zh) * 2018-02-12 2024-01-05 芜湖长捷航空动力科技有限责任公司 一种发动机电路控制***
KR102141417B1 (ko) * 2018-04-30 2020-08-05 경북대학교 산학협력단 무인 비행체의 모터 속도 제어 장치 및 방법
CN109018378B (zh) * 2018-08-24 2021-01-19 北京瑞深航空科技有限公司 油电混合供电***及其发电控制装置及方法、无人机
CN109502032B (zh) * 2018-11-28 2022-05-24 中电科特种飞机***工程有限公司 一种供电***及自转旋翼机
CA3132256A1 (en) 2019-03-01 2020-09-10 Frank Becker Aircraft having hybrid-electric propulsion system with electric storage located in fuselage
CN109980772A (zh) * 2019-03-28 2019-07-05 美通重工有限公司 双能源空中作业平台控制***
FR3095090B1 (fr) * 2019-04-11 2023-11-03 Safran Procédé et dispositif de contrôle de l’hybridation d’un aéronef
CN110155345B (zh) * 2019-06-05 2022-09-13 重庆隆鑫通航发动机制造有限公司 无人机混合动力***
CN110329513A (zh) * 2019-08-19 2019-10-15 广东电网有限责任公司 一种基于无人机的喷火***
CN110518844A (zh) * 2019-08-31 2019-11-29 潍坊雷腾动力机械有限公司 一种带有自调速功能的发电机组电气控制***
CN110395386A (zh) * 2019-09-06 2019-11-01 山东蜂巢航空科技有限公司 油电混合六旋翼无人机
WO2021064819A1 (ja) * 2019-09-30 2021-04-08 株式会社テクノスヤシマ エンジン始動装置
EP3798130B1 (en) 2019-09-30 2023-03-01 Hamilton Sundstrand Corporation Systems and methods for battery ventilation
CN111003188A (zh) * 2019-12-23 2020-04-14 珠海上飞航空科技有限公司 一种油电混合启发一体***及其工作流程
US11688543B2 (en) * 2020-02-10 2023-06-27 The Boeing Company Method of creating power control module
CN111409836B (zh) * 2020-03-30 2023-05-30 扬州翊翔航空科技有限公司 一种用于多旋翼无人机的航空混合动力***发电整流控制方法
CN111478415B (zh) * 2020-04-15 2023-05-02 广州极飞科技股份有限公司 充电装置、方法和***
CN111490582A (zh) * 2020-04-15 2020-08-04 广州极飞科技有限公司 发电设备控制方法、装置、充电装置和充电***
CN111976997B (zh) * 2020-07-29 2022-04-19 清华大学 直升机变转速混合动力***及用此***的直升机
CN112193425B (zh) * 2020-09-03 2022-05-10 南京工程学院 一种无人直升机启动供电一体化电源控制***及方法
WO2022120134A1 (en) 2020-12-06 2022-06-09 Bostick Randall System and method for providing electrical power to a tethered aerial vehicle
CN113110558B (zh) * 2021-05-12 2022-04-08 南京航空航天大学 一种混合推进无人机需求功率预测方法
KR102529824B1 (ko) * 2021-06-10 2023-05-08 한국항공우주연구원 하이브리드 동력 시스템을 이용한 무인 비행체 및 그 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046998B2 (en) * 2008-10-01 2011-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Waste heat auxiliary power unit
CN105691610A (zh) * 2016-03-01 2016-06-22 清华大学 用于直升机的混合动力***及具有其的直升机
CN205837209U (zh) * 2016-07-04 2016-12-28 深圳市龙云创新航空科技有限公司 一种集成式动力多轴无人机
CN106314809A (zh) * 2016-09-19 2017-01-11 中电科芜湖钻石飞机设计研究院有限公司 一种固定翼式混合动力飞机
CN106356970A (zh) * 2016-09-26 2017-01-25 北京瑞深航空科技有限公司 供电装置及其供电方法及设备
CN106892124A (zh) * 2017-01-23 2017-06-27 北京瑞深航空科技有限公司 混合动力无人机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612085A4 (en) * 2003-04-04 2012-03-28 Hitachi Ltd ELECTRIC DRIVING DEVICE FOR VEHICLE AND HYBRID ENGINE FOUR-WHEEL DRIVE DEVICE
US8296036B2 (en) * 2009-09-23 2012-10-23 Aerovironment, Inc. Aircraft power management
JP5690651B2 (ja) * 2011-05-17 2015-03-25 本田技研工業株式会社 インバータ発電機
CN103580280B (zh) * 2013-11-20 2015-09-09 上海交通大学 一种四旋翼小型直升机混合能源供给***
JP6425969B2 (ja) * 2014-10-29 2018-11-21 ヤンマー株式会社 ヘリコプター
US9764837B2 (en) * 2014-11-14 2017-09-19 Top Flight Technologies, Inc. Micro hybrid generator system drone
CN204489196U (zh) * 2015-02-12 2015-07-22 深圳大学 一种燃料动力多旋翼无人机
US10144527B2 (en) * 2015-03-25 2018-12-04 Skyfront Corp. Flight controller with generator control
CN104993580B (zh) * 2015-07-28 2017-03-08 福州中亘软件有限公司 油电混合直流供电装置
US9637227B2 (en) * 2015-09-16 2017-05-02 Qualcomm Incorporated Unmanned aerial vehicle hybrid rotor drive
CN105680554A (zh) * 2015-12-28 2016-06-15 海鹰航空通用装备有限责任公司 一种无人机的供配电控制装置
CN105471069A (zh) * 2016-01-05 2016-04-06 海鹰航空通用装备有限责任公司 一种小型无人机机载电源管理与控制***及设备
CN105914731A (zh) * 2016-05-30 2016-08-31 西安交通大学 一种无人机供电***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046998B2 (en) * 2008-10-01 2011-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Waste heat auxiliary power unit
CN105691610A (zh) * 2016-03-01 2016-06-22 清华大学 用于直升机的混合动力***及具有其的直升机
CN205837209U (zh) * 2016-07-04 2016-12-28 深圳市龙云创新航空科技有限公司 一种集成式动力多轴无人机
CN106314809A (zh) * 2016-09-19 2017-01-11 中电科芜湖钻石飞机设计研究院有限公司 一种固定翼式混合动力飞机
CN106356970A (zh) * 2016-09-26 2017-01-25 北京瑞深航空科技有限公司 供电装置及其供电方法及设备
CN106892124A (zh) * 2017-01-23 2017-06-27 北京瑞深航空科技有限公司 混合动力无人机

Also Published As

Publication number Publication date
CN106892124B (zh) 2018-12-07
JP2019519414A (ja) 2019-07-11
KR102145118B1 (ko) 2020-08-18
US10875646B2 (en) 2020-12-29
US20190047704A1 (en) 2019-02-14
KR20180101555A (ko) 2018-09-12
CN106892124A (zh) 2017-06-27
JP6684359B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2018133511A1 (zh) 混合动力无人机
JP5674379B2 (ja) 複数のエネルギを蓄積及び管理するシステムとその作製方法
EP3421281A1 (en) Hybrid energy supply system and method for vehicle and hybrid energy vehicle
CN105691610A (zh) 用于直升机的混合动力***及具有其的直升机
EP1947759A2 (en) An starting and generating multiplying control system, and a method for using the system, and an electromotion mixed dynamic vehicle which uses the system and the method
EP2672600A2 (en) System for transferring energy from an energy source and method of making same
RU2014108201A (ru) Аккумуляторный электрический гибридный привод для уборочного комбайна
CN104993580B (zh) 油电混合直流供电装置
CN104358650B (zh) 柴油机启动与蓄电池充电一体化装置及内燃机车
CN103166220B (zh) 一种离网式斯特林供电***结构及控制方法
WO2014026460A1 (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
CN106356970B (zh) 供电装置及其供电方法及设备
KR20130078106A (ko) 전기자동차 충전장치
CN103311918A (zh) 基于变频油机的直流发电***
CN107021191A (zh) 一种平衡船
CN204316269U (zh) 在混动汽车上起动、发电、助力的一体化装置
CN108412655A (zh) 转子发动机启发一体化装置及其控制方法
CN205945101U (zh) 组合式超级电池
US11658505B2 (en) Hybrid universal load conditioner
CN203151093U (zh) 一种离网式斯特林供电***结构
WO2011075981A1 (zh) 油电混合动力汽车电力供应***
CN102338037A (zh) 盘式垂直轴微风发电机***
CN105730242A (zh) 一种基于辅助引擎的充电***及方法
CN111786537A (zh) 一种电机发电机
CN112193425B (zh) 一种无人直升机启动供电一体化电源控制***及方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544179

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20187023657

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023657

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892208

Country of ref document: EP

Kind code of ref document: A1