JP2007092665A - Transmission for vehicle - Google Patents

Transmission for vehicle Download PDF

Info

Publication number
JP2007092665A
JP2007092665A JP2005283959A JP2005283959A JP2007092665A JP 2007092665 A JP2007092665 A JP 2007092665A JP 2005283959 A JP2005283959 A JP 2005283959A JP 2005283959 A JP2005283959 A JP 2005283959A JP 2007092665 A JP2007092665 A JP 2007092665A
Authority
JP
Japan
Prior art keywords
transmission
torque
continuously variable
stepped
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283959A
Other languages
Japanese (ja)
Inventor
Tetsuya Fukuya
鉄也 福家
Shoji Suga
章二 菅
Ayaichi Otaki
綾一 大滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005283959A priority Critical patent/JP2007092665A/en
Publication of JP2007092665A publication Critical patent/JP2007092665A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of torque reduction in a torque phase in upshifting of a stepped auxiliary transmission, in a transmission for a vehicle provided with the stepped auxiliary transmission and a stepless main transmission. <P>SOLUTION: In the transmission provided with the stepped auxiliary transmission performing gear change from a first speed to a second speed by engaging a high speed step selection clutch and the stepless main transmission in a rear stage of the stepped auxiliary transmission, engine torque correction value proportional to transmission torque of the high speed step selection clutch is established in the torque phase in upshifting from the first speed to the second speed , and engine torque is corrected and increased based the correction value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、摩擦要素の締結・解放により変速を行う有段副変速機と、該有段副変速機の出力側に接続される無段主変速機とを備え、エンジンのトルクを前記有段副変速機及び無段主変速機を介して駆動輪に伝達する車両の変速装置に関する。   The present invention includes a stepped sub-transmission that shifts by engaging and releasing a friction element, and a continuously variable main transmission connected to the output side of the stepped sub-transmission, and the engine torque is supplied to the stepped sub-transmission. The present invention relates to a transmission for a vehicle that transmits to drive wheels via a sub-transmission and a continuously variable main transmission.

特許文献1には、複数の前進ギヤ段に選択的に切り換えられる副変速機を有する車両用無段変速機において、前記副変速機のアップ変速されるときに、入力軸回転速度の変化が抑制されるように、無段変速機を急減速変速させることで、エンジンやトルクコンバータなどの慣性トルクの発生を解消し、慣性トルクによる変速ショックの発生を抑制する技術が開示されている。
特開平05−079554号公報
In Patent Document 1, in a continuously variable transmission for a vehicle having a sub-transmission that is selectively switched to a plurality of forward gears, changes in the input shaft rotational speed are suppressed when the sub-transmission is upshifted. As described above, a technique is disclosed in which the generation of inertia torque such as an engine or a torque converter is eliminated and the occurrence of shift shock due to inertia torque is suppressed by rapidly decelerating the continuously variable transmission.
Japanese Patent Laid-Open No. 05-079554

ところで、上記の従来装置によると、イナーシャによるトルク変化を抑えることができるが、トルクフェーズにおいて、有段副変速機の段間比分に基づき摩擦要素の伝達トルクの変化に比例する駆動トルクの落ち込み(トルク引け)が生じるという問題があった。
本発明は上記問題点に鑑みなされたものであり、有段副変速機と無段主変速機とを備えた車両の変速装置において、前記有段副変速機のアップ変速によるトルクフェーズにおいて、トルクの引けの発生を回避できるようにすることを目的とする。
By the way, according to the above-described conventional device, it is possible to suppress the torque change due to the inertia. However, in the torque phase, the drop in the drive torque proportional to the change in the transmission torque of the friction element based on the interstage ratio of the stepped sub-transmission ( There is a problem that torque is lost.
The present invention has been made in view of the above problems, and in a vehicle transmission device including a stepped sub-transmission and a continuously variable main transmission, in a torque phase due to an upshift of the stepped sub-transmission, torque is provided. The purpose is to avoid the occurrence of closing.

そのため、本発明に係る車両の変速装置では、有段副変速機のアップ変速でのトルクフェーズにおいて、駆動軸トルクが一定になるようにエンジンのトルクを補正することを特徴とする。   Therefore, the vehicle transmission according to the present invention is characterized in that the torque of the engine is corrected so that the drive shaft torque becomes constant in the torque phase in the upshift of the stepped sub-transmission.

上記構成によると、有段副変速機のアップ変速でのトルクフェーズにおいて、有段副変速機の段間比分に基づき摩擦要素の伝達トルク変化に比例する駆動トルクの落ち込みが生じるので、係る駆動トルクの落ち込みを相殺するようにエンジンのトルクを補正して、トルクフェーズにおいて駆動トルクを一定に保つことができるようになる。   According to the above configuration, in the torque phase in the upshift of the stepped sub-transmission, the drive torque drops in proportion to the change in the transmission torque of the friction element based on the interstage ratio of the stepped sub-transmission. The torque of the engine is corrected so as to offset the drop in the engine torque, and the driving torque can be kept constant in the torque phase.

以下に本発明の実施の形態を図に基づいて説明する。
図1は本発明の一実施形態に係る車両の変速装置の構成を示す概略図である。
図1に示す車両の動力伝達系において、エンジン1からの回転は、前進2段変速機である有段副変速機2を経て前後進切り換え機構4に伝達され、更に、無段主変速機3を介して、図示省略した駆動輪に伝達されるようになっている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of a vehicle transmission apparatus according to an embodiment of the present invention.
In the vehicle power transmission system shown in FIG. 1, the rotation from the engine 1 is transmitted to the forward / reverse switching mechanism 4 through the stepped sub-transmission 2 which is a forward two-stage transmission, and further to the continuously variable main transmission 3. Is transmitted to a drive wheel (not shown).

前記前後進切り換え機構4は、Dレンジでの前進走行時においては前進クラッチ4aを締結させることで有段副変速機2からのエンジン回転をそのまま伝達し、Rレンジでの後進走行時においては後進ブレーキ4bを締結させることで有段副変速機2からのエンジン回転を減速、逆転下に伝達し、P,Nレンジでの駐停車時においては前進クラッチ4a及び後進ブレーキ4bの双方を解放させることで有段副変速機2からのエンジン回転を後段に伝達しなくなる。   The forward / reverse switching mechanism 4 transmits the engine rotation from the stepped sub-transmission 2 as it is by engaging the forward clutch 4a during forward travel in the D range, and reverse travel during reverse travel in the R range. By engaging the brake 4b, the engine rotation from the stepped sub-transmission 2 is decelerated and transmitted in reverse, and both the forward clutch 4a and the reverse brake 4b are released during parking in the P and N ranges. Thus, the engine rotation from the stepped sub-transmission 2 is not transmitted to the subsequent stage.

前記無段主変速機3は、トロイダル式の無断変速機であり、2個のトロイダル伝動ユニット(フロント側トロイダル伝動ユニット5及びリヤ側トロイダル伝動ユニット6)を、後述するように同軸背中合わせに配置してなる。
前記トロイダル伝動ユニット5,6は、入力ディスク7と、これに同軸に対向配置した出力ディスク8と、対応する入出力ディスク7,8間に介在させた一対ずつのパワーローラ9とをそれぞれ備えた同様な構成を有する。
The continuously variable main transmission 3 is a toroidal-type continuously variable transmission, and two toroidal transmission units (a front side toroidal transmission unit 5 and a rear side toroidal transmission unit 6) are arranged coaxially back to back as will be described later. It becomes.
Each of the toroidal transmission units 5 and 6 includes an input disk 7, an output disk 8 coaxially disposed opposite to the input disk 7, and a pair of power rollers 9 interposed between the corresponding input / output disks 7 and 8. It has the same configuration.

両トロイダル伝動ユニット5,6は、それぞれの出力ディスク8が背中合わせになるよう同軸に配置され、それぞれの入力ディスク7は、主軸10に回転係合されて前後進切り換え機構4からの回転が共通に入力され、それぞれの出力ディスク8は主軸10に対して回転自在に支持される。
また、両出力ディスク8は、中空出力軸11を介して相互に一体結合し、この中空出力軸11上に出力歯車12が固定されている。
Both toroidal transmission units 5 and 6 are arranged coaxially so that the output disks 8 are back to back, and the input disks 7 are rotationally engaged with the main shaft 10 so that the rotation from the forward / reverse switching mechanism 4 is shared. Each output disk 8 is input so as to be rotatable with respect to the main shaft 10.
The two output disks 8 are integrally coupled to each other via a hollow output shaft 11, and an output gear 12 is fixed on the hollow output shaft 11.

前記出力歯車12は、カウンターシャフト13の前端に軸支されるカウンターギヤ14に噛み合ってカウンターシャフト13を回転させ、カウンターシャフト13の回転は、出力歯車組15を経て、主軸10の後方へ同軸配置した変速機出力軸16に伝達される。
従って、前後進切り換え機構4からの回転は両入力ディスク7へ共通に伝達され、入力ディスク7の回転は対応するパワーローラ9を介して出力ディスク8に達し、この回転が共通な出力歯車12から、これに噛合するカウンターギヤ14及びカウンターシャフト13、並びに出力歯車組15を順次経て変速機出力軸16から取り出されることになる。
The output gear 12 meshes with a counter gear 14 pivotally supported at the front end of the counter shaft 13 to rotate the counter shaft 13, and the rotation of the counter shaft 13 is coaxially arranged behind the main shaft 10 via the output gear set 15. Is transmitted to the transmission output shaft 16.
Accordingly, the rotation from the forward / reverse switching mechanism 4 is transmitted in common to both input disks 7, and the rotation of the input disk 7 reaches the output disk 8 via the corresponding power roller 9, and this rotation is output from the common output gear 12. Then, the counter gear 14 and the counter shaft 13 meshing with this, and the output gear set 15 are sequentially taken out from the transmission output shaft 16.

そして、前記変速機出力軸16の後段には、デファレンシャルギヤ等を介して駆動輪(図示省略)が接続され、エンジン1のトルクは、前記有段副変速機20,前後進切り換え機構4及び無段主変速機19を介して駆動輪に伝達される。
前記トロイダル式の無段主変速機19においては、入力ディスク7と出力ディスク8の変速比は、入力ディスク7と出力ディスク8の接触半径によって決まり、パワーローラ9を傾転させて接触半径を連続的に変化させることによって、無段変速を実現する。
Drive wheels (not shown) are connected to the rear stage of the transmission output shaft 16 via a differential gear or the like, and the torque of the engine 1 is transmitted to the stepped sub-transmission 20, the forward / reverse switching mechanism 4, It is transmitted to the drive wheels via the stage main transmission 19.
In the toroidal continuously variable main transmission 19, the transmission ratio between the input disk 7 and the output disk 8 is determined by the contact radius between the input disk 7 and the output disk 8, and the power roller 9 is tilted so that the contact radius is continuous. By continuously changing, a continuously variable transmission is realized.

前記有段副変速機2は、単純遊星歯車組23、高速段選択クラッチ(摩擦要素)24及びワンウェイクラッチ25を含んで構成される。
前記単純遊星歯車23は、サンギヤ23sと、リングギヤ23rと、これら両ギヤに噛合する複数のピニオン23pと、該ピニオン23pを回転自在に支持するキャリア23cとからなる。
The stepped sub-transmission 2 includes a simple planetary gear set 23, a high-speed stage selection clutch (friction element) 24, and a one-way clutch 25.
The simple planetary gear 23 includes a sun gear 23s, a ring gear 23r, a plurality of pinions 23p meshing with both gears, and a carrier 23c that rotatably supports the pinions 23p.

前記キャリア23cは、前後進切り換え機構4の入力軸に結合されると共に、高速段選択クラッチ24のクラッチハブにも結合される。
前記リングギヤ23rは、ワンウェイクラッチ25によりエンジン1の回転と逆方向に回転し得ないようになっている。
前記高速段選択クラッチ24は、上記したクラッチハブのほかに、クラッチドラムを備え、このクラッチドラムはエンジン1の出力軸側に結合されると共に、前記単純遊星歯車組23のサンギヤ23sにも結合される。
The carrier 23c is coupled to the input shaft of the forward / reverse switching mechanism 4 and also to the clutch hub of the high speed selection clutch 24.
The ring gear 23r cannot be rotated in the direction opposite to the rotation of the engine 1 by the one-way clutch 25.
The high-speed stage selection clutch 24 includes a clutch drum in addition to the above-described clutch hub. The clutch drum is coupled to the output shaft side of the engine 1 and is also coupled to the sun gear 23s of the simple planetary gear set 23. The

前記高速段選択クラッチ24のクラッチドラムとクラッチハブとの間が油圧の供給によって締結されると、エンジン回転がキャリア23cを経て前後進切り換え機構4の入力軸にそのまま伝達される。
かかる高速段選択クラッチ24の締結状態が、有段副変速機2の高速段選択状態(直結段選択状態)、換言すれば、2速への変速状態となる。
When the clutch drum of the high speed selection clutch 24 and the clutch hub are fastened by supplying hydraulic pressure, the engine rotation is transmitted to the input shaft of the forward / reverse switching mechanism 4 through the carrier 23c.
The engaged state of the high-speed stage selection clutch 24 is a high-speed stage selection state (direct connection stage selection state) of the stepped sub-transmission 2, in other words, a shift state to the second speed.

一方、油圧供給が断たれ、前記高速段選択クラッチ24のクラッチドラムとクラッチハブとの間が解放されると、単純遊星歯車23のサンギヤ23sにエンジン回転が入力される一方、ワンウェイクラッチ25がリングギヤ23rのエンジン1と逆方向への回転を阻止しているため、キャリア23cを減速下に同方向へ回転駆動することになり、有段副変速機2の低速段選択状態、換言すれば、1速への変速状態になる。   On the other hand, when the hydraulic pressure is cut off and the gap between the clutch drum and the clutch hub of the high speed stage selection clutch 24 is released, the engine rotation is input to the sun gear 23s of the simple planetary gear 23, while the one-way clutch 25 is connected to the ring gear. Since the rotation of 23r in the direction opposite to that of the engine 1 is prevented, the carrier 23c is driven to rotate in the same direction while being decelerated. In other words, the low-speed stage selection state of the stepped sub-transmission 2 is 1 The speed is changed to speed.

次に図2は、本発明による車両の変速装置に係る制御システムの構成を概略示すブロック図である。
この制御システムは、前述したエンジン1,有段副変速機2,前後進切り換え機構4,無段主変速機3を含むと共に、自動変速機制御ユニット(ATCU)30、エンジン制御モジュール(ECM)40を含んでなる。
Next, FIG. 2 is a block diagram schematically showing the configuration of the control system according to the transmission of the vehicle according to the present invention.
This control system includes the engine 1, the stepped sub-transmission 2, the forward / reverse switching mechanism 4, the continuously variable main transmission 3, the automatic transmission control unit (ATCU) 30, and the engine control module (ECM) 40. Comprising.

前記ATCU30は、有段副変速機2,前後進切り換え機構4,無段主変速機3を制御するユニットであり、無段主変速機3からは入力軸回転数及び出力軸回転数の情報を、前記ECM40からはエンジン回転数(rpm)及びアクセル開度の情報をそれぞれ入力し、これらの情報に基づいて無段主変速機3に対して変速動作のための変速指令を、有段副変速機2に対して変速動作のためのクラッチ締結指令を、また、ECM40に対してエンジントルクの補正指令をそれぞれ出力する。   The ATCU 30 is a unit that controls the stepped sub-transmission 2, the forward / reverse switching mechanism 4, and the continuously variable main transmission 3. From the continuously variable main transmission 3, information on the input shaft rotational speed and the output shaft rotational speed is obtained. From the ECM 40, information on the engine speed (rpm) and the accelerator opening is input, and based on these information, a gear shift command for a gear shift operation is sent to the continuously variable main transmission 3. A clutch engagement command for shifting operation is output to the machine 2, and an engine torque correction command is output to the ECM 40.

一方、ECM40は、エンジン1を制御するモジュールであり、運転者のアクセル41操作に基づくアクセル開度、及び、エンジン1からのエンジン回転数(rpm)を情報として入力し、これらの情報に基づいてエンジン1の電制スロットルに対してスロットル開度指令を出力すると共に、ATCU30に対してエンジン回転数及びアクセル開度の情報を出力する。   On the other hand, the ECM 40 is a module that controls the engine 1, and inputs the accelerator opening based on the driver's accelerator 41 operation and the engine speed (rpm) from the engine 1 as information, and based on these information. A throttle opening command is output to the electric throttle of the engine 1 and information on the engine speed and the accelerator opening is output to the ATCU 30.

図3のフローチャートは、本発明に係る変速装置における有段副変速機2の1速→2速アップ変速時における制御処理を示し、前記ATCU30に予め制御プログラムとして図3に示すルーチンが組み込まれているものとする。
以下の図3のフローチャートに示す制御処理を、図4のタイムチャートを参照しつつ説明する。
The flowchart of FIG. 3 shows a control process when the stepped sub-transmission 2 in the transmission according to the present invention is in the 1st speed → 2nd speed up shift, and the routine shown in FIG. 3 is incorporated in the ATCU 30 in advance as a control program. It shall be.
The control process shown in the flowchart of FIG. 3 below will be described with reference to the time chart of FIG.

図3のフローチャートにおいて、まず、ステップS11では、有段副変速機2における1速→2速のアップ変速要求があるか否かを判別する。
ここで、有段副変速機2における1速→2速のアップ変速が要求される状態とは、例えば、有段副変速機2が1速の状態で無段主変速機3による変速で得られるトータルの変速比が、有段変速機2の2速状態でも無段主変速機3による変速で得られる場合である。
In the flowchart of FIG. 3, first, in step S11, it is determined whether or not there is a request for an upshift from the first speed to the second speed in the stepped sub-transmission 2.
Here, the state in which the first-speed → second-speed upshift in the stepped sub-transmission 2 is required is obtained, for example, by a shift by the continuously variable main transmission 3 while the stepped sub-transmission 2 is in the first speed. This is a case where the total transmission ratio to be obtained can be obtained by the shift by the continuously variable main transmission 3 even in the second speed state of the stepped transmission 2.

有段副変速機2における1速→2速のアップ変速が要求される状態である場合には、ステップS12へ進む。
ステップS12では、前記有段副変速機2の変速段を1速から2速に変速させるべく、前記高速段選択クラッチ24の伝達トルクを一定速度で増大させるように油圧を制御して、トルクフェーズに移行させる。
If the stepped sub-transmission 2 is in a state where an upshift from the first speed to the second speed is required, the process proceeds to step S12.
In step S12, the hydraulic pressure is controlled so that the transmission torque of the high-speed stage selection clutch 24 is increased at a constant speed in order to shift the gear position of the stepped sub-transmission 2 from the first speed to the second speed, and the torque phase To migrate.

図4に示すように、前記高速段選択クラッチ24の伝達トルクを増大変化させると、相対的に、前記単純遊星歯車組23のサンギヤ23sを入力とする経路(以下、ルート1という)での伝達トルクが低下することになる。
ここで、1速状態での有段副変速機2の変速比をrとし、エンジン1の出力トルクをTeとすると、ルート1の伝達トルクは、前記高速段選択クラッチ24の伝達トルクの増大変化に伴ってTe×rから0に変化する一方で、高速段選択クラッチ24を介したトルク伝達経路(以下、ルート2という)の伝達トルクは、2速が直結段であるので、0からTeにまで変化することになる。
As shown in FIG. 4, when the transmission torque of the high-speed stage selection clutch 24 is increased and changed, the transmission is relatively performed on a route (hereinafter referred to as route 1) using the sun gear 23s of the simple planetary gear set 23 as an input. Torque will decrease.
Here, assuming that the transmission ratio of the stepped sub-transmission 2 in the first speed state is r and the output torque of the engine 1 is Te, the transmission torque of the route 1 is an increase change of the transmission torque of the high-speed stage selection clutch 24. As Te × r changes from 0 to 0, the transmission torque of the torque transmission path (hereinafter referred to as “route 2”) via the high-speed gear selection clutch 24 is changed from 0 to Te because the second gear is a direct coupling gear. Will change until.

即ち、前記有段副変速機2の変速段を1速から2速へアップ変速するときのトルクフェーズにおいて、トルクフェーズ開始前の有段副変速機2の出力軸トルクと、トルクフェーズ完了時点における有段副変速機2の出力軸トルクとは、エンジンの出力トルクに変動がないのに、有段副変速機2の段間比分だけ格差を生じることになり、結果、駆動軸トルクに落ち込みが生じることになってしまう。   That is, in the torque phase when the gear position of the stepped sub-transmission 2 is increased from the first speed to the second speed, the output shaft torque of the stepped sub-transmission 2 before the start of the torque phase and the time when the torque phase is completed The output shaft torque of the stepped sub-transmission 2 causes a difference by the ratio between the steps of the stepped sub-transmission 2 even though the output torque of the engine does not vary. As a result, the drive shaft torque drops. Will end up.

そこで、本実施形態では、次のステップS13で、前記トルクの落ち込みを防止すべく、前記高速段選択クラッチ24の伝達トルクが増大するに従って低下する駆動軸トルクを補うようにエンジントルクを増大補正し、トルクフェーズにおいて駆動軸トルクが一定に保たれるようにする。
具体的には、前記高速段選択クラッチ24の伝達トルクに比例するトルク補正量を設定して、これを前記ECM40側に出力する。
Therefore, in the present embodiment, in the next step S13, in order to prevent the torque from dropping, the engine torque is corrected to increase so as to compensate for the drive shaft torque that decreases as the transmission torque of the high speed stage selection clutch 24 increases. In the torque phase, the drive shaft torque is kept constant.
Specifically, a torque correction amount proportional to the transmission torque of the high speed stage selection clutch 24 is set and output to the ECM 40 side.

トルク補正量を受信したECM40では、前記トルク補正量に見合うスロットル開度の増大要求値を算出し、これに基づいて電制スロットルの開度を増大補正する。
尚、エンジントルクの補正は、電制スロットルによる吸入空気量の増大補正で行える他、点火時期,空燃比,バルブタイミングなどの補正によっても行うことが可能であり、更に、これらの組み合わせからトルク補正を行わせても良い。
The ECM 40 that has received the torque correction amount calculates a request value for increasing the throttle opening corresponding to the torque correction amount, and corrects the opening of the electric throttle based on this.
The engine torque can be corrected by correcting the increase in the intake air amount by the electric throttle, or by correcting the ignition timing, air-fuel ratio, valve timing, and the like. May be performed.

上記のように、トルクフェーズにおけるエンジントルクを、前記高速段選択クラッチ24の伝達トルクに応じて補正することで、駆動軸トルクを一定に保持させることができ、変速時の運転性を向上させることができる。
ステップS14では、トルクフェーズからイナーシャフェーズに移行したか否かを判別する。
As described above, by correcting the engine torque in the torque phase according to the transmission torque of the high speed stage selection clutch 24, the drive shaft torque can be kept constant, and the drivability at the time of shifting is improved. Can do.
In step S14, it is determined whether or not the torque phase has shifted to the inertia phase.

前記イナーシャフェーズへの移行判断は、例えば、単純遊星歯車組23の回転関係や、クラッチ油圧又は該クラッチ油圧に相関する信号や、エンジントルクの補正量から判断できる。
トルクフェーズからイナーシャフェーズに移行したことが判断されると、ステップS15へ進む。
Determination of the transition to the inertia phase can be made from, for example, the rotational relationship of the simple planetary gear set 23, the clutch hydraulic pressure, a signal correlated with the clutch hydraulic pressure, or the correction amount of the engine torque.
If it is determined that the torque phase has shifted to the inertia phase, the process proceeds to step S15.

ステップS15では、有段副変速機2の1速から2速への変速に対応して同時進行させる無段主変速機3の変速における目標変速比を演算する。
前記目標変速比は、有段変速機2の1速から2速への変速に対応して、有段副変速機2及び無段主変速機3のトータル変速比が変速前と同じになるようにする無段主変速機3でのダウン変速における経過時間に対する目標変速比の変化特性である。
In step S15, a target gear ratio in the shift of the continuously variable main transmission 3 that is simultaneously advanced in response to the shift from the first speed to the second speed of the stepped sub-transmission 2 is calculated.
The target gear ratio is set so that the total gear ratio of the stepped sub-transmission 2 and the continuously variable main transmission 3 is the same as that before the shift, corresponding to the shift from the first speed to the second speed of the stepped transmission 2. This is a change characteristic of the target gear ratio with respect to the elapsed time in the downshift in the continuously variable main transmission 3 to be made.

次のステップS16では、エンジン回転速度と無段主変速機3の出力軸回転速度との比、即ち、前記トータル変速比が一定になるように前記高速段選択クラッチ24の伝達トルクを制御する。
尚、前記ステップS15で無段主変速機3の目標変速比を演算するときには、ステップS16における伝達トルクの制御において、前記高速段選択クラッチ24の伝達トルクを略一定速度で減少させることで、トータル変速比が一定に保持されるように、無段主変速機3の目標変速比を設定する。
In the next step S16, the transmission torque of the high speed stage selection clutch 24 is controlled so that the ratio between the engine speed and the output shaft speed of the continuously variable main transmission 3, that is, the total speed ratio becomes constant.
When the target gear ratio of the continuously variable main transmission 3 is calculated in step S15, the transmission torque of the high-speed stage selection clutch 24 is decreased at a substantially constant speed in the control of the transmission torque in step S16. The target speed ratio of the continuously variable main transmission 3 is set so that the speed ratio is kept constant.

更に、ステップS17では、前記ステップS16で制御される高速段選択クラッチ24の伝達トルクと同等のエンジントルクになるように、エンジントルクを制御することで、エンジン回転速度を一定に保持させるようにする。
ステップS18では、変速が終了したか否かを判別し、変速が終了していない場合には、ステップS15に戻ってステップS15〜ステップS17の演算処理を繰り返し、変速終了が判定されると、そのまま本ルーチンを終了させる。
Further, in step S17, the engine speed is controlled to be constant by controlling the engine torque so that the engine torque is equal to the transmission torque of the high speed selection clutch 24 controlled in step S16. .
In step S18, it is determined whether or not the shift has been completed. If the shift has not been completed, the process returns to step S15 to repeat the arithmetic processing in steps S15 to S17. This routine is terminated.

尚、変速の終了は、単純遊星歯車組23の回転関係等に基づいて判断することができ、変速の終了が判定されると、エンジントルク補正はキャンセルされる。
上記実施形態によると、トータル変速比を変化させない有段副変速機2の1速→2速アップ変速において、変速開始から終了までの間で、駆動軸トルク及びエンジン回転速度を一定に保つことができる。
Note that the end of the shift can be determined based on the rotational relationship of the simple planetary gear set 23, and when the end of the shift is determined, the engine torque correction is cancelled.
According to the above embodiment, in the 1st speed → 2nd speed up shift of the stepped sub-transmission 2 that does not change the total gear ratio, the drive shaft torque and the engine rotation speed can be kept constant from the start to the end of the shift. it can.

ところで、上記では、トータル変速比を変化させない有段副変速機2の1速→2速アップ変速の場合について説明したが、図5のタイムチャートに示すトータル変速比の変化を伴う有段副変速機2の1速→2速アップ変速においても、前記同様にトルクフェーズにおいてエンジントルクを補正することで、トルクフェーズにおけるトルク引けの発生を防止できる。   By the way, in the above description, the case of the 1st speed → 2nd speed up shift of the stepped sub-transmission 2 in which the total gear ratio is not changed has been described, but the stepped sub-transmission accompanied by the change of the total gear ratio shown in the time chart of FIG. Even in the 1st speed → 2nd speed up shift of the machine 2, the engine torque is corrected in the torque phase in the same manner as described above, thereby preventing the occurrence of torque loss in the torque phase.

また、図5のタイムチャートに示すトータル変速比の変化を伴う有段副変速機2の1速→2速アップ変速においては、前記ステップS15で、変速後の目標トータル変速比に一定速度で近づくように、無段主変速機3における目標変速比を設定し、ステップS16では、無段主変速機3の変速終了時に、有段副変速機2の2速への変速が終了するように、高速段選択クラッチ24の伝達トルクを制御し、更に、ステップS17では、前記クラッチ伝達トルクに対応してエンジントルクを補正する。   Further, in the 1st speed → 2nd speed up shift of the stepped sub-transmission 2 accompanied by the change of the total speed ratio shown in the time chart of FIG. 5, in step S15, the target total speed ratio after the shift approaches at a constant speed. Thus, the target gear ratio in the continuously variable main transmission 3 is set, and in step S16, at the end of the shift of the continuously variable main transmission 3, the shift to the second speed of the stepped sub-transmission 2 is completed. The transmission torque of the high speed stage selection clutch 24 is controlled, and in step S17, the engine torque is corrected in accordance with the clutch transmission torque.

従って、トータル変速比の変化を伴う有段副変速機2の1速→2速アップ変速においても、トルクフェーズにおけるトルク引けの発生を防止できる一方、トータル変速比の変化に伴い駆動トルク・エンジン回転速度を滑らかに変化させて、変速フィーリングを向上させることができる。
尚、上記実施形態では、無段主変速機3としてトロイダル式の無段変速機を用いたが、ベルト式の無段変速機を用いても良いことは明らかである。
Therefore, even in the 1st speed → 2nd speed up shift of the stepped sub-transmission 2 with a change in the total gear ratio, it is possible to prevent the occurrence of torque reduction in the torque phase, while the drive torque / engine rotation is accompanied by the change in the total gear ratio The speed can be changed smoothly to improve the shift feeling.
In the above embodiment, a toroidal continuously variable transmission is used as the continuously variable main transmission 3. However, it is obvious that a belt-type continuously variable transmission may be used.

また、有段副変速機2は、前進2段に限定されるものではなく、3段以上の変速段に切り換えられる有段変速機であっても良い。   Further, the stepped sub-transmission 2 is not limited to two forward gears, and may be a stepped transmission that can be switched to three or more gears.

実施形態における車両の動力伝達系を示すシシテム図。1 is a system diagram showing a power transmission system of a vehicle in an embodiment. 実施形態における変速制御系を示すブロック図。FIG. 2 is a block diagram showing a shift control system in the embodiment. 実施形態における変速時の制御処理を示すフローチャート。The flowchart which shows the control processing at the time of the gear shift in embodiment. 実施形態においてトータル変速を一定とする副変速機のアップ変速時の制御特性を示すタイムチャート。The time chart which shows the control characteristic at the time of the upshift of the subtransmission which makes constant a total shift in embodiment. 実施形態においてトータル変速比の変化を伴う副変速機のアップ変速時の制御特性を示すタイムチャート。The time chart which shows the control characteristic at the time of the upshift of the subtransmission accompanying the change of a total gear ratio in embodiment.

符号の説明Explanation of symbols

1…エンジン、2…有段副変速機、3…無段主変速機、4…前後進切り換え機構、23…単純遊星歯車組、24…高速段選択クラッチ(摩擦要素)、25…ワンウェイクラッチ、30…自動変速機制御ユニット(ATCU)、40…エンジン制御モジュール(ECM)   DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Stepped subtransmission, 3 ... Continuously variable main transmission, 4 ... Forward / reverse switching mechanism, 23 ... Simple planetary gear set, 24 ... High speed stage selection clutch (friction element), 25 ... One-way clutch, 30 ... Automatic transmission control unit (ATCU), 40 ... Engine control module (ECM)

Claims (6)

摩擦要素の締結・解放により変速を行う有段副変速機と、該有段副変速機の出力側に接続される無段主変速機とを備え、エンジンのトルクを前記有段副変速機及び無段主変速機を介して駆動輪に伝達する車両の変速装置であって、
前記有段副変速機のアップ変速でのトルクフェーズにおいて、駆動軸トルクが一定になるように前記エンジンのトルクを補正することを特徴とする車両の変速装置。
A stepped sub-transmission that shifts by engaging and releasing a friction element; and a continuously variable main transmission connected to the output side of the stepped sub-transmission; A transmission for a vehicle that transmits to a drive wheel via a continuously variable main transmission,
In the torque phase in the upshift of the stepped sub-transmission, the engine torque is corrected so that the drive shaft torque becomes constant.
前記摩擦要素の伝達トルクに比例するエンジントルク補正値を設定することを特徴とする請求項1記載の車両の変速装置。 2. The transmission according to claim 1, wherein an engine torque correction value proportional to the transmission torque of the friction element is set. 前記トルクフェーズ後のイナーシャフェーズにおいて、前記無段主変速機の変速比変化に応じて、前記エンジンのトルク及び前記摩擦要素の伝達トルクを制御することで、イナーシャフェーズにおける駆動軸トルク及びエンジン回転速度を制御することを特徴とする請求項1又は2記載の車両の変速装置。 In the inertia phase after the torque phase, the drive shaft torque and the engine rotation speed in the inertia phase are controlled by controlling the torque of the engine and the transmission torque of the friction element according to the change in the gear ratio of the continuously variable main transmission. The vehicle transmission according to claim 1, wherein the transmission is controlled. 前記イナーシャフェーズにおいて、前記摩擦要素の伝達トルクを一定に減少変化させることで、要求される駆動軸トルク特性になるように、前記無段主変速機の変速比変化を決定することを特徴とする請求項3記載の車両の変速装置。 In the inertia phase, the transmission ratio change of the continuously variable main transmission is determined so as to obtain a required drive shaft torque characteristic by changing the transmission torque of the friction element to a constant decrease. The vehicle transmission according to claim 3. 前記有段副変速機のアップ変速に対して、前記有段副変速機及び無段主変速機によるトータル変速比を一定に保つべく前記無段主変速機で変速させるときに、前記イナーシャフェーズにおいて駆動軸トルク及びエンジン回転速度が一定になるように、前記無段主変速機の変速比変化に応じて、前記エンジンのトルク及び前記摩擦要素の伝達トルクを制御することを特徴とする請求項3又は4記載の車両の変速装置。 In the inertia phase, when shifting with the continuously variable main transmission to keep the total transmission ratio by the stepped subtransmission and the continuously variable main transmission constant with respect to the upshift of the stepped auxiliary transmission, 4. The engine torque and the transmission torque of the friction element are controlled in accordance with a change in gear ratio of the continuously variable main transmission so that the drive shaft torque and the engine rotation speed are constant. Or 5. A transmission for a vehicle according to 4. 前記有段副変速機及び無段主変速機によるトータル変速比の変化を伴う前記有段副変速機のアップ変速において、前記無段主変速機の変速終了時に、前記有段副変速機の変速が終了するように、前記摩擦要素の伝達トルクを制御することを特徴とする請求項3又は4記載の車両の変速装置。 In the upshift of the stepped subtransmission accompanied by a change in the total gear ratio by the stepped subtransmission and the continuously variable main transmission, the shifting of the stepped subtransmission is performed at the end of the shift of the continuously variable main transmission. The vehicle transmission according to claim 3 or 4, wherein the transmission torque of the friction element is controlled so that the operation ends.
JP2005283959A 2005-09-29 2005-09-29 Transmission for vehicle Pending JP2007092665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283959A JP2007092665A (en) 2005-09-29 2005-09-29 Transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283959A JP2007092665A (en) 2005-09-29 2005-09-29 Transmission for vehicle

Publications (1)

Publication Number Publication Date
JP2007092665A true JP2007092665A (en) 2007-04-12

Family

ID=37978665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283959A Pending JP2007092665A (en) 2005-09-29 2005-09-29 Transmission for vehicle

Country Status (1)

Country Link
JP (1) JP2007092665A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825172A (en) * 2009-03-06 2010-09-08 日产自动车株式会社 The control gear of automatic transmission and controlling method
CN101825171A (en) * 2009-03-06 2010-09-08 日产自动车株式会社 The control system of automatic transmission
JP2010203502A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Control apparatus for automatic transmission
JP2010209947A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
JP2010209948A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
CN101846178A (en) * 2009-03-27 2010-09-29 加特可株式会社 Stepless speed variator and controlling method thereof
KR20100108277A (en) * 2009-03-27 2010-10-06 쟈트코 가부시키가이샤 Continuously variable transmission and method for controlling the same
JP2010230117A (en) * 2009-03-27 2010-10-14 Jatco Ltd Continuously variable transmission and method of controlling the same
KR20110007949A (en) * 2009-07-17 2011-01-25 쟈트코 가부시키가이샤 Control apparatus of automatic transmission for vehicle
KR20110007950A (en) * 2009-07-17 2011-01-25 쟈트코 가부시키가이샤 Automatic transmission
KR20110007948A (en) * 2009-07-17 2011-01-25 쟈트코 가부시키가이샤 Automatic transmission and method of controlling automatic transmission
JP2011021720A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Control device of vehicle continuously variable transmission
JP2011047459A (en) * 2009-08-26 2011-03-10 Jatco Ltd Continuously variable transmission and method for controlling the same
US8323141B2 (en) 2009-03-27 2012-12-04 Jatco Ltd Continuously variable transmission and control method thereof
US8360920B2 (en) 2009-07-17 2013-01-29 Nissan Motor Co., Ltd. Continuously variable transmission and control method thereof
US8371985B2 (en) 2009-07-17 2013-02-12 Nissan Motor Co., Ltd. Shift control of continuously variable transmission
US8386139B2 (en) 2009-07-17 2013-02-26 Nissan Motor Co., Ltd. Shift control of automatic transmission
US8585542B2 (en) 2009-07-17 2013-11-19 Nissan Motor Co., Ltd. Control of and control method for vehicle continuously variable transmission
WO2015060051A1 (en) * 2013-10-23 2015-04-30 ジヤトコ株式会社 Control device for continuously variable transmission
JPWO2015146451A1 (en) * 2014-03-25 2017-04-13 日産自動車株式会社 Vehicle engine control apparatus and vehicle engine control method
US10100923B2 (en) 2016-04-19 2018-10-16 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
US10369987B2 (en) 2016-11-29 2019-08-06 Toyota Jidosha Kabushiki Kaisha Control device and control method for hybrid vehicle
KR102241164B1 (en) 2019-12-10 2021-04-19 주식회사 현대케피코 Method and System for Kick Down Shift Based On Engine Cooperation

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203502A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Control apparatus for automatic transmission
US8406967B2 (en) 2009-03-02 2013-03-26 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission system
US8364359B2 (en) 2009-03-06 2013-01-29 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission
CN101825171A (en) * 2009-03-06 2010-09-08 日产自动车株式会社 The control system of automatic transmission
JP2010209947A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
JP2010209943A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
JP2010209946A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
JP2010209948A (en) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd Control apparatus for automatic transmission
KR101669676B1 (en) * 2009-03-06 2016-10-27 쟈트코 가부시키가이샤 Control apparatus for automatic transmission
KR20100100688A (en) * 2009-03-06 2010-09-15 쟈트코 가부시키가이샤 Control apparatus for automatic transmission
US8428834B2 (en) 2009-03-06 2013-04-23 Nissan Motor Co., Ltd. Control system of automatic transmission
US8280597B2 (en) 2009-03-06 2012-10-02 Nissan Motor Co., Ltd. Control apparatus of automatic transmission
US8465395B2 (en) 2009-03-06 2013-06-18 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission
CN101825172B (en) * 2009-03-06 2013-09-11 日产自动车株式会社 Control apparatus and control method for automatic transmission
CN101825171B (en) * 2009-03-06 2013-11-20 日产自动车株式会社 Control system for automatic transmission
CN101825172A (en) * 2009-03-06 2010-09-08 日产自动车株式会社 The control gear of automatic transmission and controlling method
KR20160137902A (en) * 2009-03-27 2016-12-01 쟈트코 가부시키가이샤 Continuously variable transmission and method for controlling the same
KR101667818B1 (en) * 2009-03-27 2016-10-19 쟈트코 가부시키가이샤 Continuously variable transmission and method for controlling the same
US8712649B2 (en) 2009-03-27 2014-04-29 Jatco Ltd Continuously variable transmission and control method thereof
US8403809B2 (en) 2009-03-27 2013-03-26 Jatco Ltd Continuously variable transmission and control method thereof
KR101706898B1 (en) 2009-03-27 2017-02-14 쟈트코 가부시키가이샤 Continuously variable transmission and method for controlling the same
US8241178B2 (en) 2009-03-27 2012-08-14 Jatco Ltd Continuously variable transmission and control method thereof
JP2010230118A (en) * 2009-03-27 2010-10-14 Jatco Ltd Continuously variable transmission and method of controlling the same
JP2010230116A (en) * 2009-03-27 2010-10-14 Jatco Ltd Continuously variable transmission and method of controlling the same
US8298119B2 (en) 2009-03-27 2012-10-30 Jatco Ltd Continuously variable transmission and control method thereof
US8323141B2 (en) 2009-03-27 2012-12-04 Jatco Ltd Continuously variable transmission and control method thereof
JP2010230117A (en) * 2009-03-27 2010-10-14 Jatco Ltd Continuously variable transmission and method of controlling the same
KR20100108277A (en) * 2009-03-27 2010-10-06 쟈트코 가부시키가이샤 Continuously variable transmission and method for controlling the same
CN101846178A (en) * 2009-03-27 2010-09-29 加特可株式会社 Stepless speed variator and controlling method thereof
KR20110007948A (en) * 2009-07-17 2011-01-25 쟈트코 가부시키가이샤 Automatic transmission and method of controlling automatic transmission
KR101647513B1 (en) 2009-07-17 2016-08-10 쟈트코 가부시키가이샤 Continuously variable transmission and method of controlling the same
US8371985B2 (en) 2009-07-17 2013-02-12 Nissan Motor Co., Ltd. Shift control of continuously variable transmission
US8360920B2 (en) 2009-07-17 2013-01-29 Nissan Motor Co., Ltd. Continuously variable transmission and control method thereof
US8353799B2 (en) 2009-07-17 2013-01-15 Nissan Motor Co., Ltd. Control of and control method for vehicle continuously variable transmission
US8467946B2 (en) 2009-07-17 2013-06-18 Nissan Motor Co., Ltd. Shift control of continuously variable transmission
US8277362B2 (en) 2009-07-17 2012-10-02 Jatco Ltd Continuously variable transmission and control method thereof
KR101707685B1 (en) * 2009-07-17 2017-02-16 쟈트코 가부시키가이샤 Continuously variable transmission
US8571768B2 (en) 2009-07-17 2013-10-29 Nissan Motor Co., Ltd. Control of and control method for vehicle continuously variable transmission
US8585542B2 (en) 2009-07-17 2013-11-19 Nissan Motor Co., Ltd. Control of and control method for vehicle continuously variable transmission
JP2011021718A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Continuously variable transmission
JP2011021720A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Control device of vehicle continuously variable transmission
CN101956823B (en) * 2009-07-17 2014-06-25 日产自动车株式会社 Shift control of continuously variable transmission
KR20110007949A (en) * 2009-07-17 2011-01-25 쟈트코 가부시키가이샤 Control apparatus of automatic transmission for vehicle
KR101689406B1 (en) 2009-07-17 2016-12-23 쟈트코 가부시키가이샤 Control apparatus of continuously variable transmission for vehicle
US8386139B2 (en) 2009-07-17 2013-02-26 Nissan Motor Co., Ltd. Shift control of automatic transmission
JP2011021717A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Control device of vehicle continuously variable transmission
CN101956823A (en) * 2009-07-17 2011-01-26 日产自动车株式会社 The speed Control of stepless speed variator
KR20110007950A (en) * 2009-07-17 2011-01-25 쟈트코 가부시키가이샤 Automatic transmission
JP2011047459A (en) * 2009-08-26 2011-03-10 Jatco Ltd Continuously variable transmission and method for controlling the same
CN105531512B (en) * 2013-10-23 2017-07-07 加特可株式会社 The control device of buncher
WO2015060051A1 (en) * 2013-10-23 2015-04-30 ジヤトコ株式会社 Control device for continuously variable transmission
EP3061996A4 (en) * 2013-10-23 2017-01-25 Jatco Ltd Control device for continuously variable transmission
JPWO2015060051A1 (en) * 2013-10-23 2017-03-09 ジヤトコ株式会社 Control device for continuously variable transmission
CN105531512A (en) * 2013-10-23 2016-04-27 加特可株式会社 Control device for continuously variable transmission
US10385968B2 (en) 2013-10-23 2019-08-20 Jatco Ltd Control device for continuously variable transmission
JPWO2015146451A1 (en) * 2014-03-25 2017-04-13 日産自動車株式会社 Vehicle engine control apparatus and vehicle engine control method
KR101780912B1 (en) 2014-03-25 2017-09-21 쟈트코 가부시키가이샤 Engine control device for vehicle and engine control method for vehicle
US10155517B2 (en) 2014-03-25 2018-12-18 Jatco Ltd Engine control device for vehicle and engine control method for vehicle
US10100923B2 (en) 2016-04-19 2018-10-16 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
US10369987B2 (en) 2016-11-29 2019-08-06 Toyota Jidosha Kabushiki Kaisha Control device and control method for hybrid vehicle
KR102241164B1 (en) 2019-12-10 2021-04-19 주식회사 현대케피코 Method and System for Kick Down Shift Based On Engine Cooperation

Similar Documents

Publication Publication Date Title
JP2007092665A (en) Transmission for vehicle
KR101629019B1 (en) Controlling device of automatic transmission
JP4839647B2 (en) Synchronous shift control device for automatic transmission
JP3399441B2 (en) Transmission control device for continuously variable transmission with infinite transmission ratio
US9097319B2 (en) Automated manual transmission for vehicle
JP2007177925A (en) Control device and control method for automobile, and automatic transmission
WO2014112203A1 (en) Starting clutch control device for automatic transmission
JP2019002480A (en) Shift control device in continuously variable transmission
JP2862756B2 (en) Vehicle manual transmission and control method thereof
JP4784427B2 (en) Vehicle control device
JP2004100921A (en) Controller of non-stage transmission
JPH09292013A (en) Shift control device for automatic transmission
JP6891820B2 (en) Vehicle transmission control device
JPH09303550A (en) Start control method for vehicle
JPH0483964A (en) Shift control method for automatic transmission
JP2000193077A (en) Shift control device for continuously variable transmission in infinite change gear ratio
JP6753018B2 (en) Control device for automatic transmission
JP3719225B2 (en) Control method for vehicle transmission
JP2014035000A (en) Power transmission device and gear type continuous variable transmission mechanism
JPH0324932Y2 (en)
JP2005042768A (en) Shift control device for continuously variable transmission
WO2016152327A1 (en) Control device for continuously variable transmission and control method therefor
JP6876135B2 (en) Control device for continuously variable transmission and control method for continuously variable transmission
JP2000104823A (en) Control device for automatic transmission
JP3719224B2 (en) Control device for vehicle transmission