WO2018083988A1 - Control device for automatic transmission and control method for automatic transmission - Google Patents

Control device for automatic transmission and control method for automatic transmission Download PDF

Info

Publication number
WO2018083988A1
WO2018083988A1 PCT/JP2017/037747 JP2017037747W WO2018083988A1 WO 2018083988 A1 WO2018083988 A1 WO 2018083988A1 JP 2017037747 W JP2017037747 W JP 2017037747W WO 2018083988 A1 WO2018083988 A1 WO 2018083988A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
automatic transmission
shift
engine
upshift
Prior art date
Application number
PCT/JP2017/037747
Other languages
French (fr)
Japanese (ja)
Inventor
嘉裕 倉橋
崇志 栗田
山本 明弘
亮文 板倉
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2018548618A priority Critical patent/JP6554616B2/en
Publication of WO2018083988A1 publication Critical patent/WO2018083988A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to an automatic transmission control device and an automatic transmission control method.
  • JP 2009-298199A discloses that when the continuously variable transmission is upshifted, the engine torque is reduced to cancel the inertia torque that occurs as the engine speed decreases. According to this, the shift shock accompanying the upshift is suppressed.
  • JP2009-298199A discloses that when the engine torque cannot be reduced, the occurrence of inertia torque is suppressed by slowing down the shift speed.
  • JP2009-298199A a vehicle having an automatic transmission in which it is difficult to finely control a shift speed such as a general stepped automatic transmission or a seamless automatic transmission (for example, refer to JP2012-127471A).
  • a shift speed such as a general stepped automatic transmission or a seamless automatic transmission
  • An object of the present invention is to suppress the generation of an inertia torque of an engine when upshifting during coasting.
  • a control device for an automatic transmission that includes a speed change mechanism and a friction clutch provided between the engine and the speed change mechanism, and the automatic transmission is raised during coasting.
  • a control device for an automatic transmission executes the upshift after the friction clutch is brought into a slip state to reduce the engine speed to a target engine speed.
  • a control method for an automatic transmission comprising a speed change mechanism and a friction clutch provided between the engine and the speed change mechanism, wherein the automatic speed change is performed during coasting.
  • a control method for an automatic transmission that executes the up-shift after the friction clutch is brought into a slip state to reduce the engine speed to a target engine speed.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of the automatic transmission.
  • FIG. 3 is a view showing a plurality of cam grooves.
  • FIG. 4 is a flowchart showing the contents of control performed by the ATCU.
  • FIG. 5 is a time chart for explaining a state in which an upshift is executed during coasting.
  • FIG. 1 is a schematic configuration diagram of the vehicle 100.
  • the vehicle 100 includes an engine 50.
  • the power of the engine 50 is transmitted to the drive wheels 52 via the automatic transmission 1 and the differential device 51.
  • the ATCU 10 is an automatic transmission control unit as a control device that controls the automatic transmission 1.
  • the ATCU 10 receives signals from an accelerator opening sensor 11 that detects an accelerator opening APO that is an operation amount of an accelerator pedal, a vehicle speed sensor 12 that detects a vehicle speed VSP, and the like.
  • the ATCU 10 is connected to the ECU 20 so as to be able to communicate with each other.
  • an integrated control unit that integrates both functions may be provided.
  • the function of the ATCU 10 may be shared by the ECU 20 and other control units. The same applies to the ECU 20.
  • Each control unit can be constituted by a microcomputer equipped with a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • FIG. 2 is a schematic configuration diagram of the automatic transmission 1.
  • the automatic transmission 1 includes a speed change mechanism 2, a check mechanism 3, a drive motor 4, and a friction clutch CL provided between the engine 50 and a hydraulic circuit (not shown) that supplies a hydraulic pressure Pc to the friction clutch CL. And).
  • the automatic transmission 1 has a plurality of shift stages including first, second, and third speeds.
  • the transmission mechanism 2 includes a shift drum 21, a rod mechanism 22, and a transmission gear unit 23.
  • the shift drum 21 has a plurality of cam grooves 211.
  • the plurality of cam grooves 211 have a cam shape corresponding to the shift pattern.
  • the shift pattern is a sequential shift pattern in which the shift speed is sequentially achieved in one operation direction. Since the shift drum 21 has a plurality of cam grooves 211, the shift drum 21 is a switching element in which a shift pattern is set.
  • the shift drum 21 has a plurality of switching positions corresponding to each gear position and neutral. Specifically, the plurality of switching positions are, in order, a first speed position GP1, a neutral position NP, a second speed position GP2, a neutral position NP, and a third speed position GP3.
  • the neutral position NP is set to be adjacent to the shift lower position LP and the shift upper position UP during upshifting. For example, in the upshift from the first speed to the second speed, the first speed position GP1 becomes the lower shift position LP and the second speed position GP2 becomes the upper shift position UP.
  • the rod mechanism 22 includes a plurality of shift rods 221, a plurality of shift arms 222, and a plurality of shift forks 223.
  • the specific shapes of the plurality of shift rods 221 may be different from each other. The same applies to the plurality of shift arms 222, the plurality of shift forks 223, and the plurality of lock prevention mechanisms 236 described later.
  • the shift rod 221 is provided for each cam groove 211.
  • Each shift rod 221 is provided with a shift arm 222 and a shift fork 223.
  • the shift arm 222 is engaged with the cam groove 211, and the shift fork 223 is engaged with a sleeve 235 described later.
  • the transmission gear unit 23 includes a main shaft 231, a counter shaft 232, a plurality of gears 233, a plurality of hubs 234, a plurality of sleeves 235, and a plurality of lock prevention mechanisms 236.
  • the plurality of gears 233 include a first speed gear 233a, a second speed gear 233b, and a third speed gear 233c.
  • the plurality of hubs 234 include a first speed hub 234a, a second speed hub 234b, and a third speed hub 234c, and the plurality of sleeves 235 include a first speed sleeve 235a, a second speed sleeve 235b, and 235c.
  • the power from the engine 50 is input to the main shaft 231 via the friction clutch CL.
  • the counter shaft 232 is provided in parallel with the main shaft 231 and has a plurality of counter shaft gear portions that mesh with the plurality of gears 233. Power is transmitted to the countershaft 232 from the main shaft 231 via a gear in the achieved gear stage among the plurality of gears 233.
  • Each of the plurality of gears 233 is provided on the main shaft 231 so as to be relatively rotatable.
  • Each of the plurality of gears 233 includes a first dog clutch portion having a plurality of dog teeth composed of external teeth.
  • the first dog clutch portion constitutes a clutch element that is not engaged.
  • Each of the plurality of hubs 234 is provided on the main shaft 231 and rotates together with the main shaft 231.
  • the hub 234 may be a part of the main shaft 231 or may be fixed to the main shaft 231 as a member different from the main shaft 231.
  • a sleeve 235 is provided on the outer periphery of each of the plurality of hubs 234.
  • the sleeve 235 is provided so as to be movable in the axial direction of the main shaft 231 while rotating together with the corresponding hub 234.
  • the hub 234 and the sleeve 235 corresponding to each other can be engaged by, for example, a spline.
  • a shift fork 223 is engaged with the outer periphery of each of the plurality of sleeves 235 while allowing the sleeve 235 to rotate.
  • Each of the plurality of sleeves 235 is moved in the axial direction of the main shaft 231 by the shift fork 223.
  • Each of the plurality of sleeves 235 includes a second dog clutch portion.
  • the second dog clutch portion is a clutch element on the side to be engaged, and moves in the axial direction of the main shaft 231 to engage and release the corresponding first dog clutch portion.
  • the second dog clutch part constitutes the dog clutch DG together with the corresponding first dog clutch part.
  • the automatic transmission 1 has a plurality of dog clutches DG.
  • the plurality of dog clutches DG include a first speed dog clutch DG1, a second speed dog clutch DG2, and a third speed dog clutch DG3 for achieving the first speed, the second speed, and the third speed.
  • the corresponding gear 233 rotates together with the main shaft 231 and the gear position is achieved.
  • the first speed dog clutch DG1 is engaged, the second speed, third speed dog clutches DG2, and DG3 are each released, and the first gear is achieved.
  • the lock prevention mechanism 236 is provided on the hub 234 and the sleeve 235 of the shift stage that constitutes the shift lower stage at least during the upshift among the plurality of shift stages.
  • the lock prevention mechanism 236 will be described later.
  • the check mechanism 3 holds the speed change mechanism 2 at the switching position. Specifically, the check mechanism 3 is provided in the shift drum 21 and holds the shift drum 21 at the switching position. Thereby, the transmission mechanism 2 as a whole is also held at the switching position.
  • the check mechanism 3 includes a check ball 31, a plurality of check grooves 32, and a spring 33.
  • the check ball 31 holds the shift drum 21 in a state of being engaged with any one of the plurality of check grooves 32. Specifically, the check ball 31 is provided so as to hold a check groove 32 corresponding to the current switching position. In FIG. 2, since the current switching position of the shift drum 21 is the first speed position GP1, the check ball 31 holds a check groove 32 corresponding to the first speed position GP1.
  • the plurality of check grooves 32 are provided along the operation direction of the shift drum 21.
  • the check groove 32 is provided corresponding to each switching position. Specifically, the check groove 32 is provided at the same position as each switching position in the rotation direction of the shift drum 21.
  • the plurality of check grooves 32 includes a check groove 321 that is a first check groove and a check groove 322 that is a second check groove.
  • the check groove 321 is a check groove 32 corresponding to the first speed position GP1 to the third speed position GP3, that is, a check groove 32 corresponding to each gear position.
  • the check groove 322 is a check groove 32 corresponding to the neutral position NP.
  • the spring 33 constitutes a biasing member that biases the check ball 31.
  • the drive motor 4 constitutes a drive source that drives the speed change mechanism 2 so as to change the switching position. Specifically, the drive motor 4 drives the shift mechanism 21 by driving the shift drum 21 in this way.
  • the drive motor 4 is controlled by the ATCU 10.
  • the ATCU 10 outputs a control command value to the hydraulic circuit and adjusts the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL. Thereby, the engagement state of the friction clutch CL is controlled.
  • the ATCU 10 receives signals from the accelerator opening sensor 11, the vehicle speed sensor 12 and the like described above, and, as shown in FIG. 1, a shift switch 13 for detecting a shift operation with respect to a sequential shift lever, a shift drum A signal from the position sensor 14 for detecting the position 21 is input. Specifically, the position sensor 14 detects a shift drum rotation angle representing the rotation position of the shift drum 21.
  • the ATCU 10 rotates the shift drum 21 in the upshift driving direction SUD shown in FIG. 2 when the upshift operation is performed, and the shift drum 21 in the downshift driving direction SDD when the downshift operation is performed. Rotate.
  • FIG. 3 is a view showing a plurality of cam grooves 211.
  • an upshift from the first speed to the second speed will be mainly described as an example, but the upshift from the second speed to the third speed is the same as the upshift from the first speed to the second speed.
  • the plurality of cam grooves 211 specifically includes a first speed cam groove 211a, a second speed cam groove 211b, and a third speed cam groove for achieving a first speed, a second speed, and a third speed. 211c.
  • Each of the plurality of cam grooves 211 includes a meshing groove D1 that positions the corresponding sleeve 235 at the meshing position, a meshing release groove D2 that positions the corresponding sleeve 235 at the meshing release position, the meshing groove D1, and the meshing release groove D2.
  • Transition groove D3 connecting the two.
  • a transition groove D3 is provided from the neutral position NP to an intermediate position between the neutral position NP and the second speed position GP2.
  • the first speed cam groove 211a is provided with a free groove D31 so that the set range in the rotation direction of the shift drum 21 overlaps with the transition groove D3.
  • the free groove D31 is a shift upper stage position UP side groove wall part so that the setting range in the rotation direction of the shift drum 21 does not overlap between the shift upper stage position UP side groove wall part and the shift lower stage position LP side groove wall part of the transition groove D3. Is shifted to the upper shift position UP side.
  • the free groove D31 has a shape in which the meshing groove D1 and the meshing release groove D2 are connected in the width direction of the cam groove 211 and integrated. In the free groove D31, the position of the shift arm 222 is not restricted by the cam groove 211 between the position corresponding to the meshing groove D1 and the position corresponding to the meshing release groove D2.
  • the shift arm 222 that has been positioned in the meshing groove D1 is a position corresponding to the meshing release groove D2. Without moving to the position, it remains in the position corresponding to the meshing groove D1, and the upshift is continued.
  • the meshing of the second speed dog clutch DG2 is started when the shift arm 222 passes through the transition groove D3 in the second speed cam groove 211b.
  • the first speed dog clutch DG1 and the second speed dog clutch DG2 are both engaged. That is, simultaneous engagement of the first speed dog clutch DG1 and the second speed dog clutch DG2 occurs.
  • the lower-stage lock prevention mechanism 236 provided for the first speed causes the first speed sleeve 235a to generate an axial force in the mesh release direction while allowing relative rotation with respect to the second speed sleeve 235b.
  • the lock prevention mechanism 236 allows relative rotation between the upper gear sleeve 235 and the lower gear sleeve 235 when the upper gear 235 and the lower gear 235 are simultaneously meshed.
  • the lock prevention mechanism 236 allows the relative rotation of the dog clutch DG in the lower gear to be shifted in accordance with the engagement of the dog clutch DG in the upper gear while allowing the relative rotation.
  • Generate axial force here acts on the second dog clutch portion of the first-speed sleeve 235a.
  • the shift arm 222 is positioned in the free groove D31.
  • the shift arm 222 can move to the position corresponding to the mesh release groove D2 by the first speed cam groove 211a, the first speed sleeve 235a is moved to the mesh release position by the axial force, whereby the first speed dog clutch DG1. Is released.
  • the mesh release mechanism RM simultaneously meshes each of the lower gear dog clutch DG corresponding to the lower gear at the time of upshift and the upper gear dog clutch DG corresponding to the upper gear of the plurality of dog clutches DG. Further, the mesh release mechanism RM releases the mesh of the lower gear dog clutch DG with torque acting on the lower gear dog clutch DG according to the mesh of the upper gear clutch DG.
  • the automatic transmission 1 is configured as a seamless automatic transmission by including a mesh release mechanism RM.
  • the upshift is performed by simultaneous meshing as described above, so that the power from the engine 50 to the drive wheels 52 can be prevented from being interrupted by the upshift.
  • the mesh release mechanism RM can also grasp that the transmission gear unit 23 including the lock prevention mechanism 236 is configured together with the shift drum 21 and the rod mechanism 22.
  • the downshift is as follows. That is, the friction clutch CL is temporarily released during the downshift.
  • the automatic transmission 1 is set to the neutral state without performing simultaneous meshing, and in this state, the synchronous control of the dog clutch DG on the lower speed side is performed.
  • the friction clutch CL is connected, and the engine 50 synchronizes the rotation of the dog clutch DG.
  • the friction clutch CL is released and the dog clutch DG is engaged.
  • the gear position of the automatic transmission 1 is determined based on a map using the accelerator opening APO and the vehicle speed VSP as parameters. For this reason, in the vehicle 100, for example, when the vehicle is traveling on a downhill road, an upshift may be executed.
  • the torque (engine torque) Te of the engine 50 is reduced to cancel the inertia torque Tiner generated with the change of the engine rotation speed Ne, thereby suppressing the shift shock. It is done. Further, when the engine torque Te cannot be reduced, it is conceivable to suppress the occurrence of inertia torque by slowing down the shift speed.
  • the ATCU 10 executes the control shown in the flowchart of FIG. 4 during traveling, thereby suppressing the occurrence of inertia torque when upshifting during coasting.
  • step S11 If the ATCU 10 determines that the vehicle 100 is traveling on the coast, the process proceeds to step S12. If it is determined that the vehicle 100 is not coasting, the process of step S11 is repeated.
  • step S12 it is determined whether the upshift condition is satisfied. As described above, the determination in step S12 is performed based on a map using the accelerator opening APO and the vehicle speed VSP as parameters.
  • step S13 If the ATCU 10 determines that the upshift condition is satisfied, the process proceeds to step S13. If it is determined that the upshift condition is not satisfied, the process returns to step S11 and the process is repeated.
  • step S13 the ATCU 10 determines whether the engine torque Te is larger than a predetermined lower limit torque.
  • the predetermined lower limit torque is a lower limit value of the torque that can cancel the inertia torque Tiner generated with the change in the engine rotation speed Ne by reducing the engine torque Te when upshifting. That is, when the engine torque Te is larger than the lower limit torque, there is a reduction amount of the engine torque Te that can offset the inertia torque Tiner. On the other hand, when the engine torque Te is equal to or lower than the lower limit torque, the engine torque Te is less likely to be reduced, so that the inertia torque Niner cannot be offset as intended.
  • step S14 If the ATCU 10 determines that the engine torque Te is greater than the lower limit torque, the process proceeds to step S14. If it is determined that the engine torque Te is equal to or lower than the lower limit torque, the process proceeds to step S15. Note that when the fuel injection is stopped during coasting, the engine torque Te is equal to or lower than the lower limit torque.
  • step S14 the ATCU 10 performs an upshift by reducing the engine torque Te.
  • step S15 the ATCU 10 puts the friction clutch CL in the slip state. Specifically, a control command value is output to the hydraulic circuit, and the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL is reduced.
  • the control command value is set so that the torque capacity of the friction clutch CL is slightly lower than the engine torque Te. As a result, the friction clutch CL enters a slip state, and the engine speed Ne decreases.
  • step S16 the ATCU 10 calculates the target engine rotation speed TNe.
  • the target engine rotational speed TNe is obtained by multiplying the rotational speed of the counter shaft 232 that is the output shaft of the automatic transmission 1 by the through speed ratio of the automatic transmission 1 after the upshift.
  • step S17 the ATCU 10 determines whether the engine speed Ne is equal to or lower than the target engine speed TNe.
  • step S18 If the ATCU 10 determines that the engine rotational speed Ne has become equal to or lower than the target engine rotational speed TNe, the process proceeds to step S18. If it is determined that the engine rotational speed Ne is higher than the target engine rotational speed TNe, the process of step S17 is repeated.
  • step S18 the ATCU 10 performs an upshift.
  • step S19 the ATCU 10 puts the friction clutch CL in the engaged state. Specifically, the control command value is output to the hydraulic circuit, and the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL is increased to the engagement pressure.
  • the ATCU 10 of this embodiment performs an upshift during coasting, if the engine torque Te cannot be offset by reducing the engine torque Te, the engine speed Ne is reduced to the target engine speed TNe. And then upshift.
  • the occurrence of the inertia torque Tiner when the upshift is executed can be suppressed. Therefore, the shift shock at the time of upshift can be suppressed. Further, in the present embodiment, since the friction clutch CL is in the slip state even during the upshift, the occurrence of the shift shock is further suppressed.
  • the driving force of the vehicle 100 fluctuates to the plus side (forward side) due to the influence of the inertia torque inside the automatic transmission 1.
  • the inertia itself in the automatic transmission 1 is very small as compared with the engine 50, the fluctuation of the driving force, that is, the shift shock is greatly compared with the case where the upshift is executed without reducing the engine rotation speed Ne. To be suppressed.
  • the friction clutch CL is slipped and the engine rotational speed Ne is set to the target engine rotational speed TNe. Perform an upshift after lowering.
  • the engine rotation speed Ne is reduced before upshifting, so that it is possible to suppress the occurrence of the inertia torque Tiner of the engine 50 when the upshift is executed. Therefore, the shift shock can be suppressed.
  • the automatic transmission 1 includes a plurality of dog clutches DG that achieves a gear position, a dog clutch DG that is a lower gear position corresponding to a lower gear position during an upshift, and an upper gear position when shifting up.
  • a mesh release mechanism that simultaneously meshes the corresponding dog clutches DG at the upper gear and releases the mesh of the lower dog clutch DG with a torque acting on the lower dog clutch DG according to the mesh of the upper gear clutch DG.
  • RM a seamless automatic transmission.
  • the automatic transmission 1 is a seamless automatic transmission.
  • the automatic transmission 1 is a general stepped automatic transmission, a sequential automatic transmission that performs a shift by driving a shift mechanism in which a shift stage is set by a dog clutch and a sequential shift pattern is set by an actuator.
  • the present invention can also be applied to a continuously variable transmission or the like that can control the shift speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

When upshifting an automatic transmission while coasting, a control device executes the upshifting after putting a friction clutch in a slipping state and reducing the engine rotation speed to the target engine rotation speed.

Description

自動変速機の制御装置及び自動変速機の制御方法Control device for automatic transmission and control method for automatic transmission
 本発明は、自動変速機の制御装置及び自動変速機の制御方法に関する。 The present invention relates to an automatic transmission control device and an automatic transmission control method.
 JP2009-298199Aには、無段変速機をアップシフトする際に、エンジントルクを低下させることで、エンジン回転速度の低下に伴って発生するイナーシャトルクを相殺することが開示されている。これによれば、アップシフトに伴う変速ショックが抑制される。 JP 2009-298199A discloses that when the continuously variable transmission is upshifted, the engine torque is reduced to cancel the inertia torque that occurs as the engine speed decreases. According to this, the shift shock accompanying the upshift is suppressed.
 また、JP2009-298199Aには、エンジントルクを低下させることができない場合は、変速速度を遅くすることでイナーシャトルクの発生を抑制することが開示されている。 JP2009-298199A discloses that when the engine torque cannot be reduced, the occurrence of inertia torque is suppressed by slowing down the shift speed.
 しかしながら、JP2009-298199Aに開示の技術では、一般的な有段自動変速機やシームレス自動変速機(例えば、JP2012-127471A参照)等といった変速速度を細かく制御することが難しい自動変速機を備えた車両において、コーストアップ走行中であってエンジンのトルクを低下させることができない場合は、イナーシャトルクの発生を抑制できないという問題がある。 However, according to the technology disclosed in JP2009-298199A, a vehicle having an automatic transmission in which it is difficult to finely control a shift speed such as a general stepped automatic transmission or a seamless automatic transmission (for example, refer to JP2012-127471A). However, if the engine torque cannot be reduced during coast-up running, there is a problem that the occurrence of inertia torque cannot be suppressed.
 本発明は、コースト走行中にアップシフトする際のエンジンのイナーシャトルクの発生を抑制することを目的とする。 An object of the present invention is to suppress the generation of an inertia torque of an engine when upshifting during coasting.
 本発明のある態様によれば、変速機構と、エンジンと前記変速機構との間に設けられる摩擦クラッチと、を備える自動変速機の制御装置であって、コースト走行中に前記自動変速機をアップシフトする際は、前記摩擦クラッチをスリップ状態にして前記エンジンの回転速度を目標エンジン回転速度まで低下させてから前記アップシフトを実行する、自動変速機の制御装置が提供される。 According to an aspect of the present invention, there is provided a control device for an automatic transmission that includes a speed change mechanism and a friction clutch provided between the engine and the speed change mechanism, and the automatic transmission is raised during coasting. When shifting, a control device for an automatic transmission is provided that executes the upshift after the friction clutch is brought into a slip state to reduce the engine speed to a target engine speed.
 また、本発明の別の態様によれば、変速機構と、エンジンと前記変速機構との間に設けられる摩擦クラッチと、を備える自動変速機の制御方法であって、コースト走行中に前記自動変速機をアップシフトする際は、前記摩擦クラッチをスリップ状態にして前記エンジンの回転速度を目標エンジン回転速度まで低下させてから前記アップシフトを実行する、自動変速機の制御方法が提供される。 According to another aspect of the present invention, there is provided a control method for an automatic transmission comprising a speed change mechanism and a friction clutch provided between the engine and the speed change mechanism, wherein the automatic speed change is performed during coasting. When up-shifting the machine, there is provided a control method for an automatic transmission that executes the up-shift after the friction clutch is brought into a slip state to reduce the engine speed to a target engine speed.
 これらの態様では、コースト走行中は、アップシフトする前にエンジンの回転速度を低下させるので、アップシフトを実行したときのエンジンのイナーシャトルクの発生を抑制できる。よって、変速ショックを抑制できる。 In these modes, during coasting, the engine speed is reduced before upshifting, so that it is possible to suppress the occurrence of inertia torque in the engine when upshifting is performed. Therefore, the shift shock can be suppressed.
図1は、本発明の実施形態に係る車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle according to an embodiment of the present invention. 図2は、自動変速機の概略構成図である。FIG. 2 is a schematic configuration diagram of the automatic transmission. 図3は、複数のカム溝を示す図である。FIG. 3 is a view showing a plurality of cam grooves. 図4は、ATCUが行う制御の内容を示すフローチャートである。FIG. 4 is a flowchart showing the contents of control performed by the ATCU. 図5は、コースト走行中にアップシフトが実行される様子を説明するためのタイムチャートである。FIG. 5 is a time chart for explaining a state in which an upshift is executed during coasting.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、車両100の概略構成図である。車両100は、エンジン50を備える。エンジン50の動力は、自動変速機1、差動装置51を介して、駆動輪52へと伝達される。 FIG. 1 is a schematic configuration diagram of the vehicle 100. The vehicle 100 includes an engine 50. The power of the engine 50 is transmitted to the drive wheels 52 via the automatic transmission 1 and the differential device 51.
 ATCU10は、自動変速機1を制御する制御装置としての自動変速機コントロールユニットである。ATCU10には、アクセルペダルの操作量であるアクセル開度APOを検出するアクセル開度センサ11、車速VSPを検出する車速センサ12等からの信号が入力される。ATCU10は、ECU20と相互通信可能に接続される。 The ATCU 10 is an automatic transmission control unit as a control device that controls the automatic transmission 1. The ATCU 10 receives signals from an accelerator opening sensor 11 that detects an accelerator opening APO that is an operation amount of an accelerator pedal, a vehicle speed sensor 12 that detects a vehicle speed VSP, and the like. The ATCU 10 is connected to the ECU 20 so as to be able to communicate with each other.
 ECU20は、エンジン50を制御するエンジンコントロールユニットである。ECU20は、エンジン50の回転速度(エンジン回転速度)Ne、スロットル開度TVO等をATCU10に出力する。 The ECU 20 is an engine control unit that controls the engine 50. The ECU 20 outputs the rotational speed (engine rotational speed) Ne of the engine 50, the throttle opening degree TVO, and the like to the ATCU 10.
 なお、ATCU10とECU20とを個別に設けるのではなく、両者の機能を統合した統合コントロールユニットを設けてもよい。また、ATCU10の機能をECU20や他のコントロールユニットに分担させてもよい。ECU20についても同様である。 In addition, instead of providing the ATCU 10 and the ECU 20 separately, an integrated control unit that integrates both functions may be provided. Further, the function of the ATCU 10 may be shared by the ECU 20 and other control units. The same applies to the ECU 20.
 各コントロールユニットは、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インターフェース(I/Oインターフェース)を備えたマイクロコンピュータで構成することが可能である。各コントロールユニットをそれぞれ複数のマイクロコンピュータで構成することも可能である。 Each control unit can be constituted by a microcomputer equipped with a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM) and an input / output interface (I / O interface). Each control unit can be composed of a plurality of microcomputers.
 図2は、自動変速機1の概略構成図である。図2では、以下で説明するシフトドラム21及びチェック機構3を展開した状態で示す。自動変速機1は、変速機構2と、チェック機構3と、駆動モータ4と、エンジン50との間に設けられた摩擦クラッチCLと、摩擦クラッチCLに油圧Pcを供給する油圧回路(図示せず)と、を備える。自動変速機1は、1速、2速及び3速の変速段を含む複数の変速段を有する。 FIG. 2 is a schematic configuration diagram of the automatic transmission 1. In FIG. 2, the shift drum 21 and the check mechanism 3 described below are shown in a developed state. The automatic transmission 1 includes a speed change mechanism 2, a check mechanism 3, a drive motor 4, and a friction clutch CL provided between the engine 50 and a hydraulic circuit (not shown) that supplies a hydraulic pressure Pc to the friction clutch CL. And). The automatic transmission 1 has a plurality of shift stages including first, second, and third speeds.
 変速機構2は、シフトドラム21と、ロッド機構22と、変速ギア部23と、を備える。シフトドラム21は、複数のカム溝211を有する。 The transmission mechanism 2 includes a shift drum 21, a rod mechanism 22, and a transmission gear unit 23. The shift drum 21 has a plurality of cam grooves 211.
 複数のカム溝211は、シフトパターンに応じたカム形状を有する。シフトパターンは具体的には、一の操作方向で変速段が順次達成されるシーケンシャルシフトパターンである。シフトドラム21は、複数のカム溝211を有することで、シフトパターンが設定された切替要素とされる。 The plurality of cam grooves 211 have a cam shape corresponding to the shift pattern. Specifically, the shift pattern is a sequential shift pattern in which the shift speed is sequentially achieved in one operation direction. Since the shift drum 21 has a plurality of cam grooves 211, the shift drum 21 is a switching element in which a shift pattern is set.
 シフトドラム21は、各変速段及びニュートラルに応じた複数の切替位置を有する。複数の切替位置は具体的には順に、1速位置GP1、ニュートラル位置NP、2速位置GP2、ニュートラル位置NP、3速位置GP3となっている。 The shift drum 21 has a plurality of switching positions corresponding to each gear position and neutral. Specifically, the plurality of switching positions are, in order, a first speed position GP1, a neutral position NP, a second speed position GP2, a neutral position NP, and a third speed position GP3.
 ニュートラル位置NPは、アップシフト時の変速下段位置LP及び変速上段位置UPと隣り合うように設定される。例えば、1速から2速へのアップシフトでは、1速位置GP1が変速下段位置LPとなり、2速位置GP2が変速上段位置UPとなる。 The neutral position NP is set to be adjacent to the shift lower position LP and the shift upper position UP during upshifting. For example, in the upshift from the first speed to the second speed, the first speed position GP1 becomes the lower shift position LP and the second speed position GP2 becomes the upper shift position UP.
 ロッド機構22は、複数のシフトロッド221、複数のシフトアーム222及び複数のシフトフォーク223を有する。複数のシフトロッド221の具体的形状は、互いに異なっていてよい。複数のシフトアーム222、複数のシフトフォーク223及び後述する複数のロック防止機構236についても同様である。 The rod mechanism 22 includes a plurality of shift rods 221, a plurality of shift arms 222, and a plurality of shift forks 223. The specific shapes of the plurality of shift rods 221 may be different from each other. The same applies to the plurality of shift arms 222, the plurality of shift forks 223, and the plurality of lock prevention mechanisms 236 described later.
 シフトロッド221は、カム溝211毎に設けられる。各シフトロッド221には、シフトアーム222とシフトフォーク223とが設けられる。シフトアーム222は、カム溝211と係合し、シフトフォーク223は、後述するスリーブ235と係合する。 The shift rod 221 is provided for each cam groove 211. Each shift rod 221 is provided with a shift arm 222 and a shift fork 223. The shift arm 222 is engaged with the cam groove 211, and the shift fork 223 is engaged with a sleeve 235 described later.
 変速ギア部23は、メインシャフト231と、カウンターシャフト232と、複数のギア233と、複数のハブ234と、複数のスリーブ235と、複数のロック防止機構236とを備える。複数のギア233は、1速ギア233a、2速ギア233b、3速ギア233cを含む。また、複数のハブ234は、1速ハブ234a、2速ハブ234b、3速ハブ234cを含み、複数のスリーブ235は、1速スリーブ235a、2速スリーブ235b、235cを含む。 The transmission gear unit 23 includes a main shaft 231, a counter shaft 232, a plurality of gears 233, a plurality of hubs 234, a plurality of sleeves 235, and a plurality of lock prevention mechanisms 236. The plurality of gears 233 include a first speed gear 233a, a second speed gear 233b, and a third speed gear 233c. The plurality of hubs 234 include a first speed hub 234a, a second speed hub 234b, and a third speed hub 234c, and the plurality of sleeves 235 include a first speed sleeve 235a, a second speed sleeve 235b, and 235c.
 メインシャフト231には、エンジン50からの動力が摩擦クラッチCLを介して入力される。カウンターシャフト232は、メインシャフト231と並列に設けられ、複数のギア233と噛合う複数のカウンターシャフトギア部を有する。カウンターシャフト232には、複数のギア233のうち達成状態にある変速段のギアを介してメインシャフト231から動力が伝達される。 The power from the engine 50 is input to the main shaft 231 via the friction clutch CL. The counter shaft 232 is provided in parallel with the main shaft 231 and has a plurality of counter shaft gear portions that mesh with the plurality of gears 233. Power is transmitted to the countershaft 232 from the main shaft 231 via a gear in the achieved gear stage among the plurality of gears 233.
 複数のギア233それぞれは、メインシャフト231に相対回転可能に設けられる。複数のギア233それぞれは、外歯からなる複数のドグ歯を有する第1ドグクラッチ部を備える。第1ドグクラッチ部は、噛合動作されない側のクラッチ要素を構成する。 Each of the plurality of gears 233 is provided on the main shaft 231 so as to be relatively rotatable. Each of the plurality of gears 233 includes a first dog clutch portion having a plurality of dog teeth composed of external teeth. The first dog clutch portion constitutes a clutch element that is not engaged.
 複数のハブ234それぞれは、メインシャフト231に設けられ、メインシャフト231とともに回転する。ハブ234はメインシャフト231の一部であってもよく、メインシャフト231とは別の部材としてメインシャフト231に固定されてもよい。 Each of the plurality of hubs 234 is provided on the main shaft 231 and rotates together with the main shaft 231. The hub 234 may be a part of the main shaft 231 or may be fixed to the main shaft 231 as a member different from the main shaft 231.
 複数のハブ234それぞれの外周には、スリーブ235が設けられる。スリーブ235は、対応するハブ234とともに回転する一方、メインシャフト231の軸方向へ移動可能に設けられる。互いに対応するハブ234及びスリーブ235は例えば、スプラインで係合させることができる。複数のスリーブ235それぞれの外周には、シフトフォーク223がスリーブ235の回転を許容しながら係合する。複数のスリーブ235それぞれは、シフトフォーク223によってメインシャフト231の軸方向に移動される。 A sleeve 235 is provided on the outer periphery of each of the plurality of hubs 234. The sleeve 235 is provided so as to be movable in the axial direction of the main shaft 231 while rotating together with the corresponding hub 234. The hub 234 and the sleeve 235 corresponding to each other can be engaged by, for example, a spline. A shift fork 223 is engaged with the outer periphery of each of the plurality of sleeves 235 while allowing the sleeve 235 to rotate. Each of the plurality of sleeves 235 is moved in the axial direction of the main shaft 231 by the shift fork 223.
 複数のスリーブ235それぞれは、第2ドグクラッチ部を備える。第2ドグクラッチ部は、噛合動作される側のクラッチ要素であり、メインシャフト231の軸方向に移動して、対応する第1ドグクラッチ部との噛合い、噛合いの解除を行う。第2ドグクラッチ部は、対応する第1ドグクラッチ部とともにドグクラッチDGを構成する。 Each of the plurality of sleeves 235 includes a second dog clutch portion. The second dog clutch portion is a clutch element on the side to be engaged, and moves in the axial direction of the main shaft 231 to engage and release the corresponding first dog clutch portion. The second dog clutch part constitutes the dog clutch DG together with the corresponding first dog clutch part.
 自動変速機1は、複数のドグクラッチDGを有する。複数のドグクラッチDGは、1速、2速、3速の変速段を達成するための1速ドグクラッチDG1、2速ドグクラッチDG2、3速ドグクラッチDG3を含む。複数のドグクラッチDGのうちいずれかが噛合状態となると、対応するギア233がメインシャフト231とともに回転し、変速段が達成される。図2では、1速ドグクラッチDG1が噛合状態、2速、3速ドグクラッチDG2、DG3それぞれが解放状態となっており、1速の変速段が達成されている。 The automatic transmission 1 has a plurality of dog clutches DG. The plurality of dog clutches DG include a first speed dog clutch DG1, a second speed dog clutch DG2, and a third speed dog clutch DG3 for achieving the first speed, the second speed, and the third speed. When one of the plurality of dog clutches DG is engaged, the corresponding gear 233 rotates together with the main shaft 231 and the gear position is achieved. In FIG. 2, the first speed dog clutch DG1 is engaged, the second speed, third speed dog clutches DG2, and DG3 are each released, and the first gear is achieved.
 ロック防止機構236は、複数の変速段のうち少なくともアップシフト時に変速下段を構成する変速段のハブ234及びスリーブ235に設けられる。ロック防止機構236については後述する。 The lock prevention mechanism 236 is provided on the hub 234 and the sleeve 235 of the shift stage that constitutes the shift lower stage at least during the upshift among the plurality of shift stages. The lock prevention mechanism 236 will be described later.
 チェック機構3は、変速機構2を切替位置で保持する。具体的にはチェック機構3は、シフトドラム21に設けられ、シフトドラム21を切替位置で保持する。これにより、変速機構2全体としても切替位置で保持される。チェック機構3は、チェックボール31と、複数のチェック溝32と、スプリング33とを備える。 The check mechanism 3 holds the speed change mechanism 2 at the switching position. Specifically, the check mechanism 3 is provided in the shift drum 21 and holds the shift drum 21 at the switching position. Thereby, the transmission mechanism 2 as a whole is also held at the switching position. The check mechanism 3 includes a check ball 31, a plurality of check grooves 32, and a spring 33.
 チェックボール31は、複数のチェック溝32のうちいずれかと係合した状態でシフトドラム21を保持する。チェックボール31は具体的には、現在の切替位置に対応するチェック溝32を保持するように設けられる。図2では、シフトドラム21の現在の切替位置が1速位置GP1のため、チェックボール31が1速位置GP1に対応するチェック溝32を保持している。 The check ball 31 holds the shift drum 21 in a state of being engaged with any one of the plurality of check grooves 32. Specifically, the check ball 31 is provided so as to hold a check groove 32 corresponding to the current switching position. In FIG. 2, since the current switching position of the shift drum 21 is the first speed position GP1, the check ball 31 holds a check groove 32 corresponding to the first speed position GP1.
 複数のチェック溝32は、シフトドラム21の作動方向に沿って設けられる。チェック溝32は、各切替位置に対応させて設けられる。具体的にはチェック溝32は、シフトドラム21の回転方向において各切替位置と同じ位置に設けられる。 The plurality of check grooves 32 are provided along the operation direction of the shift drum 21. The check groove 32 is provided corresponding to each switching position. Specifically, the check groove 32 is provided at the same position as each switching position in the rotation direction of the shift drum 21.
 複数のチェック溝32は、第1のチェック溝であるチェック溝321と、第2のチェック溝であるチェック溝322とを有して構成される。チェック溝321は、1速位置GP1から3速位置GP3に対応するチェック溝32、つまり各変速段に対応するチェック溝32である。チェック溝322は、ニュートラル位置NPに対応するチェック溝32である。スプリング33は、チェックボール31を付勢する付勢部材を構成する。 The plurality of check grooves 32 includes a check groove 321 that is a first check groove and a check groove 322 that is a second check groove. The check groove 321 is a check groove 32 corresponding to the first speed position GP1 to the third speed position GP3, that is, a check groove 32 corresponding to each gear position. The check groove 322 is a check groove 32 corresponding to the neutral position NP. The spring 33 constitutes a biasing member that biases the check ball 31.
 駆動モータ4は、切替位置を変更するように変速機構2を駆動する駆動源を構成する。駆動モータ4は具体的には、シフトドラム21を駆動することで、このように変速機構2を駆動する。駆動モータ4は、ATCU10によって制御される。 The drive motor 4 constitutes a drive source that drives the speed change mechanism 2 so as to change the switching position. Specifically, the drive motor 4 drives the shift mechanism 21 by driving the shift drum 21 in this way. The drive motor 4 is controlled by the ATCU 10.
 また、ATCU10は、油圧回路に制御指令値を出力し、油圧回路から摩擦クラッチCLに供給される油圧Pcを調整する。これにより、摩擦クラッチCLの締結状態が制御される。 Further, the ATCU 10 outputs a control command value to the hydraulic circuit and adjusts the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL. Thereby, the engagement state of the friction clutch CL is controlled.
 ATCU10には、上述したアクセル開度センサ11、車速センサ12等からの信号が入力される他に、図1に示すように、シーケンシャル式のシフトレバーに対する変速操作を検出するシフトスイッチ13、シフトドラム21の位置を検出する位置センサ14からの信号が入力される。位置センサ14は具体的には、シフトドラム21の回転位置を表すシフトドラム回転角を検出する。 The ATCU 10 receives signals from the accelerator opening sensor 11, the vehicle speed sensor 12 and the like described above, and, as shown in FIG. 1, a shift switch 13 for detecting a shift operation with respect to a sequential shift lever, a shift drum A signal from the position sensor 14 for detecting the position 21 is input. Specifically, the position sensor 14 detects a shift drum rotation angle representing the rotation position of the shift drum 21.
 ATCU10は、アップシフト操作が行われた場合に、図2に示すシフトアップ駆動方向SUDにシフトドラム21を回転させ、ダウンシフト操作が行われた場合に、シフトダウン駆動方向SDDにシフトドラム21を回転させる。 The ATCU 10 rotates the shift drum 21 in the upshift driving direction SUD shown in FIG. 2 when the upshift operation is performed, and the shift drum 21 in the downshift driving direction SDD when the downshift operation is performed. Rotate.
 図3は、複数のカム溝211を示す図である。なお、以下では、主に1速から2速へのアップシフトを例にして説明するが、2速から3速へのアップシフトについても、1速から2速へのアップシフトと同様である。 FIG. 3 is a view showing a plurality of cam grooves 211. In the following, an upshift from the first speed to the second speed will be mainly described as an example, but the upshift from the second speed to the third speed is the same as the upshift from the first speed to the second speed.
 図3に示すように、複数のカム溝211は具体的には、1速、2速、3速の変速段を達成するための1速カム溝211a、2速カム溝211b、3速カム溝211cを含む。また、複数のカム溝211それぞれは、対応するスリーブ235を噛合位置に位置させる噛合溝D1と、対応するスリーブ235を噛合解除位置に位置させる噛合解除溝D2と、噛合溝D1及び噛合解除溝D2を結ぶ遷移溝D3とを有する。 As shown in FIG. 3, the plurality of cam grooves 211 specifically includes a first speed cam groove 211a, a second speed cam groove 211b, and a third speed cam groove for achieving a first speed, a second speed, and a third speed. 211c. Each of the plurality of cam grooves 211 includes a meshing groove D1 that positions the corresponding sleeve 235 at the meshing position, a meshing release groove D2 that positions the corresponding sleeve 235 at the meshing release position, the meshing groove D1, and the meshing release groove D2. Transition groove D3 connecting the two.
 2速カム溝211bには、ニュートラル位置NPからニュートラル位置NP及び2速位置GP2の中間位置に亘って、遷移溝D3が設けられる。1速カム溝211aには、シフトドラム21の回転方向における設定範囲が当該遷移溝D3とオーバラップするように自由溝D31が設けられる。 In the second speed cam groove 211b, a transition groove D3 is provided from the neutral position NP to an intermediate position between the neutral position NP and the second speed position GP2. The first speed cam groove 211a is provided with a free groove D31 so that the set range in the rotation direction of the shift drum 21 overlaps with the transition groove D3.
 自由溝D31は、遷移溝D3の変速上段位置UP側溝壁部と変速下段位置LP側溝壁部とで、シフトドラム21の回転方向における設定範囲がオーバラップしないように、変速上段位置UP側溝壁部を変速上段位置UP側にずらすことで設けられている。自由溝D31は、噛合溝D1及び噛合解除溝D2をカム溝211の幅方向に連結して一体にした形状を有する。自由溝D31では、シフトアーム222の位置は、噛合溝D1相当の位置及び噛合解除溝D2相当の位置の間でカム溝211によって規制されない。 The free groove D31 is a shift upper stage position UP side groove wall part so that the setting range in the rotation direction of the shift drum 21 does not overlap between the shift upper stage position UP side groove wall part and the shift lower stage position LP side groove wall part of the transition groove D3. Is shifted to the upper shift position UP side. The free groove D31 has a shape in which the meshing groove D1 and the meshing release groove D2 are connected in the width direction of the cam groove 211 and integrated. In the free groove D31, the position of the shift arm 222 is not restricted by the cam groove 211 between the position corresponding to the meshing groove D1 and the position corresponding to the meshing release groove D2.
 このため、シフトドラム21の切替位置が1速位置GP1からニュートラル位置NPになっても、1速カム溝211aでは、噛合溝D1に位置していたシフトアーム222が、噛合解除溝D2相当の位置に移動せず、そのまま噛合溝D1相当の位置に留まり、アップシフトが続行される。 Therefore, even if the shift position of the shift drum 21 is changed from the first speed position GP1 to the neutral position NP, in the first speed cam groove 211a, the shift arm 222 that has been positioned in the meshing groove D1 is a position corresponding to the meshing release groove D2. Without moving to the position, it remains in the position corresponding to the meshing groove D1, and the upshift is continued.
 2速ドグクラッチDG2の噛合いは、2速カム溝211bでシフトアーム222が遷移溝D3を通過している際に開始される。結果、1速ドグクラッチDG1と2速ドグクラッチDG2とがともに噛合状態となる。つまり、1速ドグクラッチDG1と2速ドグクラッチDG2の同時噛合いが発生する。 The meshing of the second speed dog clutch DG2 is started when the shift arm 222 passes through the transition groove D3 in the second speed cam groove 211b. As a result, the first speed dog clutch DG1 and the second speed dog clutch DG2 are both engaged. That is, simultaneous engagement of the first speed dog clutch DG1 and the second speed dog clutch DG2 occurs.
 同時噛合いが発生すると、2速ドグクラッチDG2の噛合いに応じて、2速スリーブ235bから2速ギア233b、カウンターシャフト232、1速ギア233aを介して、1速スリーブ235aにトルクが作用する。結果、1速スリーブ235aが、メインシャフト231に対して増速される状態となる。 When simultaneous meshing occurs, torque acts on the first speed sleeve 235a from the second speed sleeve 235b via the second speed gear 233b, the counter shaft 232, and the first speed gear 233a according to the meshing of the second speed dog clutch DG2. As a result, the first speed sleeve 235a is in a state of being accelerated with respect to the main shaft 231.
 この際、1速に対して設けられた変速下段のロック防止機構236は、2速スリーブ235bに対する相対回転を許容しながら、1速スリーブ235aに噛合解除方向の軸力を生じさせる。 At this time, the lower-stage lock prevention mechanism 236 provided for the first speed causes the first speed sleeve 235a to generate an axial force in the mesh release direction while allowing relative rotation with respect to the second speed sleeve 235b.
 すなわち、ロック防止機構236は、アップシフト時の変速上段及び変速下段のスリーブ235それぞれが同時噛合いをした際に、変速上段のスリーブ235と変速下段のスリーブ235との相対回転を許容する。 That is, the lock prevention mechanism 236 allows relative rotation between the upper gear sleeve 235 and the lower gear sleeve 235 when the upper gear 235 and the lower gear 235 are simultaneously meshed.
 また、ロック防止機構236は、このような相対回転を許容しながら、変速上段のドグクラッチDGの噛合いに応じて変速下段のドグクラッチDGに作用するトルクで、変速下段のドグクラッチDGに噛合解除方向の軸力を生じさせる。当該軸力は具体的にはここでは、1速スリーブ235aの第2ドグクラッチ部に作用する。その一方で、1速カム溝211aでは、シフトアーム222は自由溝D31に位置している。 In addition, the lock prevention mechanism 236 allows the relative rotation of the dog clutch DG in the lower gear to be shifted in accordance with the engagement of the dog clutch DG in the upper gear while allowing the relative rotation. Generate axial force. Specifically, the axial force here acts on the second dog clutch portion of the first-speed sleeve 235a. On the other hand, in the first speed cam groove 211a, the shift arm 222 is positioned in the free groove D31.
 このため、1速カム溝211aでシフトアーム222が噛合解除溝D2相当の位置に移動できることと相俟って、1速スリーブ235aは軸力によって噛合解除位置に移動され、これにより1速ドグクラッチDG1の噛合いが解除される。 For this reason, coupled with the fact that the shift arm 222 can move to the position corresponding to the mesh release groove D2 by the first speed cam groove 211a, the first speed sleeve 235a is moved to the mesh release position by the axial force, whereby the first speed dog clutch DG1. Is released.
 ロック防止機構236は、シフトドラム21及びロッド機構22とともに、噛合解除機構RMを構成する。噛合解除機構RMは、アップシフトの際に、複数のドグクラッチDGのうちアップシフト時の変速下段に対応する変速下段のドグクラッチDG、及び変速上段に対応する変速上段のドグクラッチDGそれぞれを同時に噛み合わせる。また、噛合解除機構RMは、変速上段のドグクラッチDGの噛合いに応じて変速下段のドグクラッチDGに作用するトルクで、変速下段のドグクラッチDGの噛合いを解除する。 The lock prevention mechanism 236, together with the shift drum 21 and the rod mechanism 22, constitutes a mesh release mechanism RM. At the time of upshift, the mesh release mechanism RM simultaneously meshes each of the lower gear dog clutch DG corresponding to the lower gear at the time of upshift and the upper gear dog clutch DG corresponding to the upper gear of the plurality of dog clutches DG. Further, the mesh release mechanism RM releases the mesh of the lower gear dog clutch DG with torque acting on the lower gear dog clutch DG according to the mesh of the upper gear clutch DG.
 自動変速機1は、噛合解除機構RMを備えることで、シームレス自動変速機として構成される。シームレス自動変速機では、上述のように同時噛合いをさせてアップシフトを行うので、エンジン50から駆動輪52への動力がアップシフトによって途切れないようにすることができる。噛合解除機構RMは、ロック防止機構236を含む変速ギア部23がシフトドラム21及びロッド機構22とともに構成していると把握することもできる。 The automatic transmission 1 is configured as a seamless automatic transmission by including a mesh release mechanism RM. In the seamless automatic transmission, the upshift is performed by simultaneous meshing as described above, so that the power from the engine 50 to the drive wheels 52 can be prevented from being interrupted by the upshift. The mesh release mechanism RM can also grasp that the transmission gear unit 23 including the lock prevention mechanism 236 is configured together with the shift drum 21 and the rod mechanism 22.
 ダウンシフトについては、次の通りである。すなわち、ダウンシフトの際には摩擦クラッチCLは一旦解放される。そして、ニュートラル位置NPでは、同時噛合いを行わずに自動変速機1はニュートラル状態とされ、この状態で変速下段側のドグクラッチDGの同期制御が行われる。同期制御では、摩擦クラッチCLを接続し、エンジン50によってドグクラッチDGの回転の同期を図る。そして、同期制御が完了したら摩擦クラッチCLを解放して、ドグクラッチDGを噛み合わせる。 The downshift is as follows. That is, the friction clutch CL is temporarily released during the downshift. At the neutral position NP, the automatic transmission 1 is set to the neutral state without performing simultaneous meshing, and in this state, the synchronous control of the dog clutch DG on the lower speed side is performed. In the synchronization control, the friction clutch CL is connected, and the engine 50 synchronizes the rotation of the dog clutch DG. When the synchronization control is completed, the friction clutch CL is released and the dog clutch DG is engaged.
 ところで、自動変速機1の変速段は、アクセル開度APOと車速VSPとをパラメータとするマップに基づいて決定される。このため、車両100においては、例えば、下り勾配の道路をコースト走行している場合等において、アップシフトが実行されることがある。 By the way, the gear position of the automatic transmission 1 is determined based on a map using the accelerator opening APO and the vehicle speed VSP as parameters. For this reason, in the vehicle 100, for example, when the vehicle is traveling on a downhill road, an upshift may be executed.
 ここで、アップシフトする際には、エンジン50のトルク(エンジントルク)Teを低下させることでエンジン回転速度Neの変化に伴って発生するイナーシャトルクTinerを相殺し、変速ショックを抑制することが考えられる。また、エンジントルクTeを低下させることができない場合は、変速速度を遅くすることでイナーシャトルクの発生を抑制することが考えられる。 Here, at the time of upshifting, it is considered that the torque (engine torque) Te of the engine 50 is reduced to cancel the inertia torque Tiner generated with the change of the engine rotation speed Ne, thereby suppressing the shift shock. It is done. Further, when the engine torque Te cannot be reduced, it is conceivable to suppress the occurrence of inertia torque by slowing down the shift speed.
 しかしながら、本実施形態の自動変速機1は、上述した構成から分かるように、変速速度を細かく制御することが難しい。このため、コースト走行中であってエンジントルクTeを低下させることができない場合は、イナーシャトルクの発生を抑制できず、結果として変速ショックが発生する可能性がある。 However, as can be seen from the above-described configuration, it is difficult for the automatic transmission 1 of the present embodiment to finely control the shift speed. For this reason, when coasting is being performed and the engine torque Te cannot be reduced, the occurrence of inertia torque cannot be suppressed, and as a result, a shift shock may occur.
 このため、本実施形態のATCU10は、走行中に図4のフローチャートに示す制御を実行することで、コースト走行中にアップシフトする際のイナーシャトルクの発生を抑制できるようにしている。 For this reason, the ATCU 10 according to the present embodiment executes the control shown in the flowchart of FIG. 4 during traveling, thereby suppressing the occurrence of inertia torque when upshifting during coasting.
 以下、ATCU10が実行する制御の内容について、図4を参照しながら詳しく説明する。 Hereinafter, details of the control executed by the ATCU 10 will be described in detail with reference to FIG.
 ステップS11では、ATCU10は、車両100がコースト走行中か判定する。具体的には、ATCU10は、アクセル開度APO=0の状態で車両100が惰性走行中である場合に、車両100がコースト走行中であると判定する。 In step S11, the ATCU 10 determines whether the vehicle 100 is traveling on the coast. Specifically, the ATCU 10 determines that the vehicle 100 is coasting when the vehicle 100 is coasting with the accelerator opening APO = 0.
 ATCU10は、車両100がコースト走行中と判定すると、処理をステップS12に移行する。また、車両100がコースト走行中でないと判定すると、ステップS11の処理を繰り返し行う。 If the ATCU 10 determines that the vehicle 100 is traveling on the coast, the process proceeds to step S12. If it is determined that the vehicle 100 is not coasting, the process of step S11 is repeated.
 ステップS12では、アップシフト条件が成立したか判定する。ステップS12の判定は、上述したように、アクセル開度APOと車速VSPとをパラメータとするマップに基づいて行われる。 In step S12, it is determined whether the upshift condition is satisfied. As described above, the determination in step S12 is performed based on a map using the accelerator opening APO and the vehicle speed VSP as parameters.
 ATCU10は、アップシフト条件が成立したと判定すると、処理をステップS13に移行する。また、アップシフト条件が成立していないと判定すると、ステップS11に戻って処理を繰り返し行う。 If the ATCU 10 determines that the upshift condition is satisfied, the process proceeds to step S13. If it is determined that the upshift condition is not satisfied, the process returns to step S11 and the process is repeated.
 ステップS13では、ATCU10は、エンジントルクTeが所定の下限トルクよりも大きいか判定する。 In step S13, the ATCU 10 determines whether the engine torque Te is larger than a predetermined lower limit torque.
 所定の下限トルクは、アップシフトする際にエンジントルクTeを低下させることで、エンジン回転速度Neの変化に伴って発生するイナーシャトルクTinerを相殺可能なトルクの下限値である。つまり、下限トルクよりもエンジントルクTeが大きい場合は、イナーシャトルクTinerを相殺できるだけのエンジントルクTeの低下代が有ることになる。一方で、エンジントルクTeが下限トルク以下の場合は、エンジントルクTeの低下代が少ないので、イナーシャトルクNinerを狙い通りに相殺できない。 The predetermined lower limit torque is a lower limit value of the torque that can cancel the inertia torque Tiner generated with the change in the engine rotation speed Ne by reducing the engine torque Te when upshifting. That is, when the engine torque Te is larger than the lower limit torque, there is a reduction amount of the engine torque Te that can offset the inertia torque Tiner. On the other hand, when the engine torque Te is equal to or lower than the lower limit torque, the engine torque Te is less likely to be reduced, so that the inertia torque Niner cannot be offset as intended.
 ATCU10は、エンジントルクTeが下限トルクよりも大きいと判定すると、処理をステップS14に移行する。また、エンジントルクTeが下限トルク以下と判定すると、処理をステップS15に移行する。なお、コースト走行中に燃料噴射を停止する場合は、エンジントルクTeは下限トルク以下となる。 If the ATCU 10 determines that the engine torque Te is greater than the lower limit torque, the process proceeds to step S14. If it is determined that the engine torque Te is equal to or lower than the lower limit torque, the process proceeds to step S15. Note that when the fuel injection is stopped during coasting, the engine torque Te is equal to or lower than the lower limit torque.
 ステップS14では、ATCU10は、エンジントルクTeを低下させてアップシフトを実行する。 In step S14, the ATCU 10 performs an upshift by reducing the engine torque Te.
 ステップS15では、ATCU10は、摩擦クラッチCLをスリップ状態にする。具体的には、油圧回路に制御指令値を出力し、油圧回路から摩擦クラッチCLに供給される油圧Pcを低下させる。 In step S15, the ATCU 10 puts the friction clutch CL in the slip state. Specifically, a control command value is output to the hydraulic circuit, and the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL is reduced.
 制御指令値は、摩擦クラッチCLのトルク容量が、エンジントルクTeよりもわずかに低くなるように設定される。これにより、摩擦クラッチCLがスリップ状態となり、エンジン回転速度Neが低下する。 The control command value is set so that the torque capacity of the friction clutch CL is slightly lower than the engine torque Te. As a result, the friction clutch CL enters a slip state, and the engine speed Ne decreases.
 ステップS16では、ATCU10は、目標エンジン回転速度TNeを算出する。目標エンジン回転速度TNeは、自動変速機1の出力軸であるカウンターシャフト232の回転速度にアップシフト後の自動変速機1のスルー変速比を乗じて求められる。 In step S16, the ATCU 10 calculates the target engine rotation speed TNe. The target engine rotational speed TNe is obtained by multiplying the rotational speed of the counter shaft 232 that is the output shaft of the automatic transmission 1 by the through speed ratio of the automatic transmission 1 after the upshift.
 ステップS17では、ATCU10は、エンジン回転速度Neが目標エンジン回転速度TNe以下になったか判定する。 In step S17, the ATCU 10 determines whether the engine speed Ne is equal to or lower than the target engine speed TNe.
 ATCU10は、エンジン回転速度Neが目標エンジン回転速度TNe以下になったと判定すると、処理をステップS18に移行する。また、エンジン回転速度Neが目標エンジン回転速度TNeよりも高いと判定すると、ステップS17の処理を繰り返し行う。 If the ATCU 10 determines that the engine rotational speed Ne has become equal to or lower than the target engine rotational speed TNe, the process proceeds to step S18. If it is determined that the engine rotational speed Ne is higher than the target engine rotational speed TNe, the process of step S17 is repeated.
 ステップS18では、ATCU10は、アップシフトを実行する。 In step S18, the ATCU 10 performs an upshift.
 ステップS19では、ATCU10は、摩擦クラッチCLを締結状態にする。具体的には、油圧回路に制御指令値を出力し、油圧回路から摩擦クラッチCLに供給される油圧Pcを締結圧まで上昇させる。 In step S19, the ATCU 10 puts the friction clutch CL in the engaged state. Specifically, the control command value is output to the hydraulic circuit, and the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL is increased to the engagement pressure.
 このように、本実施形態のATCU10は、コースト走行中にアップシフトする際に、エンジントルクTeを低下させることではイナーシャトルクTinerを相殺できない場合は、エンジン回転速度Neを目標エンジン回転速度TNeまで低下させてから、アップシフトを実行する。 As described above, when the ATCU 10 of this embodiment performs an upshift during coasting, if the engine torque Te cannot be offset by reducing the engine torque Te, the engine speed Ne is reduced to the target engine speed TNe. And then upshift.
 これによれば、アップシフトを実行したときのイナーシャトルクTinerの発生を抑制できる。よって、アップシフト時の変速ショックを抑制できる。また、本実施形態では、アップシフトの実行中も摩擦クラッチCLがスリップ状態となっているので、変速ショックの発生が一層抑制される。 According to this, the occurrence of the inertia torque Tiner when the upshift is executed can be suppressed. Therefore, the shift shock at the time of upshift can be suppressed. Further, in the present embodiment, since the friction clutch CL is in the slip state even during the upshift, the occurrence of the shift shock is further suppressed.
 続いて、図5のタイムチャートを参照しながら、コースト走行中にエンジン回転速度Neを低下させてからアップシフトを実行する様子について説明する。図5では、車両100がコースト走行中であるため、車両100の駆動力、エンジントルクTe、及び自動変速機1への入力トルクTinpはマイナス(エンジンブレーキ状態)となっている。 Subsequently, referring to the time chart of FIG. 5, a state in which the upshift is executed after the engine rotational speed Ne is reduced during coasting will be described. In FIG. 5, since the vehicle 100 is coasting, the driving force of the vehicle 100, the engine torque Te, and the input torque Tinp to the automatic transmission 1 are negative (engine braking state).
 時刻t1でアップシフト条件が成立すると、油圧回路から摩擦クラッチCLに供給される油圧Pcが低下し、摩擦クラッチCLがスリップ状態となる。これにより、エンジン回転速度Neが徐々に低下する。 When the upshift condition is satisfied at time t1, the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL decreases, and the friction clutch CL enters a slip state. As a result, the engine rotation speed Ne gradually decreases.
 エンジン回転速度Neの変化に伴ってイナーシャトルクTinerが発生するものの、摩擦クラッチCLをスリップ状態にしてエンジン回転速度Neを徐々に低下させているので、大きなイナーシャトルクTinerは発生しない。 Although an inertia torque Tiner is generated in accordance with a change in the engine rotation speed Ne, the friction clutch CL is slipped to gradually decrease the engine rotation speed Ne, so that a large inertia torque Tiner is not generated.
 時刻t1から時刻t2にかけて、エンジン回転速度Neが目標エンジン回転速度TNeまで低下する。 From time t1 to time t2, the engine speed Ne decreases to the target engine speed TNe.
 時刻t1から時刻t2の間は、摩擦クラッチCLがスリップ状態なので、イナーシャトルクTinerは自動変速機1には殆ど伝達されない。よって、入力トルクTinp及び駆動力は変動しない。 From time t1 to time t2, the friction clutch CL is in the slip state, so that the inertia torque Tiner is hardly transmitted to the automatic transmission 1. Therefore, the input torque Tinp and the driving force do not vary.
 時刻t2でエンジン回転速度Neが目標エンジン回転速度TNeまで低下すると、アップシフトが実行される。このとき、油圧回路から摩擦クラッチCLに供給される油圧Pcを少し上昇させて摩擦クラッチCLの容量を戻すので、エンジン回転速度Neが時刻t2以降も低下し続けることはない。これにより、時刻t2から時刻t3にかけて、自動変速機1の入力軸であるメインシャフト231の回転速度Ninpがエンジン回転速度Neと一致する速度まで低下する。 When the engine speed Ne decreases to the target engine speed TNe at time t2, an upshift is executed. At this time, since the hydraulic pressure Pc supplied from the hydraulic circuit to the friction clutch CL is slightly increased to return the capacity of the friction clutch CL, the engine rotational speed Ne does not continue to decrease after time t2. As a result, from time t2 to time t3, the rotational speed Ninp of the main shaft 231 that is the input shaft of the automatic transmission 1 decreases to a speed that matches the engine rotational speed Ne.
 アップシフト実行中である時刻t2から時刻t3の間は、自動変速機1内部のイナーシャトルクの影響により、車両100の駆動力がプラス側(前進側)に変動する。しかしながら、自動変速機1内部のイナーシャ自体がエンジン50と比べて非常に小さいため、エンジン回転速度Neを低下させることなくアップシフトを実行する場合と比較すると、駆動力の変動、すなわち変速ショックは大幅に抑制される。 During the upshift execution from time t2 to time t3, the driving force of the vehicle 100 fluctuates to the plus side (forward side) due to the influence of the inertia torque inside the automatic transmission 1. However, since the inertia itself in the automatic transmission 1 is very small as compared with the engine 50, the fluctuation of the driving force, that is, the shift shock is greatly compared with the case where the upshift is executed without reducing the engine rotation speed Ne. To be suppressed.
 以上述べたように、本実施形態によれば、ATCU10は、コースト走行中に自動変速機1をアップシフトする際は、摩擦クラッチCLをスリップ状態にしてエンジン回転速度Neを目標エンジン回転速度TNeまで低下させてからアップシフトを実行する。 As described above, according to this embodiment, when the ATCU 10 upshifts the automatic transmission 1 during coasting, the friction clutch CL is slipped and the engine rotational speed Ne is set to the target engine rotational speed TNe. Perform an upshift after lowering.
 これによれば、コースト走行中は、アップシフトする前にエンジン回転速度Neを低下させるので、アップシフトを実行したときのエンジン50のイナーシャトルクTinerの発生を抑制できる。よって、変速ショックを抑制できる。 According to this, during coasting, the engine rotation speed Ne is reduced before upshifting, so that it is possible to suppress the occurrence of the inertia torque Tiner of the engine 50 when the upshift is executed. Therefore, the shift shock can be suppressed.
 また、自動変速機1は、変速段を達成する複数のドグクラッチDGと、アップシフトの際に、複数のドグクラッチDGのうちアップシフト時の変速下段に対応する変速下段のドグクラッチDG、及び変速上段に対応する変速上段のドグクラッチDGそれぞれを同時に噛合わせて、変速上段のドグクラッチDGの噛合いに応じて変速下段のドグクラッチDGに作用するトルクで、変速下段のドグクラッチDGの噛合いを解除する噛合解除機構RMと、を備えたシームレス自動変速機である。 In addition, the automatic transmission 1 includes a plurality of dog clutches DG that achieves a gear position, a dog clutch DG that is a lower gear position corresponding to a lower gear position during an upshift, and an upper gear position when shifting up. A mesh release mechanism that simultaneously meshes the corresponding dog clutches DG at the upper gear and releases the mesh of the lower dog clutch DG with a torque acting on the lower dog clutch DG according to the mesh of the upper gear clutch DG. RM, a seamless automatic transmission.
 このようなシームレス自動変速機においては、アップシフトが短時間で完了することになるので、大きなイナーシャトルクTinerが発生しやすい。これに対して、ATCU10が実行する制御では、アップシフトする前にエンジン回転速度Neを低下させるので、自動変速機1がシームレス自動変速機であっても、アップシフトを実行したときのエンジン50のイナーシャトルクTinerの発生を抑制できる。 In such a seamless automatic transmission, since the upshift is completed in a short time, a large inertia torque Tiner is likely to occur. On the other hand, in the control executed by the ATCU 10, the engine rotational speed Ne is reduced before the upshift. Therefore, even when the automatic transmission 1 is a seamless automatic transmission, the engine 50 when the upshift is executed. Generation of inertia torque Tiner can be suppressed.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above, but the above embodiment is merely one example of application of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. is not.
 例えば、上記実施形態では、自動変速機1がシームレス自動変速機である場合について説明した。しかしながら、自動変速機1は、一般的な有段自動変速機や、ドグクラッチで変速段を達成しシーケンシャルシフトパターンが設定された変速機構をアクチュエータで駆動することで変速を行うシーケンシャル自動変速機等であってもよい。また、本発明は、変速速度を制御可能な無段変速機等に対しても適用可能である。 For example, in the above embodiment, the case where the automatic transmission 1 is a seamless automatic transmission has been described. However, the automatic transmission 1 is a general stepped automatic transmission, a sequential automatic transmission that performs a shift by driving a shift mechanism in which a shift stage is set by a dog clutch and a sequential shift pattern is set by an actuator. There may be. The present invention can also be applied to a continuously variable transmission or the like that can control the shift speed.
 本願は2016年11月7日に日本国特許庁に出願された特願2016-217448に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-217448 filed with the Japan Patent Office on November 7, 2016, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  変速機構と、エンジンと前記変速機構との間に設けられる摩擦クラッチと、を備える自動変速機の制御装置であって、
     コースト走行中に前記自動変速機をアップシフトする際は、前記摩擦クラッチをスリップ状態にして前記エンジンの回転速度を目標エンジン回転速度まで低下させてから前記アップシフトを実行する、
    自動変速機の制御装置。
    A control device for an automatic transmission comprising: a transmission mechanism; and a friction clutch provided between the engine and the transmission mechanism,
    When upshifting the automatic transmission during coasting, the friction clutch is brought into a slip state to reduce the engine speed to a target engine speed, and then the upshift is executed.
    Control device for automatic transmission.
  2.  請求項1に記載の自動変速機の制御装置であって、
     前記自動変速機は、
     変速段を達成する複数のドグクラッチと、
     前記アップシフトの際に、前記複数のドグクラッチのうち前記アップシフト時の変速下段に対応する変速下段クラッチ、及び変速上段に対応する変速上段クラッチそれぞれを同時に噛合わせて、前記変速上段クラッチの噛合いに応じて前記変速下段クラッチに作用するトルクで、前記変速下段クラッチの噛合いを解除する噛合解除機構と、を備える、
    自動変速機の制御装置。
    The automatic transmission control device according to claim 1,
    The automatic transmission is
    A plurality of dog clutches for achieving the shift stage;
    During the upshift, among the plurality of dog clutches, the lower shift clutch corresponding to the lower shift at the time of the upshift and the upper shift clutch corresponding to the upper shift at the same time are simultaneously meshed to engage the upper shift clutch. A mesh release mechanism that releases the mesh of the lower shift clutch with a torque acting on the lower shift clutch according to
    Control device for automatic transmission.
  3.  変速機構と、エンジンと前記変速機構との間に設けられる摩擦クラッチと、を備える自動変速機の制御方法であって、
     コースト走行中に前記自動変速機をアップシフトする際は、前記摩擦クラッチをスリップ状態にして前記エンジンの回転速度を目標エンジン回転速度まで低下させてから前記アップシフトを実行する、
    自動変速機の制御方法。
    A control method for an automatic transmission comprising: a transmission mechanism; and a friction clutch provided between the engine and the transmission mechanism,
    When upshifting the automatic transmission during coasting, the friction clutch is brought into a slip state to reduce the engine speed to a target engine speed, and then the upshift is executed.
    Control method of automatic transmission.
PCT/JP2017/037747 2016-11-07 2017-10-18 Control device for automatic transmission and control method for automatic transmission WO2018083988A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018548618A JP6554616B2 (en) 2016-11-07 2017-10-18 Control device for automatic transmission and control method for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-217448 2016-11-07
JP2016217448 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018083988A1 true WO2018083988A1 (en) 2018-05-11

Family

ID=62076605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037747 WO2018083988A1 (en) 2016-11-07 2017-10-18 Control device for automatic transmission and control method for automatic transmission

Country Status (2)

Country Link
JP (1) JP6554616B2 (en)
WO (1) WO2018083988A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034632A1 (en) * 2020-08-11 2022-02-17 ヤマハ発動機株式会社 Straddled vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219001A (en) * 2005-02-10 2006-08-24 Isuzu Motors Ltd Shift control device and method
JP2008074197A (en) * 2006-09-20 2008-04-03 Mitsubishi Fuso Truck & Bus Corp Speed-change controller for hybrid electric car
JP2010076677A (en) * 2008-09-26 2010-04-08 Toyota Motor Corp Control device of vehicle power transmission device
JP2011163535A (en) * 2010-02-15 2011-08-25 Nissan Motor Light Truck Co Ltd Controller for mechanical automatic transmission
JP2013060048A (en) * 2011-09-12 2013-04-04 Nissan Motor Co Ltd Vehicle drive device
JP2015140893A (en) * 2014-01-30 2015-08-03 株式会社イケヤフォ−ミュラ transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219001A (en) * 2005-02-10 2006-08-24 Isuzu Motors Ltd Shift control device and method
JP2008074197A (en) * 2006-09-20 2008-04-03 Mitsubishi Fuso Truck & Bus Corp Speed-change controller for hybrid electric car
JP2010076677A (en) * 2008-09-26 2010-04-08 Toyota Motor Corp Control device of vehicle power transmission device
JP2011163535A (en) * 2010-02-15 2011-08-25 Nissan Motor Light Truck Co Ltd Controller for mechanical automatic transmission
JP2013060048A (en) * 2011-09-12 2013-04-04 Nissan Motor Co Ltd Vehicle drive device
JP2015140893A (en) * 2014-01-30 2015-08-03 株式会社イケヤフォ−ミュラ transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034632A1 (en) * 2020-08-11 2022-02-17 ヤマハ発動機株式会社 Straddled vehicle
TWI788948B (en) * 2020-08-11 2023-01-01 日商山葉發動機股份有限公司 straddle vehicle

Also Published As

Publication number Publication date
JP6554616B2 (en) 2019-07-31
JPWO2018083988A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP3941906B2 (en) Control device for synchronous mesh automatic transmission
JP5292782B2 (en) Vehicle shift control device
JP4604951B2 (en) Control device for automatic transmission
JP2007092665A (en) Transmission for vehicle
JP2011047511A (en) Multiple clutch transmission control apparatus and multiple clutch transmission control method
JP5546069B2 (en) Control device for compound clutch transmission and control method for compound clutch transmission
JP2004239327A (en) Speed change controller for multi-stage automatic transmission
JP2010281423A (en) Speed change gear of synchronous meshing type transmission and transmission method therefor
KR20110105636A (en) Apparatus for shift controlling of dual clutch transmission in vehicle and method thereof
JP5962778B2 (en) Automatic transmission starting clutch control device
JPH10318361A (en) Shift control device for twin clutch type automatic transmission
JP6554616B2 (en) Control device for automatic transmission and control method for automatic transmission
JP5892763B2 (en) Dual clutch type automatic transmission and its shift control method
JP6141683B2 (en) Vehicle power transmission control device
JP5085289B2 (en) Transmission control device
JP3478208B2 (en) Hydraulic control device for automatic transmission
JPH1151126A (en) Twin-clutch type automatic transmission
JP2007205514A (en) Rotation-adjusting speed change control system of automatic transmission
JP2018071618A (en) Automatic transmission
JP2010071424A (en) Control device of transmission
JP3035928B2 (en) Transmission control device for automatic transmission
JP4882606B2 (en) Engine brake control device for automatic transmission
JP2005090604A (en) Speed change control device for automatic transmission
JP7051779B2 (en) Shift control device for automatic transmission
JP2010116978A (en) Vehicle shift control device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548618

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867034

Country of ref document: EP

Kind code of ref document: A1