WO2018087794A1 - 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池 - Google Patents

高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池 Download PDF

Info

Publication number
WO2018087794A1
WO2018087794A1 PCT/JP2016/004875 JP2016004875W WO2018087794A1 WO 2018087794 A1 WO2018087794 A1 WO 2018087794A1 JP 2016004875 W JP2016004875 W JP 2016004875W WO 2018087794 A1 WO2018087794 A1 WO 2018087794A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
single crystal
crystal silicon
silicon substrate
substrate
Prior art date
Application number
PCT/JP2016/004875
Other languages
English (en)
French (fr)
Inventor
洋 橋上
渡部 武紀
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020197012864A priority Critical patent/KR102626492B1/ko
Priority to PCT/JP2016/004875 priority patent/WO2018087794A1/ja
Priority to CN201680090735.5A priority patent/CN110121788B/zh
Priority to JP2017519702A priority patent/JP6254748B1/ja
Priority to US15/755,968 priority patent/US10692736B2/en
Priority to EP16886814.9A priority patent/EP3346505A4/en
Priority to TW106108358A priority patent/TWI650877B/zh
Priority to TW108100193A priority patent/TWI701843B/zh
Publication of WO2018087794A1 publication Critical patent/WO2018087794A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a high photoelectric conversion efficiency solar cell and a high photoelectric conversion efficiency solar cell.
  • FIG. 2 schematically shows a double-sided light receiving solar cell which is one form of a conventional solar cell.
  • FIG. 3 schematically shows a single-sided light receiving solar cell which is another form of the conventional solar cell.
  • emitter layers 102 and 202 are formed on substrates 101 and 201, respectively.
  • the emitter layers 102 and 202 are formed by thermal diffusion of phosphorus or boron according to the conductivity type of the substrate.
  • the back surface electric field (BSF) layers 103 and 203 are formed by phosphorous diffusion if they are n-type substrates, and are formed by boron diffusion or alloying of silicon and aluminum if they are p-type substrates.
  • BSF back surface electric field
  • passivation layers 104 and 204 are respectively formed on the emitter layers 102 and 202, and the passivation layer 104 is also formed on the back surface field layer 103.
  • the solar cell 100 is provided with an electrode 105 in contact with the emitter layer 102 and an electrode 106 in contact with the BSF layer 103 on the main surface opposite to the main surface on which the emitter layer 102 is provided.
  • the solar cell 200 includes the electrode 205 in contact with the emitter layer 202 and the BSF layer 203 on the main surface opposite to the main surface with the emitter layer 202 (the main surface on which the back surface field layer 203 is formed).
  • a contact electrode 206 is provided.
  • the thermal diffusion of phosphorus is performed by a heat treatment at 800 ° C. to 950 ° C. using a gas phase diffusion source such as phosphorus oxychloride or a phosphoric acid based coating type diffusion source.
  • a gas phase diffusion source such as phosphorus oxychloride or a phosphoric acid based coating type diffusion source.
  • the thermal diffusion of boron is performed by a heat treatment at 950 ° C. to 1200 ° C. using a vapor phase diffusion source such as boron bromide or a boric acid based coating type diffusion source.
  • a thermal oxide film having a thickness of about 50 nm to 400 nm may be formed on the surface that prevents diffusion.
  • heat treatment is performed at 800 ° C. to 1100 ° C. in an oxygen or water vapor atmosphere.
  • single crystal silicon (CZ-Si) obtained by the Czochralski (CZ) method is generally used.
  • Patent Document 1 in order to suppress oxygen precipitation, a silicon substrate is heat-treated in an oxygen atmosphere of 1150 ° C. or higher, and then the substrate is rapidly cooled to 950 ° C. at 20 ° C./second to 5 ° C./second. The method is shown.
  • the heat treatment as in Patent Document 1 has a problem that it is difficult to apply to the manufacturing process of the solar cell.
  • a solar cell generally batch-processes a large number of substrates in order to increase productivity, there is a technical problem that rapid cooling cannot be performed due to the heat capacity.
  • the present invention has been made in view of the above-described problems, and in high-temperature heat treatment in a solar cell manufacturing process, by suppressing a decrease in minority carrier lifetime of the substrate, the photoelectric conversion efficiency is high and the substrate is within the plane. It aims at providing the manufacturing method of the solar cell which can manufacture the solar cell with a uniform characteristic stably. Another object of the present invention is to provide a solar cell having high photoelectric conversion efficiency and uniform characteristics in the substrate plane.
  • the present invention provides a method for manufacturing a solar cell using a single crystal silicon substrate to manufacture a single crystal silicon solar cell, Including a high-temperature heat treatment step of heat-treating the single crystal silicon substrate at 800 ° C. or more and 1200 ° C. or less,
  • the high temperature heat treatment step A transfer step of loading the single crystal silicon substrate into a heat treatment apparatus;
  • the time for the temperature of the single crystal silicon substrate to be 400 ° C. or higher and 650 ° C. or lower through the transporting step and the heating step is set to 5 minutes or less. .
  • the time for the temperature of the single crystal silicon substrate to be 400 ° C. or higher and 650 ° C. or lower through the transport step and the heating step is within 5 minutes, the precursor of oxygen precipitation is formed at 400 ° C. or higher and 650 ° C. or lower. It is possible to eliminate various defects by minimizing the thermal history in the temperature range, and the growth of defects is suppressed in the subsequent heat retaining step and cooling step under various conditions. Thereby, the minority carrier lifetime of the single crystal silicon substrate can be maintained high, and a solar cell with high photoelectric conversion efficiency and uniform characteristics within the substrate surface can be stably manufactured.
  • the time for the temperature of the single crystal silicon substrate to be 400 ° C. or higher and 650 ° C. or lower is within 5 minutes. It is preferable to do.
  • the time for the temperature of the single crystal silicon substrate to be 400 ° C. or more and 650 ° C. or less is set to 5 minutes or less, so that the photoelectric conversion efficiency is higher and the substrate surface is more uniform.
  • a solar cell can be manufactured.
  • the inert gas is preferably nitrogen or argon.
  • the high temperature heat treatment step is performed in an atmosphere containing oxygen or water.
  • a silicon oxide film that can be used as, for example, a diffusion barrier film can be reliably and easily formed.
  • the single crystal silicon substrate is placed in a hot zone of the heat treatment apparatus within 10 minutes.
  • the time for the temperature of the single crystal silicon substrate to be 400 ° C. or higher and 650 ° C. or lower can be more reliably set within 5 minutes. .
  • the single crystal silicon substrate is preferably a CZ single crystal silicon substrate.
  • the CZ single crystal silicon substrate since the minority carrier lifetime is likely to be lowered as described above, the effect of the present invention is particularly great. Further, since the CZ single crystal silicon substrate is inexpensive, an inexpensive solar cell can be manufactured.
  • the single crystal silicon substrate used for manufacturing the solar cell can have an initial interstitial oxygen concentration of 12 ppma (JEIDA) or more.
  • the initial interstitial oxygen concentration is a single crystal silicon substrate having 12 ppma (JEIDA) or more
  • JEIDA a single crystal silicon substrate having 12 ppma
  • the amount of precipitated oxygen contained in the single crystal silicon substrate after manufacturing the solar cell is 2 ppma (JEIDA) or less.
  • the amount of precipitated oxygen is 2 ppma (JEIDA) or less, it is possible to more reliably suppress a decrease in the minority carrier lifetime of the single crystal silicon substrate.
  • the present invention is a solar cell manufactured by the above solar cell manufacturing method, There is provided a solar cell characterized in that there is no swirl in electroluminescence or photoluminescence of the single crystal silicon substrate in the single crystal silicon solar cell.
  • Such a solar cell can be a solar cell having high photoelectric conversion efficiency and uniform characteristics within the substrate surface.
  • the present invention is a single crystal silicon solar cell comprising a single crystal silicon substrate,
  • the amount of precipitated oxygen contained in the single crystal silicon substrate is 2 ppma (JEIDA) or less
  • JEIDA ppma
  • a solar cell having an oxygen deposition amount of 2 ppma (JEIDA) or less and having no swirl can be a solar cell having high photoelectric conversion efficiency and uniform characteristics in the substrate plane.
  • the residual interstitial oxygen concentration contained in the single crystal silicon substrate is preferably 10 ppma (JEIDA) or more.
  • the solar cell when the residual interstitial oxygen concentration in the single crystal silicon substrate of the solar cell is 10 ppma (JEIDA) or more, the solar cell has less oxygen precipitation, higher photoelectric conversion efficiency, and more uniform in the substrate plane. It can be.
  • the single crystal silicon substrate is preferably a CZ single crystal silicon substrate.
  • the single crystal silicon substrate is a CZ single crystal silicon substrate
  • the minority carrier lifetime is likely to be lowered, so that a solar cell having a particularly large effect of the present invention can be obtained.
  • the CZ single crystal silicon substrate is inexpensive, an inexpensive solar cell can be obtained.
  • the present invention provides a solar cell module characterized by being formed by electrically connecting the above solar cells.
  • the solar cell of the present invention can be electrically connected to form a solar cell module.
  • the present invention also provides a solar cell power generation system characterized by comprising a plurality of the above solar cell modules electrically connected.
  • a plurality of solar cell modules in which the solar cells of the present invention are electrically connected can be electrically connected to form a solar cell power generation system.
  • a solar cell having a high photoelectric conversion efficiency can be stably manufactured while maintaining a high carrier life even in a single crystal silicon substrate having a high interstitial oxygen concentration and other light element impurity concentrations. can do. Moreover, if it is a solar cell of this invention, it can be set as a solar cell with a high photoelectric conversion efficiency and a uniform characteristic in a substrate surface.
  • the generation of low-characteristic regions distributed concentrically from the vicinity of the center of the substrate has been a problem.
  • the inventors of the present invention have found that in heat treatment at 800 ° C. or higher and 1200 ° C. or lower on a single crystal silicon substrate, the temperature rise condition greatly affects the defect formation that causes the above problem.
  • the present invention was completed by intensively studying measures for improving the characteristics.
  • the solar cell manufacturing method of the present invention is a solar cell manufacturing method for manufacturing a single crystal silicon solar cell using a single crystal silicon substrate, and the single crystal silicon substrate is heat treated at 800 ° C. or higher and 1200 ° C. or lower.
  • the high-temperature heat treatment step includes a transfer step of loading the single crystal silicon substrate into the heat treatment apparatus, a heating step of heating the single crystal silicon substrate, and a predetermined temperature of 800 ° C. or higher and 1200 ° C. or lower of the single crystal silicon substrate.
  • a temperature maintaining step and a cooling step for cooling the single crystal silicon substrate is 5 minutes. It is the manufacturing method of the solar cell made into within.
  • the time for the temperature of the single crystal silicon substrate to be 400 ° C. or higher and 650 ° C. or lower through the transport step and the heating step is within 5 minutes, the precursor of oxygen precipitation is formed at 400 ° C. or higher and 650 ° C. or lower. It is possible to eliminate various defects by minimizing the thermal history in the temperature range, and the growth of defects is suppressed in the subsequent heat retaining step and cooling step under various conditions. Thereby, the minority carrier lifetime of the single crystal silicon substrate can be maintained high, and a solar cell with high photoelectric conversion efficiency and uniform characteristics within the substrate surface can be stably manufactured.
  • the single crystal silicon substrate (101 in FIG. 2 and 201 in FIG. 3) used in the present invention can be a CZ single crystal silicon substrate manufactured by a general CZ method.
  • p-type silicon obtained by doping single crystal silicon with a group III element such as B or Ga, or n-type silicon doped with a group V element such as phosphorus or antimony can be used as the single crystal silicon substrate.
  • group III element such as B or Ga
  • n-type silicon doped with a group V element such as phosphorus or antimony
  • There is no particular limitation on the resistivity of the substrate and a general one of about 0.1 to 10 ⁇ ⁇ cm may be used.
  • CZ silicon usually contains an initial interstitial oxygen concentration of 10 to 20 ppma (JEIDA), but any concentration can be used in the present invention without any problem.
  • Oxygen precipitation is easier to form as the initial interstitial oxygen concentration is higher, but it is known that when the concentration of impurities such as carbon and nitrogen is high, these impurities become precipitation nuclei and are formed even at about 12 ppma. Yes. However, in the present invention, since the growth of the precipitation nuclei itself is avoided, the substrate having a high impurity concentration as described above can be used without any particular problem.
  • a texture for suppressing reflection of incident light may be formed on the substrate surface.
  • the texture is 10 minutes to 30 minutes in an alkaline solution (concentration 1 to 10%, temperature 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate, tetramethylammonium hydroxide. It is easily produced by immersing the substrate for about a minute. Since the above alkali metal or the like may adhere to the surface of the substrate after texture formation, it is preferable to subsequently wash in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, etc., or a mixture thereof. .
  • the main high-temperature heat treatment steps in the manufacturing process of solar cells are phosphorus diffusion and boron diffusion, and in some cases, thermal oxidation, and rarely include the formation of epitaxial layers of high-concentration silicon to which phosphorus or boron is added at a high concentration. .
  • a horizontal or vertical quartz tube electric furnace is often used to process a large number of substrates in one batch.
  • about 100 to 200 substrates are loaded on a quartz child (small) boat holding a substrate, and 4 to 8 substrate loaded small boats are loaded on the same quartz large boat.
  • the furnace is put into a furnace hot zone maintained at a predetermined temperature.
  • FIG. 1 conceptually shows the temperature profile of the high-temperature heat treatment process.
  • the time t emb During which the temperature of the substrate is not lower than 400 ° C. and not higher than 650 ° C. from the transfer step to the heating step . For 5 minutes or less, more preferably 3 minutes or less, and then heating is continued until T1 at which high-temperature heat treatment is performed.
  • defects such as oxygen precipitation nuclei formed during crystal growth can be eliminated, and subsequent formation of crystal defects such as oxygen precipitation nuclei can be avoided.
  • the substrate is transferred to the hot zone of the heat treatment apparatus depending on the number of input substrates and the characteristics of the furnace in the transfer step. It is preferable to arrange within 10 minutes, more preferably within 5 minutes. If placement is performed within 10 minutes, t emb. Within 5 minutes, and formation of an oxygen precipitation precursor in the substrate can be suppressed.
  • the temperature of the furnace decreases according to the heat capacity of the substrate and the boat.
  • the step in which the substrate temperature is heated to the set temperature (T1) after the end of the conveyance is the heating step.
  • the substrate temperature is quickly increased, and t emb.
  • the output of the heater may be increased as necessary.
  • the temperature inside the furnace may be set slightly higher than T1 in anticipation of the temperature decrease amount, and control may be performed at T1 when the end of the heating step approaches.
  • T1 at this time is generally preferably 950 ° C. to 1200 ° C.
  • general boron bromide may be used.
  • the substrate temperature is then kept constant at the set temperature (start of a heat retention step).
  • boron bromide is bubbled with an inert gas such as nitrogen or argon, and another inert gas of another system is mixed as a carrier gas to be introduced into the furnace. At this time, a small amount of oxygen may be mixed in order to promote the formation of a boron glass layer on the substrate.
  • heat treatment can be further performed for about 10 to 60 minutes.
  • the high-temperature heat treatment process described above can be performed in an atmosphere containing an inert gas.
  • impurity diffusion into the substrate can be reliably and easily performed.
  • the inert gas is nitrogen or argon.
  • nitrogen or argon as the inert gas, impurity diffusion into the substrate can be performed more reliably and easily.
  • the temperature condition in the heat retaining step is not particularly limited.
  • the substrate may be processed at a constant T1 as shown by the solid line in FIG. 1A, or at a higher temperature T2 from a certain point in time as shown by the broken line in FIG. Processing may be performed.
  • the cooling step After completion of boron diffusion, proceed to the cooling step and lower the substrate to a predetermined temperature. There is no restriction on the cooling rate, but if the substrate is cooled from the above temperature range to room temperature all at once, the substrate may be cracked by thermal shock, so the substrate is preferably cooled from 700 ° C to 500 ° C and then taken out of the furnace. It is desirable to carry out (unloading step).
  • boron diffusion using boron bromide has been described as an example.
  • a mixture of a boron compound and a binder may be applied to the substrate in advance, and then the same heat treatment may be performed.
  • the same good results can be obtained even if boron is diffused by heat treatment from boron glass by chemical vapor deposition using borohydride, silicon hydride, oxygen and the like as raw materials.
  • the same results as in the case of thermal diffusion can be obtained by applying the same temperature conditions as those of the embodiment by thermal diffusion described above in the dopant activation heat treatment.
  • phosphorus diffusion is generally employed for forming the junction, and phosphorus oxychloride is mainly used as the diffusion source.
  • Phosphorus diffusion can be performed in substantially the same manner as boron diffusion.
  • T1 is generally set to about 800 ° C. or more and 950 ° C. or less.
  • the diffusion source may be a phosphorus compound such as phosphoric acid or phosmer.
  • phosphorus is diffused by heat treatment from phosphorus glass by chemical vapor deposition using raw materials such as phosphorus hydride, silicon hydride, and oxygen, the same good results can be obtained.
  • a silicon oxide film as a diffusion barrier film may be previously formed on one surface of the substrate by thermal oxidation.
  • the high-temperature heat treatment step is performed in an oxygen atmosphere or an atmosphere containing water (for example, a steam atmosphere) with T1 set to 800 ° C. or higher and 1050 ° C. or lower.
  • a quartz tube furnace or the like it is preferable to place the substrate in the hot zone of the furnace within 10 minutes, more preferably within 5 minutes in the transfer step.
  • the time during which the temperature of the substrate is 400 ° C. or higher and 650 ° C. or lower is within 5 minutes in the first high-temperature heat treatment step from the production of the solar cell to the substrate.
  • the method for producing a solar cell of the present invention can be applied to all high-temperature heat treatment steps in the production process of the solar cell, but a higher effect can be obtained particularly by applying to the first high-temperature heat treatment step.
  • a passivation film (104, 204) is formed.
  • a film having a refractive index of about 1.9 to 2.2 such as a silicon nitride film, titanium oxide, or tin oxide, can be formed on the substrate surface to about 100 nm.
  • a silicon nitride film formed by a chemical vapor deposition method is widely used in a general solar cell because the effect of both passivation and light reflection prevention can be obtained by using a single layer.
  • a thermal silicon oxide film, aluminum oxide, or the like is used for the passivation films (104, 204), the above silicon nitride film may be laminated thereon.
  • electrodes (105 and 106 in FIG. 2 and 205 and 206 in FIG. 3) are formed on the light receiving surface and the back surface of the substrate.
  • a conductive paste such as a silver paste in which silver powder and glass frit are mixed with an organic binder is printed on the light receiving surface and the back surface, and the temperature is about 500 to 900 ° C. for 1 second to 20 seconds. It can form by baking at the temperature of.
  • the passivation films (104, 204) are eroded by the conductive paste, and the electrodes (105, 106, 205, 206), which are sintered bodies of the conductive paste, penetrate through the passivation film and the like through the silicon and silicon. Make electrical contact.
  • baking of a light-receiving surface and a back surface electrode can also be performed for each surface.
  • the presence or absence of heat treatment-induced defects in the solar cell produced as described above can be examined by measuring the carrier lifetime distribution of the solar cell substrate.
  • the carrier lifetime distribution can be measured by the photoconductive decay method, but in order to obtain a clear result, the measuring device preferably has a resolution of 8 mm or less.
  • the measurement sample needs to be passivated again after returning the solar cell to the substrate state.
  • the electrode and the passivation film formed on the solar cell are removed with an acid solution, and the diffusion layer is etched with an alkaline solution such as hydrofluoric acid or aqueous sodium hydroxide.
  • an alkaline solution such as hydrofluoric acid or aqueous sodium hydroxide.
  • surface passivation is formed on both sides of the substrate.
  • the surface passivation at this time may be any as long as it can be formed at 300 ° C. or less and a sufficient passivation effect can be obtained.
  • a silicon nitride film or an aluminum oxide film formed by a CVD method can be preferably used.
  • good results can be obtained by immersing the substrate in a quinhydrone / methanol solution of about 0.1 mol% for about 30 minutes.
  • an electroluminescence (EL) method or a photoluminescence (PL) method can be used for the solar cell.
  • EL electroluminescence
  • PL photoluminescence
  • a forward bias is applied to the solar cell to inject a current about the short-circuit current of the solar cell, and light with a wavelength of 900 nm to 1100 nm is detected.
  • charge carriers are injected with light. Since the excitation light source needs to have a sufficient penetration depth with respect to the substrate, it is preferable to use light having a wavelength of 700 nm to 900 nm. Although the same detector as EL can be used, it is preferable to use a detector that does not have sensitivity in the excitation light wavelength band in order to avoid reflection of excitation light.
  • the substrate used for manufacturing the solar cell can have an initial interstitial oxygen concentration of 12 ppma (JEIDA) or more.
  • JEIDA initial interstitial oxygen concentration
  • the oxygen precipitation amount contained in the substrate after the production of the solar cell, measured by the above-described evaluation method is 2 ppma (JEIDA) or less.
  • the oxygen precipitation amount is set to 2 ppma (JEIDA) or less, it is possible to more reliably suppress the reduction of the minority carrier lifetime of the substrate.
  • a solar cell manufactured by the above-described method for manufacturing a solar cell, and having no swirl in electroluminescence or photoluminescence of a single crystal silicon substrate in the single crystal silicon solar cell.
  • the solar cell of the present invention is a single crystal silicon solar cell comprising a single crystal silicon substrate, wherein the amount of precipitated oxygen contained in the single crystal silicon substrate is 2 ppma (JEIDA) or less, and the single crystal in the single crystal silicon solar cell There is no swirl in the electroluminescence or photoluminescence of the silicon substrate.
  • JEIDA ppma
  • a solar cell having an oxygen deposition amount of 2 ppma (JEIDA) or less and having no swirl can be a solar cell having high photoelectric conversion efficiency and uniform characteristics in the substrate plane.
  • the residual interstitial oxygen concentration contained in the single crystal silicon substrate is preferably 10 ppma (JEIDA) or more.
  • the solar cell has less oxygen precipitation, higher photoelectric conversion efficiency, and more uniform in the substrate plane. It can be.
  • the single crystal silicon substrate is preferably a CZ single crystal silicon substrate.
  • the single crystal silicon substrate is a CZ single crystal silicon substrate, the minority carrier lifetime is likely to be lowered, so that the solar cell particularly effective in the present invention can be obtained.
  • the CZ single crystal silicon substrate is inexpensive, an inexpensive solar cell can be obtained.
  • FIG. 4 shows a cross-sectional view of an example of the solar cell module 400 of the present invention.
  • Adjacent solar cells 401 are electrically connected by a tab 402.
  • the connected solar cells 401 are sealed with a filler 403, a cover glass 404, and a back sheet 405. Soda lime glass is widely used for the cover glass 404.
  • ethylene vinyl acetate, polyolefin, silicone, or the like is used.
  • a functional film using polyethylene terephthalate is generally used for the back sheet 405.
  • FIG. 5 is a schematic diagram showing an example of a basic configuration of a solar cell power generation system in which the solar cell modules of the present invention are connected.
  • a plurality of solar power modules 400 are connected by wiring 502 and supply generated power to an external load circuit 504 via an inverter 503.
  • the system may further include a secondary battery that stores the generated power.
  • Example 1 100 phosphorus-doped n-type CZ silicon substrates having a resistivity of 1 ⁇ ⁇ cm and an initial interstitial oxygen concentration of 20 ppma were prepared, and a texture was formed on the surface.
  • the boron diffusion surface is faced and loaded into a quartz boat, and further transferred to a hot zone of a quartz furnace maintained at a temperature of 950 ° C. at 2000 mm / min. Then, the conveyance was completed in 1 minute 20 seconds. Thereafter, the output of the heater was adjusted, and the furnace temperature was maintained at 900 ° C. about 2 minutes after the completion of the conveyance. Thereafter, phosphorus oxychloride was bubbled for 5 minutes and supplied into the furnace to form phosphorus glass on the substrate surface, and then phosphorus was diffused for 30 minutes. When the substrate temperature change during this period was measured with a monitor substrate provided with a thermocouple, t emb. Was 55 seconds.
  • the characteristics of this solar cell were measured using pseudo sunlight from a Xe lamp light source.
  • the measurement results are shown in Table 1.
  • the numerical values shown in Table 1 are average values of 100 substrates.
  • Table 1 also shows the measurement results of Comparative Example 1 described later.
  • Example 1 100 substrates similar to Example 1 were prepared, and a texture was formed on the surface. These substrates were transferred to a quartz boat, and further transferred to a hot zone of a quartz furnace maintained at a temperature of 600 ° C. at 2000 mm / min, and the transfer was completed in 1 minute and 20 seconds. After the furnace temperature was stabilized at 600 ° C., the temperature was kept constant for 5 minutes, and then the furnace temperature was raised to 1000 ° C. After the furnace temperature was stabilized at 1000 ° C., boron bromide was bubbled for 10 minutes and supplied into the furnace to form boron glass on the substrate surface, and then boron was diffused for 30 minutes. When the substrate temperature change during this period was measured with a monitor substrate provided with a thermocouple, t emb. Was 9 minutes 30 seconds.
  • Samples (solar cells) each having an average value were extracted from Example 1 and Comparative Example 1 one by one, and a forward current of 9 A was applied to these solar cells by an EL imaging device (PVX100 manufactured by AITES). And an EL image of the cell was obtained at an exposure time of 8 seconds, an ISO sensitivity of 800, and an F value of 4.
  • FIG. 6 (a) is an EL image of the solar cell of Example 1
  • FIG. 6 (b) is an EL image of the solar cell of Comparative Example 1.
  • FIG. 6A light was emitted uniformly in the plane of the solar cell, but in FIG. 6B, swirl was generated, and a region having low solar cell characteristics was confirmed as a concentric dark contrast portion.
  • the solar cell shown in FIGS. 6A and 6B is irradiated with light having a wavelength of 800 nm on the entire surface of the solar cell by a PL imaging device (POPLI manufactured by AITES), and the exposure time is 30 seconds.
  • a PL image of the cell was obtained with an ISO sensitivity of 1600 and an F value of 1.8.
  • FIG. 7A is a PL image in the solar cell (Example 1) in FIG. 6A
  • FIG. 7B is a PL image in the solar cell in FIG. 6B (Comparative Example 1).
  • the solar cell of Example 1 emits light uniformly in the plane of the solar cell, but it can be seen that the swirl is captured in the solar cell of Comparative Example 1.
  • Example 2 100 boron-doped p-type CZ silicon substrates having a resistivity of 1 ⁇ ⁇ cm and an interstitial oxygen concentration of 20 ppma were prepared and textured on the surface.
  • the phosphor glass was removed from the substrate taken out of the quartz furnace with a hydrofluoric acid aqueous solution and washed with a mixture of hydrochloric acid water and hydrogen peroxide. Thereafter, a silicon nitride film having a thickness of 100 nm was formed on the light receiving surface by using plasma CVD. Subsequently, a silver paste was printed on the light receiving surface of the substrate by screen printing, an aluminum paste was printed on the back surface, dried at 150 ° C. for about 30 seconds, and then baked at 840 ° C. for 3 seconds to form electrodes. A solar cell was produced as described above.
  • the characteristics of this solar cell were measured using pseudo sunlight from a Xe lamp light source.
  • the measurement results are shown in Table 2.
  • the numerical values shown in Table 2 are average values of 100 substrates.
  • Table 2 also shows the measurement results of Comparative Example 2 described later.
  • Example 2 100 substrates similar to Example 2 were prepared and textured on the surface. These substrates were transferred to a quartz boat and further transferred to a hot zone of a quartz furnace maintained at a temperature of 900 ° C. at 300 mm / min, and the transfer was completed in 8 minutes and 50 seconds. Thereafter, the output of the heater was adjusted, and the furnace temperature was maintained at 900 ° C. about 1 minute after the completion of the conveyance. Thereafter, phosphorus oxychloride was bubbled with argon gas for 10 minutes and supplied into the furnace to form phosphorus glass on the substrate surface, and then phosphorus was diffused for 30 minutes. When the substrate temperature change during this period was measured with a monitor substrate provided with a thermocouple, t emb. Was about 6 minutes and 20 seconds.
  • Example 2 The subsequent steps were performed in the same manner as in Example 2 to produce a solar cell.
  • the characteristics of this solar cell were measured using pseudo sunlight from a Xe lamp light source.
  • the measurement results are shown in Table 2.
  • the numerical values shown in Table 2 are average values of 100 substrates.
  • Example 3 100 substrates similar to Example 1 were prepared, and a texture was formed on the surface. Next, these substrates were conveyed at 2000 mm / min to a hot zone of a quartz furnace maintained at 1000 ° C. in an oxygen atmosphere, and the conveyance was completed in 1 minute and 20 seconds. Thereafter, the output of the heater was adjusted, and the furnace temperature was maintained at 1000 ° C. for 180 minutes about 2 minutes after the completion of conveyance, thereby forming a silicon oxide film having a thickness of about 100 nm on the substrate surface. When the substrate temperature change during this period was measured with a monitor substrate provided with a thermocouple, t emb. Was 1 minute 40 seconds.
  • Example 1 the oxide film on one surface of the substrate was removed with a hydrofluoric acid aqueous solution, and boron was diffused to the oxide film removal surface in the same manner as in Example 1. Subsequent steps were performed in the same manner as in Example 1 to produce a solar cell.
  • Example 3 100 substrates similar to Example 1 were prepared, and a texture was formed on the surface. Next, these substrates were transferred at a rate of 2000 mm / min to a hot zone of a quartz furnace maintained at 600 ° C. in an oxygen atmosphere, and the transfer was completed in 1 minute and 20 seconds. After the furnace temperature was stabilized at 600 ° C., the temperature was kept constant for 5 minutes, and then the furnace temperature was raised to 1000 ° C. After the furnace temperature was stabilized at 1000 ° C., the temperature was kept for 180 minutes to form a silicon oxide film having a thickness of about 100 nm on the substrate surface. When the substrate temperature change during this period was measured with a monitor substrate provided with a thermocouple, t emb. Was 9 minutes and 20 seconds.
  • the interstitial oxygen concentration was measured for each of the ten solar cells of Examples 1 to 3 and Comparative Examples 1 to 3.
  • Table 4 shows an average of 10 samples (rounded to the second decimal place) of the difference ⁇ O i between the initial interstitial oxygen concentration measured in advance of the substrate and the residual interstitial oxygen concentration after solar cell fabrication.
  • the initial interstitial oxygen concentration is significantly reduced ( ⁇ O i is large), and oxygen precipitation is relatively large corresponding to the swirl observed in FIGS. 6 (b) and 7 (b). It can be seen that it is formed.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、単結晶シリコン基板を用いて、単結晶シリコン太陽電池を製造する太陽電池の製造方法であって、単結晶シリコン基板を800℃以上1200℃以下で熱処理する高温熱処理工程を含み、該高温熱処理工程は、単結晶シリコン基板を熱処理装置に装填する搬送ステップと、単結晶シリコン基板を加熱する加熱ステップと、単結晶シリコン基板を800℃以上1200℃以下の所定の温度に保つ保温ステップと、単結晶シリコン基板を冷却する冷却ステップとを有し、高温熱処理工程において、搬送ステップ及び加熱ステップを通して単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とする太陽電池の製造方法である。これにより、光電変換効率が高く基板面内で特性が均一である太陽電池を製造することができる太陽電池の製造方法が提供される。

Description

高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池
 本発明は、高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池に関する。
 図2は従来型太陽電池の一形態である両面受光型太陽電池を模式的に示したものである。また、図3は従来型太陽電池の別の形態である片面受光型太陽電池を模式的に示したものである。図2及び図3に示した太陽電池100、200では、基板101、201にそれぞれエミッタ層102、202が形成されている。エミッタ層102、202は基板の導電型に応じてリンやボロンの熱拡散によって形成される。また、裏面電界(BSF)層103、203は、n型基板であればリン拡散により形成され、p型基板であればボロン拡散や、シリコンとアルミニウムの合金化によって形成される。さらに、エミッタ層102、202の上にはパッシベーション層104、204がそれぞれ形成されており、裏面電界層103の上にもパッシベーション層104が形成されている。また、太陽電池100にはエミッタ層102と接触する電極105、及び、エミッタ層102のある主表面とは反対の主表面でBSF層103と接触する電極106が設けられている。一方、太陽電池200には、エミッタ層202と接触する電極205、及び、エミッタ層202のある主表面とは反対の主表面(裏面電界層203の形成されている主表面)でBSF層203と接触する電極206が設けられている。
 リンの熱拡散は、オキシ塩化リンなどの気相拡散源やリン酸ベースの塗布型拡散源を用いた800℃から950℃の熱処理で行われる。また、ボロンの熱拡散は臭化ホウ素などの気相拡散源やホウ酸ベースの塗布型拡散源を用いた950℃から1200℃の熱処理で行われる。
 また、図には示されていないが、上記の拡散を基板の片面だけに行いたい場合などには、拡散を妨げる面に膜厚50nmから400nm程度の熱酸化膜を形成することがある。この場合、酸素又は水蒸気雰囲気で800℃から1100℃の熱処理が行われる。
 また、基板101、201には、チョクラルスキー(CZ)法によって得られる単結晶シリコン(CZ-Si)が一般的に使用される。
 ところが、CZ-Siに対して上記のような熱処理を加えたときに、少数キャリアライフタイムが低下し、太陽電池の特性が低下してしまうということが度々発生し、問題になってきた。この特性低下の原因となる欠陥は一般にスワールと呼ばれるもので、基板の中心付近から同心円状に分布していることから、結晶成長時のシリコン固液界面形状、酸素や炭素などの不純物濃度、さらに空孔などの結晶欠陥密度が関係しており、その後の太陽電池製造工程における熱処理工程で主に酸素が析出してできたものと考えられている。このため、従来は使用する基板の初期酸素濃度に上限を設けることで欠陥の発生を回避するのが一般的であった。
 他方、例えば、特許文献1には酸素析出を抑制するために、シリコン基板を1150℃以上の酸素雰囲気で熱処理し、その後、基板を950℃まで20℃/秒から5℃/秒で急冷却する方法が示されている。
米国特許第6,336,968B1号明細書
 しかし、基板の初期酸素濃度に上限を設けることにより、結晶シリコンインゴットの利用率が低下すること、あるいはMCZ法(磁場印加チョクラルスキー法)での結晶シリコンを使用することなどから、基板のコストが高くなるという問題があった。
 また、特許文献1にあるような熱処理は、太陽電池の製造工程に適用するのが難しいという問題があった。特に太陽電池は生産性を高める為に多くの枚数の基板をバッチ処理することが一般的であるため、熱容量の関係上、急冷却ができないという技術的な問題もあった。
 本発明は、上記問題点に鑑みてなされたものであって、太陽電池製造工程における高温熱処理において、基板の少数キャリアライフタイムの低下を抑制することにより、光電変換効率が高くかつ基板面内で特性が均一である太陽電池を安定して製造することができる太陽電池の製造方法を提供することを目的とする。また、本発明は、光電変換効率が高くかつ基板面内で特性が均一である太陽電池を提供することを目的とする。
 上記目的を達成するために、本発明は、単結晶シリコン基板を用いて、単結晶シリコン太陽電池を製造する太陽電池の製造方法であって、
 前記単結晶シリコン基板を800℃以上1200℃以下で熱処理する高温熱処理工程を含み、
 該高温熱処理工程は、
 前記単結晶シリコン基板を熱処理装置に装填する搬送ステップと、
 前記単結晶シリコン基板を加熱する加熱ステップと、
 前記単結晶シリコン基板を800℃以上1200℃以下の所定の温度に保つ保温ステップと、
 前記単結晶シリコン基板を冷却する冷却ステップと
 を有し、
 前記高温熱処理工程において、前記搬送ステップ及び前記加熱ステップを通して前記単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすることを特徴とする太陽電池の製造方法を提供する。
 このように、搬送ステップ及び加熱ステップを通して単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすれば、酸素析出の前駆体などが形成される400℃以上650℃以下の温度帯での熱履歴を最小限にして各種欠陥を消滅させることが可能となり、その後の様々な条件下での保温ステップ及び冷却ステップにおいて欠陥の成長が抑制される。それにより、単結晶シリコン基板の少数キャリアライフタイムを高く維持することができ、光電変換効率が高くかつ基板面内で特性が均一である太陽電池を安定して製造することができる。
 このとき、前記単結晶シリコン基板から前記太陽電池を製造するまでの間における、最初の前記高温熱処理工程において、前記単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすることが好ましい。
 このように、最初の高温熱処理工程において、単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすることにより、光電変換効率がより高くかつ基板面内でより均一である太陽電池を製造することができる。
 また、前記高温熱処理工程を、不活性ガスを含む雰囲気で行うことが好ましい。
 このように、高温熱処理工程を不活性ガスを含む雰囲気で行うことにより、単結晶シリコン基板への不純物拡散を確実かつ容易に行うことができる。
 また、前記不活性ガスを、窒素又はアルゴンとすることが好ましい。
 このように、不活性ガスを窒素又はアルゴンとすることにより、単結晶シリコン基板への不純物拡散をより確実かつより容易に行うことができる。
 また、前記高温熱処理工程を、酸素又は水を含む雰囲気で行うことが好ましい。
 このように、高温熱処理工程を、酸素又は水を含む雰囲気で行うことにより、例えば拡散バリア膜として使用可能な酸化シリコン膜を確実かつ容易に形成することができる。
 また、前記搬送ステップにおいて、前記単結晶シリコン基板を前記熱処理装置のホットゾーンへ10分以内に配置することが好ましい。
 このように、単結晶シリコン基板をホットゾーンへ10分以内に配置することにより、より確実に、単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすることができる。
 また、前記単結晶シリコン基板をCZ単結晶シリコン基板とすることが好ましい。
 CZ単結晶シリコン基板では、前述したように少数キャリアライフタイムが低下しやすいため、特に本発明の効果が大きい。また、CZ単結晶シリコン基板は安価であるため、安価な太陽電池を製造することができる。
 また、前記太陽電池の製造に用いる単結晶シリコン基板を、初期格子間酸素濃度が12ppma(JEIDA)以上のものとすることができる。
 このように、初期格子間酸素濃度が12ppma(JEIDA)以上の単結晶シリコン基板であっても、本発明を適用することによって、より効果的に酸素析出を抑制することができるので、本発明の効果が特に大きい。
 また、前記太陽電池の製造後に前記単結晶シリコン基板に含まれる酸素析出量を2ppma(JEIDA)以下とすることが好ましい。
 このように、酸素析出量を2ppma(JEIDA)以下とすれば、単結晶シリコン基板の少数キャリアライフタイムの低下をより確実に抑制することができる。
 また、本発明は、上記の太陽電池の製造方法により製造された太陽電池であって、
 前記単結晶シリコン太陽電池における前記単結晶シリコン基板のエレクトロルミネセンス又はフォトルミネセンスにおいて、スワールがないものであることを特徴とする太陽電池を提供する。
 このような太陽電池であれば、光電変換効率が高くかつ基板面内で特性が均一である太陽電池とすることができる。
 また、上記目的を達成するために、本発明は、単結晶シリコン基板を具備する単結晶シリコン太陽電池であって、
 前記単結晶シリコン基板に含まれる酸素析出量が2ppma(JEIDA)以下であり、
 前記単結晶シリコン太陽電池における前記単結晶シリコン基板のエレクトロルミネセンス又はフォトルミネセンスにおいて、スワールがないものであることを特徴とする太陽電池を提供する。
 このように、酸素析出量が2ppma(JEIDA)以下であり、スワールがない太陽電池であれば、光電変換効率が高くかつ基板面内で特性が均一である太陽電池とすることができる。
 このとき、前記単結晶シリコン基板に含まれる残存格子間酸素濃度が10ppma(JEIDA)以上であることが好ましい。
 このように、太陽電池の単結晶シリコン基板中の残存格子間酸素濃度が10ppma(JEIDA)以上であれば、酸素析出が少なく、光電変換効率がより高くかつ基板面内でより均一である太陽電池とすることができる。
 また、前記単結晶シリコン基板が、CZ単結晶シリコン基板であることが好ましい。
 このように、単結晶シリコン基板がCZ単結晶シリコン基板であれば、少数キャリアライフタイムが低下しやすいため、特に本発明の効果が大きい太陽電池とすることができる。また、CZ単結晶シリコン基板は安価であるため、安価な太陽電池とすることができる。
 また、本発明は、上記の太陽電池を電気的に接続して成るものであることを特徴とする太陽電池モジュールを提供する。
 このように、本発明の太陽電池を電気的に接続して太陽電池モジュールとすることができる。
 また、本発明は、上記の太陽電池モジュールを電気的に複数接続して成るものであることを特徴とする太陽電池発電システムを提供する。
 このように、本発明の太陽電池を電気的に接続した太陽電池モジュールは、電気的に複数接続して太陽電池発電システムとすることができる。
 本発明の太陽電池の製造方法によれば、格子間酸素濃度や他の軽元素不純物濃度が高い単結晶シリコン基板においても、高いキャリア寿命を保ち、光電変換効率の高い太陽電池を安定して製造することができる。また、本発明の太陽電池であれば、光電変換効率が高く基板面内で特性が均一である太陽電池とすることができる。
本発明に係る高温熱処理工程の一例を示す温度プロファイルの模式図である。 本発明を適用することができる、一般的な両面受光型太陽電池の構造を示す断面模式図である。 本発明を適用することができる、一般的な片面受光型太陽電池の構造を示す断面模式図である。 本発明に係る太陽電池モジュールの一例を示す断面模式図である。 本発明に係る太陽電池発電システムの一例を示す模式図である。 実施例1の太陽電池のEL像を示した図((a))及び比較例1の太陽電池のEL像を示した図((b))である。 実施例1の太陽電池のPL像を示した図((a))及び比較例1の太陽電池のPL像を示した図((b))である。
 上記のように、近年、太陽電池において基板の中心付近から同心円状に分布する低特性の領域の発生が問題となっていた。本発明者らは、単結晶シリコン基板に対する800℃以上1200℃以下の熱処理において、昇温時の条件が上記問題の原因となる欠陥形成に大きく影響していることを見出し、このような領域の特性を改善する対策について鋭意検討して、本発明を完成させた。
 以下、本発明について、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 まず、本発明の太陽電池の製造方法について説明する。本発明の太陽電池の製造方法は、単結晶シリコン基板を用いて、単結晶シリコン太陽電池を製造する太陽電池の製造方法であり、単結晶シリコン基板を800℃以上1200℃以下で熱処理する高温熱処理工程を含み、その高温熱処理工程は、単結晶シリコン基板を熱処理装置に装填する搬送ステップと、単結晶シリコン基板を加熱する加熱ステップと、単結晶シリコン基板を800℃以上1200℃以下の所定の温度に保つ保温ステップと、単結晶シリコン基板を冷却する冷却ステップとを有し、高温熱処理工程において、搬送ステップ及び加熱ステップを通して単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とする太陽電池の製造方法である。
 このように、搬送ステップ及び加熱ステップを通して単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすれば、酸素析出の前駆体などが形成される400℃以上650℃以下の温度帯での熱履歴を最小限にして各種欠陥を消滅させることが可能となり、その後の様々な条件下での保温ステップ及び冷却ステップにおいて欠陥の成長が抑制される。それにより、単結晶シリコン基板の少数キャリアライフタイムを高く維持することができ、光電変換効率が高くかつ基板面内で特性が均一である太陽電池を安定して製造することができる。
 以下で本発明の太陽電池の製造方法について図1、図2及び図3を参照して製造ステップに従って説明する。
 本発明に使用する単結晶シリコン基板(図2の101、図3の201)は、一般的なCZ法によって作製されたCZ単結晶シリコン基板とすることができる。通常、上記単結晶シリコン基板として、単結晶シリコンにBあるいはGaのようIII族元素をドープしたp型シリコン、又はリンやアンチモンのようなV族元素をドープしたn型シリコンが使用できる。基板の抵抗率に特に制限は無く、一般的な0.1~10Ω・cm程度のものを使用してよい。また、CZシリコンは通常10~20ppma(JEIDA)の初期格子間酸素濃度を含有するが、いずれの濃度のものでも問題なく本発明に使用できる。
 尚、酸素析出は初期格子間酸素濃度が高いほど形成されやすいが、一方で炭素や窒素などの不純物濃度が高いと、これらの不純物が析出核となり、12ppma程度でも形成されることが知られている。しかし、本発明では析出核の成長自体を回避するので、上記のような不純物濃度の高い基板でも特に問題なく使用できる。
 また、基板表面には、入射光の反射を抑制するためのテクスチャが形成されていてよい。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、テトラメチルアンモニウムハイドロオキサイドなどのアルカリ溶液(濃度1~10%、温度60~100℃)中に10分から30分程度基板を浸漬することで容易に作製される。テクスチャ形成後の基板表面には上記のアルカリ金属などが付着していることがあるため、続いて塩酸、硫酸、硝酸、フッ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄するのが好ましい。
 太陽電池の製造過程における主な高温熱処理工程はリン拡散とボロン拡散であり、場合によっては熱酸化、また、稀にリンあるいはボロンが高濃度添加された高濃度シリコンのエピタキシャル層形成などが含まれる。
 また、生産性を上げる必要から、一般には横型又は縦型の石英管電気炉を使い、1バッチで多量枚数の基板を処理することが多い。この方式では、基板を保持する石英製の子(小)ボートに基板を100~200枚ほど装填し、さらに4~8個の基板装填済み小ボートを同じく石英製の大ボートに載せ、これを所定温度に保たれた炉のホットゾーンへ投入する。
 図1は、高温熱処理工程の温度プロファイルを概念的に示したものである。本発明では、搬送ステップから加熱ステップにおいて、基板の温度が400℃以上650℃以下となる時間temb.を5分以下、より好ましくは3分以下とし、その後、高温熱処理を行うT1まで続けて加熱を行う。これにより、結晶成長時に形成された酸素析出核などの欠陥を消滅させることが可能になり、その後、酸素析出核などの結晶欠陥が形成されることを回避することができる。
 上述した基板の温度が400℃以上650℃以下となる時間を5分以内とする条件を満たすため、搬送ステップにおいて、投入基板枚数や炉の特性にもよるが、基板を熱処理装置のホットゾーンへ10分以内、より好ましくは5分以内に配置することが好ましい。10分以内に配置を行えば、temb.を5分以内にしやすくなり、基板内の酸素析出前駆体の形成を抑制することができる。
 また、基板がホットゾーンに到達する過程で、基板やボートの熱容量などに応じて炉の温度は低下する。搬送終了後から基板温度が設定温度(T1)まで加熱されるステップが加熱ステップである。ここでも基板温度を速やかに上げ、temb.を極力短くするため、必要に応じてヒーターの出力を高めても良い。また、温度低下量を見越して炉内温度をT1より若干高めに設定し、加熱ステップの終了が近づいた時にT1にして制御しても良い。
 n型基板を用いた場合のエミッタ層(102、202)の形成には、通常ボロン拡散が行われるが、この際のT1は一般に950℃から1200℃が好適である。ボロン拡散源には、一般的な臭化ホウ素を用いてよい。一般的な臭化ホウ素拡散では、基板が設定温度まで加熱されたら、次に基板温度を設定温度で一定に保つ(保温ステップの開始)。温度が安定したら、窒素又はアルゴンなどの不活性ガスで臭化ホウ素をバブリングし、さらに別系統の不活性ガスをキャリアガスとして混合させることで炉内に導入する。このとき、基板へのボロンガラス層形成を促すため、少量の酸素を混合させても良い。
 所定時間経過後、バブリングを停止し、引き続き不活性ガスを含む雰囲気で基板に付着したボロンガラスから基板内部へボロンを拡散させるため、さらに10分から60分程度熱処理を行うことができる。
 このように、上述した高温熱処理工程を不活性ガスを含む雰囲気で行うことができる。高温熱処理工程を不活性ガスを含む雰囲気で行うことにより、基板への不純物拡散を確実かつ容易に行うことができる。
 また、上記の不活性ガスを窒素又はアルゴンとすることが好ましい。不活性ガスを窒素又はアルゴンとすることにより、基板への不純物拡散をより確実かつより容易に行うことができる。
 保温ステップにおける温度条件は特に限定されるものではない。例えば、図1の(a)の実線で示すようにT1で一定に保って基板を処理しても良いし、あるいは図1の(b)の破線で示すようにある時点からさらに高い温度T2で処理を行っても良い。
 ボロン拡散終了後、冷却ステップに進み、基板を所定の温度まで下げる。冷却速度に対して制限は無いが、上記の温度帯から一気に室温まで冷却すると、熱衝撃によって基板が割れることがあるため、好ましくは基板を700℃から500℃まで冷却した後、炉外へ搬出(搬出ステップ)するのが望ましい。
 以上では臭化ホウ素を用いたボロン拡散を例にとり説明したが、拡散源としてはこの他、ボロン化合物とバインダーの混合物を予め基板に塗布しておき、その後、同様の熱処理を行っても良い。あるいは、水素化ホウ素、水素化珪素、及び酸素等を原料とした化学気相堆積法によるボロンガラスから熱処理によりボロンを拡散させても同じように良好な結果が得られる。また、イオン注入でドーピングする場合は、ドーパントの活性化熱処理において上述した熱拡散による実施態様と同様の温度条件を適用することで、熱拡散の場合と同等の結果が得られる。
 一方、p型基板を使用する場合には、接合形成にリン拡散が一般的に採用され、拡散源としては主にオキシ塩化リンが用いられる。リン拡散も、概ねボロン拡散と同様にして実施可能である。但し、リンはボロンに比べて拡散係数が大きいため、T1は、800℃以上950℃以下程度とするのが一般的である。また、拡散源はオキシ塩化リンの他、リン酸又はホスマーなどのリン化合物などを用いても良い。あるいは、水素化リン、水素化珪素、及び酸素等を原料とした化学気相堆積法によるリンガラスから熱処理によりリンを拡散させても同じように良好な結果が得られる。
 両面受光型太陽電池を作製する場合には、上記のボロン拡散とリン拡散を両方行う必要がある。この場合、どちらかを先に行っても良いし、上述した拡散源塗布膜や化学気相堆積によるボロンガラス及びリンガラスを基板の受光面とその反対面である裏面に夫々形成した上で同時に熱処理を行っても良い。
 ドーパントが所定の基板面の反対面にオートドーピングされてしまうのを防ぎたい場合などには、基板の片面に拡散バリア膜として酸化シリコン膜を熱酸化で予め形成しておいてもよい。この場合、高温熱処理工程を、T1を800℃以上1050℃以下として、酸素雰囲気又は水を含む雰囲気(例えば水蒸気雰囲気)で行うことが好ましい。この場合も、石英管炉等を使う場合には、搬送ステップにおいて基板を炉のホットゾーンへ10分以内、より好ましくは5分以内に配置することが好ましい。
 また、基板から太陽電池を製造するまでの間における、最初の高温熱処理工程において、基板の温度が400℃以上650℃以下となる時間を5分以内とすることが好ましい。本発明の太陽電池の製造方法は、太陽電池の製造過程におけるすべての高温熱処理工程に適用できるが、特に最初に行う高温熱処理工程に適用することによってより高い効果を得ることができる。
 次に、パッシベーション膜(104、204)の形成を行う。パッシベーション膜として、窒化シリコン膜や酸化チタン、あるいは酸化錫など、屈折率が1.9から2.2程度の膜を基板表面に約100nm程度成膜することができる。例えば、化学気相法で形成される窒化シリコン膜では、単層で用いることでパッシベーションと光反射防止の両方の効果が得られるため、一般的な太陽電池では広く用いられている。一方で、パッシベーション膜(104、204)に熱酸化シリコン膜や酸化アルミニウムなどを用いる場合には、これらに上記の窒化シリコン膜を積層しても良い。
 次いで、上記基板の受光面及び裏面に電極(図2の105、106及び図3の205、206)を形成する。電極(105、106、205、206)は、銀粉末とガラスフリットを有機バインダーと混合した銀ペースト等の導電性ペーストを受光面と裏面に印刷し、1秒~20秒間、500~900℃程度の温度で焼成することにより形成することができる。この熱処理によりパッシベーション膜(104、204)が導電性ペーストに侵食され、この導電性ペーストの焼結体である電極(105、106、205、206)がパッシベーション膜等を貫通ファイアースルーしてシリコンと電気的に接触する。なお、受光面及び裏面電極の焼成は、各面ごとに行うことも可能である。
 以上のようにして作製された太陽電池における熱処理誘起欠陥の有無は、太陽電池基板のキャリア寿命分布を測定することで調べられる。キャリア寿命分布は光導電減衰法により測定が可能であるが、明瞭な結果を得るために、その測定装置は8mm以下の分解能を持つことが好ましい。
 また、この場合、測定試料は太陽電池を基板状態まで戻してから再度表面パッシベーションをする必要がある。このため、まず太陽電池に形成された電極とパッシベーション膜を酸溶液で除去し、さらに拡散層をフッ硝酸や水酸化ナトリウム水溶液などのアルカリ溶液でエッチングする。この後、基板の両面に表面パッシベーションを形成する。この時の表面パッシベーションは300℃以下で形成でき、且つ十分なパッシベーション効果が得られるものであればどのようなものでも良い。例えば、CVD法による窒化シリコン膜や酸化アルミニウム膜を好適に用いることができる。また、基板を0.1mol%程度のキンヒドロン・メタノール溶液に30分程度浸漬しても良好な結果が得られる。
 太陽電池基板のキャリア寿命分布を評価するためのより簡便な方法として、太陽電池に対してエレクトロルミネセンス(EL)法やフォトルミネセンス(PL)法が利用できる。これらの手法は、シリコンに電荷キャリアを注入した際に生じる赤外線の発光(ルミネセンス)効率が、熱誘起欠陥のように、シリコンのエネルギーバンド間にある準位によって低下するという現象を捉えるものである。
 ELの場合、太陽電池に順方向バイアスを印加して太陽電池の短絡電流程度の電流を注入し、波長900nmから1100nmの光を検出する。
 PLの場合は、電荷キャリアの注入を光で行う。励起光源は基板に対して十分な侵入深さを持つ必要があるため、波長700nmから900nmの光を使用するのが好ましい。検出器はELと同様のものが使用できるが、励起光の映り込みを避ける為、励起光波長帯に感度を持たないものを使用することが好ましい。
 上記のように欠陥の評価にキャリア寿命を用いる理由の一つは、太陽電池製造工程で一般に行われる熱処理で形成される酸素析出が非常に微量で、直接的な観察が極めて難しいことがある。しかしながら、初期格子間酸素濃度は析出によって減少するため、析出量は熱処理前後における酸素濃度差ΔOとして評価できる。すなわち、以下の関係を用いて求めることができる。
 (初期格子間酸素濃度)-(残留格子間酸素濃度)=酸素濃度差ΔO
                     =酸素析出量   (1)
 本発明の太陽電池の製造方法では、太陽電池の製造に用いる基板を、初期格子間酸素濃度が12ppma(JEIDA)以上のものとすることができる。このように、初期格子間酸素濃度が12ppma(JEIDA)以上の基板であっても、本発明を適用することによって、より効果的に酸素析出を抑制することができるので、本発明の効果が特に大きい。
 また、上述した評価法により測定した、太陽電池の製造後に基板に含まれる酸素析出量を、2ppma(JEIDA)以下とすることが好ましい。このように、酸素析出量を2ppma(JEIDA)以下とすれば、基板の少数キャリアライフタイムの低下をより確実に抑制することができる。
 また、本発明により、上述した太陽電池の製造方法により製造された太陽電池であり、単結晶シリコン太陽電池における単結晶シリコン基板のエレクトロルミネセンス又はフォトルミネセンスにおいて、スワールがない太陽電池が提供される。このような太陽電池であれば、光電変換効率が高くかつ基板面内で特性が均一である太陽電池とすることができる。
 以下で、本発明の太陽電池についてさらに説明する。本発明の太陽電池は、単結晶シリコン基板を具備する単結晶シリコン太陽電池であって、単結晶シリコン基板に含まれる酸素析出量が2ppma(JEIDA)以下であり、単結晶シリコン太陽電池における単結晶シリコン基板のエレクトロルミネセンス又はフォトルミネセンスにおいて、スワールがない。
 このように、酸素析出量が2ppma(JEIDA)以下であり、スワールがない太陽電池であれば、光電変換効率が高くかつ基板面内で特性が均一である太陽電池とすることができる。
 また、単結晶シリコン基板に含まれる残存格子間酸素濃度が10ppma(JEIDA)以上であることが好ましい。このように、太陽電池の単結晶シリコン基板中の残存格子間酸素濃度が10ppma(JEIDA)以上であれば、酸素析出が少なく、光電変換効率がより高くかつ基板面内でより均一である太陽電池とすることができる。
 また、単結晶シリコン基板が、CZ単結晶シリコン基板であることが好ましい。このように、単結晶シリコン基板がCZ単結晶シリコン基板であれば、少数キャリアライフタイムが低下しやすいため、特に本発明の効果が大きい太陽電池とすることができる。また、CZ単結晶シリコン基板は安価であるため、安価な太陽電池とすることができる。
 また、上述した太陽電池を電気的に接続して太陽電池モジュールとすることができる。複数の太陽電池は電気的に直列接続することができる。図4に本発明の太陽電池モジュール400の一例の断面図を示す。隣接する太陽電池401同士がタブ402によって電気的に連結されている。接続された太陽電池401は、充填剤403、カバーガラス404及びバックシート405によって封止されている。カバーガラス404にはソーダライムガラスが広く使用される。また充填剤403にはエチレンビニルアセテートやポリオレフィン又はシリコーンなどが使用される。バックシート405にはポリエチレンテレフタレートを使用した機能性フィルムが一般的に用いられている。
 図5は本発明の太陽電池モジュールを連結した太陽電池発電システムの基本構成の一例を示した模式図である。複数の太陽電モジュール400が配線502で連結され、インバータ503を経由して外部負荷回路504に発電電力を供給する。同図には示していないが、当該システムは発電した電力を蓄電する2次電池をさらに備えていて良い。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 まず、抵抗率1Ω・cm、初期格子間酸素濃度20ppmaのリンドープn型CZシリコン基板を100枚用意し、表面にテクスチャを形成した。
 これらの基板を石英ボートに移し、さらに温度1100℃に保った石英炉のホットゾーンへ2000mm/分で搬送し、1分20秒で搬送を終えた。その後、ヒーターの出力を調整し、搬送終了後約2分で炉内温度を1000℃に保った。その後、10分間にわたりアルゴンガスで臭化ホウ素をバブリングして炉内へ供給し、基板表面にボロンガラスを形成し、さらにその後、30分間にわたりボロンを拡散した。熱電対を設置したモニター基板でこの間の基板温度変化を計測したところ、400℃から650℃の滞在時間(temb.)は1分40秒であった。
 次に、ボロン拡散面の反対面をフッ硝酸でエッチング、洗浄した後、ボロン拡散面を向い合せて石英ボートに装填し、さらに温度950℃に保った石英炉のホットゾーンへ2000mm/分で搬送し、1分20秒で搬送を終えた。その後、ヒーターの出力を調整し、搬送終了後約2分で炉内温度を900℃に保った。その後、5分間にわたりオキシ塩化リンをバブリングして炉内へ供給し、基板表面にリンガラスを形成し、さらにその後、30分間にわたりリンを拡散した。熱電対を設置したモニター基板でこの間の基板温度変化を計測したところ、temb.は55秒であった。
 石英炉から取り出した基板をからフッ酸水溶液でボロンガラスとリンガラスを除去し、塩酸水と過酸化水素の混合液で洗浄した。その後、プラズマCVDを用い、受光面に厚さ20nmの酸化アルミニウム膜を形成し、さらにその後、基板両面に窒化シリコンを100nmの厚さで形成した。続いて、基板の受光面と裏面にスクリーン印刷により銀ペーストを印刷し、150℃で30秒程度乾燥させた後、840℃で3秒間焼成し、電極を形成した。以上のようにして、太陽電池を作製した。
 この太陽電池の特性を、Xeランプ光源の疑似太陽光を用いて測定した。測定結果を表1に示した。表1に示した数値は100枚の基板の平均値である。尚、表1には後述する比較例1の測定結果も併せて示してある。
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 実施例1と同様の基板を100枚用意し、表面にテクスチャを形成した。これらの基板を石英ボートに移し、さらに温度600℃に保った石英炉のホットゾーンへ2000mm/分で搬送し、1分20秒で搬送を終えた。炉内温度が600℃で安定した後、そのまま5分間温度を一定に保ち、続いて、炉内温度を1000℃まで上昇させた。炉内温度が1000℃で安定した後、10分間にわたり臭化ホウ素をバブリングして炉内へ供給し、基板表面にボロンガラスを形成して、さらにその後、30分間にわたりボロンを拡散した。熱電対を設置したモニター基板でこの間の基板温度変化を計測したところ、temb.は9分30秒であった。
 それ以降の工程を、リンを拡散する際のtemb.を6分としたこと以外は実施例1と同様に行い、太陽電池を作製した。この太陽電池の特性を、Xeランプ光源の疑似太陽光を用いて測定した。測定結果を表1に示した。表1に示した数値は100枚の基板の平均値である。
 表1に示したように、実施例1の太陽電池の特性は比較例1の太陽電池の特性よりも優れていた。
 また、実施例1と比較例1からそれぞれ平均的な値を示した試料(太陽電池)を一枚ずつ抽出し、EL撮像装置(アイテス社製PVX100)により、これらの太陽電池に順方向電流9Aを注入し、露光時間8秒、ISO感度800、F値4にてセルのEL像を取得した。
 図6(a)は実施例1の太陽電池のEL像であり、図6(b)は比較例1の太陽電池のEL像である。図6(a)では太陽電池の面内で均一に発光しているが、図6(b)ではスワールが発生し、太陽電池特性の低い領域が同心円状の暗いコントラストの部分として確認できた。
 次に、図6(a)及び(b)に示した太陽電池に対し、PL撮像装置(アイテス社製POPLI)により、これらの太陽電池全面に波長800nmの光を照射し、露光時間30秒、ISO感度1600、F値1.8にてセルのPL像を取得した。
 図7(a)は図6(a)の太陽電池(実施例1)におけるPL像であり、図7(b)は図6(b)の太陽電池(比較例1)におけるPL像である。PL法においてもEL法と同じように、実施例1の太陽電池では太陽電池の面内で均一に発光しているが、比較例1の太陽電池ではスワールが捉えられているのが分かる。
(実施例2)
 抵抗率1Ω・cm、格子間酸素濃度20ppmaのボロンドープp型CZシリコン基板を100枚用意し、表面にテクスチャ形成した。
 これらの基板を石英ボートに移し、さらに温度900℃に保った石英炉のホットゾーンへ2000mm/分で搬送し、1分20秒で搬送を終えた。その後、ヒーターの出力を調整し、搬送終了後約1分で炉内温度を900℃に保った。その後、10分間にわたりアルゴンガスでオキシ塩化リンをバブリングして炉内へ供給し、基板表面にリンガラスを形成し、さらにその後、30分間にわたりリンを拡散した。熱電対を設置したモニター基板でこの間の基板温度変化を計測したところ、temb.は約30秒であった。
 石英炉から取り出した基板をからフッ酸水溶液でリンガラスを除去し、塩酸水と過酸化水素の混合液で洗浄した。その後、プラズマCVDを用い、受光面に厚さ100nm窒化シリコン膜を形成した。続いてスクリーン印刷により、基板の受光面に銀ペーストを印刷し、さらに裏面にアルミペーストを印刷し、150℃で30秒程度乾燥させた後、840℃で3秒間焼成し、電極を形成した。以上のようにして、太陽電池を作製した。
 この太陽電池の特性を、Xeランプ光源の疑似太陽光を用いて測定した。測定結果を表2に示した。表2に示した数値は100枚の基板の平均値である。尚、表2には後述する比較例2の測定結果も併せて示してある。
Figure JPOXMLDOC01-appb-T000002
(比較例2)
 実施例2と同様の基板を100枚用意し、表面にテクスチャ形成した。これらの基板を石英ボートに移し、さらに温度900℃に保った石英炉のホットゾーンへ300mm/分で搬送し、8分50秒で搬送を終えた。その後ヒーターの出力を調整し、搬送終了後約1分で炉内温度を900℃に保った。その後、10分間にわたりアルゴンガスでオキシ塩化リンをバブリングして炉内へ供給し、基板表面にリンガラスを形成し、さらにその後、30分間にわたりリンを拡散した。熱電対を設置したモニター基板でこの間の基板温度変化を計測したところ、temb.は約6分20秒であった。
 それ以降の工程を実施例2と同様に行い、太陽電池を作製した。この太陽電池の特性を、Xeランプ光源の疑似太陽光を用いて測定した。測定結果を表2に示した。表2に示した数値は100枚の基板の平均値である。
 表2に示したように、実施例2の太陽電池の特性は比較例2の太陽電池の特性よりも優れていた。
(実施例3)
 実施例1と同様の基板を100枚用意し、表面にテクスチャを形成した。次にこれらの基板を酸素雰囲気で1000℃に保った石英炉のホットゾーンへ2000mm/分で搬送し、1分20秒で搬送を終えた。その後、ヒーターの出力を調整し、搬送終了後約2分で炉内温度を1000℃に180分間保ち、基板表面に厚さ約100nmの酸化シリコン膜を形成した。熱電対を設置したモニター基板でこの間の基板温度変化を計測したところ、temb.は1分40秒であった。
 この後、基板片面の酸化膜をフッ酸水溶液で除去し、実施例1と同様にしてこの酸化膜除去面へボロンを拡散した。それ以降の工程を実施例1と同様に行い、太陽電池を作製した。
 この太陽電池の特性を、Xeランプ光源の疑似太陽光を用いて測定した。測定結果を表3に示した。表3に示した数値は100枚の基板の平均値である。尚、表3には後述する比較例3の測定結果も併せて示してある。
Figure JPOXMLDOC01-appb-T000003
(比較例3)
 実施例1と同様の基板を100枚用意し、表面にテクスチャを形成した。次にこれらの基板を酸素雰囲気で600℃に保った石英炉のホットゾーンへ2000mm/分で搬送し、1分20秒で搬送を終えた。炉内温度が600℃で安定した後、そのまま5分間温度を一定に保ち、続いて、炉内温度を1000℃まで上昇させた。炉内温度が1000℃で安定した後、温度をそのまま180分間保ち、基板表面に厚さ約100nmの酸化シリコン膜を形成した。熱電対を設置したモニター基板でこの間の基板温度変化を計測したところ、temb.は9分20秒であった。
 この後、基板片面の酸化膜をフッ酸水溶液で除去し、比較例1と同様に酸化膜除去面へボロンを拡散した。それ以降の工程も比較例1と同様に行い、太陽電池を作製した。この太陽電池の特性を、Xeランプ光源の疑似太陽光を用いて測定した。測定結果を表3に示した。表3に示した数値は100枚の基板の平均値である。
 表3に示したように、実施例3の太陽電池の特性は比較例3の太陽電池の特性よりも優れていた。
 また、上記実施例1~3と比較例1~3の太陽電池のそれぞれ10枚ずつについて格子間酸素濃度を測定した。表4は基板の予め測定された初期格子間酸素濃度と太陽電池作製後の残存格子間酸素濃度との差ΔOの10試料平均(小数点第2位四捨五入)を示したものである。比較例1~3では初期格子間酸素濃度の減少が著しく(ΔOが大きく)、図6(b)及び図7(b)においてスワールが観察されるのに対応して酸素析出が比較的多く形成されていることが分かる。
Figure JPOXMLDOC01-appb-T000004
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (15)

  1.  単結晶シリコン基板を用いて、単結晶シリコン太陽電池を製造する太陽電池の製造方法であって、
     前記単結晶シリコン基板を800℃以上1200℃以下で熱処理する高温熱処理工程を含み、
     該高温熱処理工程は、
     前記単結晶シリコン基板を熱処理装置に装填する搬送ステップと、
     前記単結晶シリコン基板を加熱する加熱ステップと、
     前記単結晶シリコン基板を800℃以上1200℃以下の所定の温度に保つ保温ステップと、
     前記単結晶シリコン基板を冷却する冷却ステップと
     を有し、
     前記高温熱処理工程において、前記搬送ステップ及び前記加熱ステップを通して前記単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすることを特徴とする太陽電池の製造方法。
  2.  前記単結晶シリコン基板から前記太陽電池を製造するまでの間における、最初の前記高温熱処理工程において、前記単結晶シリコン基板の温度が400℃以上650℃以下となる時間を5分以内とすることを特徴とする請求項1に記載の太陽電池の製造方法。
  3.  前記高温熱処理工程を、不活性ガスを含む雰囲気で行うことを特徴とする請求項1又は請求項2に記載の太陽電池の製造方法。
  4.  前記不活性ガスを、窒素又はアルゴンとすることを特徴とする請求項3に記載の太陽電池の製造方法。
  5.  前記高温熱処理工程を、酸素又は水を含む雰囲気で行うことを特徴とする請求項1又は請求項2に記載の太陽電池の製造方法。
  6.  前記搬送ステップにおいて、前記単結晶シリコン基板を前記熱処理装置のホットゾーンへ10分以内に配置することを特徴とする請求項1から請求項5のいずれか1項に記載の太陽電池の製造方法。
  7.  前記単結晶シリコン基板をCZ単結晶シリコン基板とすることを特徴とする請求項1から請求項6のいずれか1項に記載の太陽電池の製造方法。
  8.  前記太陽電池の製造に用いる単結晶シリコン基板を、初期格子間酸素濃度が12ppma(JEIDA)以上のものとすることを特徴とする請求項1から請求項7のいずれか1項に記載の太陽電池の製造方法。
  9.  前記太陽電池の製造後に前記単結晶シリコン基板に含まれる酸素析出量を2ppma(JEIDA)以下とすることを特徴とする請求項8に記載の太陽電池の製造方法。
  10.  請求項1から請求項9のいずれか1項に記載の太陽電池の製造方法により製造された太陽電池であって、
     前記単結晶シリコン太陽電池における前記単結晶シリコン基板のエレクトロルミネセンス又はフォトルミネセンスにおいて、スワールがないものであることを特徴とする太陽電池。
  11.  単結晶シリコン基板を具備する単結晶シリコン太陽電池であって、
     前記単結晶シリコン基板に含まれる酸素析出量が2ppma(JEIDA)以下であり、
     前記単結晶シリコン太陽電池における前記単結晶シリコン基板のエレクトロルミネセンス又はフォトルミネセンスにおいて、スワールがないものであることを特徴とする太陽電池。
  12.  前記単結晶シリコン基板に含まれる残存格子間酸素濃度が10ppma(JEIDA)以上であることを特徴とする請求項11に記載の太陽電池。
  13.  前記単結晶シリコン基板が、CZ単結晶シリコン基板であることを特徴とする請求項11又は12に記載の太陽電池。
  14.  請求項10から請求項13のいずれか1項に記載の太陽電池を電気的に接続して成るものであることを特徴とする太陽電池モジュール。
  15.  請求項14に記載の太陽電池モジュールを電気的に複数接続して成るものであることを特徴とする太陽電池発電システム。
     
PCT/JP2016/004875 2016-11-14 2016-11-14 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池 WO2018087794A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020197012864A KR102626492B1 (ko) 2016-11-14 2016-11-14 고광전변환효율 태양전지의 제조 방법 및 고광전변환효율 태양전지
PCT/JP2016/004875 WO2018087794A1 (ja) 2016-11-14 2016-11-14 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池
CN201680090735.5A CN110121788B (zh) 2016-11-14 2016-11-14 高光电转换效率太阳能电池的制造方法及高光电转换效率太阳能电池
JP2017519702A JP6254748B1 (ja) 2016-11-14 2016-11-14 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池
US15/755,968 US10692736B2 (en) 2016-11-14 2016-11-14 Method for producing high-photoelectric-conversion-efficiency solar cell and high-photoelectric-conversion-efficiency solar cell
EP16886814.9A EP3346505A4 (en) 2016-11-14 2016-11-14 METHOD FOR THE PRODUCTION OF A SOLAR CELL HIGH PHOTOELECTRIC CONVERSION EFFICIENCY AND SOLAR CELL HIGH PHOTOELECTRIC CONVERSION EFFICIENCY
TW106108358A TWI650877B (zh) 2016-11-14 2017-03-14 高光電轉換效率太陽電池之製造方法及高光電轉換效率太陽電池
TW108100193A TWI701843B (zh) 2016-11-14 2017-03-14 太陽電池、太陽電池模組及太陽電池發電系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/004875 WO2018087794A1 (ja) 2016-11-14 2016-11-14 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池

Publications (1)

Publication Number Publication Date
WO2018087794A1 true WO2018087794A1 (ja) 2018-05-17

Family

ID=60860175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004875 WO2018087794A1 (ja) 2016-11-14 2016-11-14 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池

Country Status (7)

Country Link
US (1) US10692736B2 (ja)
EP (1) EP3346505A4 (ja)
JP (1) JP6254748B1 (ja)
KR (1) KR102626492B1 (ja)
CN (1) CN110121788B (ja)
TW (2) TWI701843B (ja)
WO (1) WO2018087794A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579086B2 (ja) * 2016-11-15 2019-09-25 信越半導体株式会社 デバイス形成方法
JP6677678B2 (ja) * 2017-06-23 2020-04-08 信越化学工業株式会社 高効率太陽電池の製造方法
CN113555464B (zh) * 2021-05-31 2023-03-10 天津爱旭太阳能科技有限公司 一种抑制载流子注入衰减的晶体硅太阳能电池制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055397A1 (fr) * 1999-03-16 2000-09-21 Shin-Etsu Handotai Co., Ltd. Procede de production d'une tranche de silicium et tranche de silicium ainsi obtenue
US6336968B1 (en) 1998-09-02 2002-01-08 Memc Electronic Materials, Inc. Non-oxygen precipitating czochralski silicon wafers
JP2002151560A (ja) * 2000-11-07 2002-05-24 Shin Etsu Handotai Co Ltd 半導体ウェーハの内部欠陥測定方法、半導体ウェーハの製造方法及び半導体ウェーハの内部欠陥測定装置
JP2003510800A (ja) * 1999-09-23 2003-03-18 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 凝集自己格子間原子欠陥を含まないチョクラルスキーシリコンの製造方法
JP2009523694A (ja) * 2006-01-20 2009-06-25 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 幾何学的多結晶成型シリコンの製造方法および装置および光電変換用多結晶成型シリコン本体
JP2016046400A (ja) * 2014-08-25 2016-04-04 信越化学工業株式会社 太陽電池セルの製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162446A (ja) 1994-11-30 1996-06-21 Sharp Corp 連続加熱炉及びこれを用いた太陽電池製造方法
US5593494A (en) * 1995-03-14 1997-01-14 Memc Electronic Materials, Inc. Precision controlled precipitation of oxygen in silicon
JP3611290B2 (ja) 1998-07-23 2005-01-19 キヤノン株式会社 半導体基材の作製方法および半導体基材
US6180497B1 (en) 1998-07-23 2001-01-30 Canon Kabushiki Kaisha Method for producing semiconductor base members
JP4232307B2 (ja) * 1999-03-23 2009-03-04 東京エレクトロン株式会社 バッチ式熱処理装置の運用方法
JP2000277403A (ja) * 1999-03-26 2000-10-06 Canon Inc 半導体基体の作製方法
JP2002057351A (ja) * 2000-08-15 2002-02-22 Shin Etsu Handotai Co Ltd 太陽電池セルの製造方法および太陽電池セル
MY131022A (en) * 2000-09-29 2007-07-31 Samsung Electronics Co Ltd Silicon wafers having controlled distribution of defects, and methods of preparing the same
WO2003003441A1 (fr) * 2001-06-28 2003-01-09 Shin-Etsu Handotai Co., Ltd. Procede de production de plaquette recuite et plaquette recuite ainsi obtenue
KR100423752B1 (ko) * 2001-11-12 2004-03-22 주식회사 실트론 실리콘 반도체 웨이퍼 및 그 제조 방법
US6669775B2 (en) * 2001-12-06 2003-12-30 Seh America, Inc. High resistivity silicon wafer produced by a controlled pull rate czochralski method
US7699997B2 (en) * 2003-10-03 2010-04-20 Kobe Steel, Ltd. Method of reclaiming silicon wafers
JP2005129602A (ja) * 2003-10-22 2005-05-19 Shin Etsu Handotai Co Ltd 太陽電池セルの製造方法及び太陽電池セル
KR101126059B1 (ko) * 2004-09-03 2012-04-12 신에쯔 한도타이 가부시키가이샤 태양광 발전용 모듈 및 이것을 이용한 태양광 발전 시스템
JP2008016652A (ja) * 2006-07-06 2008-01-24 Shin Etsu Handotai Co Ltd シリコンウェーハの製造方法
US8440157B2 (en) * 2007-07-20 2013-05-14 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing cast silicon from seed crystals
KR20100036155A (ko) * 2008-09-29 2010-04-07 매그나칩 반도체 유한회사 실리콘 웨이퍼 및 그의 제조방법
DE102008055515A1 (de) 2008-12-12 2010-07-15 Schott Solar Ag Verfahren zum Ausbilden eines Dotierstoffprofils
CN102414830B (zh) * 2009-04-27 2015-07-08 京瓷株式会社 太阳能电池元件、分割太阳能电池元件、太阳能电池模块及电子设备
US9105786B2 (en) * 2011-04-18 2015-08-11 Cisco Technology, Inc. Thermal treatment of silicon wafers useful for photovoltaic applications
JP5944131B2 (ja) 2011-09-27 2016-07-05 株式会社Screenホールディングス 熱処理方法
JP5843588B2 (ja) 2011-12-01 2016-01-13 株式会社アルバック 結晶太陽電池の製造方法
US10060045B2 (en) * 2012-12-31 2018-08-28 Corner Star Limited Fabrication of indium-doped silicon by the czochralski method
JP2015005621A (ja) * 2013-06-20 2015-01-08 株式会社ノリタケカンパニーリミテド 太陽電池用基板およびその製造方法
WO2015003022A1 (en) * 2013-07-01 2015-01-08 Solexel, Inc. High-throughput thermal processing methods for producing high-efficiency crystalline silicon solar cells
US9716203B2 (en) * 2013-09-12 2017-07-25 The Texas A&M University System Metal nanoparticles grown on an inner surface of open volume defects within a substrate
JP6596735B2 (ja) * 2014-11-10 2019-10-30 株式会社ジンテク 太陽電池モジュールから有価物を回収する方法及び回収するための処理装置
US20170301805A1 (en) * 2014-11-21 2017-10-19 Mitsubishi Electric Corporation Solar cell manufacturing method and solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336968B1 (en) 1998-09-02 2002-01-08 Memc Electronic Materials, Inc. Non-oxygen precipitating czochralski silicon wafers
JP2003524874A (ja) * 1998-09-02 2003-08-19 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 非酸素析出性のチョクラルスキーシリコンウエハ
WO2000055397A1 (fr) * 1999-03-16 2000-09-21 Shin-Etsu Handotai Co., Ltd. Procede de production d'une tranche de silicium et tranche de silicium ainsi obtenue
JP2003510800A (ja) * 1999-09-23 2003-03-18 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 凝集自己格子間原子欠陥を含まないチョクラルスキーシリコンの製造方法
JP2002151560A (ja) * 2000-11-07 2002-05-24 Shin Etsu Handotai Co Ltd 半導体ウェーハの内部欠陥測定方法、半導体ウェーハの製造方法及び半導体ウェーハの内部欠陥測定装置
JP2009523694A (ja) * 2006-01-20 2009-06-25 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 幾何学的多結晶成型シリコンの製造方法および装置および光電変換用多結晶成型シリコン本体
JP2016046400A (ja) * 2014-08-25 2016-04-04 信越化学工業株式会社 太陽電池セルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346505A4

Also Published As

Publication number Publication date
TW201830720A (zh) 2018-08-16
TW201933622A (zh) 2019-08-16
JP6254748B1 (ja) 2017-12-27
CN110121788B (zh) 2023-03-28
TWI701843B (zh) 2020-08-11
EP3346505A4 (en) 2019-01-16
JPWO2018087794A1 (ja) 2018-11-15
CN110121788A (zh) 2019-08-13
TWI650877B (zh) 2019-02-11
KR20190082776A (ko) 2019-07-10
KR102626492B1 (ko) 2024-01-17
US20180342402A1 (en) 2018-11-29
US10692736B2 (en) 2020-06-23
EP3346505A1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JPWO2006104107A1 (ja) 多結晶シリコン基板及びその製造方法、多結晶シリコンインゴット、光電変換素子、並びに光電変換モジュール
JP6003791B2 (ja) 太陽電池の製造方法
JP6254748B1 (ja) 高光電変換効率太陽電池の製造方法及び高光電変換効率太陽電池
JP5338702B2 (ja) 太陽電池の製造方法
US20240136464A1 (en) Method for manufacturing substrate for solar cell and substrate for solar cell
KR102420807B1 (ko) 태양전지 및 태양전지의 제조 방법
Schiele et al. Etch-back of p+ structures for selective boron emitters in n-type c-Si solar cells
TWI656655B (zh) Solar cell manufacturing method and solar cell obtained by the manufacturing method
Fichtner et al. Gettering efficacy of APCVD-based process steps for low-cost PERT-type multicrystalline silicon solar cells
JP6114108B2 (ja) 太陽電池の製造方法
US11222991B2 (en) Solar cell and method for manufacturing the same
CN117613134A (zh) 太阳能电池及其制造方法、太阳能电池模块和发电***
JP2005166994A (ja) 太陽電池の製造方法およびその方法により製造された太陽電池
KR101816186B1 (ko) 태양 전지의 제조 방법
EP3471153B1 (en) Solar cell and method for producing solar cell
JP6356855B2 (ja) 太陽電池の製造方法
WO2009131115A1 (ja) 太陽電池の製造方法,太陽電池の製造装置,及び太陽電池
JP2006041108A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017519702

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2016886814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15755968

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20197012864

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE