WO2018129983A1 - 一种预制再生块体混凝土柱的连接构造及其施工方法 - Google Patents

一种预制再生块体混凝土柱的连接构造及其施工方法 Download PDF

Info

Publication number
WO2018129983A1
WO2018129983A1 PCT/CN2017/107725 CN2017107725W WO2018129983A1 WO 2018129983 A1 WO2018129983 A1 WO 2018129983A1 CN 2017107725 W CN2017107725 W CN 2017107725W WO 2018129983 A1 WO2018129983 A1 WO 2018129983A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
concrete
vertical
prefabricated
block concrete
Prior art date
Application number
PCT/CN2017/107725
Other languages
English (en)
French (fr)
Inventor
吴波
魏之凯
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018129983A1 publication Critical patent/WO2018129983A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements

Definitions

  • the invention relates to the technical field of waste concrete recycling, in particular to a joint structure of a precast recycled block concrete column and a construction method thereof.
  • Precast concrete components have been widely used in engineering construction due to fast construction speed and good construction quality.
  • Recycled concrete columns use a large number of waste concrete blocks, which meets the national strategy of energy saving and recycling economy.
  • the stratified placement of waste concrete blocks at the construction site leads to the construction speed of the recycled concrete columns compared to conventional concrete columns. Reduced.
  • assembling the joint structure is the key to affecting construction efficiency and structural safety.
  • the connection structure of precast concrete columns usually adopts wet connection.
  • This connection structure requires concrete to be poured on site.
  • the construction is relatively troublesome and has certain influence on the environment, which fails to fully reflect the advantages of industrialization of the building. For this reason, it is urgent to develop a connection structure of a precast concrete column which is simple in structure, safe and reliable, and convenient in construction.
  • the object of the present invention is to provide a joint structure of a prefabricated regenerated block concrete column and a construction method thereof.
  • the upper semi-column and the lower semi-column of the precast recycled block concrete column are connected by structural glue, and the construction is convenient, and the problems of long construction period and large environmental impact caused by wet connection are avoided, and the development requirements of the industrialization of the building are met.
  • the thickness of the concrete protective layer of the longitudinal rib after the bending treatment is significantly increased in the joint region of the structural adhesive, which can effectively delay The performance of the structural adhesive deteriorates at high temperatures, which in turn ensures good fire resistance of the column.
  • the invention is achieved at least by one of the following technical solutions.
  • a joint structure of prefabricated regenerated block concrete columns including prefabricated regenerated block concrete upper half column, prefabricated regenerative block concrete lower half column, standing rib, steel positioning plate, shear steel, vertical tunnel, vertical concave
  • the groove, the longitudinal rib and the stirrup; the steel positioning plate is located inside the upper half column, and the steel positioning plate is pre-drilled with holes, the number of holes is the same as the number of longitudinal bars of the upper half column, and each hole corresponds to one longitudinal rib, but each The position of the hole is closer to the center of the cross section of the upper semi-column than the position of the corresponding longitudinal rib; the lower part of each longitudinal rib of the upper semi-column is bent and passed through the corresponding hole in the steel positioning plate.
  • the above-mentioned connection structure of a prefabricated regenerated block concrete column, the prefabricated regenerated block concrete upper half column and the prefabricated regenerative block concrete lower half column are filled with waste concrete block and new concrete, waste concrete block and new
  • the mass ratio of concrete is 1:4 ⁇ 1:1; the new concrete is natural aggregate concrete or recycled aggregate concrete, and the waste concrete block is the block which is broken after the old building and structure remove all or part of the steel bar.
  • the characteristic size of the waste concrete block is not less than 60 Mm.
  • a construction method for a joint structure of a prefabricated regenerated block concrete column comprising the following steps:
  • the lower semi-column of the pre-formed regenerated block concrete is placed in position by the crane, and then the organic structural glue or the inorganic structural glue is poured into the vertical and vertical grooves of the lower semi-column, and finally utilized.
  • the crane stacks the upper half of the precast recycled block concrete on the lower half of the precast recycled block concrete, and ensures that the shear steel extending from the lower end of the upper half of the column and the longitudinal reinforcement after bending are inserted into the lower half of the column.
  • the vertical groove and the corresponding vertical hole, and the lower end surface of the upper half column is in close contact with the upper end surface of the lower half column.
  • the present invention has the following advantages and effects:
  • Fig. 1 is a schematic view showing the connection structure of a precast recycled block concrete column.
  • the figure shows: 1-precast recycled block concrete upper half column; 2-precast recycled block concrete lower half column; 3-vertical hole; 4-vertical groove; 5-ring rib; 6-steel positioning Plate; 7-stand ribs; 8-longitudinal ribs; 9-shear-resistant steel.
  • FIG. 1 it is a schematic diagram of the connection structure of a precast recycled block concrete column, including a prefabricated regenerated block concrete upper semi-column 1, a prefabricated regenerative block concrete lower half column 2, a standing rib 7, and a steel positioning plate 6 , shear-resistant steel 9, vertical tunnel 3, vertical groove 4, longitudinal rib 8, stirrup 5; steel positioning plate 6 is located inside the upper half of the column 1, the steel positioning plate 6 is pre-drilled with holes, the number of holes and the upper
  • the longitudinal bars 8 of the semi-columns are of the same number, and each hole corresponds to one longitudinal rib 8, but the position of each hole is closer to the center of the cross-section of the upper-half column 1 than the position of the corresponding longitudinal rib 8;
  • the lower portion of each longitudinal rib 8 of 1 is subjected to bending treatment, passes through a corresponding hole in the steel positioning plate 6, and extends vertically downward from the lower end surface of the upper semi-column 1; a part of the shear-resistant steel
  • the rubber; the shear steel 9 extending from the lower end surface of the upper half column 1 and the longitudinal reinforcement 8 bent after the bending are respectively inserted into the vertical groove 4 of the lower half column 2 and the corresponding vertical hole 3, and at the same time, the upper half column 1
  • the lower end surface is in close contact with the upper end surface of the lower half column 2.
  • the vertical groove 4 has a cross-sectional dimension of 260 mm ⁇ 260 mm ⁇ 15 mm ⁇ 20 mm and a depth of 210 mm; the vertical channel 3 has a diameter of 25 mm and a depth of 360 mm; and the longitudinal rib 8 has a diameter of 18 mm.
  • the diameter of 7 is 10 mm.
  • the lower portion of each longitudinal rib 8 of the upper semi-column 1 was subjected to an inward bending process, and the distance between the position of the longitudinal ribs 8 after the bending treatment and the position of the longitudinal ribs 8 before the bending treatment was 170 mm.
  • the cross-sectional dimensions of the prefabricated block concrete upper half column 1 and the prefabricated regeneration block concrete lower half column 2 are both 500 mm ⁇ 500 mm
  • the steel positioning plate 6 has a thickness of 10 mm
  • the shear type steel has a cross section size of 250 mm.
  • ⁇ 250mm ⁇ 9mm ⁇ 14mm H-shaped steel, H-shaped steel has a length of 400mm.
  • the steel positioning plate 6 is welded with the longitudinal ribs after the bending treatment, the shear steel 9 and the steel positioning plate 6 are spot welded; the vertical grooves 4 and the vertical of the prefabricated concrete bulk lower half 2 are vertical
  • the organic structural adhesive is filled into the tunnel 3; the shear-resistant steel 9 extending from the lower end surface of the upper semi-column 1 of the pre-formed regeneration block body and the longitudinal reinforcement 8 after the bending treatment are respectively inserted into the vertical groove 4 and the corresponding vertical tunnel 3 .
  • connection structure of the prefabricated regenerated block concrete column comprises the following steps:
  • the prefabricated block concrete lower half column 2 is first placed in position by a crane, and then the organic structural glue is poured into the vertical hole 3 and the vertical groove 4 of the lower half column 2, and finally utilized.
  • the crane stacks the prefabricated regenerated block concrete upper half column 1 on the prefabricated regenerative block concrete lower half column 2, and ensures the shear-type steel 9 extending from the lower end surface of the upper semi-column 1 and the longitudinal reinforcement 8 after the bending treatment.
  • the vertical grooves 4 and the corresponding vertical holes 3 of the lower half column 2 are inserted, respectively, and the lower end faces of the upper half columns 1 are in close contact with the upper end faces of the lower half columns 2.
  • the steel positioning plate 6 and the shear-resistant steel 9 are all made of Q345B steel, the welding rod is E50-shaped, the flux F4A0, and the weld quality grade is one level.
  • Both the longitudinal ribs 8 and the standing ribs 7 are made of HRB400 hot rolled steel bars.
  • the new concrete has a strength rating of C45, the cubic concrete has a compressive strength of 35 MPa, and the mass ratio of the waste concrete block to the new concrete is 1:2.
  • the present invention can be preferably implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

一种预制再生块体混凝土柱的连接构造及其施工方法,连接构造包括预制再生块体混凝土上半柱(1)、预制再生块体混凝土下半柱(2)、架立筋(7)、钢定位板(6)和抗剪型钢(9),在预制再生块体混凝土下半柱(2)的上端面附近预留有竖向孔道(3)和竖向凹槽(4),竖向孔道(3)和竖向凹槽(4)内灌有结构胶,竖向孔道(3)和竖向凹槽(4)的位置分别与伸出预制再生块体混凝土上半柱(1)的下端面的抗剪型钢(9)和弯折处理后的纵筋(8)的位置对应。该连接构造结构简单、施工便捷。

Description

一种预制再生块体混凝土柱的连接构造及其施工方法
技术领域
本发明涉及废旧混凝土循环利用技术领域,具体是一种预制再生块体混凝土柱的连接构造及其施工方法。
背景技术
由于施工速度快且施工质量好,预制混凝土构件已广泛应用于工程建设中。再生块体混凝土柱采用了大量废旧混凝土块体,符合节能减排和循环经济的国家战略,但施工现场废旧混凝土块体的分层投放导致再生块体混凝土柱的施工速度相比常规混凝土柱有所降低。为解决这一问题,对再生块体混凝土柱采用工厂分半预制、现场拼装的做法不失为一种有效策略,此时拼装连接构造既是影响施工效率也是攸关结构安全的关键。目前,预制混凝土柱的连接构造通常采用湿连接,这种连接构造需要现场浇筑混凝土,施工相对麻烦且对环境有一定影响,未能充分体现建筑工业化的优势。为此,迫切需要研发一种构造简单、安全可靠、施工便捷的预制混凝土柱的连接构造。
发明内容
本发明的目的在于提供一种预制再生块体混凝土柱的连接构造及其施工方法。所述预制再生块体混凝土柱的上半柱和下半柱采用结构胶进行连接,施工便捷,避免了湿连接带来的施工周期长、对环境影响大等问题,符合建筑工业化的发展要求。此外,通过对预制再生块体混凝土上半柱的纵筋的靠下部分进行弯折处理,使得弯折处理后的纵筋在有结构胶的连接区域的混凝土保护层厚度明显增加,可有效延缓高温下结构胶的性能退化,进而确保柱子具有良好的耐火性能。
本发明至少通过下述技术方案之一实现。
一种预制再生块体混凝土柱的连接构造,包括预制再生块体混凝土上半柱、预制再生块体混凝土下半柱、架立筋、钢定位板、抗剪型钢、竖向孔道、竖向凹槽、纵筋、箍筋;钢定位板位于上半柱内部,钢定位板上预先钻有孔洞,孔洞数量与上半柱的纵筋数量相同,每个孔洞对应一根纵筋,但每个孔洞的位置与其对应的纵筋的位置相比,更靠近上半柱的横截面中心;上半柱的每根纵筋的靠下部分通过弯折处理,穿过钢定位板上对应的孔洞,并竖直向下伸出上半柱的下端面;抗剪型钢的一部分预埋在上半柱的内部,并竖直向下伸出上半柱的下端面;下半柱的上端面附近预留有竖向孔道和竖向凹槽,每个竖向孔道对应上半柱的一根弯折处理后的纵筋,每个竖向孔道的位置与其对应的弯折处理后的纵筋的位置一致,竖向凹槽的位置与伸出上半柱下端面的抗剪型钢的位置一致;下半柱的竖向孔道和竖向凹槽内灌有有机结构胶或无机结构胶;伸出上半柱下端面的抗剪型钢和弯折处理后的纵筋分别***下半柱的竖向凹槽和对应竖向孔道,与此同时上半柱的下端面与下半柱的上端面紧密接触。
上述的一种预制再生块体混凝土柱的连接构造,所述预制再生块体混凝土上半柱和预制再生块体混凝土下半柱内部填充有废旧混凝土块体和新混凝土,废旧混凝土块体与新混凝土的质量比为1:4~1:1;新混凝土为天然骨料混凝土或再生骨料混凝土,废旧混凝土块体为旧有建筑物和构筑物去除全部或部分钢筋后破碎而成的块体,废旧混凝土块体的特征尺寸不低于60 mm。
上述的一种预制再生块体混凝土柱的连接构造,所述预制再生块体混凝土上半柱内部的架立筋共有4根,每根架立筋的直径不超过10 mm,4根架立筋的位置与上半柱靠近角部的4根纵筋的位置一一对应。
一种如所述一种预制再生块体混凝土柱的连接构造的施工方法,包括如下步骤:
(1)对预制再生块体混凝土上半柱的纵筋的靠下部分进行弯折处理,将弯折处理后的纵筋穿过钢定位板上的孔洞并点焊连接,将抗剪型钢与钢定位板进行点焊连接,绑扎上半柱的纵筋和箍筋以及架立筋和箍筋;
(2)绑扎预制再生块体混凝土下半柱的纵筋和箍筋,并设置用于形成竖向孔道和竖向凹槽的预埋件;
(3)以横躺方式完成预制再生块体混凝土上半柱和预制再生块体混凝土下半柱的模板制作与安装;
(4)将充分湿润后的废旧混凝土块体一次性投入预制再生块体混凝土上半柱和预制再生块体混凝土下半柱的模板内部,然后灌入新混凝土并充分振捣;
(5)混凝土初凝时将预埋件拔出,留出预制再生块体混凝土下半柱的竖向孔道和竖向凹槽;
(6)在施工现场,首先利用吊机将预制再生块体混凝土下半柱就位,然后向下半柱的竖向孔道和竖向凹槽内灌入有机结构胶或无机结构胶,最后利用吊机将预制再生块体混凝土上半柱叠放在预制再生块体混凝土下半柱上面,并确保伸出上半柱下端面的抗剪型钢和弯折处理后的纵筋分别***下半柱的竖向凹槽和对应竖向孔道,且上半柱的下端面与下半柱的上端面紧密接触。
本发明相对于现有技术,具有如下优点及效果:
(1)采用结构胶的连接构造,具有构造简单、安全可靠、施工便捷等特点,可明显提高施工速度,有效避免了常用的湿连接构造所带来的施工周期长、对环境影响大等问题。
(2)对预制再生块体混凝土上半柱的纵筋的靠下部分进行弯折处理,使得弯折处理后的纵筋在有结构胶的连接区域的混凝土保护层厚度明显增加,可有效延缓高温下结构胶的性能退化,进而确保柱子具有良好的耐火性能。
(3)对再生块体混凝土柱采用工厂分半预制、现场拼装的做法,有效解决了废旧混凝土块体分层投放导致现场施工速度慢的问题,不仅可减少现场工作量,而且工厂预制的再生块体混凝土上半柱和下半柱的施工质量更好。
附图说明
图1是一种预制再生块体混凝土柱的连接构造示意图。
图中所示为:1-预制再生块体混凝土上半柱;2-预制再生块体混凝土下半柱;3-竖向孔道;4-竖向凹槽;5-箍筋;6-钢定位板;7-架立筋;8-纵筋;9-抗剪型钢。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1所示,为一种预制再生块体混凝土柱的连接构造示意图,包括预制再生块体混凝土上半柱1、预制再生块体混凝土下半柱2、架立筋7、钢定位板6、抗剪型钢9、竖向孔道3、竖向凹槽4、纵筋8、箍筋5;钢定位板6位于上半柱1内部,钢定位板6上预先钻有孔洞,孔洞数量与上半柱的纵筋8数量相同,每个孔洞对应一根纵筋8,但每个孔洞的位置与其对应的纵筋8的位置相比,更靠近上半柱1的横截面中心;上半柱1的每根纵筋8的靠下部分通过弯折处理,穿过钢定位板6上对应的孔洞,并竖直向下伸出上半柱1的下端面;抗剪型钢9的一部分预埋在上半柱1的内部,并竖直向下伸出上半柱1的下端面;下半柱2的上端面附近预留有竖向孔道3和竖向凹槽4,每个竖向孔道3对应上半柱1的一根弯折处理后的纵筋8,每个竖向孔道3的位置与其对应的弯折处理后的纵筋8的位置一致,竖向凹槽4的位置与伸出上半柱1下端面的抗剪型钢9的位置一致;下半柱2的竖向孔道3和竖向凹槽4内灌有有机结构胶或无机结构胶;伸出上半柱1下端面的抗剪型钢9和弯折处理后的纵筋8分别***下半柱2的竖向凹槽4和对应竖向孔道3,与此同时上半柱1的下端面与下半柱2的上端面紧密接触。
本实施例中,竖向凹槽4的截面尺寸为260mm×260mm×15mm×20mm,深度为210mm;竖向孔道3的直径为25mm,深度为360mm;纵筋8的直径为18mm,架立筋7的直径为10mm。对上半柱1的每根纵筋8的靠下部分进行向内弯折处理,弯折处理后纵筋8的位置与弯折处理前纵筋8的位置之间的距离为170mm。
本实施例中,预制再生块体混凝土上半柱1和预制再生块体混凝土下半柱2的截面尺寸均为500mm×500mm,钢定位板6的厚度为10mm,抗剪型钢选用截面尺寸为250mm×250mm×9mm×14mm的 H型钢,H型钢的长度为400mm。
本实施例中,钢定位板6与弯折处理后的纵筋8点焊,抗剪型钢9与钢定位板6点焊;预制再生块体混凝土下半柱2的竖向凹槽4和竖向孔道3内灌有有机结构胶;伸出预制再生块体混凝土上半柱1下端面的抗剪型钢9和弯折处理后的纵筋8分别***竖向凹槽4和对应竖向孔道3。
上述预制再生块体混凝土柱的连接构造的施工方法,包括如下步骤:
(1)对预制再生块体混凝土上半柱1的纵筋8的靠下部分进行弯折处理,将弯折处理后的纵筋8穿过钢定位板6上的孔洞并点焊连接,将抗剪型钢9与钢定位板6进行点焊连接,绑扎上半柱1的纵筋8和箍筋5以及架立筋7和箍筋5;
(2)绑扎预制再生块体混凝土下半柱2的纵筋8和箍筋5,并设置用于形成竖向孔道3和竖向凹槽4的预埋件;
(3)以横躺方式完成预制再生块体混凝土上半柱1和预制再生块体混凝土下半柱2的模板制作与安装;
(4)将充分湿润后的废旧混凝土块体一次性投入预制再生块体混凝土上半柱1和预制再生块体混凝土下半柱2的模板内部,然后灌入新混凝土并充分振捣;
(5)混凝土初凝时将预埋件拔出,留出预制再生块体混凝土下半柱2的竖向孔道3和竖向凹槽4;
(6)在施工现场,首先利用吊机将预制再生块体混凝土下半柱2就位,然后向下半柱2的竖向孔道3和竖向凹槽4内灌入有机结构胶,最后利用吊机将预制再生块体混凝土上半柱1叠放在预制再生块体混凝土下半柱2上面,并确保伸出上半柱1下端面的抗剪型钢9和弯折处理后的纵筋8分别***下半柱2的竖向凹槽4和对应竖向孔道3,且上半柱1的下端面与下半柱2的上端面紧密接触。
本实施例中,钢定位板6和抗剪型钢9均采用Q345B钢材,焊条采用E50形,焊剂F4A0,焊缝质量等级为一级。纵筋8和架立筋7均采用HRB400热轧钢筋。新混凝土的强度等级为C45,废旧混凝土的立方体抗压强度为35MPa,废旧混凝土块体与新混凝土的质量比为1:2。如上所述,便可较好地实现本发明。
根据本发明的方法,还可以开发一系列的实施例,并非对本发明作任何形式上的限制,故依据本发明的技术实质对以上实例所作的任何简单的修改、等同变化与修饰,仍属于本发明技术方案的范围。

Claims (4)

  1. 一种预制再生块体混凝土柱的连接构造,其特征在于:包括预制再生块体混凝土上半柱、预制再生块体混凝土下半柱、架立筋、钢定位板、抗剪型钢、竖向孔道、竖向凹槽、纵筋、箍筋;钢定位板位于上半柱内部,钢定位板上预先钻有孔洞,孔洞数量与上半柱的纵筋数量相同,每个孔洞对应一根纵筋,但每个孔洞的位置与其对应的纵筋的位置相比,更靠近上半柱的横截面中心;上半柱的每根纵筋的靠下部分通过弯折处理,穿过钢定位板上对应的孔洞,并竖直向下伸出上半柱的下端面;抗剪型钢的一部分预埋在上半柱的内部,并竖直向下伸出上半柱的下端面;下半柱的上端面附近预留有竖向孔道和竖向凹槽,每个竖向孔道对应上半柱的一根弯折处理后的纵筋,每个竖向孔道的位置与其对应的弯折处理后的纵筋的位置一致,竖向凹槽的位置与伸出上半柱下端面的抗剪型钢的位置一致;下半柱的竖向孔道和竖向凹槽内灌有有机结构胶或无机结构胶;伸出上半柱下端面的抗剪型钢和弯折处理后的纵筋分别***下半柱的竖向凹槽和对应竖向孔道,与此同时上半柱的下端面与下半柱的上端面紧密接触。
  2. 根据权利要求1所述的一种预制再生块体混凝土柱的连接构造,其特征在于:所述预制再生块体混凝土上半柱和预制再生块体混凝土下半柱内部填充有废旧混凝土块体和新混凝土,废旧混凝土块体与新混凝土的质量比为1:4~1:1;新混凝土为天然骨料混凝土或再生骨料混凝土,废旧混凝土块体为旧有建筑物和构筑物去除全部或部分钢筋后破碎而成的块体,废旧混凝土块体的特征尺寸不低于60 mm。
  3. 根据权利要求1所述的一种预制再生块体混凝土柱的连接构造,其特征在于:所述预制再生块体混凝土上半柱内部的架立筋共有4根,每根架立筋的直径不超过10 mm,4根架立筋的位置与上半柱靠近角部的4根纵筋的位置一一对应。
  4. 一种如权利要求1至权利要求3中任一项所述一种预制再生块体混凝土柱的连接构造的施工方法,其特征在于,包括如下步骤:
    (1)对预制再生块体混凝土上半柱的纵筋的靠下部分进行弯折处理,将弯折处理后的纵筋穿过钢定位板上的孔洞并点焊连接,将抗剪型钢与钢定位板进行点焊连接,绑扎上半柱的纵筋和箍筋以及架立筋和箍筋;
    (2)绑扎预制再生块体混凝土下半柱的纵筋和箍筋,并设置用于形成竖向孔道和竖向凹槽的预埋件;
    (3)以横躺方式完成预制再生块体混凝土上半柱和预制再生块体混凝土下半柱的模板制作与安装;
    (4)将充分湿润后的废旧混凝土块体一次性投入预制再生块体混凝土上半柱和预制再生块体混凝土下半柱的模板内部,然后灌入新混凝土并充分振捣;
    (5)混凝土初凝时将预埋件拔出,留出预制再生块体混凝土下半柱的竖向孔道和竖向凹槽;
    (6)在施工现场,首先利用吊机将预制再生块体混凝土下半柱就位,然后向下半柱的竖向孔道和竖向凹槽内灌入有机结构胶或无机结构胶,最后利用吊机将预制再生块体混凝土上半柱叠放在预制再生块体混凝土下半柱上面,并确保伸出上半柱下端面的抗剪型钢和弯折处理后的纵筋分别***下半柱的竖向凹槽和对应竖向孔道,且上半柱的下端面与下半柱的上端面紧密接触。
PCT/CN2017/107725 2017-01-16 2017-10-26 一种预制再生块体混凝土柱的连接构造及其施工方法 WO2018129983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710027182.5 2017-01-16
CN201710027182.5A CN106638987B (zh) 2017-01-16 2017-01-16 一种预制再生块体混凝土柱的连接构造及其施工方法

Publications (1)

Publication Number Publication Date
WO2018129983A1 true WO2018129983A1 (zh) 2018-07-19

Family

ID=58842916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107725 WO2018129983A1 (zh) 2017-01-16 2017-10-26 一种预制再生块体混凝土柱的连接构造及其施工方法

Country Status (2)

Country Link
CN (1) CN106638987B (zh)
WO (1) WO2018129983A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109025063A (zh) * 2018-08-01 2018-12-18 广州五羊建设机械有限公司 节段式钢管再生混合构件的制作方法及其使用的变位机
CN109944348A (zh) * 2019-04-04 2019-06-28 河南绿建建筑科技有限公司 槽钢上冲孔式钢砼组合管l型节点
CN115478696A (zh) * 2022-08-31 2022-12-16 重庆建工住宅建设有限公司 一种钢管混凝土叠合柱施工工法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106638987B (zh) * 2017-01-16 2022-05-24 华南理工大学 一种预制再生块体混凝土柱的连接构造及其施工方法
CN109057502A (zh) * 2018-09-13 2018-12-21 福建瑞森水泥制品发展有限公司 一种装配式电杆及其装配方法
CN109356185A (zh) * 2018-10-30 2019-02-19 南昌大学 一种再生块体混凝土预制墩基础及其施工方法
CN109208823B (zh) * 2018-11-12 2024-03-08 安徽工程大学 一种可快速装配的内置钢箱式钢管混凝土柱及其生产工艺
CN113374174B (zh) * 2021-06-08 2022-09-13 华南理工大学 一种新型再生块体混凝土预制装配式构造柱及其施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139730A (ja) * 2003-11-06 2005-06-02 Taisei Corp 鉄筋コンクリート部材の接合方法
CN102995745A (zh) * 2012-12-27 2013-03-27 沈阳易筑建材经销有限公司 采用钢筋搭接方式的装配整体式混凝土结构体系
CN105298020A (zh) * 2015-11-26 2016-02-03 华南理工大学 一种半预制圆钢管再生混合混凝土柱及其制备方法
CN105464289A (zh) * 2016-01-11 2016-04-06 华侨大学 装配式钢管混凝土组合柱
JP6030274B1 (ja) * 2015-07-17 2016-11-24 三井住友建設株式会社 架構構造及びその構築方法
CN106638987A (zh) * 2017-01-16 2017-05-10 华南理工大学 一种预制再生块体混凝土柱的连接构造及其施工方法
CN206418602U (zh) * 2017-01-16 2017-08-18 华南理工大学 一种预制再生块体混凝土柱的连接构造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194800A (ja) * 2004-01-08 2005-07-21 Ohbayashi Corp 再生コンクリート構造体およびその構築方法
CN204715535U (zh) * 2015-05-27 2015-10-21 浙江工业大学 Pc钢棒加强的异形柱节点

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139730A (ja) * 2003-11-06 2005-06-02 Taisei Corp 鉄筋コンクリート部材の接合方法
CN102995745A (zh) * 2012-12-27 2013-03-27 沈阳易筑建材经销有限公司 采用钢筋搭接方式的装配整体式混凝土结构体系
JP6030274B1 (ja) * 2015-07-17 2016-11-24 三井住友建設株式会社 架構構造及びその構築方法
CN105298020A (zh) * 2015-11-26 2016-02-03 华南理工大学 一种半预制圆钢管再生混合混凝土柱及其制备方法
CN105464289A (zh) * 2016-01-11 2016-04-06 华侨大学 装配式钢管混凝土组合柱
CN106638987A (zh) * 2017-01-16 2017-05-10 华南理工大学 一种预制再生块体混凝土柱的连接构造及其施工方法
CN206418602U (zh) * 2017-01-16 2017-08-18 华南理工大学 一种预制再生块体混凝土柱的连接构造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109025063A (zh) * 2018-08-01 2018-12-18 广州五羊建设机械有限公司 节段式钢管再生混合构件的制作方法及其使用的变位机
CN109025063B (zh) * 2018-08-01 2021-05-14 广州五羊建设机械有限公司 节段式钢管再生混合构件的制作方法及其使用的变位机
CN109944348A (zh) * 2019-04-04 2019-06-28 河南绿建建筑科技有限公司 槽钢上冲孔式钢砼组合管l型节点
CN115478696A (zh) * 2022-08-31 2022-12-16 重庆建工住宅建设有限公司 一种钢管混凝土叠合柱施工工法

Also Published As

Publication number Publication date
CN106638987B (zh) 2022-05-24
CN106638987A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018129983A1 (zh) 一种预制再生块体混凝土柱的连接构造及其施工方法
WO2018072759A1 (zh) 一种钢筋再生块体混凝土梁-柱节点及其施工方法
CN103422674B (zh) 装配式混凝土结构现浇段混凝土施工方法
CN108277887B (zh) 装配式内置保温层混凝土复合墙-轻钢框架连接节点
CN105569224A (zh) 钢管混凝土边缘约束叠合整体式剪力墙及制备和安装方法
KR100908921B1 (ko) 프리컬럼을 사용한 폭렬방지형 고강도 철근콘크리트기둥부재의 제작방법
CN206245732U (zh) 一种狭窄伸缩缝节能型钢模板加固体系
WO2016041237A1 (zh) 内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺
US20170253526A1 (en) Axial compression steel tubular column with internal local restraint and filled with high strengthen compound concrete containing normal-strength demolished concrete lumps and construction process of such column
CN207812838U (zh) 一种u型免拆构造柱模板
CN107366385A (zh) 一种保温构造柱及其施工方法
CN206015942U (zh) 钢筋混凝土与外保温复合外墙整体浇筑成型结构
CN205243063U (zh) 一种预制墙板加固砌体结构
CN107905424A (zh) 全预制带拼接凹槽单向板结构、制作及装配方法
CN106836559A (zh) 一种防止开裂的钢筋混凝土墙体结构及其施工方法
CN107044171A (zh) 丁基腻子钢板止水后浇带施工方法
CN104295082A (zh) 外挑架钢梁锚环重复利用的方法及所用锚环组件
CN206957198U (zh) 一种装配式混凝土结构夹心外墙丁字墙处现浇模板结构
CN106013773A (zh) 一种组装式内外墙复合模板防漏浆装置及施工方法
CN206570961U (zh) 一种外墙预制板复合后浇带结构
CN215055279U (zh) 钢板混凝土剪力墙对称墙体的厚度控制装置
CN212716667U (zh) 钢管混凝土与喷射混凝土劲性组合结构隧道支护体系
CN104712087A (zh) 一种叠合楼板连接方法
CN115198925A (zh) 自保温砌块填充墙砌筑中混凝土构件模板和保温施工方法
CN112942660B (zh) 一种钢与再生混凝土组合梁板及其装配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25-10-19)

122 Ep: pct application non-entry in european phase

Ref document number: 17891919

Country of ref document: EP

Kind code of ref document: A1