WO2018117228A1 - H形鋼及びその製造方法 - Google Patents

H形鋼及びその製造方法 Download PDF

Info

Publication number
WO2018117228A1
WO2018117228A1 PCT/JP2017/045965 JP2017045965W WO2018117228A1 WO 2018117228 A1 WO2018117228 A1 WO 2018117228A1 JP 2017045965 W JP2017045965 W JP 2017045965W WO 2018117228 A1 WO2018117228 A1 WO 2018117228A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
rolling
flange
content
less
Prior art date
Application number
PCT/JP2017/045965
Other languages
English (en)
French (fr)
Inventor
昌毅 溝口
市川 和利
杉山 博一
徹哉 清家
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/329,163 priority Critical patent/US20190203309A1/en
Priority to CN201780057895.4A priority patent/CN109715842B/zh
Priority to JP2018558074A priority patent/JP6468408B2/ja
Priority to KR1020197007720A priority patent/KR102021726B1/ko
Priority to EP17885325.5A priority patent/EP3533893A4/en
Publication of WO2018117228A1 publication Critical patent/WO2018117228A1/ja
Priority to PH12019500350A priority patent/PH12019500350A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a thick H-section steel excellent in strength and low-temperature toughness and a method for producing the same.
  • Patent Document 1 obtains a steel material that secures high strength by applying accelerated cooling while securing toughness by utilizing the refinement effect of prior austenite grains by Ca—Al-based oxides. Technology has been proposed.
  • Patent Document 2 proposes a technique for obtaining a steel material that secures high strength by applying accelerated cooling while securing toughness using the refinement effect of prior austenite grains due to Mg-S inclusions. Yes.
  • the use of thick H-section steel is desired for large buildings, but this H-section has a unique shape.
  • Universal rolling or the like is applied to form a steel slab into an H shape, but the rolling conditions (temperature, rolling reduction) are limited in universal rolling. Therefore, when manufacturing an H-section steel, especially when manufacturing a thick H-section steel having a flange thickness of 20 mm or more, the mechanical characteristics are controlled as compared with a general thick steel sheet (thick steel sheet). It is not easy.
  • Patent Documents 3 and 4 propose a method of reducing the amount of C and hot-rolling a steel piece to which B is added and then allowing it to cool to ensure uniform mechanical properties.
  • Patent Documents 5 to 8 disclose thick H-shaped steels or methods for producing H-shaped steels for the purpose of high strength, high toughness and the like.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a thick H-section steel excellent in strength and low-temperature toughness and a method for producing the same.
  • the gist of the present invention is as follows. (1) In the H-section steel according to one aspect of the present invention, the steel is, as a chemical component, in mass%, C: 0.05 to 0.160%, Si: 0.01 to 0.60%, Mn: 0.80 to 1.70%, Nb: 0.005 to 0.050%, V: 0.05 to 0.120%, Ti: 0.001 to 0.025%, N: 0.0001 to 0.
  • the structure other than the ferrite and the MA is limited to 37% or less, the average grain size of the ferrite is 1 to 30 ⁇ m, and the shape is H when the steel is viewed in a cross section perpendicular to the rolling direction.
  • the thickness of the flange is 20 to 140 mm, and when the length in the width direction of the flange is F, the tensile yield stress is 385 at a position of (1/6) F from the end surface in the width direction of the flange.
  • the steel may contain Nb: more than 0.02 to 0.050% by mass as the chemical component.
  • the steel may contain N: more than 0.005 to 0.0120% by mass as the chemical component.
  • the steel may be limited to less than 0.03% by mass as the chemical component in terms of mass%. . (5) In the H-section steel according to any one of the above (1) to (4), the steel may be limited to less than 0.003% Al by mass% as the chemical component. . (6) In the H-section steel according to any one of (1) to (5) above, the thickness of the flange may be 25 to 140 mm.
  • a method for producing an H-section steel according to an aspect of the present invention is the method for producing an H-section steel according to any one of (1) to (6) above, wherein the (1) to ( 5) A steel making process for obtaining molten steel having the chemical component according to any one of 5), a casting process for obtaining a steel slab by casting the molten steel after the steel making process, and 1100 for the steel slab after the casting process. From the end face in the width direction of the flange so that the shape when viewed in a cut surface perpendicular to the rolling direction is H-shaped with respect to the heating step of heating to ⁇ 1350 ° C.
  • Cumulative rolling reduction at the position of F is more than 20% at over 900 ° C. to 1100 ° C., cumulative rolling reduction at the above position is at least 15% at 730 to 900 ° C., rolling at 730 ° C. or more
  • a hot rolling process in which rolling is performed under conditions to end the cooling, and cooling to cool the hot-rolled material after the hot rolling process Includes a degree, the.
  • a thick H-section steel having a flange thickness of 20 mm or more has been required to have toughness at room temperature or at most 0 ° C.
  • thick H-section steel is required to have excellent toughness at a lower temperature of about ⁇ 20 ° C.
  • the yield stress specifically, yield strength or 0.2% proof stress
  • the present inventors have investigated the steel composition that affects the strength and low temperature toughness with respect to thick H-section steel (hereinafter sometimes referred to as “steel material”), particularly with respect to the flange, which is an important part in the structure of H-section steel.
  • steel material thick H-section steel
  • the strength means the tensile yield stress and the maximum tensile strength
  • the low temperature toughness means the absorbed energy of the Charpy test at ⁇ 20 ° C.
  • an excessive increase in hardenability due to the addition of alloying elements promotes the formation of a martensite-austenite mixed structure (hereinafter referred to as MA) in the steel material, leading to a decrease in low-temperature toughness.
  • MA martensite-austenite mixed structure
  • B tends to promote the formation of MA among the alloy elements. Therefore, it is effective to limit B to an impurity level or less without positively adding B.
  • Nb is effective to achieve high yield stress (yield strength or 0.2% yield strength) and at the same time improve the toughness at ⁇ 20 ° C. Since Nb increases the strength of the steel material through precipitation strengthening, it is not necessary to excessively increase the hardenability, and the strength of the steel material can be increased without promoting the formation of MA. Nb also has the effect of suppressing recrystallization of austenite during hot rolling, accumulating strain in the steel material due to rolling, and reducing the ferrite grain size after transformation.
  • V precipitates as carbonitride (VC, VN, or a composite thereof) and functions as a nucleation site of ferrite, and has the effect of causing finer ferrite.
  • Mn further improves strength and low temperature toughness.
  • controlling the steel composition and controlling the ferrite area fraction, the MA area fraction, the average crystal grain size of ferrite, etc. as the steel structure can achieve both high strength and low temperature toughness. Is important.
  • the cooling rate difference between the surface and the inside of the steel material is small when cooling after hot rolling.
  • the cooling rate is reduced on the surface and inside of the steel material, and the difference is also reduced.
  • the average cooling rate on the surface and inside of the steel material from 800 ° C. to 500 ° C. is 1 ° C./second or less.
  • the C content is 0.05% to 0.160%
  • B is not added, it is limited to the impurity level or less
  • Nb and V are actively added
  • the alloy element content is appropriately controlled, and the carbon equivalent Ceq is controlled within the range of 0.30 to 0.48.
  • the manufacturing conditions are optimally controlled to create the ferrite area fraction, the MA area fraction, the average grain size of ferrite, and the like as the steel structure. As a result, it is possible to obtain a thick H-section steel having excellent strength and low temperature toughness.
  • the H-section steel according to the present embodiment includes a basic element as a chemical component, includes a selection element as necessary, and the balance is composed of Fe and impurities.
  • C, Si, Mn, Nb, V, Ti, and N are basic elements (main alloying elements).
  • C (C: 0.05-0.160%) C (carbon) is an element effective for strengthening steel. Therefore, the lower limit for the C content is 0.05%. Preferably, the lower limit of the C content is 0.060%, 0.070%, or 0.080%. On the other hand, when the C content exceeds 0.160%, the low temperature toughness is reduced. Therefore, the upper limit of C content is 0.160%. In order to further improve the low temperature toughness, the upper limit of the C content is preferably set to 0.140%, 0.130%, or 0.120%.
  • Si silicon
  • Si silicon
  • the lower limit for the Si content is 0.01%.
  • the lower limit of the Si content is 0.05%, 0.10%, or 0.15%.
  • the upper limit of Si content is 0.60%.
  • the upper limit of the Si content is preferably set to 0.40% or 0.30%.
  • Mn manganese
  • the lower limit of the Mn content is 0.80%.
  • the lower limit of the Mn content is preferably set to 1.0%, 1.1%, or 1.2%.
  • the upper limit of the Mn content is 1.70%.
  • the upper limit of the Mn content is 1.60% or 1.50%.
  • Nb 0.005 to 0.050%
  • Nb niobium
  • the lower limit of the Nb content is set to 0.005%.
  • the lower limit of the Nb content is 0.010%, more than 0.020%, 0.025%, or 0.030%.
  • the upper limit of Nb content is 0.050%.
  • the upper limit of the Nb content is 0.045%, 0.043%, or 0.040%.
  • V vanadium
  • V vanadium
  • the lower limit of V content is 0.05%.
  • the lower limit of the V content is more than 0.05%, 0.06%, or 0.07%.
  • the upper limit of V content is 0.120%.
  • the upper limit of the V content is 0.110% or 0.100%.
  • Ti titanium
  • Ti titanium
  • the lower limit of the Ti content is set to 0.001%.
  • the lower limit of the Ti content is preferably set to 0.005%, 0.007%, or 0.010%.
  • the upper limit of the Ti content is 0.025%.
  • the upper limit of the Ti content is 0.020%, 0.015%, or 0.012%.
  • N nitrogen
  • the lower limit of the N content is set to 0.0001%.
  • the lower limit of the N content is 0.0020%, 0.0035%, more than 0.0050%, or 0.0060%.
  • the upper limit of N content is 0.0120%.
  • the upper limit of the N content is 0.0110%, 0.0100%, or 0.0090%.
  • the H-section steel according to the present embodiment contains impurities as chemical components.
  • the “impurities” refer to those mixed from ore or scrap as a raw material or from a production environment when steel is industrially produced. For example, it means elements such as Al, B, P, S and O.
  • Al and B are preferably limited as follows in order to sufficiently exhibit the effects of the present embodiment.
  • limit a lower limit and the lower limit of an impurity may be 0%.
  • Al 0.10% or less
  • Al aluminum
  • Al is an element used as a deoxidizing element.
  • the Al content exceeds 0.10%, the oxide becomes coarse and becomes a starting point for brittle fracture, and low-temperature toughness decreases. Therefore, the upper limit of the Al content is limited to 0.10%.
  • Ti works as a deoxidizing element, and Ti oxide is precipitated in the steel. This Ti oxide functions as a nucleation site for V carbonitrides, refines the ferrite grain size, and contributes to the improvement of low temperature toughness.
  • the upper limit of the Al content may be limited to less than 0.003%, 0.002%, or 0.001% using Al as an impurity.
  • Al is intentionally contained in the steel.
  • B (boron) improves hardenability, promotes the formation of MA, and lowers low temperature toughness. For this reason, in the present embodiment, B is not actively added and is limited to the impurity level or less.
  • the upper limit of B content is limited to 0.0003%.
  • the upper limit of the B content is limited to less than 0.0003%, 0.0002%, or 0.0001%. In general, in order to make the B content more than 0.0003%, B is intentionally contained in the steel.
  • P 0.03% or less, S: 0.02% or less, O: 0.005% or less
  • P (phosphorus), S (sulfur), and O (oxygen) are impurities.
  • P and S are segregated by solidification, promote weld cracking, and reduce low temperature toughness.
  • the upper limit of the P content is limited to 0.03%, 0.02%, or 0.01%.
  • the upper limit of the S content is limited to 0.02% or 0.01%.
  • O dissolves in steel and lowers the low temperature toughness, and lowers the low temperature toughness by coarsening of oxide particles.
  • the upper limit of the O content is limited to 0.005%, 0.004%, or 0.003%.
  • the H-section steel according to the present embodiment may contain a selective element in addition to the basic elements and impurities described above.
  • a selective element instead of a part of Fe which is the above-described remaining part, Cr, Mo, Ni, Cu, W, Ca, Zr, Mg, and / or REM may be included as a selective element.
  • These selective elements may be contained depending on the purpose. Therefore, it is not necessary to limit the lower limit values of these selected elements, and the lower limit value may be 0%. Moreover, even if these selective elements are contained as impurities, the above effects are not impaired.
  • Cr Cr (chromium) is an element that contributes to improving the strength. If necessary, the Cr content may be 0 to 0.30%. In order to further improve the strength, the lower limit of the Cr content is preferably set to 0.01%, 0.05%, or 0.10%. On the other hand, if the Cr content exceeds 0.30%, the formation of MA may be promoted and the low temperature toughness may be reduced. Therefore, preferably, the upper limit of the Cr content is set to 0.30%, 0.25%, or 0.20%.
  • Mo mobdenum
  • Mo mobdenum
  • the Mo content may be 0 to 0.20%.
  • the lower limit of the Mo content is preferably set to 0.01%, 0.05%, or 0.10%.
  • the upper limit of the Mo content is 0.20%, 0.17%, or 0.15%.
  • Ni (Ni: 0 to 0.50%) Ni (nickel) is an element that contributes to improvement in strength by solid solution in steel. If necessary, the Ni content may be 0 to 0.50%. In order to further improve the strength, the lower limit of the Ni content is preferably set to 0.01%, 0.05%, or 0.10%. However, if the Ni content exceeds 0.50%, the hardenability is increased, the formation of MA is promoted, and the low temperature toughness may be lowered. Therefore, preferably, the upper limit of the Ni content is 0.50%, 0.30%, or 0.20%.
  • Cu (copper) is an element contributing to the improvement of strength. If necessary, the Cu content may be 0 to 0.35%. However, the addition of Cu facilitates the formation of MA and may reduce the low temperature toughness. Therefore, preferably, even if the Cu content is limited to 0.30% or less, 0.20% or less, 0.10% or less, or less than 0.03% or less than 0.01%, which is an impurity level. Good.
  • W tungsten
  • the W content may be 0 to 0.50%.
  • the lower limit of the W content is 0.001%, 0.01%, or 0.10%.
  • the upper limit of the W content is 0.50%, 0.40%, or 0.30%.
  • W content contained as an impurity is less than 0.001%. In order to make the W content 0.001% or more, W is intentionally contained in the steel.
  • Ca (Ca: 0 to 0.0050%)
  • Ca (calcium) is an element that is effective in controlling the form of sulfide, suppresses the formation of coarse MnS, and contributes to the improvement of low-temperature toughness.
  • the Ca content may be 0 to 0.0050%.
  • the lower limit of the Ca content is 0.0001%, 0.0005%, or 0.0010%.
  • the upper limit of the Ca content is set to 0.0050%, 0.0040%, or 0.0030%.
  • Zr zirconium
  • Zr zirconium
  • the Zr content may be 0 to 0.0050%.
  • the lower limit of the Zr content is 0.0001%, 0.0005%, or 0.0010%.
  • the upper limit of the Zr content is 0.0050%, 0.0040%, or 0.0030%.
  • the Zr content contained as an impurity is less than 0.0001%. In order to make the Zr content 0.0001% or more, Zr is intentionally contained in the steel.
  • Mg manganesium
  • REM rare earth elements
  • HAZ heat affected zone
  • the Mg content may be 0 to 0.0050% and the REM content may be 0 to 0.0050%.
  • the lower limit of the Mg content is 0.0005%, 0.0010%, or 0.0020%
  • the lower limit of the REM content is 0.0005%, 0.0010%, or 0.0020%.
  • the upper limit of Mg content is 0.0040%, 0.0030%, or 0.0025%
  • the upper limit of REM content is 0.0040%, 0.0030%, or 0.0025. %.
  • the carbon equivalent Ceq is controlled from the viewpoint of securing strength. Specifically, when Ceq is represented by the following formula 1, C, Mn, Cr, Mo, V, Ni, and Cu in the chemical components of the H-shaped steel are in mass%, and 0.30 ⁇ Ceq ⁇ 0. 48 is satisfied. If Ceq is less than 0.30, the strength is insufficient. Therefore, the lower limit of Ceq is set to 0.30. Preferably, the lower limit of Ceq is set to 0.32%, 0.34%, or 0.35%. On the other hand, when Ceq exceeds 0.48, low temperature toughness decreases. Therefore, the upper limit of Ceq is set to 0.48.
  • the upper limit of Ceq is 0.45%, 0.43%, or 0.40%.
  • an element whose content in steel is equal to or lower than the detection limit may be calculated by substituting 0 into formula 1 as a value.
  • the above steel components may be measured by a general steel analysis method.
  • the steel component may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S may be measured using a combustion-infrared absorption method
  • N may be measured using an inert gas melting-thermal conductivity method
  • O may be measured using an inert gas melting-non-dispersive infrared absorption method.
  • the steel structure includes an area fraction of ferrite of less than 60 to 100%, the mixed structure MA of martensite and austenite is limited to 3.0% or less, and the ferrite and MA The organization other than is limited to 37% or less. Moreover, the average particle diameter of ferrite is 1 ⁇ m or more and 30 ⁇ m or less.
  • Ferrite is a main constituent phase in the steel structure of the H-section steel according to the present embodiment.
  • the area fraction of ferrite is less than 60%, the low temperature toughness decreases. Therefore, the lower limit of the ferrite fraction is set to 60%.
  • the lower limit of the ferrite fraction is 65%, 70%, or 75%.
  • the upper limit of the ferrite fraction is set to less than 100%.
  • the upper limit of the ferrite fraction is preferably 90%, 85%, or 80%.
  • the MA fraction is limited to 3.0% or less.
  • the upper limit of the MA fraction is 2.5%, 2.0%, or 1.5%. Since the MA fraction is preferably as small as possible, the lower limit of the MA fraction may be 0%.
  • the steel structure of the H-section steel according to the present embodiment includes bainite, pearlite, and the like as structures other than the above-described ferrite and MA. If the structure other than ferrite and MA is excessively contained, the low temperature toughness is lowered. Therefore, the area fraction of the structure other than ferrite and MA (the above-mentioned ferrite and the remainder of MA) is limited to 37% or less. Preferably, the fraction of the structure other than ferrite and MA is 35% or less, 30% or less, or 25% or less. Since the fraction of the structure other than ferrite and MA is preferably as small as possible, this lower limit may be 0%.
  • the average particle diameter of the ferrite is preferably fine.
  • the upper limit of the ferrite grain size is set to 30 ⁇ m.
  • the upper limit of the ferrite grain size is 25 ⁇ m, 22 ⁇ m, or 18 ⁇ m.
  • the lower limit of the ferrite particle size is 1 ⁇ m.
  • the lower limit of the ferrite grain size is 3 ⁇ m, 5 ⁇ m, or 10 ⁇ m.
  • FIG. 1 is a schematic cross-sectional view orthogonal to the rolling direction of H-section steel, but the steel structure is observed using the vicinity of the evaluation site 7 shown in FIG. 1 as an observation surface.
  • the evaluation part is located at a position (1/6) F from the flange width direction end surface 5 a and a position (1/4) t 2 from the outer surface 5 b in the thickness direction of the flange.
  • the steel structure is observed using the vicinity of 7 as the observation surface.
  • This observation surface is a surface parallel to the flange end surface 5a in the width direction.
  • the fraction of ferrite and MA is obtained from the observation surface that has undergone nital corrosion, the remainder is the fraction of the structure of pearlite and bainite, and the MA fraction is obtained from the observation surface that has undergone repeller corrosion.
  • measurement points are arranged in a lattice shape with a side of 25 ⁇ m on a 200 ⁇ optical micrograph (if necessary, multiple fields of view) taken on the observation surface that has been corroded at night, and at least 1000 measurement points Whether it is ferrite or MA is determined, and the value obtained by dividing the number of measurement points determined to be ferrite or MA by the number of all measurement points is defined as the ferrite or MA fraction.
  • measuring points are arranged in a lattice shape with a side of 25 ⁇ m on a 200 ⁇ optical micrograph (if necessary, multiple fields of view) taken on an observation surface that has undergone repeller corrosion.
  • a value obtained by dividing the number of measurement points determined to be MA by the number of all measurement points is defined as an MA fraction.
  • the ferrite fraction is obtained by subtracting the total fraction of pearlite, bainite, and MA fraction obtained above from 100%.
  • the average particle diameter of the ferrite is calculated from the cutting method in accordance with JIS G0551 (2013) using a 200-fold optical micrograph taken on the above-mentioned observation surface subjected to the nital corrosion. Ask.
  • a test piece is taken from a region including the evaluation portion 7 shown in FIG. 1 as a position where average mechanical properties (strength and low temperature toughness) are obtained, and mechanical properties are evaluated.
  • FIG. 1 is a schematic cross-sectional view orthogonal to the rolling direction of H-section steel.
  • the X-axis direction is defined as the flange width direction
  • the Y-axis is defined as the flange thickness direction
  • the Z-axis direction is defined as the rolling direction.
  • the center of the evaluation part 7 is (1/6) F from the width direction end face of the flange, where F is the length in the width direction of the flange and t 2 is the thickness of the flange.
  • the position is (1/4) t 2 from the outer surface in the thickness direction of the flange.
  • the surface on the outer side in the thickness direction of the flange is one surface in the thickness direction of the flange and is the surface not in contact with the web 6, and is the surface 5b shown in FIG.
  • the end face in the width direction of the flange is the end face 5a shown in FIG.
  • test piece for evaluating low temperature toughness by the Charpy test is collected from the position of the evaluation site 7 so that the longitudinal direction of the test piece is parallel to the rolling direction.
  • the surface on which the notch is formed in the test piece is any surface parallel to the end surface 5a in the width direction of the flange.
  • the test piece is taken from any position as long as it is a position (1/6) F from the flange width direction end surface 5a and a position (1/4) t 2 from the outer surface 5b in the thickness direction of the flange. May be.
  • a test piece for evaluating the yield stress (yield strength or 0.2% proof stress) and the tensile strength (maximum tensile strength) by a tensile test is (1/6) F from the width direction end face 5a of the flange in FIG. Samples are taken so that the position is the center of the specimen in the thickness direction.
  • the test piece may be formed such that the longitudinal direction of the test piece is parallel to the rolling direction and the entire thickness direction of the flange is cut out.
  • the test piece may be collected from any position as long as the position is (1/6) F from the end face 5a in the width direction of the flange.
  • the yield stress at room temperature is 385 MPa or more
  • the tensile strength is 490 MPa or more
  • the Charpy absorbed energy at ⁇ 20 ° C. is 100 J or more.
  • the upper limit of the yield stress is preferably 530 MPa and the upper limit of the tensile strength is preferably 690 MPa.
  • the upper limit of the Charpy absorbed energy at ⁇ 20 ° C. may be set to 500 J.
  • normal temperature refers to 20 degreeC.
  • the tensile test is performed according to JIS Z2241 (2011), and the Charpy test is performed according to JIS Z2242 (2005).
  • the yield strength is obtained as the yield stress
  • the 0.2% yield strength is obtained as the yield stress.
  • the flange thickness t 2 and 20 ⁇ 140 mm For example, in a high-rise building structure, thick H-section steel is required as a strength member. Therefore, the lower limit of the flange thickness is 20 mm. Preferably, the lower limit of the flange thickness is 25 mm, 40 mm, or 56 mm. On the other hand, if the thickness t 2 of the flange is greater than 140 mm, it is difficult achieve both the hot working volume during processing is insufficient strength and low temperature toughness. Therefore, the upper limit of the flange thickness is 140 mm. Preferably, the upper limit of the flange thickness is set to 125 mm, 89 mm, or 77 mm. For example, the flange thickness t 2 is preferably 25 to 140 mm.
  • the thickness t 1 of the H-shaped steel web is not particularly specified, but is preferably 20 to 140 mm, and more preferably 25 to 140 mm.
  • the flange thickness / web thickness ratio (t 2 / t 1 ) is preferably 0.5 to 2.0.
  • the flange thickness / web thickness ratio (t 2 / t 1 ) exceeds 2.0, the web may be deformed into a wavy shape.
  • the flange thickness / web thickness ratio (t 2 / t 1 ) is less than 0.5, the flange may be deformed into a wavy shape.
  • the manufacturing method of the H-section steel according to the present embodiment includes a steel making process, a casting process, a heating process, a hot rolling process, and a cooling process.
  • the chemical composition of the molten steel is adjusted so that the above steel composition is obtained.
  • molten steel produced by converter refining or secondary refining may be used, or molten steel melted in an electric furnace may be used as a raw material.
  • deoxidation treatment or vacuum degassing treatment may be performed as necessary.
  • the molten steel after the steel making process is cast to obtain a steel piece. Casting is performed by a continuous casting method, an ingot method, or the like. From the viewpoint of productivity, continuous casting is preferable.
  • the shape of the billet is preferably a beam blank having a shape close to the H-shaped steel to be manufactured, but is not particularly limited.
  • the thickness of the steel slab is preferably 200 mm or more from the viewpoint of productivity, and is preferably 350 mm or less in consideration of reduction of segregation, homogeneity of the heating temperature before hot rolling, and the like.
  • the steel slab after the casting process is heated to 1100 to 1350 ° C.
  • the lower limit of the heating temperature is 1100 ° C.
  • the lower limit of the heating temperature is set to 1150 ° C. in order to sufficiently dissolve elements that form carbides or nitrides such as Nb.
  • the upper limit of the heating temperature is 1350 ° C.
  • a steel piece that has not been cooled to room temperature after the casting process may be used.
  • rough rolling, intermediate rolling, and finish rolling are performed on the steel pieces after the heating process.
  • rough rolling forming is performed such that the shape when viewed on a cut surface perpendicular to the rolling direction is substantially H-shaped.
  • This nearly H-shaped steel slab is hot-rolled with a cumulative rolling reduction of 20% or more in a temperature range where the steel surface temperature is over 900 ° C to 1100 ° C, and the steel surface temperature is 730 ° C to Hot rolling is performed in a temperature range of 900 ° C. with a cumulative rolling reduction of 15% or more.
  • forming is performed so that the shape when viewed on the cut surface is finally H-shaped.
  • the cumulative reduction ratio is set to 20% or more in order to reduce the amount of bainite and MA produced by refining austenite grains.
  • the lower limit of the cumulative rolling reduction in the temperature range of more than 900 ° C. to 1100 ° C. is 25%, 30%, or 35%.
  • the upper limit of the cumulative rolling reduction in the temperature range from over 900 ° C. to 1100 ° C. may be set to 60%.
  • the cumulative rolling reduction is set to 15% or more due to finer ferrite.
  • the lower limit of the cumulative rolling reduction in the temperature range of 730 ° C. to 900 ° C. is 20%, 25%, or 30%.
  • the upper limit of the cumulative rolling reduction in the temperature range of 730 ° C. to 900 ° C. may be set to 50%.
  • the rolling end temperature is 730 ° C. or higher at the surface temperature of the steel.
  • the upper limit of the rolling finishing temperature is 750 ° C.
  • rough rolling, intermediate rolling, and finish rolling are performed.
  • rolling in a temperature range of over 900 ° C. to 1100 ° C. may be performed by rough rolling, intermediate rolling, or finish rolling.
  • rolling in the temperature range of 730 ° C. to 900 ° C. may be performed by any of rough rolling, intermediate rolling, or finish rolling.
  • the cumulative rolling reduction in the above temperature range may be controlled.
  • the cumulative reduction ratio in the above temperature range is obtained based on the flange thickness at the position corresponding to (1/6) F from the width direction end face 5a of the flange shown in FIG.
  • the cumulative rolling reduction in the temperature range above 900 ° C. to 1100 ° C. is the rolling reduction calculated from the difference between the flange thickness when the surface temperature of the steel is 1100 ° C. and the flange thickness just before reaching 900 ° C. To do.
  • the cumulative rolling reduction in the temperature range of 730 ° C. to 900 ° C. is a rolling reduction calculated from the difference between the flange thickness at the time when the surface temperature of the steel is 900 ° C. and the flange thickness at the time of 730 ° C.
  • the method of rough rolling, intermediate rolling, and finish rolling in the hot rolling process is not particularly limited.
  • breakdown rolling is performed as rough rolling
  • universal rolling or edging rolling is performed as intermediate rolling
  • universal rolling is performed as finishing rolling, so that the shape when viewed in a cross section perpendicular to the rolling direction becomes H-shaped. What is necessary is just to shape
  • water cooling may be performed between rolling passes.
  • Water cooling between rolling passes is cooling performed for the purpose of temperature control in a temperature range higher than the temperature at which austenite undergoes phase transformation. Bainite and MA are not generated in the steel by water cooling between rolling passes.
  • the two-heat rolling is a rolling method in which the steel slab is cooled to 500 ° C. or lower after the primary rolling, and then the steel slab is heated again to 1100 to 1350 ° C. to perform secondary rolling.
  • the amount of plastic deformation in the hot rolling is small and the decrease in temperature in the rolling process is small, so that the second heating temperature can be lowered.
  • the hot rolled material after the hot rolling process is cooled.
  • the hot-rolled material is allowed to cool in the air as it is after the hot rolling is finished.
  • the average cooling rate on the surface and inside of the steel material from 800 ° C to 500 ° C is 1 ° C / second or less.
  • the cooling rate on the surface and inside of the steel material becomes uniform, so that variations in mechanical properties due to the portion of the steel material are suppressed.
  • the cooling is performed in the atmosphere without performing forced cooling from immediately after hot rolling until the steel material temperature becomes 400 ° C. or lower. means.
  • the manufacturing method of the H-section steel according to the present embodiment does not require advanced steelmaking technology or accelerated cooling, it is possible to reduce the manufacturing load and the work period. Therefore, the H-section steel according to the present embodiment can improve the reliability of a large building without impairing the economy.
  • the conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention.
  • the present invention is not limited to this one condition example.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Steels having chemical components shown in Tables 1 to 3 were melted, and steel pieces having a thickness of 240 to 300 mm were manufactured by continuous casting.
  • the steel was melted in a converter, subjected to primary deoxidation, alloy elements were added to adjust the components, and vacuum degassing was performed as necessary.
  • the obtained steel slab was heated and subjected to hot rolling to produce an H-shaped steel.
  • Ingredient No. The steel components shown as 1 to 48 were obtained by chemical analysis of samples collected from each H-shaped steel after production. Although not shown in the table, in all Examples, P was 0.03% or less, S was 0.02% or less, and O was 0.005% or less.
  • surface represents that it was not actively added to steel or content was below the detection limit.
  • the manufacturing process of H-section steel is shown in FIG.
  • the steel slab heated in the heating furnace 1 was subjected to a universal rolling apparatus row including a rough rolling mill 2a, an intermediate rolling mill 2b, and a finishing rolling mill 2c.
  • the hot-rolled material was allowed to cool to 400 ° C. or less as it was after the hot rolling.
  • the average cooling rate on the surface and inside of the hot rolled material from the hot rolling end temperature to 500 ° C. was 1 ° C./second or less.
  • water cooling devices 3 provided before and after the intermediate universal rolling mill (intermediate rolling mill) 2b. At this time, reverse rolling was performed.
  • Tables 4 to 6 show manufacturing conditions and manufacturing results.
  • the rolling reduction during hot rolling shown in Tables 4 to 6 is the cumulative rolling reduction in each temperature region at a position corresponding to (1/6) F from the widthwise end face 5a of the flange shown in FIG.
  • the manufactured H-shaped steel was subjected to a Charpy test at ⁇ 20 ° C. using a test piece taken from the evaluation site 7 shown in FIG.
  • a tensile test was performed at normal temperature (20 ° C.) using a test piece having a position (1/6) F from the flange width direction end surface 5a at the center in the thickness direction, and tensile properties were evaluated.
  • the structure was observed using a sample having an observation surface in the vicinity of the evaluation site 7 shown in FIG. 1 to evaluate the steel structure.
  • the tensile test was performed according to JIS Z2241 (2005).
  • the yield stress was taken as the yield point when the stress-strain curve of the tensile test showed yield behavior, and the yield stress was taken as 0.2% proof stress when no yield behavior was shown.
  • the Charpy impact test was performed according to JIS Z2242 (2005). The Charpy impact test was conducted at -20 ° C.
  • the ferrite fraction, the MA fraction, and the fraction of the structure other than ferrite and MA were measured by the above-described method using an optical micrograph.
  • the structure other than ferrite and MA is bainite or pearlite.
  • the average particle diameter of the ferrite was calculated
  • a steel material having a yield stress (YS) at room temperature of 385 MPa or more and a tensile strength (TS) of 490 MPa or more was judged to be acceptable.
  • a steel material having Charpy absorbed energy (vE-20) at ⁇ 20 ° C. of 100 J or more was judged to be acceptable.
  • Manufacturing No. No. 9 had a rolling reduction ratio of over 900 ° C. to 1100 ° C., the ferrite fraction in the steel structure was insufficient, and the fraction of the structure other than ferrite and MA became excessive, and at ⁇ 20 ° C. This is an example where Charpy absorbed energy is insufficient.
  • Manufacturing No. No. 10 is an example in which since the rolling reduction at 730 ° C. to 900 ° C. was insufficient, the ferrite grain size became coarse and the Charpy absorbed energy at ⁇ 20 ° C. was insufficient.
  • Manufacturing No. No. 19 had an insufficient rolling reduction at temperatures exceeding 900 ° C. to 1100 ° C., so that the ferrite fraction became insufficient, the MA fraction became excessive, the fraction of the structure other than ferrite and MA became excessive, and ⁇ 20 This is an example in which Charpy absorbed energy at °C is insufficient.
  • Manufacturing No. No. 20 has a high C content.
  • No. 25 has a high Nb content.
  • No. 26 has a high V content, and production no. No. 28 has a high Al content.
  • No. 29 has a high Ti content, and production No. No. 30 has a high N content.
  • No. 31 is an example in which the Charpy absorption energy at ⁇ 20 ° C. is insufficient because Ceq is excessive.
  • Manufacturing No. No. 21 has a low C content.
  • No. 24 has a low Mn content, and production no. No. 32 has insufficient Ceq.
  • No. 46 is an example in which YS and TS are insufficient because the Si content is low.
  • Manufacturing No. No. 22 has a high Si content
  • production No. 22 No. 23 is an example in which the Charpy absorbed energy at ⁇ 20 ° C. is insufficient because the Mn content is large and the MA fraction is excessive.
  • Manufacturing No. No. 27 is an example in which since the V content was small, the ferrite grain size became coarse and the Charpy absorbed energy at ⁇ 20 ° C. was insufficient.
  • Manufacturing No. No. 33 has an excess of B content and Ceq. No. 49 is an example in which since the B content was large, the MA fraction was excessive and the Charpy absorbed energy at ⁇ 20 ° C. was insufficient.
  • Manufacturing No. 44 and production no. No. 45 is an example in which since the V content was small, the ferrite grain size became coarse and the Charpy absorbed energy at ⁇ 20 ° C. was insufficient.
  • Manufacturing No. No. 47 is an example where the Nb content was small, the ferrite grain size was coarse, YS and TS were insufficient, and Charpy absorbed energy at ⁇ 20 ° C. was insufficient.
  • Manufacturing No. No. 48 is an example in which since the Ti content was small, the ferrite grain size became coarse and Charpy absorbed energy at ⁇ 20 ° C. was insufficient.
  • Manufacturing No. No. 50 is an example in which the Charpy absorbed energy at ⁇ 20 ° C. was insufficient because the rolling finishing temperature was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

このH形鋼は、化学成分として、C、Si、Mn、Nb、V、Ti、Nを含み、金属組織として、フェライトを60~100面積%未満含み、このフェライトの平均粒径が1~30μmであり、フランジの厚みが20~140mmであり、引張降伏応力が385~530MPaであり、-20℃でのシャルピー吸収エネルギーが100J以上である。

Description

H形鋼及びその製造方法
 本発明は、強度及び低温靭性に優れる厚手のH形鋼及びその製造方法に関する。本願は、2016年12月21日に、日本に出願された特願2016-248181号に基づき優先権を主張し、その内容をここに援用する。
 近年、高層ビルなど建築物の大型化や高層化が進んでおり、構造上で必要となる強度部材として、厚手の鋼材が利用されている。しかし、一般に、鉄鋼材料は、製品の厚さが増大するほど、強度の確保が難しくなり、更に靭性の確保も難しくなる。
 このような問題に対し、特許文献1では、Ca-Al系酸化物による旧オーステナイト粒の微細化効果を利用して靭性を確保しつつ、加速冷却を適用して高い強度を確保した鋼材を得る技術が提案されている。
 また、特許文献2では、Mg-S系介在物による旧オーステナイト粒の微細化効果を利用して靭性を確保しつつ、加速冷却を適用して高い強度を確保した鋼材を得る技術が提案されている。
 しかし、厚手の鋼板を製造する際、熱間圧延後に加速冷却を適用すると、鋼板の内部では表面に比べて冷却速度が遅くなり、表面と内部とでは冷却中の温度履歴に大きな差が生じ、鋼材の部位によって強度、延性、靭性といった機械特性に差が生じる。
 また、大型の建築物には、厚手のH形鋼の使用が望まれているが、このH形鋼は形状が特異である。鋼片をH形状へ成形するにはユニバーサル圧延などが適用されるが、ユニバーサル圧延では圧延条件(温度、圧下率)が制限される。そのため、H形鋼を製造する場合、特にフランジの厚みが20mm以上である厚手のH形鋼を製造する場合には、一般的な厚手の鋼板(厚鋼板)に比べて、機械特性を制御することが容易ではない。
 このような問題に対し、特許文献3および4では、C量を低減し、Bを添加した鋼片を熱間圧延した後、放冷して、均質な機械特性を確保する方法が提案されている。
 また、特許文献5~8では、高強度、高靱性などを目的とした厚手のH形鋼又はH形鋼の製造方法が開示されている。
日本国特許第5655984号公報 日本国特許第5867651号公報 日本国特開2003-328070号公報 日本国特開2011-106006号公報 日本国特開平11-158543号公報 日本国特開平11-335735号公報 日本国特開2016-84524号公報 日本国特開平10-68016号公報
 従来、フランジの厚みが20mm以上のような厚手のH形鋼では、機械特性を制御することが容易ではなかったので、このような厚手のH形鋼では、室温か、せいぜい0℃での靭性を満足することのみが要求されていた。しかし、近年では、寒冷地等での使用を考慮して、厚手のH形鋼に対して、より低温での靭性に優れることが要求されている。加えて、構造材料としての単位重量当たりの強度を考慮して、厚手のH形鋼に対して、降伏応力(具体的には降伏強度もしくは0.2%耐力)が385MPa以上であることも要求されている。
 本発明は、このような実情に鑑みてなされたものであり、強度及び低温靭性に優れる厚手のH形鋼及びその製造方法を提供することを目的とする。
本発明の要旨は以下のとおりである。
(1)本発明の一態様にかかるH形鋼は、鋼が、化学成分として、質量%で、C:0.05~0.160%、Si:0.01~0.60%、Mn:0.80~1.70%、Nb:0.005~0.050%、V:0.05~0.120%、Ti:0.001~0.025%、N:0.0001~0.0120%、Cr:0~0.30%、Mo:0~0.20%、Ni:0~0.50%、Cu:0~0.35%、W:0~0.50%、Ca:0~0.0050%、Zr:0~0.0050%を含有し、Al:0.10%以下、B:0.0003%以下に制限し、残部がFe及び不純物からなり、Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15としたとき、前記化学成分中のC、Mn、Cr、Mo、V、Ni、Cuが、0.30≦Ceq≦0.48を満足し、前記鋼が、金属組織として、面積分率で、フェライトを60~100%未満含み、マルテンサイトとオーステナイトとの混合組織MAを3.0%以下に制限し、前記フェライト及び前記MA以外の組織を37%以下に制限し、前記フェライトの平均粒径が1~30μmであり、前記鋼を圧延方向と直交する切断面で見たとき、形状がH形であり、フランジの厚みが20~140mmであり、前記フランジの幅方向長さをFとしたとき、前記フランジの幅方向端面から(1/6)Fの位置にて、引張降伏応力が385~530MPaで、引張最大強度が490~690MPaであり、前記フランジの厚みをtとしたとき、前記(1/6)Fの位置かつ、前記フランジの厚さ方向外側の面から(1/4)tの位置にて、-20℃でのシャルピー試験の吸収エネルギーが100J以上である。
(2)上記(1)に記載のH形鋼では、前記鋼が、前記化学成分として、質量%で、Nb:0.02超~0.050%を含有してもよい。
(3)上記(1)または(2)に記載のH形鋼では、前記鋼が、前記化学成分として、質量%で、N:0.005超~0.0120%を含有してもよい。
(4)上記(1)~(3)の何れか1つに記載のH形鋼では、前記鋼が、前記化学成分として、質量%で、Cu:0.03%未満に制限してもよい。
(5)上記(1)~(4)の何れか1つに記載のH形鋼では、前記鋼が、前記化学成分として、質量%で、Al:0.003%未満に制限してもよい。
(6)上記(1)~(5)の何れか1つに記載のH形鋼では、前記フランジの前記厚みが25~140mmであってもよい。
(7)本発明の一態様にかかるH形鋼の製造方法は、上記(1)~(6)の何れか1つに記載のH形鋼の製造方法であって、上記(1)~(5)の何れか1つに記載の化学成分を有する溶鋼を得る製鋼工程と、前記製鋼工程後の前記溶鋼を鋳造して鋼片を得る鋳造工程と、前記鋳造工程後の前記鋼片を1100~1350℃に加熱する加熱工程と、前記加熱工程後の前記鋼片に対して、圧延方向と直交する切断面で見たときの形状がH形となるように、フランジの幅方向端面から(1/6)Fの位置での累積圧下率が900℃超~1100℃で20%以上であり、前記位置での累積圧下率が730~900℃で15%以上であり、730℃以上で圧延を終了する条件で圧延を行う熱間圧延工程と、前記熱間圧延工程後の熱延材を放冷する冷却工程と、を備える。
 本発明の上記態様によれば、強度及び低温靭性に優れる厚手のH形鋼及びその製造方法を提供することができる。
本発明の一実施形態に係るH形鋼の試験片を採取する位置を説明する断面模式図である。 本発明の一実施形態に係るH形鋼の製造方法を示すフローチャートである。
 以下、本発明の好適な実施形態について詳しく説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
 上述したように、これまで、フランジの厚みが20mm以上である厚手のH形鋼には、室温か、せいぜい0℃での靭性が要求されていた。しかし、現在では、寒冷地等での使用を考慮して、厚手のH形鋼に対して、-20℃程度のより低温での靭性に優れることが要求される。加えて、構造材料としての単位重量当たりの強度を考慮して、厚手のH形鋼に対して、降伏応力(具体的には降伏強度もしくは0.2%耐力)が385MPa以上であることも要求される。
 そこで本発明者らは、厚手のH形鋼(以下、鋼材と記載する場合がある)に関して、特にH形鋼の構造上で重要な部位であるフランジに関して、強度および低温靭性に及ぼす鋼組成(鋼の化学成分)および鋼組織(鋼の金属組織)の影響について検討を行い、以下の知見を得た。なお、本実施形態では、強度は、引張降伏応力および引張最大強度のことを意味し、低温靭性は、-20℃でのシャルピー試験の吸収エネルギーのことを意味する。
 まず、合金元素の添加による過剰な焼入性の上昇は、鋼材中のマルテンサイト-オーステナイト混合組織(以下、MAと記載する)の生成を助長し、低温靭性の低下をもたらす。特に、合金元素のうちBはMA生成を助長する傾向が顕著なので、Bを積極的に添加せず不純物レベル以下に制限することが効果的である。
 また、高い降伏応力(降伏強度または0.2%耐力)を実現し、同時に-20℃での靭性を向上させるためには、Nbの添加が効果的である。Nbは、析出強化を通じて鋼材の強度を上昇させるため、過度に焼入性を上昇させる必要がなく、MAの生成を助長せずに鋼材の強度を上昇させることができる。また、Nbは、熱間圧延中のオーステナイトの再結晶を抑制し、圧延による鋼材中の歪を蓄積し、変態後のフェライトの細粒化をもたらす効果がある。
また、-20℃での靭性を向上させるためには、Vの添加が効果的である。Vは、炭窒化物(VC、VN、又はその複合物)として析出してフェライトの核生成サイトとして機能し、フェライトの細粒化をもたらす効果がある。
 また、Mnの添加により、強度と低温靭性とが一層向上する。加えて、鋼成分を制御した上で、鋼組織として、フェライトの面積分率、MAの面積分率、フェライトの平均結晶粒径などを制御することが、高強度と低温靭性とを両立する上で重要である。
 鋼組織を安定的に制御するためには、鋼成分を制御した鋼片を熱間圧延する時に、オーステナイトの再結晶温度域と未再結晶温度域とで、それぞれ十分な圧延歪を与えることが必要である。具体的には、900℃超~1100℃の温度域で、累積圧下率が20%以上の熱間圧延を行い、さらに900℃以下の温度域で、累積圧下率が15%以上の熱間圧延を行う。900℃超での圧延によって、オーステナイト粒を細粒化して焼入性を低下させてMAの生成量などを低く抑え、900℃以下での圧延によって、鋼材中に歪を多く付与してフェライトの核生成頻度を増加させてフェライトを細粒化する。
 また、鋼組織を安定的に制御するためには、熱間圧延後の冷却の際、鋼材の表面と内部とで冷却速度の差が小さいことが好ましい。熱間圧延後に鋼材を加速冷却しないで放冷する場合、鋼材の表面および内部では、冷却速度が共に小さくなり、その差も小さくなる。例えば、フランジ厚が20mmのH形鋼では、熱間圧延後に鋼材を放冷すると、800℃から500℃までの鋼材の表面および内部の平均冷却速度が共に1℃/秒以下となる。
 熱間圧延後の冷却速度が遅い場合には、一般に、降伏応力および低温靭性を同時に確保することが容易ではない。ただ、鋼成分および製造条件を最適に制御することによって、降伏応力と低温靭性との両立が可能となる。例えば、鋼成分として、C含有量を0.05%~0.160%とし、Bを添加せず不純物レベル以下に制限し、NbおよびVを積極的に添加し、Mn、Ti、Nなどの合金元素の含有量を適切に制御し、炭素当量Ceqを0.30~0.48の範囲に制御する。加えて、製造条件を最適に制御して、鋼組織として、フェライトの面積分率、MAの面積分率、フェライトの平均結晶粒径などを作りこむ。その結果、強度及び低温靭性に優れる厚手のH形鋼を得ることが可能となる。
 以下、本実施形態に係るH形鋼について説明する。まず、鋼組成およびその限定理由について詳しく説明する。
 本実施形態に係るH形鋼は、化学成分として、基本元素を含み、必要に応じて選択元素を含み、残部がFe及び不純物からなる。
 本実施形態に係るH形鋼の化学成分のうち、C、Si、Mn、Nb、V、Ti、Nが基本元素(主要な合金化元素)である。
(C:0.05~0.160%)
 C(炭素)は、鋼の強化に有効な元素である。そのため、C含有量の下限を0.05%とする。好ましくは、C含有量の下限を、0.060%、0.070%、または0.080%とする。一方、C含有量が0.160%を超えると、低温靭性の低下を招く。そのため、C含有量の上限を0.160%とする。低温靭性をさらに向上させるために、好ましくは、C含有量の上限を、0.140%、0.130%、または0.120%とする。
(Si:0.01~0.60%)
 Si(シリコン)は、脱酸元素であり、強度の向上にも寄与する元素である。そのため、Si含有量の下限を0.01%とする。好ましくは、Si含有量の下限を、0.05%、0.10%、または0.15%とする。一方、Si含有量が0.60%を超えると、MAの生成を助長し、低温靭性の低下を招く。そのため、Si含有量の上限を0.60%とする。低温靭性をさらに向上させるために、好ましくは、Si含有量の上限を、0.40%または0.30%とする。
(Mn:0.80~1.70%)
 Mn(マンガン)は、強度の向上に寄与する元素である。そのため、Mn含有量の下限を0.80%とする。より強度を高めるに、好ましくは、Mn含有量の下限を、1.0%、1.1%、または1.2%とする。一方、Mn含有量が1.70%を超えると、焼入性が過剰に上昇し、MAの生成を助長し、低温靭性を損なう。そのため、Mn含有量の上限を1.70%とする。好ましくは、Mn含有量の上限を、1.60%または1.50%とする。
(Nb:0.005~0.050%)
 Nb(ニオブ)は、熱間圧延時にオーステナイトの再結晶を抑制し、鋼材中に加工歪を蓄積させることでフェライトの細粒化に寄与し、更に、析出強化により強度の向上に寄与する元素である。そのため、Nb含有量の下限を0.005%とする。好ましくは、Nb含有量の下限を、0.010%、0.020%超、0.025%、または0.030%とする。ただし、Nb含有量が0.050%を超えると、著しい低温靭性の低下を招くことがある。そのため、Nb含有量の上限を0.050%とする。好ましくは、Nb含有量の上限を、0.045%、0.043%、または0.040%とする。なお、Nbを意図的に添加しない場合、不純物として含まれるNb含有量は0.005%未満である。Nb含有量を0.005%以上にするためには、Nbを鋼へ意図的に含有させる。
(V:0.05~0.120%)
 V(バナジウム)は、オーステナイトの粒内に炭窒化物として析出し、フェライトへの変態核として作用し、フェライト粒を微細化する効果を有する元素である。そのため、V含有量の下限を0.05%とする。好ましくは、V含有量の下限を、0.05%超、0.06%、または0.07%とする。しかし、V含有量が0.120%を超えると、析出物の粗大化に起因して低温靭性を損なうことがある。そのため、V含有量の上限を0.120%とする。好ましくは、V含有量の上限を、0.110%または0.100%とする。
(Ti:0.001~0.025%)
 Ti(チタン)は、TiNを形成して、鋼中のNを固定する元素である。そのため、Ti含有量の下限を0.001%とする。TiNのピンニング効果によってオーステナイトをさらに細粒化するために、好ましくは、Ti含有量の下限を、0.005%、0.007%、または0.010%とする。一方、Ti含有量が0.025%を超えると、粗大なTiNが生成し、低温靭性を損なう。そのため、Ti含有量の上限を0.025%とする。好ましくは、Ti含有量の上限を、0.020%、0.015%、または0.012%とする。
 また、Alを積極的に添加しない場合、Tiが脱酸元素として働くので、Tiと結合しないNが生じる。ただ、このNは、Ti酸化物を核としてV炭窒化物として析出する。すなわち、Tiが脱酸元素として働いてTi酸化物が析出することにより、V炭窒化物の析出が促進され、低温靭性を向上させることができる。
(N:0.0001~0.0120%)
 N(窒素)は、TiNやVNを形成し、組織の細粒化や析出強化に寄与する元素である。そのため、N含有量の下限を0.0001%とする。好ましくは、N含有量の下限を、0.0020%、0.0035%、0.0050%超、または0.0060%とする。しかし、N含有量が0.0120%を超えると、低温靭性が低下し、鋳造時の表面割れや製造された鋼材の歪時効による材質不良の原因となる。そのため、N含有量の上限を0.0120%とする。好ましくは、N含有量の上限を、0.0110%、0.0100%、または0.0090%とする。
 本実施形態に係るH形鋼は、化学成分として、不純物を含有する。なお、「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石やスクラップから、または製造環境等から混入するものを指す。例えば、Al、B、P、S、O等の元素を意味する。これら不純物のうち、AlおよびBは、本実施形態の効果を十分に発揮させるために、以下のように制限することが好ましい。また、不純物の含有量は少ないことが好ましいので、下限値を制限する必要がなく、不純物の下限値が0%でもよい。
(Al:0.10%以下)
 Al(アルミニウム)は、脱酸元素として用いられる元素であるが、Al含有量が0.10%を超えると、酸化物が粗大化して脆性破壊の基点となり、低温靭性が低下する。そのため、Al含有量の上限を0.10%に制限する。また、Alを積極的に脱酸元素として用いない場合には、Tiが脱酸元素として働き、鋼中にTi酸化物が析出する。このTi酸化物は、V炭窒化物の核生成サイトとして機能し、フェライト粒径を微細化し、低温靭性の向上に寄与する。そのため、Alを脱酸元素として用いずに、Alを不純物として、Al含有量の上限を、0.003%未満、0.002%、または0.001%に制限してもよい。なお、一般に、Al含有量を0.003%以上にするためには、Alを鋼へ意図的に含有させる。
(B:0.0003%以下)
 B(ボロン)は、焼入性を高め、MAの生成を助長し、低温靭性を低下させる。そのため、本実施形態では、Bを積極的に添加せず不純物レベル以下に制限する。B含有量の上限を0.0003%に制限する。好ましくは、B含有量の上限を、0.0003%未満、0.0002%、または0.0001%に制限する。なお、一般に、B含有量を0.0003%超にするためには、Bを鋼へ意図的に含有させる。
(P:0.03%以下、S:0.02%以下、O:0.005%以下)
 P(燐)、S(硫黄)、およびO(酸素)は不純物である。PおよびSは、凝固偏析して溶接割れを助長し、また低温靭性を低下させる。好ましくは、P含有量の上限を、0.03%、0.02%、または0.01%に制限する。また、好ましくは、S含有量の上限を、0.02%または0.01%に制限する。Oは、鋼中に固溶して低温靭性を低下させ、また酸化物粒子の粗大化によって低温靭性を低下させる。好ましくは、O含有量の上限を、0.005%、0.004%、または0.003%に制限する。
 本実施形態に係るH形鋼は、上記で説明した基本元素および不純物に加えて、選択元素を含有してもよい。例えば、上記した残部であるFeの一部に代えて、選択元素として、Cr、Mo、Ni、Cu、W、Ca、Zr、Mg、及び/又はREMを含有してもよい。これらの選択元素は、その目的に応じて含有させればよい。よって、これらの選択元素の下限値を制限する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、上記効果は損なわれない。
(Cr:0~0.30%)
 Cr(クロム)は、強度の向上に寄与する元素である。必要に応じて、Cr含有量を0~0.30%にしてもよい。強度のさらなる向上のために、好ましくは、Cr含有量の下限を、0.01%、0.05%、または0.10%とする。一方、Cr含有量が0.30%を超えると、MAの生成を助長し、低温靭性を低下させることがある。そのため、好ましくは、Cr含有量の上限を、0.30%、0.25%、または0.20%とする。
(Mo:0~0.20%)
 Mo(モリブデン)は、鋼中に固溶して強度の向上に寄与する元素である。必要に応じて、Mo含有量を0~0.20%にしてもよい。強度のさらなる向上のために、好ましくは、Mo含有量の下限を、0.01%、0.05%、または0.10%とする。しかし、Mo含有量が0.20%を超えると、MAの生成を助長し、低温靭性の低下を招くことがある。そのため、好ましくは、Mo含有量の上限を、0.20%、0.17%、または0.15%とする。
(Ni:0~0.50%)
 Ni(ニッケル)は、鋼中に固溶して強度の向上に寄与する元素である。必要に応じて、Ni含有量を0~0.50%にしてもよい。強度のさらなる向上のために、好ましくは、Ni含有量の下限を、0.01%、0.05%、または0.10%とする。しかし、Ni含有量が0.50%を超えると、焼入性を高め、MAの生成を助長し、低温靭性を低下させることがある。そのため、好ましくは、Ni含有量の上限を、0.50%、0.30%、または0.20%とする。
(Cu:0~0.35%)
 Cu(銅)は、強度の向上に寄与する元素である。必要に応じて、Cu含有量を0~0.35%にしてもよい。しかし、Cuの添加は、MAの生成を助長し、低温靭性が低下することがある。そのため、好ましくは、Cu含有量を、0.30%以下、0.20%以下、0.10%以下、あるいは、不純物レベルとなる0.03%未満または0.01%未満に制限してもよい。
(W:0~0.50%)
 W(タングステン)は、鋼中に固溶して強度の向上に寄与する元素である。必要に応じて、W含有量を0~0.50%にしてもよい。好ましくは、W含有量の下限を、0.001%、0.01%、または0.10%とする。しかし、W含有量が0.50%を超えると、MAの生成を助長し、低温靭性を低下させることがある。そのため、好ましくは、W含有量の上限を、0.50%、0.40%、または0.30%とする。なお、Wを意図的に添加しない場合、不純物として含まれるW含有量は0.001%未満である。W含有量を0.001%以上にするためには、Wを鋼へ意図的に含有させる。
(Ca:0~0.0050%)
 Ca(カルシウム)は、硫化物の形態制御に有効であり、粗大なMnSの生成を抑制し、低温靭性の向上に寄与する元素である。必要に応じて、Ca含有量を0~0.0050%にしてもよい。好ましくは、Ca含有量の下限を、0.0001%、0.0005%、または0.0010%とする。一方、Ca含有量が0.0050%を超えると、低温靭性が低下することがある。そのため、好ましくは、Ca含有量の上限を、0.0050%、0.0040%、または0.0030%とする。
(Zr:0~0.0050%)
 Zr(ジルコニウム)は、炭化物、窒化物、又はその複合物として析出し、析出強化に寄与する元素である。必要に応じて、Zr含有量を0~0.0050%にしてもよい。好ましくは、Zr含有量の下限を、0.0001%、0.0005%、または0.0010%とする。一方、Zr含有量が0.0050%を超えると、Zrの炭化物や窒化物などの粗大化を招き、低温靭性が低下することがある。そのため、好ましくは、Zr含有量の上限を、0.0050%、0.0040%、または0.0030%とする。なお、Zrを意図的に添加しない場合、不純物として含まれるZr含有量は0.0001%未満である。Zr含有量を0.0001%以上にするためには、Zrを鋼へ意図的に含有させる。
(Mg:0~0.0050%、REM:0~0.0050%)
 Mg(マグネシウム)やREM(希土類元素)は、母材靭性や溶接熱影響部(HAZ)の靭性の向上に寄与する元素である。必要に応じて、Mg含有量を0~0.0050%、REM含有量を0~0.0050%にしてもよい。好ましくは、Mg含有量の下限を、0.0005%、0.0010%、または0.0020%とし、REM含有量の下限を、0.0005%、0.0010%、または0.0020%とする。一方、好ましくは、Mg含有量の上限を、0.0040%、0.0030%、または0.0025%とし、REM含有量の上限を、0.0040%、0.0030%、または0.0025%とする。
(Ceq:0.30~0.48)
 本実施形態に係るH形鋼では、強度の確保の観点から、炭素当量Ceqを制御する。具体的には、Ceqを下記の式1としたとき、H形鋼の化学成分中のC、Mn、Cr、Mo、V、Ni、Cuが、質量%で、0.30≦Ceq≦0.48を満足する。Ceqが0.30未満であると、強度が不足する。そのため、Ceqの下限を0.30とする。好ましくは、Ceqの下限を、0.32%、0.34%、または0.35%とする。一方、Ceqが0.48を超えると、低温靭性が低下する。そのため、Ceqの上限を0.48とする。好ましくは、Ceqの上限を、0.45%、0.43%、または0.40%とする。なお、下記の式1によってCeqを計算するとき、鋼中の含有量が検出限界以下の元素は、値として0を式1に代入してCeqを計算すればよい。
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 ・・・ (式1)
 上記した鋼成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 次に、本実施形態に係るH形鋼の鋼組織およびその限定理由について詳しく説明する。
 本実施形態に係るH形鋼では、鋼組織が、面積分率で、フェライトを60~100%未満含み、マルテンサイトとオーステナイトとの混合組織MAを3.0%以下に制限し、フェライト及びMA以外の組織を37%以下に制限する。また、フェライトの平均粒径を1μm以上、30μm以下とする
(フェライトの面積分率:60~100%未満)
 フェライトは、本実施形態に係るH形鋼の鋼組織中での主要な構成相である。フェライトの面積分率が60%未満であると、低温靱性が低下する。そのため、フェライト分率の下限を60%とする。好ましくは、フェライト分率の下限を、65%、70%、または75%とする。一方、フェライトの面積分率を100%に制御することは、パーライトまたはベイナイトの生成を伴うため、物理的に困難である。そのため、フェライト分率の上限を100%未満とする。強度と低温靱性とを好ましく制御するために、好ましくは、フェライト分率の上限を、90%、85%、または80%とする。
(MAの面積分率:3.0%以下)
 MAの生成が助長されると、低温靭性が低下する。本実施形態に係るH形鋼では、MAの生成を助長せずに鋼材の強度を上昇させる。そのため、MA分率を3.0%以下に制限する。好ましくは、MA分率の上限を、2.5%、2.0%、または1.5%とする。なお、MA分率は小さいほど好ましいので、MA分率の下限が0%でもよい。
(フェライト及びMA以外の組織の面積分率:37%以下)
 本実施形態に係るH形鋼の鋼組織には、上記したフェライト及びMA以外の組織として、ベイナイトやパーライトなどが含まれる。フェライト及びMA以外の組織が過剰に含まれると、低温靱性が低下する。そのため、フェライト及びMA以外の組織(上記したフェライト及びMAの残部)の面積分率を37%以下に制限する。好ましくは、フェライト及びMA以外の組織の分率を、35%以下、30%以下、または25%以下とする。なお、フェライト及びMA以外の組織の分率は小さいほど好ましいので、この下限が0%でもよい。
(フェライトの平均粒径:1~30μm)
 フェライトの平均粒径は微細であることが好ましい。フェライト粒径が30μmを超えると、低温靱性が低下する。そのため、フェライト粒径の上限を30μmとする。好ましくは、フェライト粒径の上限を、25μm、22μm、または18μmとする。一方、フェライト粒径を1μm未満に制御することは、工業的に困難である。そのため、フェライト粒径の下限を1μmとする。好ましくは、フェライト粒径の下限を、3μm、5μm、または10μmとする。
 上記した鋼組織は、光学顕微鏡による観察で判別すればよい。例えば、図1は、H形鋼の圧延方向と直交する断面模式図であるが、鋼組織は、図1に示す評価部位7近傍を観察面として観察する。具体的には、図1にて、フランジの幅方向端面5aから(1/6)Fの位置かつ、フランジの厚さ方向外側の面5bから(1/4)tの位置である評価部位7近傍を観察面として、鋼組織を観察する。なお、この観察面は、フランジの幅方向端面5aと平行な面とする。
 上記した観察面を研磨および腐食して鋼組織を観察する。研磨は、観察面が鏡面となるまで行い、腐食は、構成相の同定に適した腐食液を用いる。例えば、鏡面に仕上げた観察面をナイタール液で腐食して鋼組織を顕出させると、パーライトやベイナイトが着色されるので、フェライト、マルテンサイト、およびオーステナイトを同定することができる。また、鏡面に仕上げた観察面をレペラー液で腐食して鋼組織を顕出させると、マルテンサイトおよびオーステナイト以外の構成相が黒く着色されるので、マルテンサイトとオーステナイトとの混合組織MAを同定することができる。
 本実施形態に係るH形鋼では、ナイタール腐食した観察面からフェライトおよびMAの分率を求め、残部をパーライトおよびベイナイトの組織の分率とし、レペラー腐食した観察面からMA分率を求める。具体的には、ナイタール腐食した観察面にて撮影した200倍の光学顕微鏡写真(必要に応じて複数視野)上に、一辺が25μmの格子状に測定点を配置し、少なくとも1000の測定点でフェライトまたはMAか否かを判別し、フェライトまたはMAと判断した測定点の数を、全測定点の数で割った値をフェライトまたはMAの分率とする。
 同様に、レペラー腐食した観察面にて撮影した200倍の光学顕微鏡写真(必要に応じて複数視野)上に、一辺が25μmの格子状に測定点を配置し、少なくとも1000の測定点でMAか否かを判別し、MAと判断した測定点の数を、全測定点の数で割った値をMA分率とする。そして、フェライトの分率は、上記で求めたパーライト、ベイナイト、およびMA分率の合計分率を100%から差し引くことにより求める。
 また、本実施形態に係るH形鋼では、上記したナイタール腐食した観察面にて撮影した200倍の光学顕微鏡写真を用いて、JIS G0551(2013)に準拠した切断法からフェライトの平均粒径を求める。
 次に、本実施形態に係るH形鋼の機械特性について詳しく説明する。
 本実施形態に係るH形鋼では、平均的な機械特性(強度および低温靭性)が得られる位置として、図1に示す評価部位7を含む領域から試験片を採取して機械特性を評価する。
 まず、図1における評価部位7について説明する。図1は、H形鋼の圧延方向と直交する断面模式図である。図1において、X軸方向をフランジの幅方向と定義し、Y軸をフランジの厚さ方向と定義し、Z軸方向を圧延方向と定義する。
 図1に示すように、評価部位7の中心は、フランジの幅方向長さをFとし、フランジの厚みをtとしたとき、フランジの幅方向端面から(1/6)Fの位置かつ、フランジの厚さ方向外側の面から(1/4)tの位置である。なお、フランジの厚さ方向外側の面とは、フランジの厚さ方向の一方の面であって、ウェブ6とは接しない方の面であり、図1に示す面5bである。また、フランジの幅方向端面とは、図1に示す端面5aである。
 シャルピー試験により低温靭性を評価する際の試験片は、評価部位7の位置から、試験片の長手方向が圧延方向と平行になるように採取する。また、試験片においてノッチを成形する面は、フランジの幅方向端面5aと平行な何れかの面とする。また、上記試験片は、フランジの幅方向端面5aから(1/6)Fの位置かつ、フランジの厚さ方向外側の面5bから(1/4)tの位置であればどの位置から採取してもよい。
 引張試験により降伏応力(降伏強度又は0.2%耐力)および引張強度(引張最大強度)を評価する際の試験片は、図1において、フランジの幅方向端面5aから(1/6)Fの位置が試験片の厚さ方向中心となるように採取する。試験片は、試験片の長手方向が圧延方向と平行になり、また、フランジの厚さ方向全部を切り出すようにすればよい。なお、上記試験片は、フランジの幅方向端面5aから(1/6)Fの位置であればどの位置から採取してもよい。
 本実施形態に係るH形鋼では、機械特性として、常温での降伏応力が385MPa以上となり、引張強度が490MPa以上となり、-20℃でのシャルピー吸収エネルギーが100J以上となる。強度が高すぎると低温靭性を損なうことがあるため、好ましくは、降伏応力の上限を530MPa、引張強度の上限を690MPaとする。また、-20℃でのシャルピー吸収エネルギーを500J超とすることは工業的に困難であるので、-20℃でのシャルピー吸収エネルギーの上限を500Jとしてもよい。なお、常温とは20℃のことを指す。
 本実施形態に係るH形鋼の機械特性を評価する際、引張試験はJIS Z2241(2011)に準拠して行い、シャルピー試験はJIS Z2242(2005)に準拠して行う。なお、引張試験から得られる応力-歪曲線に降伏現象が認められるときには降伏応力として降伏強度を求め、応力-歪曲線に降伏現象が認められないときには降伏応力として0.2%耐力を求める。
 次に、本実施形態に係るH形鋼の形状について詳しく説明する。
 本実施形態に係るH形鋼では、フランジの厚みtを20~140mmとする。例えば、高層建築構造物では、強度部材として厚手のH形鋼が求められている。そのため、フランジ厚の下限を20mmとする。好ましくは、フランジ厚の下限を、25mm、40mm、または56mmとする。一方、フランジの厚みtが140mmを超えると、熱間加工時の加工量が不足し強度と低温靭性の両立が難しい。そのため、フランジ厚の上限を140mmとする。好ましくは、フランジ厚の上限を、125mm、89mm、または77mmとする。例えば、フランジの厚みtは、25~140mmであることが好ましい。なお、H形鋼のウェブの厚みtは特に規定しないが、20~140mmであることが好ましく、25~140mmであることがより好ましい。
 また、H形鋼を熱間圧延で製造する場合、フランジの厚み/ウェブの厚みの比(t/t)は、0.5~2.0であることが好ましい。フランジの厚み/ウェブの厚みの比(t/t)が2.0を超えると、ウェブが波打ち状の形状に変形することがある。一方、フランジの厚み/ウェブの厚みの比(t/t)が0.5未満の場合は、フランジが波打ち状の形状に変形することがある。
 従来技術では、フランジの厚みが20mm以上のような厚手のH形鋼で、強度と靭性とを両立させることが難しかった。しかし、本実施形態に係るH形鋼では、フランジ厚が20mm以上の厚手のH形鋼であるにもかかわらず、鋼成分および鋼組織を最適に制御するので、強度と低温靭性との両立が可能となる。
 次に、本実施形態に係るH形鋼の好ましい製造方法について詳しく説明する。
 本実施形態に係るH形鋼の製造方法は、製鋼工程と、鋳造工程と、加熱工程と、熱間圧延工程と、冷却工程とを有する。
 製鋼工程では、上記した鋼組成となるように、溶鋼の化学成分を調整する。製鋼工程では、転炉精錬や二次精錬を行って製造した溶鋼を用いてもよく、電気炉で溶解した溶鋼を原料として用いてもよい。製鋼工程では、必要に応じて、脱酸処理や真空脱ガス処理を行ってもよい。
 鋳造工程では、製鋼工程後の溶鋼を鋳造し、鋼片を得る。鋳造は、連続鋳造法、インゴット法などにより行う。生産性の観点から、連続鋳造が好ましい。鋼片の形状は、製造されるH形鋼に近い形状のビームブランクが好ましいが、特に制限されない。また、鋼片の厚みは、生産性の観点から、200mm以上とすることが好ましく、偏析の低減や、熱間圧延を行う前の加熱温度の均質性などを考慮すると、350mm以下が好ましい。
 加熱工程では、鋳造工程後の鋼片を1100~1350℃に加熱する。鋼片の加熱温度が1100℃未満であると仕上圧延時の変形抵抗が高くなる。そのため、加熱温度の下限を1100℃とする。Nbなど、炭化物や窒化物などを形成する元素を十分に固溶させるために、好ましくは、加熱温度の下限を1150℃とする。一方、加熱温度が1350℃を超えると、鋼片表面のスケールが液体化して製造に支障が出る。そのため、加熱温度の上限を1350℃とする。なお、加熱工程では、鋳造工程後の室温まで冷却していない鋼片を用いてもよい。
 熱間圧延工程では、加熱工程後の鋼片に対して、粗圧延、中間圧延、仕上圧延を行う。粗圧延では、圧延方向と直交する切断面で見たときの形状が略H形状になるように成形を行う。この略H形状の鋼片に対して、鋼の表面温度が900℃超~1100℃の温度域で、累積圧下率が20%以上の熱間圧延を行い、さらに鋼の表面温度が730℃~900℃の温度域で、累積圧下率が15%以上の熱間圧延を行う。この熱間圧延では、上記の切断面で見たときの形状が最終的にH形状になるように成形を行う。
 900℃超~1100℃の温度域では、オーステナイト粒の細粒化によりベイナイトやMAの生成量を減らすため、累積圧下率を20%以上とする。好ましくは、900℃超~1100℃の温度域での累積圧下率の下限を、25%、30%、または35%とする。必要に応じて、900℃超~1100℃の温度域での累積圧下率の上限を60%としてもよい。
 730℃~900℃の温度域では、フェライトの細粒化のため、累積圧下率を15%以上とする。好ましくは、730℃~900℃の温度域での累積圧下率の下限を、20%、25%、または30%とする。必要に応じて、730℃~900℃の温度域での累積圧下率の上限を50%としてもよい。
 なお、730℃を下回る温度で圧延を行うと低温靭性の低下を招くことがある。そのため、圧延終了温度(圧延仕上温度)は、鋼の表面温度で730℃以上とする。好ましくは、圧延仕上温度の上限を、750℃とする。
 熱間圧延工程では、粗圧延、中間圧延、仕上圧延を行うが、例えば、900℃超~1100℃の温度域での圧延は、粗圧延、中間圧延、または仕上圧延の何れで行ってもよい。同様に、730℃~900℃の温度域での圧延は、粗圧延、中間圧延、または仕上圧延の何れで行ってもよい。本実施形態に係るH形鋼の製造方法では、上記の温度域での累積圧下率が制御されればよい。
 また、上記温度域での累積圧下率は、図1に示すフランジの幅方向端面5aから(1/6)Fに対応する位置のフランジ厚を基準に求める。例えば、900℃超~1100℃の温度域での累積圧下率は、鋼の表面温度が1100℃時点でのフランジ厚と900℃に到達する直前のフランジ厚との差から計算される圧下率とする。同様に、730℃~900℃の温度域での累積圧下率は、鋼の表面温度が900℃時点でのフランジ厚と730℃時点でのフランジ厚との差から計算される圧下率とする。
 熱間圧延工程での、粗圧延、中間圧延、仕上圧延の方法は、特に限定されない。例えば、粗圧延としてブレークダウン圧延を行い、中間圧延としてユニバーサル圧延またはエッジング圧延を行い、仕上圧延としてユニバーサル圧延を行うことによって、圧延方向と直交する切断面で見たときの形状がH形となるように成形すればよい。
 熱間圧延工程では、圧延パス間で水冷を行ってもよい。圧延パス間での水冷は、オーステナイトが相変態する温度よりも高い温度域での温度制御を目的として行われる冷却である。圧延パス間での水冷によって鋼材中にベイナイトやMAが生成することはない。
 また、熱間圧延工程では、2ヒート圧延を行ってもよい。2ヒート圧延とは、一次圧延後に鋼片を500℃以下に冷却した後、再度、鋼片を1100~1350℃に加熱して二次圧延を行う圧延方法である。2ヒート圧延では、熱間圧延での塑性変形量が少なく、圧延工程での温度の低下も小さくなるため、二度目の加熱温度を低めにすることができる。
 冷却工程では、熱間圧延工程後の熱延材を冷却する。本実施形態に係るH形鋼の製造方法では、熱間圧延の終了後にそのまま熱延材を大気中で放冷する。大気中で熱延材を放冷した場合、800℃から500℃までの鋼材の表面および内部の平均冷却速度は1℃/秒以下となる。熱延材を大気中で放冷することによって、鋼材の表面および内部での冷却速度が均一となるので、鋼材の部位による機械特性のばらつきが抑制される。なお、本実施形態に係るH形鋼の製造方法で、放冷は、熱間圧延直後から鋼材温度が400℃以下になるまで、強制的な冷却を行うことなしに大気中で冷却することを意味する。
 従来技術では、強度と靭性との両立を図るために熱延材を加速冷却していたので、鋼材の表面および内部で機械特性のばらつきが生じていた。一方、本実施形態に係るH形鋼の製造方法では、熱延材を大気中で放冷しているにもかかわらず、鋼成分および鋼組織を最適に制御するので、鋼材の表面および内部で機械特性のばらつきが生じることなしに強度と低温靭性との両立が可能となる。
 本実施形態に係るH形鋼の製造方法は、高度な製鋼技術や加速冷却を必要としないので、製造負荷低減、工期の短縮を図ることができる。したがって、本実施形態に係るH形鋼は、経済性を損なうことなく、大型建造物の信頼性を向上させることができる。
 次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に制限されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
 表1~表3に示す化学成分を有する鋼を溶製し、連続鋳造により、厚みが240~300mmの鋼片を製造した。鋼の溶製は転炉で行い、一次脱酸し、合金元素を添加して成分を調整し、必要に応じて、真空脱ガス処理を行った。得られた鋼片を加熱し、熱間圧延を行い、H形鋼を製造した。成分No.1~48として示した鋼成分は、製造後の各H形鋼から採取した試料を化学分析して求めた。表中には示さないが、何れの実施例も、Pが0.03%以下、Sが0.02%以下、Oが0.005%以下であった。なお、表中の化学成分の空欄は、鋼に積極的に添加しなかったか、または含有量が検出限界以下であったことを表す。
 H形鋼の製造工程を図2に示す。熱間圧延は、加熱炉1にて加熱された鋼片を、粗圧延機2a、中間圧延機2b、仕上圧延機2cを含むユニバーサル圧延装置列で行った。熱間圧延の終了後にそのまま熱延材を400℃以下になるまで放冷した。熱間圧延終了温度から500℃までの熱延材の表面および内部の平均冷却速度は共に1℃/秒以下であった。熱間圧延のパス間で水冷を行う場合、中間ユニバーサル圧延機(中間圧延機)2bの前後に設けた水冷装置3を用いてフランジ外側面のスプレー冷却を行った。この際、リバース圧延を行った。
 表4~表6に、製造条件および製造結果を示す。表4~表6に示す熱間圧延時の圧下率は、図1に示すフランジの幅方向端面5aから(1/6)Fに対応する位置での各温度域における累積圧下率である。
 製造したH形鋼について、上述したように、図1に示す評価部位7から採取した試験片を用いて-20℃でシャルピー試験を行い、低温靭性を評価した。また、フランジの幅方向端面5aから(1/6)Fの位置が厚さ方向の中心となる試験片を用いて常温(20℃)で引張試験を行い、引張特性を評価した。また、図1に示す評価部位7近傍を観察面とする試料を用いて組織観察を行い、鋼組織を評価した。
 引張試験は、JIS Z2241(2005)に準拠して行った。引張試験の応力-歪曲線が降伏挙動を示す場合には降伏応力を降伏点とし、降伏挙動を示さない場合には降伏応力を0.2%耐力とした。シャルピー衝撃試験は、JIS Z2242(2005)に準拠して行った。シャルピー衝撃試験は-20℃で行った。
 組織観察は、上述した方法により、光学顕微鏡写真を用いて、フェライト分率、MA分率、並びにフェライト及びMA以外の組織の分率を測定した。また、フェライト及びMA以外の組織は、ベイナイトまたはパーライトである。また、光学顕微鏡写真を用いて、JIS G0551(2013)に準拠した切断法によってフェライトの平均粒径を求めた。
 引張特性として、常温での降伏応力(YS)が385MPa以上であり、引張強度(TS)が490MPa以上である鋼材を合格と判断した。また、低温靭性として、-20℃でのシャルピー吸収エネルギー(vE-20)が100J以上である鋼材を合格と判断した。
 表1~6に示すように、本発明例である製造No.1~8、製造No.11~18、および製造No.34~43は、鋼成分、鋼組織、および機械特性の何れもが本発明の範囲を満足していた。
 一方、比較例である製造No.9~10、製造No.19~33、および製造No.44~50は、鋼成分、鋼組織、および機械特性の何れかが本発明の範囲を満足しなかった。
 製造No.9は、900℃超~1100℃での圧下率が不十分であったため、鋼組織中のフェライト分率が不十分となり、フェライト及びMA以外の組織の分率が過剰となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.10は、730℃~900℃での圧下率が不十分であったため、フェライト粒径が粗大となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.19は、900℃超~1100℃での圧下率が不十分であったため、フェライト分率が不十分となり、MA分率が過剰となり、フェライト及びMA以外の組織の分率が過剰となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.20はC含有量が多く、製造No.25はNb含有量が多く、製造No.26はV含有量が多く、製造No.28はAl含有量が多く、製造No.29はTi含有量が多く、製造No.30はN含有量が多く、製造No.31はCeqが過剰であったため、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.21はC含有量が少なく、製造No.24はMn含有量が少なく、製造No.32はCeqが不十分であり、製造No.46はSi含有量が少なかったため、YS及びTSが不十分となった例である。
 製造No.22はSi含有量が多く、製造No.23はMn含有量が多く、MA分率が過剰であっため、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.27は、V含有量が少なかったため、フェライト粒径が粗大となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.33はB含有量およびCeqが過剰であり、製造No.49はB含有量が多かったため、MA分率が過剰となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.44及び製造No.45は、V含有量が少なかったため、フェライト粒径が粗大となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.47はNb含有量が少なかったため、フェライト粒径が粗大となり、YS及びTSが不十分となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.48はTi含有量が少なかったため、フェライト粒径が粗大となり、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
 製造No.50は圧延仕上温度が低かったため、-20℃でのシャルピー吸収エネルギーが不十分となった例である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明の上記態様によれば、強度及び低温靭性に優れる厚手のH形鋼及びその製造方法の提供が可能となるので、産業上の利用可能性が高い。
 1  加熱炉
 2a 粗圧延機
 2b 中間圧延機
 2c 仕上圧延機
 3  中間圧延機前後の水冷装置
 4  H形鋼
 5  フランジ
 5a フランジの幅方向端面
 5b フランジの厚さ方向外側の面
 6  ウェブ
 7  引張特性、低温靭性、および鋼材組織の評価部位
 F  フランジの幅方向長さ
 H  高さ
 t ウェブの厚み
 t フランジの厚み

Claims (7)

  1.  鋼が、化学成分として、質量%で、
      C :0.05~0.160%、
      Si:0.01~0.60%、
      Mn:0.80~1.70%、
      Nb:0.005~0.050%、
      V :0.05~0.120%、
      Ti:0.001~0.025%、
      N :0.0001~0.0120%、
      Cr:0~0.30%、
      Mo:0~0.20%、
      Ni:0~0.50%、
      Cu:0~0.35%、
      W :0~0.50%、
      Ca:0~0.0050%、
      Zr:0~0.0050%
     を含有し、
      Al:0.10%以下、
      B :0.0003%以下
     に制限し、
     残部がFe及び不純物からなり、
     Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15としたとき、前記化学成分中のC、Mn、Cr、Mo、V、Ni、Cuが、0.30≦Ceq≦0.48を満足し、
     前記鋼が、金属組織として、面積分率で、
      フェライトを60~100%未満含み、
      マルテンサイトとオーステナイトとの混合組織MAを3.0%以下に制限し、
     前記フェライト及び前記MA以外の組織を37%以下に制限し、
     前記フェライトの平均粒径が1~30μmであり、
     前記鋼を圧延方向と直交する切断面で見たとき、形状がH形であり、フランジの厚みが20~140mmであり、
     前記フランジの幅方向長さをFとしたとき、前記フランジの幅方向端面から(1/6)Fの位置にて、引張降伏応力が385~530MPaで、引張最大強度が490~690MPaであり、
     前記フランジの厚みをtとしたとき、前記(1/6)Fの位置かつ、前記フランジの厚さ方向外側の面から(1/4)tの位置にて、-20℃でのシャルピー試験の吸収エネルギーが100J以上である
    ことを特徴とするH形鋼。
  2.  前記鋼が、前記化学成分として、質量%で、
      Nb:0.02超~0.050%
     を含有する
    ことを特徴とする請求項1に記載のH形鋼。
  3.  前記鋼が、前記化学成分として、質量%で、
      N:0.005超~0.0120%
     を含有する
    ことを特徴とする請求項1に記載のH形鋼。
  4.  前記鋼が、前記化学成分として、質量%で、
      Cu:0.03%未満
     に制限する
    ことを特徴とする請求項1に記載のH形鋼。
  5.  前記鋼が、前記化学成分として、質量%で、
      Al:0.003%未満
     に制限する
    ことを特徴とする請求項1に記載のH形鋼。
  6.  前記フランジの前記厚みが25~140mmである
    ことを特徴とする請求項1に記載のH形鋼。
  7.  請求項1~6の何れか1項に記載のH形鋼の製造方法であって、
      請求項1~5の何れか1項に記載の前記化学成分を有する溶鋼を得る製鋼工程と、
      前記製鋼工程後の前記溶鋼を鋳造して鋼片を得る鋳造工程と、
      前記鋳造工程後の前記鋼片を1100~1350℃に加熱する加熱工程と、
      前記加熱工程後の前記鋼片に対して、圧延方向と直交する切断面で見たときの形状がH形となるように、フランジの幅方向端面から(1/6)Fの位置での累積圧下率が900℃超~1100℃で20%以上であり、前記位置での累積圧下率が730~900℃で15%以上であり、730℃以上で圧延を終了する条件で圧延を行う熱間圧延工程と、
      前記熱間圧延工程後の熱延材を放冷する冷却工程と、を備える
    ことを特徴とするH形鋼の製造方法。
PCT/JP2017/045965 2016-12-21 2017-12-21 H形鋼及びその製造方法 WO2018117228A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/329,163 US20190203309A1 (en) 2016-12-21 2017-12-21 H section and method for manufacturing same
CN201780057895.4A CN109715842B (zh) 2016-12-21 2017-12-21 H型钢及其制造方法
JP2018558074A JP6468408B2 (ja) 2016-12-21 2017-12-21 H形鋼及びその製造方法
KR1020197007720A KR102021726B1 (ko) 2016-12-21 2017-12-21 H형강 및 그 제조 방법
EP17885325.5A EP3533893A4 (en) 2016-12-21 2017-12-21 H-STEEL PROFILE AND METHOD FOR MANUFACTURING IT
PH12019500350A PH12019500350A1 (en) 2016-12-21 2019-02-19 H section and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248181 2016-12-21
JP2016248181 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018117228A1 true WO2018117228A1 (ja) 2018-06-28

Family

ID=62626651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045965 WO2018117228A1 (ja) 2016-12-21 2017-12-21 H形鋼及びその製造方法

Country Status (7)

Country Link
US (1) US20190203309A1 (ja)
EP (1) EP3533893A4 (ja)
JP (1) JP6468408B2 (ja)
KR (1) KR102021726B1 (ja)
CN (1) CN109715842B (ja)
PH (1) PH12019500350A1 (ja)
WO (1) WO2018117228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022149365A1 (ja) * 2021-01-07 2022-07-14

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572547A4 (en) * 2018-03-23 2020-07-29 Nippon Steel Corporation H-SHAPED ROLLED STEEL AND ITS MANUFACTURING PROCESS
CN110438397A (zh) * 2019-08-12 2019-11-12 山东钢铁股份有限公司 一种大断面含铝热轧h型钢及其制备方法
CN110592479B (zh) * 2019-09-25 2020-12-01 马鞍山钢铁股份有限公司 一种热轧h型钢及其生产方法
CN110938778A (zh) * 2019-12-09 2020-03-31 山东钢铁股份有限公司 一种基于异型坯轧制成型的热轧h型钢及其制备方法
CN112458364B (zh) 2020-11-04 2021-09-03 马鞍山钢铁股份有限公司 一种超厚规格热轧h型钢及其生产方法
CN112746221B (zh) * 2020-12-25 2021-10-15 钢铁研究总院 一种V-N微合金化550MPa热轧厚壁H型钢及其生产工艺
CN113528970B (zh) * 2021-07-20 2022-05-24 马鞍山钢铁股份有限公司 一种低压缩比屈服强度355MPa级厚重热轧H型钢及其生产方法和应用
CN113604735B (zh) * 2021-07-20 2022-07-12 山东钢铁股份有限公司 一种屈服强度420MPa级热轧耐低温H型钢及其制备方法
CN113564480B (zh) * 2021-07-30 2022-05-17 马鞍山钢铁股份有限公司 一种具有z向性能的厚重热轧h型钢及其生产方法
CN115323273B (zh) * 2022-08-15 2023-03-28 新余钢铁股份有限公司 一种保心部性能的正火q345e特厚钢板及其制造方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158543A (ja) 1987-12-15 1989-06-21 Fujitsu Ltd 警報信号制御方式
JPH1068016A (ja) 1996-08-26 1998-03-10 Kawasaki Steel Corp 極厚h形鋼の製造方法
JPH11335735A (ja) 1998-03-24 1999-12-07 Sumitomo Metal Ind Ltd 溶接性、強度および靱性に優れた極厚形鋼の製造法
JP2002363642A (ja) * 2001-06-01 2002-12-18 Nkk Corp 低降伏比で靭性に優れた圧延h形鋼の製造方法
JP2003328070A (ja) 2002-05-14 2003-11-19 Sumitomo Metal Ind Ltd 極厚鋼材およびその製造方法
JP2004256894A (ja) * 2003-02-27 2004-09-16 Jfe Steel Kk フィレット部の靱性に優れ、かつ多層盛り溶接時のパス間温度に制約のない圧延h形鋼およびその製造方法
JP2005264208A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 耐震性に優れた低降伏比h形鋼およびその製造方法
JP2011106006A (ja) 2009-11-19 2011-06-02 Sumitomo Metal Ind Ltd 鋼と圧延鋼材の製造方法
WO2011065479A1 (ja) * 2009-11-27 2011-06-03 新日本製鐵株式会社 高強度極厚h形鋼及びその製造方法
JP2012041603A (ja) * 2010-08-19 2012-03-01 Sumitomo Metal Ind Ltd 圧延素材鋼とそれを使用した圧延鋼材の製造方法
JP2012180584A (ja) * 2011-03-03 2012-09-20 Jfe Steel Corp 靭性に優れる圧延h形鋼およびその製造方法
WO2014080818A1 (ja) * 2012-11-26 2014-05-30 新日鐵住金株式会社 H形鋼及びその製造方法
JP5867651B2 (ja) 2013-03-14 2016-02-24 新日鐵住金株式会社 H形鋼及びその製造方法
JP2016079443A (ja) * 2014-10-15 2016-05-16 新日鐵住金株式会社 靭性に優れた高強度極厚h形鋼及びその製造方法
JP2016084524A (ja) 2014-10-27 2016-05-19 新日鐵住金株式会社 低温用h形鋼及びその製造方法
JP2016117932A (ja) * 2014-12-22 2016-06-30 新日鐵住金株式会社 圧延h形鋼及びその製造方法
JP2016117945A (ja) * 2014-11-04 2016-06-30 新日鐵住金株式会社 圧延h形鋼及びその製造方法、並びに圧延h形鋼のフランジ溶接継手
JP2016141834A (ja) * 2015-01-30 2016-08-08 新日鐵住金株式会社 靭性に優れた高強度極厚h形鋼及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655984A (en) 1979-10-12 1981-05-16 Citizen Watch Co Ltd Liquid crystal display unit
JPS5867651A (ja) 1981-10-19 1983-04-22 Mitsui Toatsu Chem Inc カチオン性ビニルモノマ−の安定化法
JP3241444B2 (ja) * 1992-08-10 2001-12-25 川崎製鉄株式会社 靱性・強度に富んだh形鋼の製造方法
JP3572894B2 (ja) * 1997-09-29 2004-10-06 Jfeスチール株式会社 耐衝突特性と成形性に優れる複合組織熱延鋼板およびその製造方法
JPH11158543A (ja) 1997-12-01 1999-06-15 Sumitomo Metal Ind Ltd 溶接部靱性に優れた圧延形鋼の製造方法
US6451134B1 (en) * 1999-06-24 2002-09-17 Kawasaki Steel Corporation 590MPa class heavy gauge H-shaped steel having excellent toughness and method of producing the same
JP4581645B2 (ja) 2004-11-22 2010-11-17 Jfeスチール株式会社 ウエブ薄肉高強度h形鋼の製造方法
WO2013089156A1 (ja) * 2011-12-15 2013-06-20 新日鐵住金株式会社 低温靭性に優れた高強度h形鋼及びその製造方法
US20150252456A1 (en) * 2012-10-11 2015-09-10 Jfe Steel Corporation Cold-rolled steel sheet with excellent shape fixability and method of manufacturing the same
JPWO2014175122A1 (ja) * 2013-04-26 2017-02-23 新日鐵住金株式会社 H形鋼及びその製造方法
WO2015093321A1 (ja) 2013-12-16 2015-06-25 新日鐵住金株式会社 H形鋼及びその製造方法
KR101883588B1 (ko) 2014-04-15 2018-07-30 신닛테츠스미킨 카부시키카이샤 H형강 및 그 제조 방법

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158543A (ja) 1987-12-15 1989-06-21 Fujitsu Ltd 警報信号制御方式
JPH1068016A (ja) 1996-08-26 1998-03-10 Kawasaki Steel Corp 極厚h形鋼の製造方法
JPH11335735A (ja) 1998-03-24 1999-12-07 Sumitomo Metal Ind Ltd 溶接性、強度および靱性に優れた極厚形鋼の製造法
JP2002363642A (ja) * 2001-06-01 2002-12-18 Nkk Corp 低降伏比で靭性に優れた圧延h形鋼の製造方法
JP2003328070A (ja) 2002-05-14 2003-11-19 Sumitomo Metal Ind Ltd 極厚鋼材およびその製造方法
JP2004256894A (ja) * 2003-02-27 2004-09-16 Jfe Steel Kk フィレット部の靱性に優れ、かつ多層盛り溶接時のパス間温度に制約のない圧延h形鋼およびその製造方法
JP2005264208A (ja) * 2004-03-17 2005-09-29 Jfe Steel Kk 耐震性に優れた低降伏比h形鋼およびその製造方法
JP2011106006A (ja) 2009-11-19 2011-06-02 Sumitomo Metal Ind Ltd 鋼と圧延鋼材の製造方法
WO2011065479A1 (ja) * 2009-11-27 2011-06-03 新日本製鐵株式会社 高強度極厚h形鋼及びその製造方法
JP2012041603A (ja) * 2010-08-19 2012-03-01 Sumitomo Metal Ind Ltd 圧延素材鋼とそれを使用した圧延鋼材の製造方法
JP2012180584A (ja) * 2011-03-03 2012-09-20 Jfe Steel Corp 靭性に優れる圧延h形鋼およびその製造方法
WO2014080818A1 (ja) * 2012-11-26 2014-05-30 新日鐵住金株式会社 H形鋼及びその製造方法
JP5655984B2 (ja) 2012-11-26 2015-01-21 新日鐵住金株式会社 H形鋼及びその製造方法
JP5867651B2 (ja) 2013-03-14 2016-02-24 新日鐵住金株式会社 H形鋼及びその製造方法
JP2016079443A (ja) * 2014-10-15 2016-05-16 新日鐵住金株式会社 靭性に優れた高強度極厚h形鋼及びその製造方法
JP2016084524A (ja) 2014-10-27 2016-05-19 新日鐵住金株式会社 低温用h形鋼及びその製造方法
JP2016117945A (ja) * 2014-11-04 2016-06-30 新日鐵住金株式会社 圧延h形鋼及びその製造方法、並びに圧延h形鋼のフランジ溶接継手
JP2016117932A (ja) * 2014-12-22 2016-06-30 新日鐵住金株式会社 圧延h形鋼及びその製造方法
JP2016141834A (ja) * 2015-01-30 2016-08-08 新日鐵住金株式会社 靭性に優れた高強度極厚h形鋼及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533893A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022149365A1 (ja) * 2021-01-07 2022-07-14
WO2022149365A1 (ja) * 2021-01-07 2022-07-14 Jfeスチール株式会社 鋼矢板およびその製造方法
JP7323056B2 (ja) 2021-01-07 2023-08-08 Jfeスチール株式会社 鋼矢板およびその製造方法

Also Published As

Publication number Publication date
KR102021726B1 (ko) 2019-09-16
JP6468408B2 (ja) 2019-02-13
JPWO2018117228A1 (ja) 2019-04-04
PH12019500350A1 (en) 2019-11-11
EP3533893A4 (en) 2020-06-24
EP3533893A1 (en) 2019-09-04
US20190203309A1 (en) 2019-07-04
CN109715842A (zh) 2019-05-03
CN109715842B (zh) 2020-03-06
KR20190032625A (ko) 2019-03-27

Similar Documents

Publication Publication Date Title
JP6468408B2 (ja) H形鋼及びその製造方法
JP5867651B2 (ja) H形鋼及びその製造方法
KR102451705B1 (ko) 내마모 강 및 그 제조 방법
JP6665525B2 (ja) 低温用h形鋼及びその製造方法
JP5574059B2 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP4855553B2 (ja) 高強度極厚h形鋼及びその製造方法
EP2617850A1 (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
JP6354572B2 (ja) 低温用h形鋼及びその製造方法
JP6409598B2 (ja) 靭性に優れた高強度極厚h形鋼及びその製造方法
JP6183545B2 (ja) H形鋼及びその製造方法
WO2013089089A1 (ja) 高強度極厚h形鋼
JP6344191B2 (ja) 靭性に優れた高強度極厚h形鋼及びその製造方法
CN110291218B (zh) H型钢及其制造方法
JP6645107B2 (ja) H形鋼及びその製造方法
JP5402560B2 (ja) 鋼と圧延鋼材の製造方法
JP5447292B2 (ja) 圧延素材鋼とそれを使用した圧延鋼材の製造方法
JP4506985B2 (ja) 極厚鋼材及びその製造方法
JP6589503B2 (ja) H形鋼及びその製造方法
JP6421638B2 (ja) 低温用h形鋼及びその製造方法
JPWO2019180957A1 (ja) 圧延h形鋼及びその製造方法
JP6662156B2 (ja) 低温用h形鋼及びその製造方法
JP6295632B2 (ja) 靭性に優れた高強度h形鋼
JP6673320B2 (ja) 厚鋼板および厚鋼板の製造方法
JP6597449B2 (ja) 耐摩耗鋼板及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558074

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007720

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017885325

Country of ref document: EP

Effective date: 20190222