WO2016041237A1 - 内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺 - Google Patents

内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺 Download PDF

Info

Publication number
WO2016041237A1
WO2016041237A1 PCT/CN2014/089384 CN2014089384W WO2016041237A1 WO 2016041237 A1 WO2016041237 A1 WO 2016041237A1 CN 2014089384 W CN2014089384 W CN 2014089384W WO 2016041237 A1 WO2016041237 A1 WO 2016041237A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
strength
strength grade
low
concrete
Prior art date
Application number
PCT/CN2014/089384
Other languages
English (en)
French (fr)
Inventor
吴波
张强
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/512,069 priority Critical patent/US10087629B2/en
Publication of WO2016041237A1 publication Critical patent/WO2016041237A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/32Columns; Pillars; Struts of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • B28B1/16Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted for producing layered articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/36Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2053Earthquake- or hurricane-resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of waste concrete recycling, and particularly relates to a high-strength regenerative mixed steel pipe anti-vibration column and a construction process with local constraints .
  • Concrete-filled steel tubular columns are a very reasonable combination of components that are widely used in the field of civil engineering.
  • the production of concrete-filled steel tubular columns does not require a formwork, which improves the construction efficiency;
  • the seismic performance of the concrete-filled steel tubular columns is significantly better than that of conventional reinforced concrete columns.
  • a large number of earthquake damage investigations and experimental studies have found that the seismic damage of concrete-filled steel tubular columns with non-short columns is mainly concentrated on the upper and lower ends of the column, while most of the other columns are almost intact, that is, the material properties of the columns are not fully obtained. Play.
  • the concrete-filled steel tubular column can be further improved by adjusting the material layout (ie, increasing the proportion of steel used at the upper and lower ends of the column while reducing the proportion of steel used for most of the other columns). Optimized to improve its seismic performance, but such technologies are still rare.
  • waste concrete is a valuable 'special resource', and its recycling and utilization has attracted more and more attention at home and abroad.
  • the construction of waste concrete is earlier, and the strength grade is generally low.
  • the application range is greatly limited (such as it cannot be directly applied to high-rise, heavy-duty and other structures), how to effectively expand
  • the application range of low-strength grade waste concrete is an urgent problem to be solved.
  • the invention finds that mixing low-strength grade waste concrete blocks with high-strength grade new concrete is an effective way to solve the problem.
  • the prior art has a problem that the layout of the steel tube concrete seismic column material is not reasonable, and the application range of the low-strength grade waste concrete needs to be expanded.
  • the object of the present invention is to overcome the deficiencies of the prior art, and provide a high-strength regenerative hybrid steel pipe anti-vibration column and a construction process with local constraints, on the one hand, by appropriately reducing the wall thickness of the steel pipe of the concrete-filled steel column, and simultaneously strengthening the upper and lower columns of the column.
  • the lateral restraint of the end makes the seismic performance of the column significantly improved when the amount of steel used is the same; on the other hand, by mixing the low-strength grade waste concrete block with the high-strength grade new concrete, the former can be applied to concrete strength requirements.
  • the high component and structure greatly expand the application range of low-strength grade waste concrete.
  • a partially-reinforced high-strength regenerative mixed steel pipe ⁇ seismic column is provided, and transverse stirrups are arranged on the upper and lower ends of the steel pipe, the steel pipe has a circular or polygonal cross section; the horizontal hoops corresponding to the circular cross section are uniformly arranged on the steel pipe Within the height of one-seventh of the lower end and one-seventh of the height of the upper end of the steel pipe, the transverse stirrups corresponding to the polygonal section are uniformly arranged within a fifth of the height of the lower end of the steel pipe and within one-fifth of the upper end of the steel pipe;
  • the high-strength grade new concrete and the low-strength grade waste concrete block are alternately poured inside the steel pipe, and the compressive strength of the high-strength grade new concrete is greater than the low-strength grade waste concrete compressive strength of 30-90 MPa.
  • the low-intensity grade waste concrete block is a waste concrete block after the old building, structure, road, bridge or dam is removed and the protective layer and all or part of the steel bar are removed.
  • the high-strength grade new concrete is natural aggregate concrete or recycled aggregate concrete, and the compressive strength is not less than 60 MPa.
  • the low-strength grade waste concrete block has a feature size of not less than 100 mm, and the mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:4 to 1:1.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe anti-vibration column includes the following steps:
  • waste concrete blocks for pouring greatly simplifies the process of crushing, screening and purification of waste concrete recycling, saves a lot of manpower, time and energy, and can realize efficient recycling of waste concrete.
  • 1a and 1b are respectively a transverse cross-sectional schematic view and a longitudinal cross-sectional view of a high-reinforced regenerated mixed steel tubular anti-vibration column with local constraints in the first embodiment.
  • 2a and 2b are respectively a transverse cross-sectional schematic view and a longitudinal cross-sectional view of the high-reinforced regenerated mixed steel tubular anti-vibration column with local constraints in the second embodiment.
  • 3a and 3b are respectively a transverse cross-sectional schematic view and a longitudinal cross-sectional view of a high-reinforced regenerated mixed steel tubular anti-vibration column with local constraints in Embodiment 3.
  • the high-strength regenerative mixed steel pipe anti-vibration column with local constraint of the present invention includes steel pipe 1 , high-strength grade new concrete 2, low-strength grade waste concrete block 3, horizontal stirrups 4, longitudinal studs 5 .
  • the steel pipe has a circular cross section, an outer diameter of 300 mm, a wall thickness of 5 mm, and a length of the steel pipe.
  • the compressive strength of the high-strength grade new concrete combined with the low-strength grade waste concrete is 48.8MPa.
  • the horizontal transverse stirrups are made of HRB335 grade steel with a diameter of 12mm and the stirrup spacing is 33mm.
  • the low-strength grade waste concrete block is a waste concrete block after the old building is demolished and the protective layer and all the steel bars are removed; the high-strength grade new concrete is natural aggregate concrete.
  • the characteristic size of the low-strength grade waste concrete block is The mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:1.5.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe anti-vibration column includes the following steps:
  • the high-strength regenerative mixed steel pipe anti-vibration column with local constraint of the present invention includes steel pipe 1 , high-strength grade new concrete 2, low-strength grade waste concrete block 3, horizontal stirrups 4, longitudinal studs 5 .
  • the steel pipe has a circular cross section, an outer diameter of 300 mm, a wall thickness of 5 mm, and a length of the steel pipe.
  • the compressive strength of new concrete with high strength grade is greater than the compressive strength of waste concrete with low strength grade 80MPa
  • the compressive strength of the high-strength grade new concrete combined with the low-strength grade waste concrete is 66.7MPa. Uniformly set within the height of one-seventh of the lower end of the steel pipe and one-seventh of the height of the upper end of the steel pipe.
  • the horizontal transverse stirrups are made of HRB335 grade steel with a diameter of 12mm and the stirrup spacing is 33mm.
  • the low-strength grade waste concrete block is a waste concrete block after the old building is demolished and the protective layer and all the steel bars are removed; the high-strength grade new concrete is natural aggregate concrete.
  • the characteristic size of the low-strength grade waste concrete block is The mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:2.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe anti-vibration column includes the following steps:
  • the high-strength regenerative mixed steel pipe reinforced seismic column of the present invention with local constraints includes steel pipe 1 , high-strength grade new concrete 2, low-strength grade waste concrete block 3, horizontal stirrups 4, longitudinal studs 5 .
  • the steel pipe has a square section with a side length of 300 mm, a wall thickness of 5 mm, and a length of the steel pipe.
  • the compressive strength of the high-strength grade new concrete is greater than the compressive strength of the low-strength grade waste concrete 90MPa
  • the compressive strength of the high-strength grade new concrete combined with the low-strength grade waste concrete is 57.5MPa. Uniformly set within one-fifth of the height of the lower end of the steel pipe and one-fifth of the upper end of the steel pipe.
  • the horizontal transverse stirrups are made of HRB335 grade steel with a diameter of 12mm and the stirrup spacing is 46mm.
  • Longitudinal studs are made of 8mm diameter HRB335 grade steel bars, length 3000mm .
  • the low-strength grade waste concrete block is a waste concrete block after the old building is demolished and the protective layer and all the steel bars are removed; the high-strength grade new concrete is natural aggregate concrete.
  • the characteristic size of the low-strength grade waste concrete block is The mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:2.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe anti-vibration column includes the following steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

一种内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺。该抗震柱包括钢管(1)、高强度等级新混凝土(2)、低强度等级废旧混凝土块体(3)、横向箍筋(4)、纵向架立筋(5)。在钢管(1)内部上、下两端设置横向箍筋(4)。钢管(1)内部交替浇筑高强度等级新混凝土(2)和投放低强度等级废旧混凝土块体(3)。高强度等级新混凝土(2)的抗压强度大于低强度等级废旧混凝土块体(3)的抗压强度30~90MPa。该抗震柱可拓展低强度等级废旧混凝土的应用范围。

Description

内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺
技术领域
本发明涉及废旧混凝土循环利用技术领域,具体涉及内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺
背景技术
钢管混凝土柱是一种非常合理的组合构件,它在土木建筑领域被广泛使用。一方面钢管混凝土柱的制作不需要模板,提高了施工效率;另一方面钢管混凝土柱的抗震性能明显优于常规钢筋混凝土柱。大量震害调查和试验研究发现,非短柱的钢管混凝土柱的地震破坏主要集中在柱上、下两端,而其余大部分柱身几乎完好,即柱身的材料性能实际上并未得到充分发挥。因此,在用钢量保持不变的情况下,可以通过调整材料布局(即加大柱上、下两端的用钢比例,同时减少其余大部分柱身的用钢比例)对钢管混凝土柱做进一步优化,进而提高其抗震性能,但目前还鲜见此类技术。
由于天然砂石的开采破坏环境且储量日渐减少,废旧混凝土作为一种宝贵的'特殊资源',其循环再生利用已越来越引起国内外广泛关注。但废旧混凝土建造年代较早,强度等级普遍偏低,以往也只是与强度等级接近的新混凝土混合使用,应用范围受到很大限制(如无法直接应用于高层、重载等结构),如何有效拓展低强度等级废旧混凝土的应用范围是一个亟待解决的问题。本发明发现将低强度等级废旧混凝土块体与高强度等级新混凝土混合使用,不失为一种解决该问题的有效途径。
综上所述,现有技术存在钢管混凝土抗震柱材料布局不够合理,以及低强度等级废旧混凝土的应用范围亟待拓展等问题。
发明内容
本发明的目的在于克服现有技术的不足,提供内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺,一方面通过适当降低钢管混凝土柱的钢管壁厚,同时增强柱上、下两端的横向约束,使得在用钢量相同的情况下柱的抗震性能明显提高;另一方面通过将低强度等级废旧混凝土块体与高强度等级新混凝土混合使用,使得前者可以应用于混凝土强度要求较高的构件和结构,从而大大拓展了低强度等级废旧混凝土的应用范围。
本发明实现上述目的的技术方案为:
内设局部约束的高强化再生混合钢管砼抗震柱,在钢管内部上、下两端设置横向箍筋,所述钢管截面为圆形或多边形;圆形截面对应的横向箍筋分别均匀设置在钢管下端七分之一高度范围内和钢管上端七分之一高度范围内,多边形截面对应的横向箍筋分别均匀设置在钢管下端五分之一高度范围内和钢管上端五分之一高度范围内;钢管内部交替浇筑高强度等级新混凝土和投放低强度等级废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度30~90MPa。
进一步优化实施的,所述低强度等级废旧混凝土块体为旧有建筑物、构筑物、道路、桥梁或堤坝拆除并去除保护层和全部或部分钢筋之后的废旧混凝土块体。
进一步优化实施的,所述高强度等级新混凝土为天然骨料混凝土或再生骨料混凝土,且抗压强度不小于60MPa。
进一步优化实施的,所述低强度等级废旧混凝土块体的特征尺寸不低于100mm,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为1:4~1:1。
上述内设局部约束的高强化再生混合钢管砼抗震柱的施工工艺,包括以下步骤:
(1)将若干横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,钢管截面为圆形时将若干横向箍筋分别均匀置于钢管内部下端七分之一高度范围内和上端七分之一高度范围内,钢管截面为多边形时将若干横向箍筋分别均匀置于钢管内部下端五分之一高度范围内和上端五分之一高度范围内,然后将两根纵向架立筋与钢管内壁点焊;
(2)提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约20mm厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
本发明相对于现有技术具有如下的优点:
(1)通过在钢管内部上、下两端分别设置横向箍筋,进一步加强钢管混凝土柱的端部约束,使得在用钢量相同的情况下钢管混凝土柱的抗震性能明显提高。
(2)利用低强度等级废旧混凝土块体与高强度等级新混凝土制作高强化再生混合钢管混凝土柱,可将低强度等级废旧混凝土应用到混凝土强度要求较高的构件和结构中,扩大了低强度等级废旧混凝土的使用范围。
(3)利用废旧混凝土块体进行浇筑,大大简化了废旧混凝土循环利用时的破碎、筛分、净化等处理过程,节省了大量人力、时间和能源,可实现废旧混凝土的高效循环利用。
附图说明
图1a、图1b分别为实施例1的内设局部约束的高强化再生混合钢管砼抗震柱的横向剖面示意图和纵向剖面示意图。
图2a、图2b分别为实施例2的内设局部约束的高强化再生混合钢管砼抗震柱的横向剖面示意图和纵向剖面示意图。
图3a、图3b分别为实施例3的内设局部约束的高强化再生混合钢管砼抗震柱的横向剖面示意图和纵向剖面示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限 于此。
实施例 1 :
参见图 1a 、图 1b ,本发明的内设局部约束的高强化再生混合钢管砼抗震柱包括钢管 1 、高强度等级新混凝土 2 、低强度等级废旧混凝土块体 3 、横向箍筋 4 、纵向架立筋 5 。所述钢管截面为圆形,外径 300mm ,壁厚 5mm ,钢管长度 3000mm ,钢材牌号 Q235 ,实测屈服强度 269.8MPa ,抗拉强度 407.7MPa ,钢管内部交替浇筑强度等级 70MPa 的新混凝土和投放强度等级 30MPa 的废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度 40MPa ,高强度等级新混凝土与低强度等级废旧混凝土组合后抗压强度 48.8MPa 。在钢管下端七分之一高度范围内和钢管上端七分之一高度范围内分别均匀设置 13 根横向箍筋,箍筋采用直径 12mm 的 HRB335 级钢筋,箍筋间距 33mm 。纵向架立筋采用直径 8mm 的 HRB335 级钢筋,长度 3000mm 。低强度等级废旧混凝土块体为一座旧有建筑物拆除并去除保护层和全部钢筋之后的废旧混凝土块体;高强度等级新混凝土为天然骨料混凝土。低强度等级废旧混凝土块体的特征尺寸为 100~200mm ,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为 1:1.5 。
上述 内设局部约束的高强化再生混合钢管砼抗震柱的施工工艺,包括以下步骤:
( 1 )将 26 根横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使 13 根横向箍筋置于钢管内部下端七分之一高度范围内,另外 13 根横向箍筋置于上端七分之一高度范围内,然后将两根纵向架立筋与钢管内壁点焊;
( 2 )提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约 20mm 厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
同时取外径 300mm 、壁厚 6mm 、长度 3000mm 的相同材料圆钢管,不设横向箍筋,制作无局部约束的高强化再生混合钢管砼柱。研究得出,本实施例中内设局部约束的高强化再生混合钢管砼抗震柱的极限位移角约 5.2% ,无局部约束的高强化再生混合钢管砼柱的极限位移角约 4.4% ,两者均完全满足现行抗震规范有关框架柱层间位移角的限值要求。通过计算可知两种柱的用钢量几乎相同,但前者比后者抗震性能提高了约 18% 。
实施例 2 :
参见图 2a 、图 2b ,本发明的内设局部约束的高强化再生混合钢管砼抗震柱包括钢管 1 、高强度等级新混凝土 2 、低强度等级废旧混凝土块体 3 、横向箍筋 4 、纵向架立筋 5 。所述钢管截面为圆形,外径 300mm ,壁厚 5mm ,钢管长度 3000mm ,钢材牌号 Q235 ,实测屈服强度 269.8MPa ,抗拉强度 407.7MPa ,钢管内部交替浇筑强度等级 110MPa 的新混凝土和投放强度等级 30MPa 的废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度 80MPa ,高强度等级新混凝土与低强度等级废旧混凝土组合后抗压强度 66.7MPa 。在钢管下端七分之一高度范围内和钢管上端七分之一高度范围内分别均匀设置 13 根横向箍筋,箍筋采用直径 12mm 的 HRB335 级钢筋,箍筋间距 33mm 。纵向架立筋采用直径 8mm 的 HRB335 级钢筋,长度 3000mm 。低强度等级废旧混凝土块体为一座旧有建筑物拆除并去除保护层和全部钢筋之后的废旧混凝土块体;高强度等级新混凝土为天然骨料混凝土。低强度等级废旧混凝土块体的特征尺寸为 100~200mm ,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为 1:2 。
上述内设局部约束的高强化再生混合钢管砼抗震柱的施工工艺,包括以下步骤:
( 1 )将 26 根横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使 13 根横向箍筋置于钢管内部下端七分之一高度范围内,另外 13 根横向箍筋置于上端七分之一高度范围内,然后将两根纵向架立筋与钢管内壁点焊;
( 2 )提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约 20mm 厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
同时取外径 300mm 、壁厚 6mm 、长度 3000mm 的相同材料圆钢管,不设横向箍筋,制作无局部约束的高强化再生混合钢管砼柱。研究得出,本实施例中内设局部约束的高强化再生混合钢管砼抗震柱的极限位移角约 5.0% ,无局部约束的高强化再生混合钢管砼柱的极限位移角约 4.1% ,两者均完全满足现行抗震规范有关框架柱层间位移角的限值要求。通过计算可知两种柱的用钢量几乎相同,但前者比后者抗震性能提高了 22% 左右。
实施例 3 :
参见图 3a 、图 3b ,本发明的内设局部约束的高强化再生混合钢管砼抗震柱包括钢管 1 、高强度等级新混凝土 2 、低强度等级废旧混凝土块体 3 、横向箍筋 4 、纵向架立筋 5 。所述钢管截面为方形,边长 300mm ,壁厚 5mm ,钢管长度 3000mm ,钢材牌号 Q235 ,实测屈服强度 269.8MPa ,抗拉强度 407.7MPa ,钢管内部交替浇筑强度等级 110MPa 的新混凝土和投放强度等级 20MPa 的废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度 90MPa ,高强度等级新混凝土与低强度等级废旧混凝土组合后抗压强度 57.5MPa 。在钢管下端五分之一高度范围内和钢管上端五分之一高度范围内分别均匀设置 13 根横向箍筋,箍筋采用直径 12mm 的 HRB335 级钢筋,箍筋间距 46mm 。纵向架立筋采用直径 8mm 的 HRB335 级钢筋,长度 3000mm 。低强度等级废旧混凝土块体为一座旧有建筑物拆除并去除保护层和全部钢筋之后的废旧混凝土块体;高强度等级新混凝土为天然骨料混凝土。低强度等级废旧混凝土块体的特征尺寸为 100~200mm ,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为 1:2 。
上述内设局部约束的高强化再生混合钢管砼抗震柱的施工工艺,包括以下步骤:
( 1 )将 26 根横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使 13 根横向箍筋置于钢管内部下端五分之一高度范围内,另外 13 根横向箍筋置于上端五分之一高度范围内,然后将两根纵向架立筋与钢管内壁点焊;
( 2 )提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约 20mm 厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
同时取边长 300mm 、壁厚 6mm 、长度 3000mm 的相同材料方钢管,不设横向箍筋,制作无局部约束的高强化再生混合钢管砼柱。研究得出,本实施例中内设局部约束的高强化再生混合钢管砼抗震柱的极限位移角约 4.6% ,无局部约束的高强化再生混合钢管砼柱的极限位移角约 3.8% ,两者均完全满足现行抗震规范有关框架柱层间位移角的限值要求。通过计算可知两种柱的用钢量几乎相同,但前者比后者抗震性能提高了约 21% 。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

  1. 内设局部约束的高强化再生混合钢管砼抗震柱,其特征在于:在钢管内部上、下两端设置横向箍筋,所述钢管截面为圆形或多边形;圆形截面对应的横向箍筋分别均匀设置在钢管下端七分之一高度范围内和钢管上端七分之一高度范围内,多边形截面对应的横向箍筋分别均匀设置在钢管下端五分之一高度范围内和钢管上端五分之一高度范围内;钢管内部交替浇筑高强度等级新混凝土和投放低强度等级废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度30~90MPa。
  2. 根据权利要求1所述的内设局部约束的高强化再生混合钢管砼抗震柱,其特征在于:所述低强度等级废旧混凝土块体为旧有建筑物、构筑物、道路、桥梁或堤坝拆除并去除保护层和全部或部分钢筋之后的废旧混凝土块体。
  3. 根据权利要求1所述的内设局部约束的高强化再生混合钢管砼抗震柱,其特征在于:所述高强度等级新混凝土为天然骨料混凝土或再生骨料混凝土,且抗压强度不小于60MPa。
  4. 根据权利要求1所述的内设局部约束的高强化再生混合钢管砼抗震柱,其特征在于:所述低强度等级废旧混凝土块体的特征尺寸不低于100mm,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为1:4~1:1。
  5. 权利要求1所述的内设局部约束的高强化再生混合钢管砼抗震柱的施工工艺,其特征在于,包括以下步骤:
    (1)将若干横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,钢管截面为圆形时将若干横向箍筋分别均匀置于钢管内部下端七分之一高度范围内和上端七分之一高度范围内,钢管截面为多边形时将若干横向箍筋分别均匀置于钢管内部下端五分之一高度范围内和上端五分之一高度范围内,然后将两根纵向架立筋与钢管内壁点焊;
    (2)提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约20mm厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
PCT/CN2014/089384 2014-09-17 2014-10-24 内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺 WO2016041237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/512,069 US10087629B2 (en) 2014-09-17 2014-10-24 Seismic steel tubular column with internal local restraint and filled with high-strength compound concrete containing normal-strength demolished concrete lumps and construction process of such column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410475336.3A CN104358356B (zh) 2014-09-17 2014-09-17 内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺
CN201410475336.3 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016041237A1 true WO2016041237A1 (zh) 2016-03-24

Family

ID=52525653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089384 WO2016041237A1 (zh) 2014-09-17 2014-10-24 内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺

Country Status (3)

Country Link
US (1) US10087629B2 (zh)
CN (1) CN104358356B (zh)
WO (1) WO2016041237A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622967A (zh) * 2020-05-08 2021-11-09 新疆大学 Frp-钢丝网骨架塑料复合管约束煤矸石混凝土墩柱及其施工方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105369983B (zh) * 2015-09-29 2018-01-26 南京林业大学 一种肋约束薄壁钢管混凝土结构
US9857351B2 (en) * 2015-11-09 2018-01-02 University Of Dammam Concrete reinforcement assembly, method of installation, and method to determine cyclic load response
US10935682B2 (en) 2016-10-03 2021-03-02 Schlumberger Technology Corporation Downhole seismic sensing synchronization systems and methods
CN109898655A (zh) * 2019-03-26 2019-06-18 上海息数建筑科技有限公司 支撑骨架以及支撑架
CN110607877A (zh) * 2019-10-19 2019-12-24 河南理工大学 一种带开孔t形肋的l形钢管再生混凝土异形柱及作法
CN114043604A (zh) * 2021-12-07 2022-02-15 衡阳市凯晋锋机械制造有限公司 一种高强度异形钢模及其浇筑方法
CN114922349A (zh) * 2022-04-14 2022-08-19 国网江苏省电力有限公司建设分公司 一种复式波纹管角钢加劲八边形钢管混凝土柱及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2524147A1 (de) * 1975-05-30 1976-12-02 Ytong Ag Verfahren zur verwendung von bei der herstellung von dampfgehaertetem gasbeton anfallendem bruch- und abfallmaterial und daraus hergestellte erzeugnisse
JPH07279312A (ja) * 1994-04-07 1995-10-27 Jdc Corp コンクリート充填部材
JP2001233657A (ja) * 2000-02-24 2001-08-28 Makkusuton Kk コンクリート成形パネル又は同ブロック
CN101054275A (zh) * 2006-04-11 2007-10-17 牛宁民 聚合泡沫混凝土水泥发泡剂
CN101818543A (zh) * 2010-05-28 2010-09-01 中南大学 方钢管内切环形箍筋约束高强混凝土柱
CN201883609U (zh) * 2010-12-02 2011-06-29 西安建筑科技大学 金属波纹管再回收混凝土芯柱
CN202324344U (zh) * 2011-11-17 2012-07-11 吴若涵 废弃砖块再生混合矩形柱

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649976A (ja) * 1992-07-29 1994-02-22 Matsushita Electric Works Ltd 防音型蓄熱床暖房装置
IT1283189B1 (it) * 1996-03-05 1998-04-16 Italcementi Spa Metodo per la realizzazione di una trave composita e trave cosi' realizzata
CA2444408A1 (en) * 2003-10-06 2005-04-06 Atef Amil Fahmy Fahim High ductility, shear-controlled rods for concrete reinforcement
CN101324115B (zh) * 2008-07-04 2010-06-02 华南理工大学 钢管再生混合构件
CN101418629B (zh) * 2008-10-14 2011-07-27 华南理工大学 再生混合钢筋混凝土梁及其施工方法
CN102330469A (zh) * 2011-07-27 2012-01-25 福州大学 一种加强钢管和管内混凝土粘结作用的方法及其结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2524147A1 (de) * 1975-05-30 1976-12-02 Ytong Ag Verfahren zur verwendung von bei der herstellung von dampfgehaertetem gasbeton anfallendem bruch- und abfallmaterial und daraus hergestellte erzeugnisse
JPH07279312A (ja) * 1994-04-07 1995-10-27 Jdc Corp コンクリート充填部材
JP2001233657A (ja) * 2000-02-24 2001-08-28 Makkusuton Kk コンクリート成形パネル又は同ブロック
CN101054275A (zh) * 2006-04-11 2007-10-17 牛宁民 聚合泡沫混凝土水泥发泡剂
CN101818543A (zh) * 2010-05-28 2010-09-01 中南大学 方钢管内切环形箍筋约束高强混凝土柱
CN201883609U (zh) * 2010-12-02 2011-06-29 西安建筑科技大学 金属波纹管再回收混凝土芯柱
CN202324344U (zh) * 2011-11-17 2012-07-11 吴若涵 废弃砖块再生混合矩形柱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622967A (zh) * 2020-05-08 2021-11-09 新疆大学 Frp-钢丝网骨架塑料复合管约束煤矸石混凝土墩柱及其施工方法
CN113622967B (zh) * 2020-05-08 2023-09-26 新疆大学 Frp-钢丝网骨架塑料复合管约束煤矸石混凝土墩柱及其施工方法

Also Published As

Publication number Publication date
US10087629B2 (en) 2018-10-02
CN104358356A (zh) 2015-02-18
CN104358356B (zh) 2016-10-05
US20170254083A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2016041237A1 (zh) 内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺
US10273691B2 (en) Method of constructing a reinforced compound concrete beam containing demolished concrete lumps
US10087106B2 (en) Method of constructing an axial compression steel tubular column
CN107574930B (zh) 一种设置h型钢和u形钢的再生块体混凝土连接节点
CN207919748U (zh) 一种装配式高延性混凝土梁柱节点
CN207919746U (zh) 一种高强高延性混凝土装配式框架预制节点
CN101736832B (zh) 一种约束砌体结构及其制作方法
CN104294920B (zh) 一种u形钢混凝土组合梁与异形钢管混凝土柱的节点组件及制备方法
CN106638987A (zh) 一种预制再生块体混凝土柱的连接构造及其施工方法
CN108265824A (zh) 一种装配式高延性混凝土梁柱节点及连接方法
CN208844417U (zh) 一种用于桥墩柱的外预制结构及其外预制内现浇桥墩柱
CN103195190A (zh) 带拉结钢筋的再生混凝土砖与保温层复合墙体及作法
CN106088640A (zh) 对既有框架结构进行抽柱改造的方法
CN207919747U (zh) 一种高强高延性混凝土装配式框架结构体系
CN201722813U (zh) 一种约束砌体结构
CN109469242A (zh) 一种压型钢板-再生混凝土组合楼板及其施工方法
CN206329032U (zh) 适用于装配式梁柱后浇段的模板
CN206048468U (zh) 一种卧式管廊模具
CN105839851B (zh) 采用分段连接形成的预制框架柱的施工方法
CN104314001B (zh) 再生混凝土带u肋哑铃型柱式桥墩
CN106381956A (zh) 混凝土预制外壳‑再生混合混凝土组合柱及其制备方法
CN208618248U (zh) 钢管混凝土拱桥外包混凝土拱脚结构
CN212716667U (zh) 钢管混凝土与喷射混凝土劲性组合结构隧道支护体系
CN210134332U (zh) Uhpc钢管混凝土叠合式格构柱结构
CN210134329U (zh) Uhpc箱型钢管混凝土叠合柱结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15512069

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14901964

Country of ref document: EP

Kind code of ref document: A1