WO2018092742A1 - しゅう動部品 - Google Patents

しゅう動部品 Download PDF

Info

Publication number
WO2018092742A1
WO2018092742A1 PCT/JP2017/040830 JP2017040830W WO2018092742A1 WO 2018092742 A1 WO2018092742 A1 WO 2018092742A1 JP 2017040830 W JP2017040830 W JP 2017040830W WO 2018092742 A1 WO2018092742 A1 WO 2018092742A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure generating
fluid side
negative pressure
fluid
groove
Prior art date
Application number
PCT/JP2017/040830
Other languages
English (en)
French (fr)
Inventor
雄大 根岸
紗和花 小杉
裕貴 井上
井上 秀行
猛 細江
雄一郎 徳永
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP17871675.9A priority Critical patent/EP3543569B1/en
Priority to US16/349,209 priority patent/US11143232B2/en
Priority to KR1020197013661A priority patent/KR102426460B1/ko
Priority to JP2018551629A priority patent/JP7043414B2/ja
Priority to CN201780069209.5A priority patent/CN109923340B/zh
Publication of WO2018092742A1 publication Critical patent/WO2018092742A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed on a sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
  • a fine groove called surface texturing may be provided on the sliding surface of the sliding component in order to improve lubricity.
  • a spiral groove that directly communicates with the high-pressure fluid side on the high-pressure side of one sliding surface that slides relative to each other.
  • a positive pressure generating mechanism consisting of dimples
  • a negative pressure generating mechanism consisting of a reverse Rayleigh step mechanism on the low pressure side
  • a pressure release groove between the spiral groove or dimple and the reverse Rayleigh step mechanism
  • the open groove and the reverse Rayleigh step mechanism are in communication with the high-pressure fluid side through a radial groove, and an application has been filed in which the low-pressure fluid side is isolated by a sealing surface (see Patent Document 1).
  • Patent Document 1 The invention described in Patent Document 1 (hereinafter referred to as “prior art”) prevents lubrication of the sliding surface and leakage of the sealed high-pressure fluid from the high-pressure fluid side to the low-pressure fluid side. Although it is an invention excellent in sealing performance, it is not an invention in which the low pressure fluid sucked into the negative pressure generating mechanism provided on the low pressure side is not discharged to the high pressure fluid side.
  • the present invention has been made in order to solve the above-mentioned problems of the prior art, and in the case where different types of fluid exist on both sides of the sliding surface, the sealing of the different fluids on both sides is achieved while achieving both sealing and lubrication.
  • An object of the present invention is to provide a sliding part that can prevent mixing.
  • a sliding part of the present invention firstly includes a pair of sliding parts that slide relative to each other, and different types of first parts are provided on both sides of the sliding surfaces of the pair of sliding parts.
  • a sliding surface of at least one sliding component is provided with a first fluid side negative pressure generating mechanism including a first negative pressure generating groove, and the first fluid side negative pressure is provided.
  • a second fluid-side negative pressure generating mechanism comprising a second negative-pressure generating groove located on the second fluid side from the pressure generating mechanism; and the first fluid-side negative pressure generating mechanism and the second fluid-side negative pressure
  • a dynamic pressure generating mechanism including a dynamic pressure generating groove is provided on at least one of the first fluid side and the second fluid side from the pressure generating mechanism, and the first negative pressure generating groove is separated from the second fluid side by a land portion.
  • the second negative pressure generating groove is formed by the land portion. It is characterized by being isolated from the body side. According to this feature, it is possible to prevent mixing of the first fluid and the second fluid which are different on both sides while achieving both lubrication of the sliding surface and sealing of the first fluid and the second fluid.
  • the sliding component of the present invention is secondly characterized in that, in the first feature, a circumferential groove is provided between the first fluid-side negative pressure generating mechanism and the second fluid-side negative pressure generating mechanism.
  • the circumferential groove is separated from the first fluid side and the second fluid side by a land portion.
  • the sliding component of the present invention is characterized in that, in the second feature, the groove depth of the circumferential groove is determined by the dynamic pressure generating groove, the first negative pressure generating groove, and the second negative pressure generating groove. It is characterized by being set deeper than the groove depth. According to these features, interference between the first fluid-side negative pressure generating mechanism and the second fluid-side negative pressure generating mechanism can be prevented, and the respective suction effects and discharge effects can be enhanced.
  • the first fluid-side negative pressure generating mechanism is formed of a reverse Rayleigh step mechanism
  • the second fluid-side negative pressure generating mechanism is Is formed of a spiral mechanism
  • the dynamic pressure generating mechanism is provided on the first fluid side of the first fluid side negative pressure generating mechanism and is formed of a Rayleigh step mechanism
  • the groove portion of the reverse Rayleigh step mechanism is The first fluid side communicates with the second fluid side and is separated by a land portion
  • the spiral mechanism groove portion communicates with the second fluid side and is separated from the first fluid side by the land portion.
  • the groove portion of the Rayleigh step mechanism is characterized in that it communicates with the first fluid side and is isolated from the second fluid side by a land portion.
  • a negative pressure generating mechanism and a dynamic pressure generating mechanism are provided on the sliding surface by a combination of a reverse Rayleigh step mechanism and a spiral mechanism as a negative pressure generating mechanism and a Rayleigh step mechanism as a dynamic pressure generating mechanism. It can arrange
  • the first fluid-side negative pressure generating mechanism is formed of a first spiral mechanism, and the second fluid-side negative pressure generating mechanism is provided.
  • the dynamic pressure generating mechanism is provided on the first fluid side from the first fluid side negative pressure generating mechanism and is formed from a Rayleigh step mechanism
  • the groove portion of the first spiral mechanism is The first fluid side communicates with or is separated from the land portion and is separated from the second fluid side from the land portion
  • the groove portion of the second spiral mechanism is separated from the first fluid side and the land portion
  • the groove portion of the Rayleigh step mechanism communicates with the first fluid side and is separated from the second fluid side by a land portion.
  • the negative pressure generating mechanism and the dynamic pressure generating mechanism are effectively arranged on the sliding surface by the combination of the spiral mechanism as the negative pressure generating mechanism and the Rayleigh step mechanism as the dynamic pressure generating mechanism. Can do.
  • the first fluid-side negative pressure generating mechanism is formed of a first spiral mechanism
  • the second fluid-side negative pressure generating mechanism is provided.
  • the dynamic pressure generating mechanism is provided on the first fluid side of the first fluid side negative pressure generating mechanism and is formed of a third spiral mechanism
  • a groove portion of the first spiral mechanism Is separated from the first fluid side by the land portion and from the second fluid side by the land portion
  • the groove portion of the second spiral mechanism is separated from the first fluid side by the land portion and the first fluid side.
  • the groove portion of the third spiral mechanism is in communication with the first fluid side and is isolated from the second fluid side by a land portion.
  • the first fluid-side negative pressure generating mechanism is formed of a first reverse Rayleigh step mechanism
  • the second fluid-side negative pressure is The generating mechanism is formed of a second reverse Rayleigh step mechanism
  • the dynamic pressure generating mechanism is the first fluid side negative pressure generating mechanism and the second fluid side negative pressure generating mechanism is Provided on the second fluid side, each formed from a Rayleigh step mechanism
  • the groove portion of the first reverse Rayleigh step mechanism is communicated with the first fluid side and isolated from the second fluid side by a land portion
  • the groove portion of the second reverse Rayleigh step mechanism communicates with the second fluid side and is separated from the first fluid side by a land portion
  • the groove portion of the Rayleigh step mechanism is the first fluid side.
  • the other is separated by a land portion with passed either the communication of the second fluid side.
  • the negative pressure generating mechanism and the dynamic pressure generating mechanism are effectively arranged on the sliding surface by the combination of the reverse Rayleigh step mechanism as the negative pressure generating mechanism and the Rayleigh step mechanism as the dynamic pressure generating mechanism.
  • the dynamic pressure generating mechanism is provided on both sides of the first fluid side and the second fluid side, a fluid film can be formed on the entire sliding surface. The lubrication can be made more reliable.
  • the first fluid side negative pressure generating mechanism is formed of a first spiral mechanism
  • the second fluid side negative pressure generating mechanism is provided.
  • the dynamic pressure generating mechanism is provided on the first fluid side from the first fluid side negative pressure generating mechanism and on the second fluid side from the second fluid side negative pressure generating mechanism.
  • the groove portion of the first spiral mechanism communicates with the first fluid side or is isolated by the land portion, and is isolated by the second fluid side and the land portion.
  • the groove portion of the second spiral mechanism is separated by the first fluid side and the land portion and is communicated with or separated from the second fluid side
  • the groove portion of the third spiral mechanism is The first fluid side communicates with the second fluid side and is separated from the second fluid side by the land portion.
  • the fourth spiral mechanism is separated from the first fluid side by the land portion and communicates with the second fluid side. It is characterized by that.
  • the negative pressure generating mechanism and the dynamic pressure generating mechanism can be effectively arranged on the sliding surface by the combination of the negative pressure generating mechanism and the spiral mechanism as the dynamic pressure generating mechanism. Since dynamic pressure generating mechanisms are provided on both sides of the first fluid side and the second fluid side, a fluid film can be formed on the entire sliding surface, and the sliding surface can be more reliably lubricated. be able to.
  • the sliding component of the present invention is characterized in that, in the first feature, the first negative pressure generating groove, the second negative pressure generating groove, and the dynamic pressure generating groove are in a radial line passing through the rotation center. It is characterized by being symmetrically formed. According to this feature, it is possible to provide a sliding component suitable for the double-rotation specification that can be used without exchanging the seal ring with the surface texture even when the rotation-side seal ring rotates in both directions. .
  • the sliding surface provided with the second fluid-side negative pressure generating mechanism includes the first fluid-side negative pressure. It is characterized in that the generating mechanism and the sliding surface on which the dynamic pressure generating mechanism is provided are set at a low position in the axial direction away from the counterpart sliding surface. According to this feature, it is possible to provide a degree of freedom in design, and it is possible to achieve a discharge function almost the same as that provided on the same plane.
  • the present invention has the following excellent effects. (1) In the case where different types of first fluid and second fluid exist on both sides of the sliding surfaces of the pair of sliding parts, the first negative pressure is generated on the sliding surface of at least one of the sliding parts.
  • a first fluid-side negative pressure generating mechanism including a groove is provided, and a second fluid-side negative pressure generating mechanism including a second negative pressure generating groove is provided on the second fluid side of the first fluid-side negative pressure generating mechanism.
  • a dynamic pressure generating mechanism including a dynamic pressure generating groove is provided on at least one of the first fluid side or the second fluid side from the first fluid side negative pressure generating mechanism and the second fluid side negative pressure generating mechanism,
  • the pressure generating groove is isolated from the second fluid side by the land portion, and the second negative pressure generating groove is isolated from the first fluid side by the land portion, so that the sliding surface is lubricated and the first and second fluids are separated. Prevents mixing of the first fluid and the second fluid different on both sides while achieving both sealing It is possible.
  • a circumferential groove is provided between the first fluid-side negative pressure generating mechanism and the second fluid-side negative pressure generating mechanism, and the circumferential groove includes the first fluid side, the second fluid side, and the land portion.
  • the groove depth of the circumferential groove is set to be deeper than the groove depths of the dynamic pressure generating groove, the first negative pressure generating groove, and the second negative pressure generating groove. Interference between the pressure generating mechanism and the second fluid-side negative pressure generating mechanism can be prevented, and the respective suction effects and discharge effects can be enhanced.
  • the first fluid side negative pressure generating mechanism is formed of a reverse Rayleigh step mechanism
  • the second fluid side negative pressure generating mechanism is formed of a spiral mechanism
  • the dynamic pressure generating mechanism is the first fluid side negative pressure generating mechanism.
  • the groove portion of the spiral mechanism is provided on the first fluid side and formed from the Rayleigh step mechanism.
  • the groove portion of the reverse Rayleigh step mechanism communicates with the first fluid side and is isolated from the second fluid side by the land portion. Is communicated with the second fluid side and separated from the first fluid side by the land portion, and the groove portion of the Rayleigh step mechanism is communicated with the first fluid side and the second fluid side is separated by the land portion.
  • the first fluid-side negative pressure generating mechanism is formed from the first spiral mechanism
  • the second fluid-side negative pressure generating mechanism is formed from the second spiral mechanism
  • the dynamic pressure generating mechanism is the first fluid-side negative pressure generating mechanism.
  • the groove portion of the first spiral mechanism is communicated with the first fluid side or separated by the land portion and is separated by the second fluid side and the land portion.
  • the groove part of the two spiral mechanism is separated from the first fluid side and the land part and communicated with the second fluid side, and the groove part of the Rayleigh step mechanism is communicated with the first fluid side and the second fluid side.
  • a negative pressure generator is formed on the sliding surface by a combination of a spiral mechanism as a negative pressure generating mechanism and a Rayleigh step mechanism as a dynamic pressure generating mechanism. And it is possible to effectively dispose the dynamic pressure generating mechanism.
  • the first fluid side negative pressure generating mechanism is formed from a first spiral mechanism
  • the second fluid side negative pressure generating mechanism is formed from a second spiral mechanism
  • the dynamic pressure generating mechanism is the first fluid side negative pressure generating unit.
  • the first spiral mechanism is separated from the first fluid side from the land portion and the second fluid side is separated from the land portion from the first fluid side.
  • the groove part of the two spiral mechanism is separated from the first fluid side and the land part and communicated with the second fluid side
  • the groove part of the third spiral mechanism is communicated with the first fluid side and the second fluid side.
  • the first fluid side negative pressure generating mechanism is formed from a first reverse Rayleigh step mechanism
  • the second fluid side negative pressure generating mechanism is formed from a second reverse Rayleigh step mechanism
  • the dynamic pressure generating mechanism is the first Provided on the first fluid side from the fluid-side negative pressure generating mechanism and on the second fluid side from the second fluid-side negative pressure generating mechanism, each formed from a Rayleigh step mechanism
  • the groove portion of the first reverse Rayleigh step mechanism is The first fluid side communicates with the second fluid side and is separated from the second fluid side by the land portion
  • the groove portion of the second reverse Rayleigh step mechanism is communicated with the second fluid side and separated from the first fluid side by the land portion.
  • the groove portion of the Rayleigh step mechanism communicates with either the first fluid side or the second fluid side and is separated from the other by the land portion, so that the negative pressure generating mechanism is reversed.
  • the first fluid side negative pressure generating mechanism is formed from the first spiral mechanism
  • the second fluid side negative pressure generating mechanism is formed from the second spiral mechanism
  • the dynamic pressure generating mechanism is the first fluid side negative pressure generating mechanism.
  • the first fluid side and the second fluid side negative pressure generating mechanism are provided on the second fluid side from the second fluid side negative pressure generating mechanism, respectively, and are formed by third and fourth spiral mechanisms, respectively.
  • the second fluid side and the land part, and the groove portion of the second spiral mechanism is isolated by the first fluid side and the land part and communicated with the second fluid side or the land part.
  • the groove portion of the third spiral mechanism communicates with the first fluid side and is separated from the second fluid side by the land portion
  • the fourth spiral mechanism is separated by the first fluid side and the land portion.
  • the negative pressure generating mechanism and the dynamic pressure generating mechanism are effectively arranged on the sliding surface by combining the negative pressure generating mechanism and the spiral mechanism as the dynamic pressure generating mechanism. Furthermore, since dynamic pressure generating mechanisms are provided on both sides of the first fluid side and the second fluid side, a fluid film can be formed on the entire sliding surface. Surface lubrication can be made more reliable.
  • the first negative pressure generating groove, the second negative pressure generating groove, and the dynamic pressure generating groove are formed symmetrically with respect to a radial line passing through the rotation center, so that the rotation-side sealing ring rotates in both directions. Even in this case, it is possible to provide a sliding part suitable for the double-rotation specification that can be used without exchanging the sealing ring having the surface texture.
  • the sliding surface on which the second fluid-side negative pressure generating mechanism is provided extends axially from the counterpart sliding surface with respect to the sliding surface on which the first fluid-side negative pressure generating mechanism and the dynamic pressure generating mechanism are provided.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • A is a diagram for explaining a positive pressure generating mechanism consisting of a narrowing gap (step) on the downstream side of the dimple
  • (b) is a diagram for explaining a negative pressure generating mechanism consisting of an expanding gap (step) on the upstream side of the dimple. is there.
  • the top view of the sliding surface of the sliding component which concerns on Example 2 of this invention is shown.
  • the top view of the sliding surface of the sliding component which concerns on Example 3 of this invention is shown.
  • the top view of the sliding surface of the sliding component which concerns on Example 4 of this invention is shown.
  • the top view of the sliding surface of the sliding component which concerns on Example 5 of this invention is shown.
  • the top view of the sliding surface of the sliding component which concerns on Example 6 of this invention is shown. It is sectional drawing of the sliding surface of the sliding component which concerns on Example 7 of this invention.
  • FIG. 1 is a longitudinal sectional view showing an example of a mechanical seal, in which the first fluid is present on the inner peripheral side of the sliding surface S and the second fluid is present on the outer peripheral side, and the sliding surface is lubricated. At the same time, the first fluid and the second fluid of different types are prevented from being mixed.
  • the sleeve 2 is provided on the rotary shaft 1 side for driving the pump impeller (not shown) on the second fluid side.
  • An annular rotary side sealing ring 3 provided so as to be rotatable integrally with the rotary shaft 1 and an annular shape provided on the pump housing 4 so as to be non-rotatable and axially movable.
  • the fixed-side seal ring 5 slides closely between the sliding surfaces S polished by lapping or the like by the coiled wave spring 6 and the bellows 7 that urge the fixed-side seal ring 5 in the axial direction. ing. That is, in this mechanical seal, different types of first fluid, for example, water, and second fluid, for example, oil are mixed on the sliding surfaces S of the rotating side sealing ring 3 and the stationary side sealing ring 5. Is to prevent.
  • first fluid exists on the inner peripheral side of the sliding surface and the second fluid exists on the outer peripheral side will be described.
  • FIG. 2 is a plan view of the sliding surface of the sliding component according to the first embodiment of the present invention, and shows a case where the surface texturing is applied to the sliding surface of the stationary seal ring 5 in FIG. An example will be described. The same applies to the case where surface texturing is applied to the sliding surface of the rotation-side sealing ring 3.
  • the rotational direction of the mating sliding surface S that slides relative to the sliding surface S of the stationary seal ring 5 is counterclockwise.
  • the surface texturing direction of the sliding surface S of the fixed sealing ring 5 may be reversed.
  • the sliding surface S of the stationary-side seal ring 5 is provided with a dynamic pressure generating mechanism 10 including a dynamic pressure generating groove 11 located on the first fluid side, and is positioned closer to the center than the dynamic pressure generating mechanism 10.
  • the first fluid side negative pressure generating mechanism 12 including the negative pressure generating groove 13 is provided, and the second fluid including the second negative pressure generating groove 15 is located on the second fluid side of the first fluid side negative pressure generating mechanism 12.
  • a side negative pressure generating mechanism 14 is provided. Between the first fluid-side negative pressure generating mechanism 12 and the second fluid-side negative pressure generating mechanism 14, the dynamic pressure generating groove 11, the first negative pressure generating groove 13, and the second negative pressure generating groove 15 are provided.
  • An annular first circumferential groove 16 deeper than the depth is provided.
  • the first circumferential groove 16 is separated from the first fluid side and the second fluid side by the land portion R. Furthermore, in this example, an annular second circumferential groove 17 is provided between the dynamic pressure generating mechanism 10 and the first fluid side negative pressure generating mechanism 12. The second circumferential groove 17 communicates with the first fluid side through the radial deep groove 18 and is separated from the second fluid side by the land portion R.
  • the dynamic pressure generating mechanism 10 is formed of a Rayleigh step mechanism, and the dynamic pressure generating groove 11 is formed of a groove portion (a depression or a concave portion) of the Rayleigh step mechanism.
  • the first fluid-side negative pressure generating mechanism 12 is formed by a reverse Rayleigh step mechanism, and the first negative pressure generating groove 13 is formed by a groove portion of the reverse Rayleigh step mechanism.
  • the second fluid side negative pressure generating mechanism 14 is formed of a spiral mechanism, and the second negative pressure generating groove 15 is formed of a groove portion of the spiral mechanism.
  • the downstream end of the groove portion 13 of the reverse Rayleigh step mechanism 12 communicates with the first fluid side via the radial deep groove 18 and is separated from the second fluid side by the land portion R. Further, the groove portion 15 of the spiral mechanism 14 communicates with the second fluid side and is separated from the first fluid side by the land portion R. Further, the groove portion 11 of the Rayleigh step mechanism 10 has an upstream end communicated with the first fluid side via the radial deep groove 18 and is separated from the second fluid side by the land portion R.
  • the land portion R means a smooth portion of the sliding surface S.
  • the dynamic pressure generating mechanism 10 improves the lubrication performance by generating a dynamic pressure (positive pressure) to allow the first fluid to enter between the sliding surfaces to increase the fluid film.
  • the first fluid-side negative pressure generating mechanism 12 reverse Rayleigh step mechanism 12
  • the first fluid that has entered the sliding surface is prevented from entering the second fluid side on the outer peripheral side.
  • the second fluid side negative pressure generating mechanism 14 spiral mechanism 14 sucks the second fluid existing on the sliding surface by generating a negative pressure and discharges it to the second fluid side.
  • the second fluid that has entered the moving surface is prevented from entering the first fluid side on the inner peripheral side.
  • the first circumferential groove 16 prevents interference between the first fluid-side negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12) and the second fluid-side negative pressure generating mechanism 14 (spiral mechanism 14).
  • the suction effect and the discharge effect are enhanced.
  • the second circumferential groove 17 prevents interference between the dynamic pressure generating mechanism 10 (Rayleigh step mechanism 10) and the first fluid-side negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12), and each suction effect and This enhances the discharge effect.
  • each groove portion 15 of the spiral mechanism 14 is disposed so as to expand from the upstream side toward the downstream side, and the downstream end portion communicates with the second fluid side.
  • the planar shape of each groove portion 15 itself may be a straight line shape as shown in FIG. 3 or may be a straight line shape. It may be arranged so as to have a spread.
  • the upstream end portion of the groove portion 15 may be communicated with the first circumferential groove 16 as shown in FIGS. 2A and 3, and as shown in FIG. It may be isolated from the one circumferential groove 16 by a land portion.
  • the object of the present invention can be achieved even when the first circumferential groove 16 and the second circumferential groove 17 are not provided.
  • the depth of the first circumferential groove 16, the second circumferential groove 17, and the radial deep groove 18 is ten times or more the depth of the groove portions 11, 13, and 16.
  • the dynamic pressure generating groove 11 (groove portion 11) of the dynamic pressure generating mechanism 10 (Rayleigh step mechanism 10) and the first negative pressure generating groove of the first fluid side negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12).
  • 13 (groove portion 13) and the second negative pressure generating groove 15 (groove portion 15) of the second fluid-side negative pressure generating mechanism 14 are sliding surfaces that slide with the mating sliding surface S. S is formed.
  • a first circumferential groove 16 is provided between the first negative pressure generating groove 13 (groove portion 13) and the second negative pressure generating groove 15 (groove portion 15), and the dynamic pressure generating groove 11 (groove portion 11).
  • a second circumferential groove 17 is provided between the first negative pressure generating groove 13 (groove portion 13).
  • FIG. 5 (a) a dynamic pressure (positive pressure) generating mechanism including a Rayleigh step mechanism and a negative pressure generating mechanism including a reverse Rayleigh step mechanism
  • FIG. 5 (a) the rotating side sealing ring 3 and the stationary side sealing ring 5 which are opposing sliding parts slide relative to each other as indicated by arrows.
  • the sliding surface of the fixed-side sealing ring 5 is formed with a Rayleigh step 11a that is narrower and forms a gap (step) that is perpendicular to the relative movement direction and faces the upstream side, and on the upstream side of the Rayleigh step 11a.
  • a groove portion 11 which is a pressure (positive pressure) generating groove is formed.
  • the sliding surfaces S of the rotating side sealing ring 3 and the stationary side sealing ring 5 facing each other are flat.
  • the fluid interposed between the sliding surfaces S of the rotation-side seal ring 3 and the fixed-side seal ring 5 is rotated on the rotation side.
  • a dynamic pressure (positive pressure) as indicated by a broken line is generated due to the presence of the Rayleigh step 11a.
  • R represents a land portion.
  • the rotating side sealing ring 3 and the stationary side sealing ring 5 which are the opposing sliding parts slide relative to each other as indicated by the arrows. 5 is formed with a reverse Rayleigh step 13a that forms a gap (step) that is perpendicular to the relative movement direction and faces the downstream side, and forms a negative pressure on the downstream side of the reverse Rayleigh step 13a.
  • a groove portion 13 that is a groove is formed. The sliding surfaces of the opposing rotating side sealing ring 3 and stationary side sealing ring 5 are flat.
  • the second fluid that has entered from the second fluid side by the second fluid side negative pressure generating mechanism 14 is sucked and discharged to the second fluid side. For this reason, it is possible to prevent mixing of the different types of the first fluid and the second fluid on both sides while achieving both lubrication of the sliding surface S and sealing of the first fluid and the second fluid.
  • Example 1 According to the structure of Example 1 demonstrated above, there exist the following outstanding effects.
  • the first fluid side negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12) including the groove 13 (groove portion 13) is provided, and the second fluid side from the first fluid side negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12).
  • a second fluid-side negative pressure generating mechanism 14 (spiral mechanism 14) including a second negative-pressure generating groove 15 (groove portion 15), and a first fluid-side negative pressure generating mechanism 12 (reverse Rayleigh step).
  • a dynamic pressure generating mechanism 10 (Rayleigh step mechanism 10) including a dynamic pressure generating groove 11 (groove portion 11) on the first fluid side from the mechanism 12) and the second fluid side negative pressure generating mechanism 14 (spiral mechanism 14);
  • the first negative pressure generating groove 13 (groove portion 13) of the first fluid side negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12) communicates with the first fluid side and is separated from the second fluid side by the land portion R.
  • the second negative pressure generating groove 15 (groove portion 15) of the second fluid side negative pressure generating mechanism 14 (spiral mechanism 14) communicates with the second fluid side and is separated from the first fluid side by the land portion R.
  • the dynamic pressure generating groove 11 (groove portion 11) of the dynamic pressure generating mechanism 10 (Rayleigh step mechanism 10) is communicated with the first fluid side and isolated from the second fluid side by the land portion R. Accordingly, it is possible to prevent the first fluid and the second fluid from being mixed on both sides from being mixed while achieving both lubrication of the sliding surface S and sealing of the first fluid and the second fluid.
  • a first circumferential groove 16 deeper than the groove depth of the first negative pressure generating groove 13 (groove portion 13) and the second negative pressure generating groove 15 (groove portion 15) is provided, and the first circumferential groove 16 is the first
  • the first fluid side negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12) and the second fluid side negative pressure generating mechanism 14 (spiral mechanism 14) are separated from the fluid side and the second fluid side by the land portion R. Can be prevented, and the suction effect and the discharge effect can be enhanced.
  • An annular second circumferential groove 17 is provided between the dynamic pressure generation mechanism 10 (Rayleigh step mechanism 10) and the first fluid-side negative pressure generation mechanism 12 (reverse Rayleigh step mechanism 12), and the second circumference
  • the groove 17 communicates with the first fluid side via the radial deep groove 18 and is separated from the second fluid side by the land portion R, so that the dynamic pressure generating mechanism 10 (Rayleigh step mechanism 10) and the first fluid side are separated. Interference with the negative pressure generating mechanism 12 (reverse Rayleigh step mechanism 12) can be prevented, and the respective suction effects and discharge effects can be enhanced.
  • Example 2 of this invention With reference to FIG. 6, the sliding component which concerns on Example 2 of this invention is demonstrated.
  • the second embodiment is different from the first embodiment in that the first fluid-side negative pressure generating mechanism is configured by a spiral mechanism, but the other basic configuration is the same as that of the first embodiment, and the same members are denoted by the same reference numerals. A duplicate description will be omitted.
  • the groove portion 21 of the spiral mechanism 20 constituting the first fluid-side negative pressure generating mechanism has a curved shape (spiral shape) reduced from the upstream side toward the downstream side toward the center. ing. For this reason, negative pressure is generated in the groove portion 21 due to the sliding with the counterpart sliding surface, and the fluid sucked into the groove portion 21 is urged toward the first fluid side.
  • the upstream end portion of the groove portion 21 is separated from the first circumferential groove 16 by the land portion, and the downstream end portion is communicated with the second circumferential groove 17. For this reason, the fluid sucked into the groove portion 21 is reliably discharged to the first fluid side. Further, the upstream end of the second negative pressure generating groove 15 (groove portion 15) of the second fluid side negative pressure generating mechanism 14 (spiral mechanism 14) communicates with the first circumferential groove 16. In FIG.
  • the upstream end portion of the groove portion 21 is isolated from the first circumferential groove 16 by the land portion, and the downstream end portion is communicated with the second circumferential groove 17, and the second fluid side
  • An upstream end of the second negative pressure generating groove 15 (groove portion 15) of the negative pressure generating mechanism 14 (spiral mechanism 14) is isolated from the first circumferential groove 16 by a land portion.
  • the upstream end of the groove portion 21 is isolated from the first circumferential groove 16 by the land portion, and the downstream end portion is isolated from the second circumferential groove 17 by the land portion.
  • the upstream end of the second negative pressure generating groove 15 (groove portion 15) of the two-fluid-side negative pressure generating mechanism 14 (spiral mechanism 14) is isolated from the first circumferential groove 16 by the land portion.
  • the upstream end of the second negative pressure generating groove 15 (groove portion 15) of the second fluid side negative pressure generating mechanism 14 (spiral mechanism 14) is the first circumference. It may communicate with the groove 16.
  • the upstream end portion of the groove portion 21 communicates with the first circumferential groove 16, and the downstream end portion is isolated from the second circumferential groove 17 by the land portion.
  • An upstream end portion of the second negative pressure generating groove 15 (groove portion 15) of the negative pressure generating mechanism 14 (spiral mechanism 14) communicates with the first circumferential groove 16.
  • the upstream end portion of the groove portion 21 communicates with the first circumferential groove 16, and the downstream end portion is isolated from the second circumferential groove 17 by the land portion.
  • An upstream end of the second negative pressure generating groove 15 (groove portion 15) of the negative pressure generating mechanism 14 (spiral mechanism 14) is isolated from the first circumferential groove 16 by a land portion.
  • the first circumferential groove 16 and the second circumferential groove 17 are omitted, and the upstream end portion and the downstream end portion of the groove portion 21 are surrounded by the land portion R. . Further, the upstream end portion of the second negative pressure generating groove 15 (groove portion 15) of the second fluid side negative pressure generating mechanism 14 (spiral mechanism 14) is also surrounded by the land portion R.
  • the third embodiment is different from the second embodiment in that the dynamic pressure generating mechanism is configured by a spiral mechanism, but the other basic configuration is the same as that of the second embodiment.
  • the description to be omitted is omitted.
  • the groove portion 23 of the spiral mechanism 22 constituting the dynamic pressure generating mechanism has a curved shape (spiral shape) expanded from the upstream side toward the downstream side toward the second fluid side. .
  • a dynamic pressure positive pressure
  • the first fluid enters between the sliding surfaces to increase the fluid film, thereby improving the lubrication performance.
  • the upstream end portion of the groove portion 23 communicates with the first fluid side, and the downstream end portion is isolated from the second circumferential groove 17 by the land portion.
  • Some of the plurality of groove portions 23 are formed in deep grooves having the same depth as the second circumferential groove 17.
  • the upstream end portion of the groove portion 21 is separated from the first circumferential groove 16 by the land portion, and the downstream end portion is communicated with the second circumferential groove 17.
  • the upstream end of the second negative pressure generating groove 15 (groove portion 15) of the second fluid side negative pressure generating mechanism 14 (spiral mechanism 14) communicates with the first circumferential groove 16.
  • the groove portion 23 and the groove portion 21 are the same as those in FIG.
  • the upstream end portion of the groove portion 15 is isolated from the first circumferential groove 16 by the land portion.
  • the groove portion 23 and the groove portion 15 are the same as in FIG. 7A, but the upstream end of the groove portion 21 is isolated from the first circumferential groove 16 by the land portion, The downstream end is isolated from the second circumferential groove 17 by the land portion.
  • the upstream end portion of the groove portion 15 may be isolated from the first circumferential groove 16 by the land portion.
  • the groove portion 23 and the groove portion 15 are the same as those in FIG. 7A, but the upstream end portion of the groove portion 21 communicates with the first circumferential groove 16, and the downstream side The end portion is isolated from the second circumferential groove 17 by the land portion.
  • the groove portion 23 and the groove portion 15 are the same as those in FIG. 7B, but the upstream end portion of the groove portion 21 communicates with the first circumferential groove 16, and the downstream portion The end portion is isolated from the second circumferential groove 17 by the land portion.
  • the sliding component which concerns on Example 4 of this invention is demonstrated.
  • the second fluid side negative pressure generating mechanism is formed of a reverse Rayleigh step mechanism, and the dynamic pressure generating mechanism is provided on the second fluid side of the second fluid side negative pressure generating mechanism.
  • the other basic configuration is the same as that of the first embodiment, and the same members are denoted by the same reference numerals, and redundant description is omitted.
  • the second fluid side negative pressure generating mechanism is configured by a reverse Rayleigh step mechanism 24, and the dynamic pressure generating mechanism configured by a Rayleigh step mechanism 26 is disposed on the second fluid side from the reverse Rayleigh step mechanism 24.
  • An annular third circumferential groove 28 is provided between the groove portion 25 of the reverse Rayleigh step mechanism 24 and the groove portion 27 of the Rayleigh step mechanism 26, and the annular third circumferential groove 28 is a radial deep groove 29. Is communicated to the second fluid side via the. Further, the upstream end portion of the groove portion 27 of the Rayleigh step mechanism 26 communicates with the second fluid side via a radial deep groove 29.
  • the groove depth of the third circumferential groove 28 is the same as the groove depth of the first circumferential groove 16 and the second circumferential groove 17.
  • the Rayleigh step mechanism 26 constituting the dynamic pressure generating mechanism is provided at the second fluid side of the second fluid side negative pressure generating mechanism, that is, the position closest to the second fluid side, the first
  • a liquid film can be formed on the entire sliding surface, and the sliding surface can be more reliably lubricated.
  • the object of the present invention can be achieved even when the first circumferential groove 16, the second circumferential groove 17, and the third circumferential groove 28 are not provided.
  • the sliding component which concerns on Example 5 of this invention is demonstrated.
  • the first fluid-side negative pressure generating mechanism, the second fluid-side negative pressure generating mechanism, the first fluid-side dynamic pressure generating mechanism, and the second fluid-side dynamic pressure generating mechanism are configured by a spiral mechanism.
  • the other basic configuration is the same as that of the first to fourth embodiments, and the same members are denoted by the same reference numerals, and redundant description is omitted.
  • the first fluid side negative pressure generating mechanism is configured by a spiral mechanism 20, and the second fluid side negative pressure generating mechanism is configured by a spiral mechanism 14.
  • a dynamic pressure generating mechanism including a spiral mechanism 22 is provided on the first fluid side of the spiral mechanism 20 of the first fluid side negative pressure generating mechanism, and the second fluid side of the spiral mechanism 14 of the second fluid side negative pressure generating mechanism. Is provided with a dynamic pressure generating mechanism including a spiral mechanism 30.
  • a first circumferential groove 16 is provided between the spiral mechanism 20 of the first fluid side negative pressure generating mechanism and the spiral mechanism 14 of the second fluid side negative pressure generating mechanism, and the spiral mechanism 20 of the first fluid side negative pressure generating mechanism.
  • a third circumferential groove 28 is provided between the spiral mechanism 30 of the mechanism.
  • the upstream end of the groove portion 21 of the spiral mechanism 20 is isolated from the first circumferential groove 16 by the land portion, and the downstream end is communicated with the second circumferential groove 17.
  • the upstream end of the groove portion 15 of the spiral mechanism 14 is isolated from the first circumferential groove 16 by the land portion, and the downstream end is communicated to the third circumferential groove 28.
  • the second circumferential groove 17 communicates with the first fluid side via the arc-shaped groove 17a
  • the third circumferential groove 28 communicates with the second fluid side via the arc-shaped groove 28a.
  • FIG. 9B the upstream end of the groove portion 21 of the spiral mechanism 20 is communicated with the first circumferential groove 16, and the downstream end is separated from the second circumferential groove 17 by the land portion.
  • FIG. 9C the upstream end of the groove portion 15 of the spiral mechanism 14 is communicated with the first circumferential groove 16, and the downstream end is separated from the third circumferential groove 28 by the land portion.
  • the other points are the same as those in FIG. 9A.
  • FIG. 9D the upstream end and the downstream end of the groove portion 21 of the spiral mechanism 20 and the groove portion 15 of the spiral mechanism 14 are both surrounded by the land portion R without communicating with the deep groove.
  • FIG. 9 (e) shows that only the upstream end and the downstream end of the groove portion 15 of the spiral mechanism 14 are surrounded by the land portion R without communicating with the deep groove.
  • the other points are the same as in FIG. 9A.
  • the object of the present invention can be achieved even when the first circumferential groove 16, the second circumferential groove 17, and the third circumferential groove 28 are not provided.
  • the sixth embodiment relates to a sliding component suitable for a double-rotation specification that can be used without exchanging the seal ring with the surface texture even when the rotation-side seal ring 3 rotates in both directions.
  • the sliding surface S of the stationary seal ring 5 is provided with a dynamic pressure generating mechanism 32 including a dynamic pressure generating groove 33 located on the first fluid side.
  • a first fluid side negative pressure generating mechanism 35 comprising a first negative pressure generating groove 36 is provided on the side of the first fluid side negative pressure generating mechanism 35, and a second negative pressure is generated by being positioned closer to the second fluid side than the first fluid side negative pressure generating mechanism 35.
  • a second fluid-side negative pressure generating mechanism 37 comprising a groove 38 is provided. Further, between the first fluid side negative pressure generating mechanism 35 and the second fluid side negative pressure generating mechanism 37, the dynamic pressure generating groove 33, the first negative pressure generating groove 36, and the second negative pressure generating groove 38 are provided.
  • An annular first circumferential groove 16 deeper than the depth is provided.
  • the first circumferential groove 16 is separated from the first fluid side and the second fluid side by the land portion R.
  • an annular second circumferential groove 17 is provided between the dynamic pressure generating mechanism 32 and the first fluid-side negative pressure generating mechanism 35.
  • the second circumferential groove 17 communicates with the first fluid side through the radial deep groove 18 and is separated from the second fluid side by the land portion R.
  • the dynamic pressure generating mechanism 32 is formed of a Rayleigh step mechanism, and the dynamic pressure generating groove 36 is formed of a groove portion (a depression or a concave portion) of the Rayleigh step mechanism, and is formed symmetrically with the radial deep groove 18 in between.
  • the first fluid side negative pressure generating mechanism 35 is formed of a reverse Rayleigh step mechanism, and the first negative pressure generating groove 36 is formed of a groove portion of the reverse Rayleigh step mechanism, with respect to a radial line OO passing through the center of rotation. It is formed symmetrically.
  • the second fluid-side negative pressure generating mechanism 37 is formed by a reverse Rayleigh step mechanism, and the second negative pressure generating groove 37 is formed by a groove portion of the reverse Rayleigh step mechanism, and with respect to a radial line OO passing through the center of rotation. It is formed symmetrically.
  • the upstream end portion 36a and the downstream end portion 36b of the reverse Rayleigh step mechanism 35 are located on the first fluid side and close to the second circumferential groove 17, and the intermediate portion 36c is the first fluid. It is located on the side and close to the first circumferential groove 16. Further, the upstream end portion 38a and the downstream end portion 38b of the groove portion 38 of the reverse Rayleigh step mechanism 37 are located on the second fluid side and close to the second fluid side, and the intermediate portion 38c is the first fluid. It is located on the side and close to the first circumferential groove 16.
  • the object of the present invention can be achieved even when the first circumferential groove 16 and the second circumferential groove 17 are not provided in FIG. 10A.
  • a dynamic pressure generating mechanism 39 including a Rayleigh step mechanism is provided on the second fluid side of the second fluid side negative pressure generating mechanism 37, and the second fluid side negative pressure generating mechanism 37
  • the third circumferential groove 28 is provided between the pressure generating mechanism 39 and the second circumferential groove 28, the other configuration is the same as that of FIG. 10A.
  • the object of the present invention is achieved even when the first circumferential groove 16, the second circumferential groove 17, and the third circumferential groove 28 are not provided in FIG. 10 (c). It is possible to do.
  • the sliding surface provided with the second fluid-side negative pressure generating mechanism pivots from the mating sliding surface to the sliding surface provided with the first fluid-side negative pressure generating mechanism and the dynamic pressure generating mechanism.
  • the other basic configuration is the same as the previous embodiment, and redundant description is omitted.
  • the second negative pressure generating groove 15 (groove portion 15) of the second fluid-side negative pressure generating mechanism 14 (spiral mechanism 14) is low with respect to the sliding surface S in the axial direction away from the counterpart sliding surface. Set to position. For this reason, it is possible to provide a degree of freedom in design, and it is possible to achieve substantially the same discharge function as that provided on the same plane.
  • a first circumferential groove 16 is provided on the sliding surface S between the first negative pressure generating groove 13 (groove portion 13) and the second negative pressure generating groove 15 (groove portion 15).
  • a second circumferential groove 17 is provided between 11 (groove portion 11) and the first negative pressure generating groove 13 (groove portion 13).
  • the sliding component is used in any one of the pair of rotation sealing rings and the fixing sealing ring in the mechanical seal device.
  • the lubricating oil is provided on one axial side of the cylindrical sliding surface. It is also possible to use as a sliding part of a bearing that slides on a rotating shaft while sealing.
  • the inner peripheral side of the sliding component is described as the first fluid (for example, water) side
  • the outer peripheral side is described as the second fluid (for example, oil) side.
  • the first fluid and the second fluid are not limited to liquids, and may be gas or mist-like gas.
  • the upstream end portion and the downstream end portion of the groove portion of the first negative pressure generating mechanism and the second negative pressure generating mechanism and the communication relationship between the deep groove and the deep groove are not limited to the example described in the above embodiment. However, various modifications are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Sealing (AREA)
  • Machine Tool Units (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

両側の異なる流体の混合を防止できるしゅう動部品を提供する。しゅう動面Sには、第1負圧発生溝13からなる第1流体側負圧発生機構12を設けると共に、第1流体側負圧発生機構12より第2流体側に位置して第2負圧発生溝15からなる第2流体側負圧発生機構14を設け、また、第1流体側負圧発生機構12及び第2流体側負圧発生機構14より第1流体側又は第2流体側の少なくとも一方に動圧発生溝11からなる動圧発生機構10を設け、第1負圧発生溝13はランド部Rにより第2流体側と隔離され、第2負圧発生溝15はランド部Rにより第1流体側と隔離されることを特徴としている。

Description

しゅう動部品
 本発明は、たとえば、メカニカルシール、軸受、その他、しゅう動部に適したしゅう動部品に関する。特に、しゅう動面に流体を介在させて摩擦を低減させるとともに、しゅう動面から流体が漏洩するのを防止する必要のある密封環または軸受などのしゅう動部品に関する。
 しゅう動部品の一例である、メカニカルシールにおいて、しゅう動部品のしゅう動面には、潤滑性の向上のため、表面テクスチャリングと呼ばれる微細な溝が付与されることがある。
 本出願人は、先に、密封と潤滑を両立させるために、たとえば、一対のしゅう動部品の互いに相対しゅう動する一方側のしゅう動面の高圧側には高圧流体側と直接連通するスパイラルグルーブ、又はディンプルからなる正圧発生機構を、低圧側には逆レイリーステップ機構からなる負圧発生機構を設けるとともに、前記スパイラルグルーブ又はディンプルと逆レイリーステップ機構との間に圧力開放溝を設け、圧力開放溝及び逆レイリーステップ機構は高圧流体側と半径方向溝を介して連通し、低圧流体側とはシール面により隔離されてなる発明を出願している(特許文献1参照。)。
 上記の特許文献1に記載の発明(以下「従来技術」という。)は、しゅう動面の潤滑性、及び、被密封流体である高圧流体の高圧流体側から低圧流体側への漏洩を防止する密封性において優れた発明であるが、低圧側に設けられた負圧発生機構に吸込まれた低圧流体が高圧流体側に吐出されないようにした発明ではない。
 そのため、しゅう動面の両側に異なる流体が存在し、両流体が混合されると危険が発生するとか、あるいは、化学反応等により被密封流体が変質してしまうような場合に対応できないという問題があった。
WO 2014/148316 A1(図13~図20)
 本発明は、上記従来技術の問題を解決するためになされたものであって、しゅう動面の両側に異なる種類の流体が存在するものにおいて、密封と潤滑を両立させつつ、両側の異なる流体の混合を防止することができるしゅう動部品を提供することを目的とするものである。
 上記目的を達成するため本発明のしゅう動部品は、第1に、互いに相対しゅう動する一対のしゅう動部品を備え、前記一対のしゅう動部品のしゅう動面の両側には異なる種類の第1流体及び第2流体が存在するものにおいて、少なくとも一方のしゅう動部品のしゅう動面には、第1負圧発生溝からなる第1流体側負圧発生機構を設けると共に、前記第1流体側負圧発生機構より前記第2流体側に位置して第2負圧発生溝からなる第2流体側負圧発生機構を設け、また、前記第1流体側負圧発生機構及び前記第2流体側負圧発生機構より前記第1流体側又は前記第2流体側の少なくとも一方に動圧発生溝からなる動圧発生機構を設け、前記第1負圧発生溝はランド部により前記第2流体側と隔離され、第2負圧発生溝はランド部により前記第1流体側と隔離されることを特徴としている。
 この特徴によれば、しゅう動面の潤滑と第1流体及び第2流体の密封を両立させつつ、両側の異なる第1流体と第2流体との混合を防止することができる。
 また、本発明のしゅう動部品は、第2に、第1の特徴において、前記第1流体側負圧発生機構と前記第2流体側負圧発生機構との間には、円周溝を設け、前記円周溝は前記第1流体側及び第2流体側とランド部により隔離されることを特徴としている。
 また、本発明のしゅう動部品は、第3に、第2の特徴において、前記円周溝の溝深さは、前記動圧発生溝、第1負圧発生溝及び第2負圧発生溝の溝深さよりも深く設定されることを特徴としている。
 これらの特徴によれば、第1流体側負圧発生機構と第2流体側負圧発生機構との干渉を防止し、それぞれの吸込み効果及び吐出し効果を高めることができる。
 また、本発明のしゅう動部品は、第3に、第1又は第2の特徴において、前記第1流体側負圧発生機構は逆レイリーステップ機構から形成され、前記第2流体側負圧発生機構はスパイラル機構から形成され、また、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側に設けられてレイリーステップ機構から形成され、前記逆レイリーステップ機構のグルーブ部は前記第1流体側と連通されると共に第2流体側とはランド部により隔離され、前記スパイラル機構のグルーブ部は前記第2流体側と連通されると共に第1流体側とはランド部により隔離され、また、前記レイリーステップ機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離されることを特徴としている。
 この特徴によれば、負圧発生機構としての逆レイリーステップ機構及びスパイラル機構、並びに、動圧発生機構としてのレイリーステップ機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができる。
 また、本発明のしゅう動部品は、第4に、第1又は第2の特徴において、前記第1流体側負圧発生機構は第1スパイラル機構から形成され、前記第2流体側負圧発生機構は第2スパイラル機構から形成され、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側に設けられてレイリーステップ機構から形成され、前記第1スパイラル機構のグルーブ部は前記第1流体側と連通又はランド部により隔離されると共に前記第2流体側とランド部により隔離され、前記第2スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通され、また、前記レイリーステップ機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離されることを特徴としている。
 この特徴によれば、負圧発生機構としてのスパイラル機構及び動圧発生機構としてのレイリーステップ機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができる。
 また、本発明のしゅう動部品は、第5に、第1又は第2の特徴において、前記第1流体側負圧発生機構は第1スパイラル機構から形成され、前記第2流体側負圧発生機構は第2スパイラル機構から形成され、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側に設けられて第3スパイラル機構から形成され、前記第1スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側ともランド部により隔離され、前記第2スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通され、また、前記第3スパイラル機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離されることを特徴としている。
 この特徴によれば、負圧発生機構及び動圧発生機構としてのスパイラル機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができる。
 また、本発明のしゅう動部品は、第6に、第1又は第2の特徴において、前記第1流体側負圧発生機構は第1逆レイリーステップ機構から形成され、前記第2流体側負圧発生機構は第2逆レイリーステップ機構から形成され、また、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側、及び、前記第2流体側負圧発生機構より前記第2流体側に設けられて、それぞれレイリーステップ機構から形成され、前記第1逆レイリーステップ機構のグルーブ部は前記第1流体側と連通されると共に第2流体側とはランド部により隔離され、前記第2逆レイリーステップ機構のグルーブ部は前記第2流体側と連通されると共に第1流体側とはランド部により隔離され、また、前記レイリーステップ機構のグルーブ部は、前記第1流体側又は第2流体側のいずれか一方と連通されると共に他方とはランド部により隔離されることを特徴としている。
 この特徴によれば、負圧発生機構としての逆レイリーステップ機構、動圧発生機構としてのレイリーステップ機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができ、さらに、第1流体側、及び、第2流体側の両側に動圧発生機構を設けられているため、しゅう動面の全体に流体膜を形成することができ、しゅう動面の潤滑をより確実にすることができる。
  また、本発明のしゅう動部品は、第7に、第1又は第2の特徴において、前記第1流体側負圧発生機構は第1スパイラル機構から形成され、前記第2流体側負圧発生機構は第2スパイラル機構から形成され、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側、及び、前記第2流体側負圧発生機構より前記第2流体側に設けられて、それぞれ第3及び第4スパイラル機構から形成され、前記第1スパイラル機構のグルーブ部は前記第1流体側と連通又はランド部により隔離されると共に前記第2流体側とランド部により隔離され、前記第2スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通又はランド部により隔離され、また、前記第3スパイラル機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離され、前記第4スパイラル機構は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通されることを特徴としている。
 この特徴によれば、負圧発生機構及び動圧発生機構としてのスパイラル機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができ、さらに、第1流体側、及び、第2流体側の両側に動圧発生機構を設けられているため、しゅう動面の全体に流体膜を形成することができ、しゅう動面の潤滑をより確実にすることができる。
 また、本発明のしゅう動部品は、第8に、第1の特徴において、前記第1負圧発生溝、前記第2負圧発生溝及び前記動圧発生溝は、回転中心を通る半径線に対して対称に形成されることを特徴としている。
 この特徴によれば、回転側密封環が両方向に回転する場合においても、表面テクスチャの施された密封環を交換することなく使用可能な両回転仕様に適したしゅ動部品を提供することができる。
  また、本発明のしゅう動部品は、第9に、第1ないし第8のいずれかの特徴において、前記第2流体側負圧発生機構の設けられるしゅう動面は、前記第1流体側負圧発生機構及び前記動圧発生機構の設けられるしゅう動面に対して相手側しゅう動面から軸方向に離れた低位置に設定されることを特徴としている。
 この特徴によれば、設計に自由度をもたせることができ、同一平面上に設けられた場合とほぼ同様の吐出し機能を奏することができる。
 本発明は、以下のような優れた効果を奏する。
(1)一対のしゅう動部品のしゅう動面の両側には異なる種類の第1流体及び第2流体が存在するものにおいて、少なくとも一方のしゅう動部品のしゅう動面には、第1負圧発生溝からなる第1流体側負圧発生機構を設けると共に、第1流体側負圧発生機構より第2流体側に位置して第2負圧発生溝からなる第2流体側負圧発生機構を設け、また、第1流体側負圧発生機構及び第2流体側負圧発生機構より第1流体側又は第2流体側の少なくとも一方に動圧発生溝からなる動圧発生機構を設け、第1負圧発生溝はランド部により第2流体側と隔離され、第2負圧発生溝はランド部により第1流体側と隔離されることにより、しゅう動面の潤滑と第1流体及び第2流体の密封を両立させつつ、両側の異なる第1流体と第2流体との混合を防止することができる。
(2)第1流体側負圧発生機構と第2流体側負圧発生機構との間には、円周溝を設け、前記円周溝は前記第1流体側及び第2流体側とランド部により隔離され、また、円周溝の溝深さは、動圧発生溝、第1負圧発生溝及び第2負圧発生溝の溝深さよりも深く設定されることにより、第1流体側負圧発生機構と第2流体側負圧発生機構との干渉を防止し、それぞれの吸込み効果及び吐出し効果を高めることができる。
(3)第1流体側負圧発生機構は逆レイリーステップ機構から形成され、第2流体側負圧発生機構はスパイラル機構から形成され、また、動圧発生機構は第1流体側負圧発生機構より第1流体側に設けられてレイリーステップ機構から形成され、逆レイリーステップ機構のグルーブ部は第1流体側と連通されると共に第2流体側とはランド部により隔離され、スパイラル機構のグルーブ部は第2流体側と連通されると共に第1流体側とはランド部により隔離され、また、レイリーステップ機構のグルーブ部は、第1流体側と連通されると共に第2流体側とはランド部により隔離されることにより、負圧発生機構としての逆レイリーステップ機構及びスパイラル機構、並びに、動圧発生機構としてのレイリーステップ機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができる。
(4)第1流体側負圧発生機構は第1スパイラル機構から形成され、第2流体側負圧発生機構は第2スパイラル機構から形成され、動圧発生機構は第1流体側負圧発生機構より第1流体側に設けられてレイリーステップ機構から形成され、第1スパイラル機構のグルーブ部は第1流体側と連通又はランド部により隔離されると共に第2流体側とランド部により隔離され、第2スパイラル機構のグルーブ部は第1流体側とランド部により隔離されると共に第2流体側と連通され、また、レイリーステップ機構のグルーブ部は、第1流体側と連通されると共に第2流体側とはランド部により隔離されることにより、負圧発生機構としてのスパイラル機構及び動圧発生機構としてのレイリーステップ機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができる。
(5)第1流体側負圧発生機構は第1スパイラル機構から形成され、第2流体側負圧発生機構は第2スパイラル機構から形成され、動圧発生機構は前記第1流体側負圧発生機構より第1流体側に設けられて第3スパイラル機構から形成され、第1スパイラル機構のグルーブ部は第1流体側とランド部により隔離されると共に第2流体側ともランド部により隔離され、第2スパイラル機構のグルーブ部は第1流体側とランド部により隔離されると共に第2流体側と連通され、また、第3スパイラル機構のグルーブ部は、第1流体側と連通されると共に第2流体側とはランド部により隔離されることにより、負圧発生機構及び動圧発生機構としてのスパイラル機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができる。
(6)第1流体側負圧発生機構は第1逆レイリーステップ機構から形成され、第2流体側負圧発生機構は第2逆レイリーステップ機構から形成され、また、動圧発生機構は第1流体側負圧発生機構より第1流体側、及び、第2流体側負圧発生機構より第2流体側に設けられて、それぞれレイリーステップ機構から形成され、第1逆レイリーステップ機構のグルーブ部は第1流体側と連通されると共に第2流体側とはランド部により隔離され、第2逆レイリーステップ機構のグルーブ部は第2流体側と連通されると共に第1流体側とはランド部により隔離され、また、レイリーステップ機構のグルーブ部は、第1流体側又は第2流体側のいずれか一方と連通されると共に他方とはランド部により隔離されることにより、負圧発生機構としての逆レイリーステップ機構、動圧発生機構としてのレイリーステップ機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができ、さらに、第1流体側、及び、第2流体側の両側に動圧発生機構を設けられているため、しゅう動面の全体に流体膜を形成することができ、しゅう動面の潤滑をより確実にすることができる。
(7)第1流体側負圧発生機構は第1スパイラル機構から形成され、第2流体側負圧発生機構は第2スパイラル機構から形成され、動圧発生機構は第1流体側負圧発生機構より第1流体側、及び、第2流体側負圧発生機構より前記第2流体側に設けられて、それぞれ第3及び第4スパイラル機構から形成され、第1スパイラル機構のグルーブ部は第1流体側と連通又はランド部により隔離されると共に第2流体側とランド部により隔離され、第2スパイラル機構のグルーブ部は第1流体側とランド部により隔離されると共に第2流体側と連通又はランド部により隔離され、また、第3スパイラル機構のグルーブ部は、第1流体側と連通されると共に第2流体側とはランド部により隔離され、第4スパイラル機構は第1流体側とランド部により隔離されると共に第2流体側と連通されることにより、負圧発生機構及び動圧発生機構としてのスパイラル機構の組合わせにより、しゅう動面に負圧発生機構及び動圧発生機構を効果的に配設することができ、さらに、第1流体側、及び、第2流体側の両側に動圧発生機構を設けられているため、しゅう動面の全体に流体膜を形成することができ、しゅう動面の潤滑をより確実にすることができる。
(8)第1負圧発生溝、前記第2負圧発生溝及び前記動圧発生溝は、回転中心を通る半径線に対して対称に形成されることにより、回転側密封環が両方向に回転する場合においても、表面テクスチャの施された密封環を交換することなく使用可能な両回転仕様に適したしゅ動部品を提供することができる。
(9)第2流体側負圧発生機構の設けられるしゅう動面は、第1流体側負圧発生機構及び動圧発生機構の設けられるしゅう動面に対して相手側しゅう動面から軸方向に離れた低位置に設定されることにより、設計に自由度をもとせることができ、同一平面上に設けられた場合とほぼ同様の吐出し機能を奏することができる。
本発明の実施例1に係るメカニカルシールの一例を示す縦断面図である。 本発明の実施例1に係るしゅう動部品のしゅう動面の平面図を示したものである。 図2のA部を拡大した拡大図である。 図2のB-B断面図である。 (a)はディンプルの下流側の狭まり隙間(段差)からなる正圧発生機構を、(b)はディンプルの上流側の拡がり隙間(段差)からなる負圧発生機構を、説明するための図である。 本発明の実施例2に係るしゅう動部品のしゅう動面の平面図を示したものである。 本発明の実施例3に係るしゅう動部品のしゅう動面の平面図を示したものである。 本発明の実施例4に係るしゅう動部品のしゅう動面の平面図を示したものである。 本発明の実施例5に係るしゅう動部品のしゅう動面の平面図を示したものである。 本発明の実施例6に係るしゅう動部品のしゅう動面の平面図を示したものである。 本発明の実施例7に係るしゅう動部品のしゅう動面の断面図を示したものである。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。 
 図1ないし図4を参照して、本発明の実施例1に係るしゅう動部品について説明する。
 なお、本実施例においては、メカニカルシールを構成する部品がしゅう動部品である場合を例にして説明する。  
 図1は、メカニカルシールの一例を示す縦断面図であって、しゅう動面Sの内周側に第1流体が存在し、外周側に第2流体が存在し、しゅう動面の潤滑を図ると共に、異なる種類の第1流体と第2流体とが混合するのを防止するようにものであり、たとえば、第2流体側のポンプインペラ(図示省略)を駆動させる回転軸1側にスリーブ2を介してこの回転軸1と一体的に回転可能な状態に設けられた円環状の回転側密封環3と、ポンプのハウジング4に非回転状態かつ軸方向移動可能な状態で設けられた円環状の固定側密封環5とが、この固定側密封環5を軸方向に付勢するコイルドウェーブスプリング6及びベローズ7によって、ラッピング等によって研磨されたしゅう動面S同士で密接しゅう動するようになっている。
 すなわち、このメカニカルシールは、回転側密封環3と固定側密封環5との互いのしゅう動面Sにおいて、異なる種類の第1流体、たとえば水と、第2流体、たとえば油とが混合するのを防止するものである。
 なお、本例においては、しゅう動面の内周側に第1流体が、外周側に第2流体が存在する場合について説明するが、逆であっても、同様の効果を奏する。
 図2は、本発明の実施例1に係るしゅう動部品のしゅう動面の平面図を示したもので、図1の固定側密封環5のしゅう動面に表面テクスチャリングが施された場合を例にして説明する。
 なお、回転側密封環3のしゅう動面に表面テクスチャリングが施される場合も同じである。
 図2(a)において、固定側密封環5のしゅう動面Sと相対しゅう動する相手側しゅう面Sの回転方向は反時計方向とする。
 なお、相手側しゅう面Sが時計方向に回転する場合には、固定側密封環5のしゅう動面Sの表面テクスチャリングの向きを逆にすればよい。
 固定側密封環5のしゅう動面Sには、第1流体側に位置して動圧発生溝11からなる動圧発生機構10を設け、動圧発生機構10より中央側に位置して第1負圧発生溝13からなる第1流体側負圧発生機構12を設けると共に、第1流体側負圧発生機構12より第2流体側に位置して第2負圧発生溝15からなる第2流体側負圧発生機構14を設ける。
 また、第1流体側負圧発生機構12と第2流体側負圧発生機構14との間には、動圧発生溝11、第1負圧発生溝13及び第2負圧発生溝15の溝深さよりも深い環状の第1円周溝16が設けられる。第1円周溝16は第1流体側及び第2流体側とランド部Rにより隔離されている。
 さらに、本例においては、動圧発生機構10と第1流体側負圧発生機構12との間に環状の第2円周溝17が設けられる。第2円周溝17は半径方向深溝18を介して第1流体側と連通され、第2流体側とランド部Rにより隔離されている。
 動圧発生機構10はレイリーステップ機構から形成され、動圧発生溝11はレイリーステップ機構のグルーブ部(窪みあるいは凹部)からなる。
 また、第1流体側負圧発生機構12は逆レイリーステップ機構から形成され、第1負圧発生溝13は逆レイリーステップ機構のグルーブ部からなる。
 さらに、第2流体側負圧発生機構14はスパイラル機構から形成され、第2負圧発生溝15はスパイラル機構のグルーブ部からなる。
 逆レイリーステップ機構12のグルーブ部13の下流側の端部は半径方向深溝18を介して第1流体側と連通されると共に第2流体側とはランド部Rにより隔離されている。
 また、スパイラル機構14のグルーブ部15は第2流体側と連通されると共に第1流体側とはランド部Rにより隔離されている。
 さらに、レイリーステップ機構10のグルーブ部11は、上流側の端部が半径方向深溝18を介して第1流体側と連通されると共に前記第2流体側とはランド部Rにより隔離されている。
 なお、ランド部Rは、しゅう動面Sの平滑部を意味する。
 動圧発生機構10(レイリーステップ機構10)は、動圧(正圧)を発生することによりしゅう動面間に第1流体を進入させて流体膜を増加させ、潤滑性能を向上させるものである。
 また、第1流体側負圧発生機構12(逆レイリーステップ機構12)は、負圧を発生することにより、しゅう動面に存在する第1流体を吸込み、第1流体側に吐出するものであり、しゅう動面に進入した第1流体が外周側の第2流体側に進入することを防止するものである。
 また、第2流体側負圧発生機構14(スパイラル機構14)は、負圧を発生することにより、しゅう動面に存在する第2流体を吸込み、第2流体側に吐出するものであり、しゅう動面に進入した第2流体が内周側の第1流体側に進入することを防止するものである。
 さらに、第1円周溝16は、第1流体側負圧発生機構12(逆レイリーステップ機構12)と第2流体側負圧発生機構14(スパイラル機構14)との干渉を防止し、それぞれの吸込み効果及び吐出し効果を高めるものである。
 さらに、第2円周溝17は、動圧発生機構10(レイリーステップ機構10)と第1流体側負圧発生機構12(逆レイリーステップ機構12)との干渉を防止し、それぞれの吸込み効果及び吐出し効果を高めるものである。
 図3に明示されるように、スパイラル機構14のグルーブ部15は、上流側から下流側に向けて広がりを持つように配設され、下流側の端部は第2流体側に連通されている。
 なお、本明細書において、個々のグルーブ部15自体の平面形状は図3に示されるような曲線状である場合の他、直線状でもよく、直線状の場合においても上流側から下流側に向けて広がりを持つように配設されればよい。
 また、グルーブ部15の上流側の端部は、図2(a)及び図3に示すように、第1円周溝16に連通されてもよく、図2(b)に示すように、第1円周溝16からランド部により隔離されてもよい。
 さらに、図2(c)に示すように、第1円周溝16及び第2円周溝17が設けられない場合においても本発明の目的は達成可能である。
 グルーブ部11、13、及び16、並びに、第1円周溝16、第2円周溝17及び半径方向深溝18の深さ及び幅については、しゅう動部品3、5の径、しゅう動面幅及び相対移動速度、並びに、密封及び潤滑の条件等に応じて適宜決定される性質のものである。
 一例として、第1円周溝16、第2円周溝17及び半径方向深溝18の深さは、グルーブ部11、13、及び16の深さの十倍以上である。
 次に、図4を参照しながら、固定側密封環5のしゅう動面の断面形状について説明する。
 図4において、動圧発生機構10(レイリーステップ機構10)の動圧発生溝11(グルーブ部11)、第1流体側負圧発生機構12(逆レイリーステップ機構12)の第1負圧発生溝13(グルーブ部13)及び第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)は、相手側のしゅう動面Sとしゅう動するしゅう動面S上に形成される。
 第1負圧発生溝13(グルーブ部13)と第2負圧発生溝15(グルーブ部15)との間には第1円周溝16が設けられ、動圧発生溝11(グルーブ部11)と第1負圧発生溝13(グルーブ部13)との間には第2円周溝17が設けられている。
 次に、図5を参照しながら、レイリーステップ機構などからなる動圧(正圧)発生機構及び逆レイリーステップ機構などからなる負圧発生機構を説明する。
 図5(a)において、相対するしゅう動部品である回転側密封環3、及び、固定側密封環5が矢印で示すように相対しゅう動する。固定側密封環5のしゅう動面には、相対的移動方向と垂直かつ上流側に面して狭まり隙間(段差)を構成するレイリーステップ11aが形成され、該レイリーステップ11aの上流側には動圧(正圧)発生溝であるグルーブ部11が形成されている。相対する回転側密封環3及び固定側密封環5のしゅう動面Sは平坦である。
 回転側密封環3及び固定側密封環5が矢印で示す方向に相対移動すると、回転側密封環3及び固定側密封環5のしゅう動面S間に介在する流体が、その粘性によって、回転側密封環3または固定側密封環5の移動方向に追随移動しようとするため、その際、レイリーステップ11aの存在によって破線で示すような動圧(正圧)を発生する。
 なお、Rはランド部を示す。
 図5(b)においても、相対するしゅう動部品である回転側密封環3、及び、固定側密封環5が矢印で示すように相対しゅう動するが、回転側密封環3及び固定側密封環5のしゅう動面には、相対的移動方向と垂直かつ下流側に面して拡がり隙間(段差)を構成する逆レイリーステップ13aが形成され、該逆レイリーステップ13aの下流側には負圧発生溝であるグルーブ部13が形成されている。相対する回転側密封環3及び固定側密封環5のしゅう動面は平坦である。
 回転側密封環3及び固定側密封環5が矢印で示す方向に相対移動すると、回転側密封環3及び固定側密封環5のしゅう動面S間に介在する流体が、その粘性によって、回転側密封環3または固定側密封環5の移動方向に追随移動しようとするため、その際、逆レイリーステップ13abの存在によって破線で示すような負圧を発生する。
  今、回転軸1が駆動され、回転側密封環3が回転されると、回転側密封環3と固定側密封環5とのしゅう動面Sが相対しゅう動され、動圧発生機構10により動圧(正圧)が発生されてしゅう動面S同士がわずかに離間され、第1流体側から第1流体が、また、第2流体側から第2流体が徐々にしゅう動面Sに導入されて流体潤滑作用によりしゅう動面Sが非接触状態に保持される一方、第1流体側負圧発生機構12(逆レイリーステップ機構12)により第1流体側から進入した第1流体が吸込まれ、第1流体側に吐出される。また、同時に、第2流体側負圧発生機構14(スパイラル機構14)により第2流体側から進入した第2流体が吸込まれ、第2流体側に吐出される。
 このため、しゅう動面Sの潤滑と第1流体及び第2流体の密封を両立させつつ、両側の異なる種類の第1流体と第2流体との混合を防止することができる。
 以上説明した実施例1の構成によれば、以下のような優れた効果を奏する。
(1)一対のしゅう動部品のしゅう動面の両側には異なる種類の第1流体及び第2流体が存在するものにおいて、少なくとも一方のしゅう動部品のしゅう動面には、第1負圧発生溝13(グルーブ部13)からなる第1流体側負圧発生機構12(逆レイリーステップ機構12)を設けると共に、第1流体側負圧発生機構12(逆レイリーステップ機構12)より第2流体側に位置して第2負圧発生溝15(グルーブ部15)からなる第2流体側負圧発生機構14(スパイラル機構14)を設け、また、第1流体側負圧発生機構12(逆レイリーステップ機構12)及び第2流体側負圧発生機構14(スパイラル機構14)より第1流体側に動圧発生溝11(グルーブ部11)からなる動圧発生機構10(レイリーステップ機構10)を設け、第1流体側負圧発生機構12(逆レイリーステップ機構12)の第1負圧発生溝13(グルーブ部13)は第1流体側と連通されると共に第2流体側とはランド部Rにより隔離され、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)は第2流体側と連通されると共に第1流体側とはランド部Rにより隔離され、また、動圧発生機構10(レイリーステップ機構10)の動圧発生溝11(グルーブ部11)は、第1流体側と連通されると共に第2流体側とはランド部Rにより隔離されることにより、しゅう動面Sの潤滑と第1流体及び第2流体の密封を両立させつつ、両側の異なる第1流体と第2流体との混合を防止することができる。
(2)第1流体側負圧発生機構12(逆レイリーステップ機構12)と第2流体側負圧発生機構14(スパイラル機構14)との間には、動圧発生溝11(グルーブ部11)、第1負圧発生溝13(グルーブ部13)及び第2負圧発生溝15(グルーブ部15)の溝深さよりも深い第1円周溝16を設け、第1円周溝16は第1流体側及び第2流体側とランド部Rにより隔離されることにより、第1流体側負圧発生機構12(逆レイリーステップ機構12)と第2流体側負圧発生機構14(スパイラル機構14)との干渉を防止し、それぞれの吸込み効果及び吐出し効果を高めることができる。
(3)動圧発生機構10(レイリーステップ機構10)と第1流体側負圧発生機構12(逆レイリーステップ機構12)との間に環状の第2円周溝17を設け、第2円周溝17は半径方向深溝18を介して第1流体側と連通され、第2流体側とランド部Rにより隔離されていることにより、動圧発生機構10(レイリーステップ機構10)と第1流体側負圧発生機構12(逆レイリーステップ機構12)との干渉を防止し、それぞれの吸込み効果及び吐出し効果を高めることができる。
 図6を参照して、本発明の実施例2に係るしゅう動部品について説明する。
 実施例2は、第1流体側負圧発生機構がスパイラル機構から構成される点で実施例1と相違するが、その他の基本構成は実施例1と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図6において、第1流体側負圧発生機構を構成するスパイラル機構20のグルーブ部21は、上流側から下流側に向かって中心方向に向けて縮小された曲線状(スパイラル状)の形状をしている。このため、相手側しゅう動面とのしゅう動により、グルーブ部21では負圧が発生され、グルーブ部21内に吸込まれた流体は、第1流体側に向けて付勢される。
 図6(a)では、グルーブ部21の上流側の端部は第1円周溝16からランド部により隔離され、下流側の端部は第2円周溝17に連通されている。
 このため、グルーブ部21内に吸込まれた流体は確実に第1流体側に吐出される。
 また、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部は第1円周溝16に連通されている。 
 図6(b)では、グルーブ部21の上流側の端部は第1円周溝16からランド部により隔離され、下流側の端部は第2円周溝17に連通され、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部は第1円周溝16からランド部により隔離されている。
 図6(c)では、グルーブ部21の上流側の端部は第1円周溝16からランド部により隔離され、下流側の端部は第2円周溝17からランド部により隔離され、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部は第1円周溝16からランド部により隔離されている。
 なお、図6(c)の変形例として、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部は第1円周溝16に連通されてもよい。
 図6(d)では、グルーブ部21の上流側の端部は第1円周溝16に連通され、下流側の端部は第2円周溝17からランド部により隔離され、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部は第1円周溝16に連通されている。
 図6(e)では、グルーブ部21の上流側の端部は第1円周溝16に連通され、下流側の端部は第2円周溝17からランド部により隔離され、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部は第1円周溝16からランド部により隔離されている。
 図6(f)では、第1円周溝16及び第2円周溝17は省かれており、グルーブ部21の上流側の端部及び下流側の端部はランド部Rに囲まれている。また、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部もランド部Rに囲まれている。
 図7を参照して、本発明の実施例3に係るしゅう動部品について説明する。
 実施例3は、動圧発生機構がスパイラル機構から構成される点で実施例2と相違するが、その他の基本構成は実施例2と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図7において、動圧発生機構を構成するスパイラル機構22のグルーブ部23は、上流側から下流側に向かって第2流体側に向けて拡大された曲線状(スパイラル状)の形状をしている。このため、相手側しゅう動面とのしゅう動により、グルーブ部23では動圧(正圧)が発生され、しゅう動面間に第1流体を進入させて流体膜を増加させ、潤滑性能を向上させることができる。
 図7(a)では、グルーブ部23の上流側の端部は第1流体側に連通され、下流側の端部は第2円周溝17からランド部により隔離されている。また、複数のグルーブ部23のうちのいくつかは第2円周溝17と同じ深さの深溝に形成されている。
  また、グルーブ部21の上流側の端部は第1円周溝16からランド部により隔離され、下流側の端部は第2円周溝17に連通されている。
 また、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)の上流側の端部は第1円周溝16に連通されている。
 図7(b)では、グルーブ部23及びグルーブ部21については図7(a)と同じであるが、グルーブ部15の上流側の端部は第1円周溝16からランド部により隔離されている。
 図7(c)では、グルーブ部23及びグルーブ部15については図7(a)と同じであるが、グルーブ部21の上流側の端部は第1円周溝16からランド部により隔離され、下流側の端部は第2円周溝17からランド部により隔離されている。
 なお、図7(c)において、グルーブ部15の上流側の端部が第1円周溝16からランド部により隔離されていてもよい。
 図7(d)では、グルーブ部23及びグルーブ部15については図7(a)と同じであるが、グルーブ部21の上流側の端部は第1円周溝16に連通され、下流側の端部は第2円周溝17からランド部により隔離されている。
 図7(e)では、グルーブ部23及びグルーブ部15については図7(b)と同じであるが、グルーブ部21の上流側の端部は第1円周溝16に連通され、下流側の端部は第2円周溝17からランド部により隔離されている。
 図7(f)では、第1円周溝16及び第2円周溝17は省かれており、グルーブ部21の上流側の端部及び下流側の端部はランド部Rに囲まれ、また、グルーブ部15の上流側の端部もランド部Rに囲まれている。
 図8を参照して、本発明の実施例4に係るしゅう動部品について説明する。
 実施例4は、第2流体側負圧発生機構が逆レイリーステップ機構から形成され、また、第2流体側負圧発生機構の第2流体側に動圧発生機構が設けられる点で実施例1と相違するが、その他の基本構成は実施例1と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図8(a)において、第2流体側負圧発生機構は逆レイリーステップ機構24から構成され、逆レイリーステップ機構24より第2流体側にはレイリーステップ機構26から構成される動圧発生機構が設けられる。
 逆レイリーステップ機構24のグルーブ部25とレイリーステップ機構26のグルーブ部27との間には、環状の第3円周溝28が設けられ、該環状の第3円周溝28は半径方向深溝29を介して第2流体側に連通されている。また、レイリーステップ機構26のグルーブ部27の上流側の端部は半径方向深溝29を介して第2流体側に連通されている。 第3円周溝28の溝深さは、第1円周溝16及び第2円周溝17の溝深さと同じである。
 本例においては、第2流体側負圧発生機構の第2流体側、すなわち、第2流体側に最も近い位置に動圧発生機構を構成するレイリーステップ機構26が設けられているため、第1流体側に設けられた動圧発生機構を構成するレイリーステップ機構10の働きと併せて、しゅう動面全体に液膜を形成することができ、しゅう動面の潤滑をより確実にすることができる。
 図8(b)に示すように、第1円周溝16、第2円周溝17及び第3円周溝28が設けられない場合においても本発明の目的を達成することは可能である。
 図9を参照して、本発明の実施例5に係るしゅう動部品について説明する。
 実施例5は、第1流体側負圧発生機構、第2流体側負圧発生機構、第1流体側の動圧発生機構及び第2流体側の動圧発生機構がスパイラル機構から構成される点で実施例4と相違するが、その他の基本構成は前の実施例1~4と同じであり、同じ部材には同じ符号を付し、重複する説明は省略する。
 図9(a)において、第1流体側負圧発生機構はスパイラル機構20から構成され、第2流体側負圧発生機構はスパイラル機構14から構成されている。
 第1流体側負圧発生機構のスパイラル機構20より第1流体側には、スパイラル機構22からなる動圧発生機構が設けられ、第2流体側負圧発生機構のスパイラル機構14より第2流体側には、スパイラル機構30からなる動圧発生機構が設けられている。
 第1流体側負圧発生機構のスパイラル機構20と第2流体側負圧発生機構のスパイラル機構14との間には第1円周溝16が、第1流体側負圧発生機構のスパイラル機構20と第1流体側の動圧発生機構のスパイラル機構22との間には第2円周溝17が、また、第2流体側負圧発生機構のスパイラル機構14と第2流体側の動圧発生機構のスパイラル機構30との間には第3円周溝28が設けられている。
 図9(a)の場合、スパイラル機構20のグルーブ部21の上流側の端部は第1円周溝16からランド部により隔離され、下流側の端部は第2円周溝17に連通されている。また、スパイラル機構14のグルーブ部15の上流側の端部は第1円周溝16からランド部により隔離され、下流側の端部は第3円周溝28に連通されている。さらに、第2円周溝17は円弧状溝17aを介して第1流体側に連通され、第3円周溝28は円弧状溝28aを介して第2流体側に連通されている。
 図9(b)では、スパイラル機構20のグルーブ部21の上流側の端部は第1円周溝16に連通され、下流側の端部は第2円周溝17からランド部により隔離されている点で、図9(a)と異なるが、その他の点は図9(a)と同じである。
 図9(c)では、スパイラル機構14のグルーブ部15の上流側の端部は第1円周溝16に連通され、下流側の端部は第3円周溝28からランド部により隔離されている点で、図9(a)と異なるが、その他の点は図9(a)と同じである。
 図9(d)では、スパイラル機構20のグルーブ部21及びスパイラル機構14のグルーブ部15の上流側の端部及び下流側の端部がいずれも深溝に連通されずにランド部Rに囲まれている点で、図9(a)と異なるが、その他の点は図9(a)と同じである。
 図9(e)では、スパイラル機構14のグルーブ部15の上流側の端部及び下流側の端部のみが深溝に連通されることなくランド部Rに囲まれている点で、図9(a)と異なるが、その他の点は図9(a)と同じである。
 図9(f)に示すように、第1円周溝16、第2円周溝17及び第3円周溝28が設けられない場合においても本発明の目的を達成することは可能である。
 図10を参照して、本発明の実施例6に係るしゅう動部品について説明する。
 実施例6は、回転側密封環3が両方向に回転する場合においても、表面テクスチャの施された密封環を交換することなく使用可能な両回転仕様に適したしゅう動部品に関する。
 図10(a)において、固定側密封環5のしゅう動面Sには、第1流体側に位置して動圧発生溝33からなる動圧発生機構32を設け、動圧発生機構32より中央側に位置して第1負圧発生溝36からなる第1流体側負圧発生機構35を設けると共に、第1流体側負圧発生機構35より第2流体側に位置して第2負圧発生溝38からなる第2流体側負圧発生機構37を設ける。
 また、第1流体側負圧発生機構35と第2流体側負圧発生機構37との間には、動圧発生溝33、第1負圧発生溝36及び第2負圧発生溝38の溝深さよりも深い環状の第1円周溝16が設けられる。第1円周溝16は第1流体側及び第2流体側とランド部Rにより隔離されている。
 さらに、本例においては、動圧発生機構32と第1流体側負圧発生機構35との間に環状の第2円周溝17が設けられる。第2円周溝17は半径方向深溝18を介して第1流体側と連通され、第2流体側とはランド部Rにより隔離されている。
 動圧発生機構32はレイリーステップ機構から形成され、動圧発生溝36はレイリーステップ機構のグルーブ部(窪みあるいは凹部)からなり、半径方向深溝18を挟んで対称に形成されている。
 また、第1流体側負圧発生機構35は逆レイリーステップ機構から形成され、第1負圧発生溝36は逆レイリーステップ機構のグルーブ部からなり、回転中心を通る半径線O-Oに対して対称に形成されている。
 さらに、第2流体側負圧発生機構37は逆レイリーステップ機構から形成され、第2負圧発生溝37は逆レイリーステップ機構のグルーブ部からなり、回転中心を通る半径線O-Oに対して対称に形成されている。
 逆レイリーステップ機構35のグルーブ部36の上流側の端部36a及び下流側の端部36bは、第1流体側に位置して第2円周溝17に近接し、中間部36cは第1流体側に位置して第1円周溝16に近接している。
 また、逆レイリーステップ機構37のグルーブ部38の上流側の端部38a及び下流側の端部38bは、第2流体側に位置して第2流体側に近接し、中間部38cは第1流体側に位置して第1円周溝16に近接している。
 図10(b)に示すように、図10(a)において、第1円周溝16及び第2円周溝17が設けられない場合においても本発明の目的を達成することは可能である。
 図10(c)では、第2流体側負圧発生機構37の第2流体側にレイリーステップ機構から構成される動圧発生機構39が設けられると共に、第2流体側負圧発生機構37と動圧発生機構39との間に第3円周溝28が設けられる点で、図10(a)と相違するが、その他の構成は図10(a)と同じである。 
 図10(d)に示すように、図10(c)において、第1円周溝16、第2円周溝17及び第3円周溝28が設けられない場合においても本発明の目的を達成することは可能である。
 図11を参照して、本発明の実施例7に係るしゅう動部品について説明する。
 実施例7は、第2流体側負圧発生機構の設けられるしゅう動面が、第1流体側負圧発生機構及び動圧発生機構の設けられるしゅう動面に対して相手側しゅう動面から軸方向に離れた低位置に設定される点で、前の実施例と相違するが、その他の基本的構成は前の実施例を同じであり、重複する説明は省略する。
 図11において、動圧発生機構10(レイリーステップ機構10)の動圧発生溝11(グルーブ部11)及び第1流体側負圧発生機構12(逆レイリーステップ機構12)の第1負圧発生溝13(グルーブ部13)は、相手側のしゅう動面としゅう動するしゅう動面S上に形成される。
 一方、第2流体側負圧発生機構14(スパイラル機構14)の第2負圧発生溝15(グルーブ部15)は、しゅう動面Sに対して相手側しゅう動面から軸方向に離れた低位置に設定される。
 このため、設計に自由度をもたせることができ、同一平面上に設けられた場合とほぼ同様の吐出し機能を奏することができる。
 第1負圧発生溝13(グルーブ部13)と第2負圧発生溝15(グルーブ部15)との間にしゅう動面S上には第1円周溝16が設けられ、動圧発生溝11(グルーブ部11)と第1負圧発生溝13(グルーブ部13)との間には第2円周溝17が設けられている。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、しゅう動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる例について説明したが、円筒状しゅう動面の軸方向一方側に潤滑油を密封しながら回転軸としゅう動する軸受のしゅう動部品として利用することも可能である。
 また、例えば、前記実施例では、しゅう動部品の内周側を第1流体(たとえば、水)側、外周側を第2流体(たとえば、油)側として説明したが、本発明はこれに限定されることなく、これらの位置関係が逆の場合でも適用可能である。
 また、第1流体及び第2流体は液体に限らず、気体あるいはミスト状の気体でもよい。
 また、例えば、第1負圧発生機構及び第2負圧発生機構のグルーブ部の上流側の端部及び下流側の端部と深溝との連通関係については、前記実施例で説明した例に限らず、種々の変更が可能である。
  1          回転軸
  2          スリーブ
  3          回転側密封環
  4          ハウジング
  5          固定側密封環
  6          コイルドウェーブスプリング
  7          ベローズ
  10         動圧発生機構
  11         動圧発生溝
  12         第1流体側負圧発生機構
  13         第1負圧発生溝
  14         第2流体側負圧発生機構
  15         第2負圧発生溝
  16         第1円周溝
  17         第2円周溝
  18         半径方向深溝
  20         第1流体側負圧発生機構を構成するスパイラル機構
  21         グルーブ部
  22         動圧発生機構を構成するスパイラル
  23         グルーブ部
  24         第2流体側負圧発生機構を構成する逆レイリーステップ機構
  25         グルーブ部
  26         動圧発生機構を構成するレイリーステップ機構
  27         グルーブ部
  28         第3円周溝
  29         半径方向深溝
  30         動圧発生機構を構成するスパイラル機構
  31         グルーブ部
  32         動圧発生機構
  33         動圧発生溝
  35         第1流体側負圧発生機構
  36         第1負圧発生溝
  37         第2流体側負圧発生機構
  38         第2負圧発生溝
  39         動圧発生機構を構成するレイリーステップ機構
  40         グルーブ部
  S          しゅう動面
  R          ランド部
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (10)

  1.  互いに相対しゅう動する一対のしゅう動部品を備え、前記一対のしゅう動部品のしゅう動面の両側には異なる種類の第1流体及び第2流体が存在するものにおいて、少なくとも一方のしゅう動部品のしゅう動面には、第1負圧発生溝からなる第1流体側負圧発生機構を設けると共に、前記第1流体側負圧発生機構より前記第2流体側に位置して第2負圧発生溝からなる第2流体側負圧発生機構を設け、また、前記第1流体側負圧発生機構及び前記第2流体側負圧発生機構より前記第1流体側又は前記第2流体側の少なくとも一方に動圧発生溝からなる動圧発生機構を設け、前記第1負圧発生溝はランド部により前記第2流体側と隔離され、第2負圧発生溝はランド部により前記第1流体側と隔離されることを特徴とするしゅう動部品。
  2.  前記第1流体側負圧発生機構と前記第2流体側負圧発生機構との間には、円周溝を設け、前記円周溝は前記第1流体側及び第2流体側とランド部により隔離されることを特徴とする請求項1に記載のしゅう動部品。
  3.  前記円周溝の溝深さは、前記動圧発生溝、第1負圧発生溝及び第2負圧発生溝の溝深さよりも深く設定されることを特徴とする請求項2に記載のしゅう動部品。
  4.  前記第1流体側負圧発生機構は逆レイリーステップ機構から形成され、前記第2流体側負圧発生機構はスパイラル機構から形成され、また、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側に設けられてレイリーステップ機構から形成され、前記逆レイリーステップ機構のグルーブ部は前記第1流体側と連通されると共に第2流体側とはランド部により隔離され、前記スパイラル機構のグルーブ部は前記第2流体側と連通されると共に第1流体側とはランド部により隔離され、また、前記レイリーステップ機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離されることを特徴とする請求項1ないし請求項3のいずれか1項に記載のしゅう動部品。
  5.  前記第1流体側負圧発生機構は第1スパイラル機構から形成され、前記第2流体側負圧発生機構は第2スパイラル機構から形成され、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側に設けられてレイリーステップ機構から形成され、前記第1スパイラル機構のグルーブ部は前記第1流体側と連通又はランド部により隔離されると共に前記第2流体側とランド部により隔離され、前記第2スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通され、また、前記レイリーステップ機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離されることを特徴とする請求項1ないし請求項3のいずれか1項に記載のしゅう動部品。
  6.  前記第1流体側負圧発生機構は第1スパイラル機構から形成され、前記第2流体側負圧発生機構は第2スパイラル機構から形成され、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側に設けられて第3スパイラル機構から形成され、前記第1スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側ともランド部により隔離され、前記第2スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通され、また、前記第3スパイラル機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離されることを特徴とする請求項1ないし請求項3のいずれか1項に記載のしゅう動部品。
  7.  前記第1流体側負圧発生機構は第1逆レイリーステップ機構から形成され、前記第2流体側負圧発生機構は第2逆レイリーステップ機構から形成され、また、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側、及び、前記第2流体側負圧発生機構より前記第2流体側に設けられて、それぞれレイリーステップ機構から形成され、前記第1逆レイリーステップ機構のグルーブ部は前記第1流体側と連通されると共に第2流体側とはランド部により隔離され、前記第2逆レイリーステップ機構のグルーブ部は前記第2流体側と連通されると共に第1流体側とはランド部により隔離され、また、前記レイリーステップ機構のグルーブ部は、前記第1流体側又は第2流体側のいずれか一方と連通されると共に他方とはランド部により隔離されることを特徴とする請求項1ないし請求項3のいずれか1項に記載のしゅう動部品。
  8.  前記第1流体側負圧発生機構は第1スパイラル機構から形成され、前記第2流体側負圧発生機構は第2スパイラル機構から形成され、前記動圧発生機構は前記第1流体側負圧発生機構より前記第1流体側、及び、前記第2流体側負圧発生機構より前記第2流体側に設けられて、それぞれ第3及び第4スパイラル機構から形成され、前記第1スパイラル機構のグルーブ部は前記第1流体側と連通又はランド部により隔離されると共に前記第2流体側とランド部により隔離され、前記第2スパイラル機構のグルーブ部は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通又はランド部により隔離され、また、前記第3スパイラル機構のグルーブ部は、前記第1流体側と連通されると共に前記第2流体側とはランド部により隔離され、前記第4スパイラル機構は前記第1流体側とランド部により隔離されると共に前記第2流体側と連通されることを特徴とする請求項1ないし請求項3のいずれか1項に記載のしゅう動部品。
  9.  前記第1負圧発生溝、前記第2負圧発生溝及び前記動圧発生溝は、回転中心を通る半径線に対して対称に形成されることを特徴とする請求項1に記載のしゅう動部品。
  10.  前記第2流体側負圧発生機構の設けられるしゅう動面は、前記第1流体側負圧発生機構及び前記動圧発生機構の設けられるしゅう動面に対して相手側しゅう動面から軸方向に離れた低位置に設定されることを特徴とする請求項1ないし請求項9のいずれか1項に記載のしゅう動部品。
     
     
     
     
     
     
     
     
PCT/JP2017/040830 2016-11-16 2017-11-14 しゅう動部品 WO2018092742A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17871675.9A EP3543569B1 (en) 2016-11-16 2017-11-14 Sliding component
US16/349,209 US11143232B2 (en) 2016-11-16 2017-11-14 Sliding component
KR1020197013661A KR102426460B1 (ko) 2016-11-16 2017-11-14 슬라이딩 부품
JP2018551629A JP7043414B2 (ja) 2016-11-16 2017-11-14 しゅう動部品
CN201780069209.5A CN109923340B (zh) 2016-11-16 2017-11-14 滑动组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016223519 2016-11-16
JP2016-223519 2016-11-16

Publications (1)

Publication Number Publication Date
WO2018092742A1 true WO2018092742A1 (ja) 2018-05-24

Family

ID=62146337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040830 WO2018092742A1 (ja) 2016-11-16 2017-11-14 しゅう動部品

Country Status (6)

Country Link
US (1) US11143232B2 (ja)
EP (1) EP3543569B1 (ja)
JP (1) JP7043414B2 (ja)
KR (1) KR102426460B1 (ja)
CN (1) CN109923340B (ja)
WO (1) WO2018092742A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162351A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
WO2020162348A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
JPWO2019044671A1 (ja) * 2017-08-28 2020-10-01 イーグル工業株式会社 摺動部品
CN112088268A (zh) * 2018-05-17 2020-12-15 伊格尔工业股份有限公司 密封环
KR20210124430A (ko) * 2019-02-15 2021-10-14 이구루코교 가부시기가이샤 슬라이딩 부품
JPWO2020162350A1 (ja) * 2019-02-04 2021-12-09 イーグル工業株式会社 摺動部品
US11320052B2 (en) 2018-02-01 2022-05-03 Eagle Industry Co., Ltd. Sliding components
US11391376B2 (en) 2016-08-15 2022-07-19 Eagle Industry Co., Ltd. Sliding component
US11525512B2 (en) 2018-05-17 2022-12-13 Eagle Industry Co., Ltd. Seal ring
US11530749B2 (en) 2018-05-17 2022-12-20 Eagle Industry Co., Ltd. Seal ring
US11603934B2 (en) 2018-01-12 2023-03-14 Eagle Industry Co., Ltd. Sliding component
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
US11852241B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
US11852244B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component and method of manufacturing sliding member
WO2024004657A1 (ja) * 2022-06-30 2024-01-04 イーグル工業株式会社 摺動部品
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989249B2 (en) * 2016-11-14 2021-04-27 Eagle Industry Co., Ltd. Sliding component
KR102276081B1 (ko) * 2017-01-30 2021-07-13 이구루코교 가부시기가이샤 슬라이딩 부품
WO2019049847A1 (ja) * 2017-09-05 2019-03-14 イーグル工業株式会社 摺動部品
WO2019236524A1 (en) * 2018-06-08 2019-12-12 John Crane Inc. Mechanical seal with a seal face having channels
CN115244319A (zh) * 2020-04-07 2022-10-25 伊格尔工业股份有限公司 滑动部件
DE102020007800A1 (de) 2020-12-15 2022-06-15 Kaco Gmbh + Co. Kg Dichtring einer Gleitringdichtung sowie Gleitringdichtung mit einem Dichtring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469309B2 (ja) * 1982-06-25 1992-11-05 Maschf Augsburg Nuernberg Ag
JP4719414B2 (ja) * 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
WO2014148316A1 (ja) 2013-03-17 2014-09-25 イーグル工業株式会社 摺動部品
JP5693599B2 (ja) * 2010-10-06 2015-04-01 イーグル工業株式会社 摺動部品
WO2016167262A1 (ja) * 2015-04-15 2016-10-20 イーグル工業株式会社 摺動部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163770A (en) * 1981-04-01 1982-10-08 Eagle Ind Co Ltd Mechanical seal
US6655693B2 (en) * 2001-04-26 2003-12-02 John Crane Inc. Non-contacting gas compressor seal
JP4316956B2 (ja) * 2002-10-23 2009-08-19 イーグル工業株式会社 摺動部品
CN104334939B (zh) * 2012-08-04 2017-05-31 伊格尔工业股份有限公司 滑动部件
US10989249B2 (en) * 2016-11-14 2021-04-27 Eagle Industry Co., Ltd. Sliding component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469309B2 (ja) * 1982-06-25 1992-11-05 Maschf Augsburg Nuernberg Ag
JP4719414B2 (ja) * 2003-12-22 2011-07-06 イーグル工業株式会社 摺動部品
JP5693599B2 (ja) * 2010-10-06 2015-04-01 イーグル工業株式会社 摺動部品
WO2014148316A1 (ja) 2013-03-17 2014-09-25 イーグル工業株式会社 摺動部品
WO2016167262A1 (ja) * 2015-04-15 2016-10-20 イーグル工業株式会社 摺動部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543569A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391376B2 (en) 2016-08-15 2022-07-19 Eagle Industry Co., Ltd. Sliding component
JPWO2019044671A1 (ja) * 2017-08-28 2020-10-01 イーグル工業株式会社 摺動部品
JP7098260B2 (ja) 2017-08-28 2022-07-11 イーグル工業株式会社 摺動部品
US11603934B2 (en) 2018-01-12 2023-03-14 Eagle Industry Co., Ltd. Sliding component
US11619308B2 (en) 2018-02-01 2023-04-04 Eagle Industry Co., Ltd. Sliding components
US11320052B2 (en) 2018-02-01 2022-05-03 Eagle Industry Co., Ltd. Sliding components
US11644100B2 (en) 2018-05-17 2023-05-09 Eagle Industry Co., Ltd. Seal ring
CN112088268A (zh) * 2018-05-17 2020-12-15 伊格尔工业股份有限公司 密封环
US11530749B2 (en) 2018-05-17 2022-12-20 Eagle Industry Co., Ltd. Seal ring
US11525512B2 (en) 2018-05-17 2022-12-13 Eagle Industry Co., Ltd. Seal ring
JPWO2020162351A1 (ja) * 2019-02-04 2021-12-09 イーグル工業株式会社 摺動部品
JP7387239B2 (ja) 2019-02-04 2023-11-28 イーグル工業株式会社 摺動部品
WO2020162351A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
US11852244B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component and method of manufacturing sliding member
JPWO2020162350A1 (ja) * 2019-02-04 2021-12-09 イーグル工業株式会社 摺動部品
EP3922875A4 (en) * 2019-02-04 2022-11-09 Eagle Industry Co., Ltd. SLIDING COMPONENT
WO2020162348A1 (ja) * 2019-02-04 2020-08-13 イーグル工業株式会社 摺動部品
JP7313789B2 (ja) 2019-02-04 2023-07-25 イーグル工業株式会社 摺動部品
US11852241B2 (en) 2019-02-04 2023-12-26 Eagle Industry Co., Ltd. Sliding component
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
KR20210124430A (ko) * 2019-02-15 2021-10-14 이구루코교 가부시기가이샤 슬라이딩 부품
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components
JP7369151B2 (ja) 2019-02-15 2023-10-25 イーグル工業株式会社 摺動部品
JPWO2020166588A1 (ja) * 2019-02-15 2021-12-09 イーグル工業株式会社 摺動部品
KR102646386B1 (ko) * 2019-02-15 2024-03-12 이구루코교 가부시기가이샤 슬라이딩 부품
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component
WO2024004657A1 (ja) * 2022-06-30 2024-01-04 イーグル工業株式会社 摺動部品

Also Published As

Publication number Publication date
EP3543569B1 (en) 2021-06-30
US20190285115A1 (en) 2019-09-19
JPWO2018092742A1 (ja) 2019-10-17
CN109923340A (zh) 2019-06-21
EP3543569A1 (en) 2019-09-25
CN109923340B (zh) 2020-09-11
US11143232B2 (en) 2021-10-12
KR102426460B1 (ko) 2022-07-28
JP7043414B2 (ja) 2022-03-29
KR20190064639A (ko) 2019-06-10
EP3543569A4 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2018092742A1 (ja) しゅう動部品
JP6861730B2 (ja) しゅう動部品
JP6678169B2 (ja) 摺動部品
JP6776232B2 (ja) 摺動部品
US10648569B2 (en) Sliding component
JP6678170B2 (ja) 摺動部品
JP6910371B2 (ja) しゅう動部品
JP6204974B2 (ja) 摺動部品
JP6058018B2 (ja) 摺動部品
US10626995B2 (en) Sliding component
JP6345695B2 (ja) 摺動部品
JP7201690B2 (ja) 摺動部品
WO2015199171A1 (ja) 摺動部品
JP6456950B2 (ja) 摺動部品
WO2018088350A1 (ja) しゅう動部品
CN107735606B (zh) 滑动部件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551629

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197013661

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017871675

Country of ref document: EP

Effective date: 20190617