WO2018072283A1 - Oled显示器及其制作方法 - Google Patents

Oled显示器及其制作方法 Download PDF

Info

Publication number
WO2018072283A1
WO2018072283A1 PCT/CN2016/109572 CN2016109572W WO2018072283A1 WO 2018072283 A1 WO2018072283 A1 WO 2018072283A1 CN 2016109572 W CN2016109572 W CN 2016109572W WO 2018072283 A1 WO2018072283 A1 WO 2018072283A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic passivation
oled
organic buffer
conductive layer
Prior art date
Application number
PCT/CN2016/109572
Other languages
English (en)
French (fr)
Inventor
金江江
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to EP16919480.0A priority Critical patent/EP3531454B1/en
Priority to KR1020197014301A priority patent/KR102290118B1/ko
Priority to US15/328,895 priority patent/US10062866B2/en
Priority to JP2019520835A priority patent/JP6734993B2/ja
Publication of WO2018072283A1 publication Critical patent/WO2018072283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]

Definitions

  • the present invention relates to the field of flat panel display technologies, and in particular, to an OLED display and a method of fabricating the same.
  • OLED Organic Light-Emitting Diode
  • OLED display technology is different from traditional liquid crystal display technology. It does not require a backlight. It uses a very thin coating of organic materials and a glass substrate. When there is current, these organic materials will emit light. However, since organic materials are easily reacted with water vapor or oxygen, as an organic material-based display device, the OLED display has a very high requirement for packaging, and therefore, the sealing of the inside of the device is improved by the packaging of the OLED device, and the external environment is isolated as much as possible. It is essential for stable illumination of OLED devices.
  • the most common method for packaging OLED devices is to cover the package with a UV-curable adhesive and a hard-package substrate (such as glass or metal), but the method is not suitable for flexible devices. Therefore, there are also technical solutions for laminating.
  • the film package (TFE) for packaging OLED devices due to the flexible display as the mainstream technology in the future, the corresponding film packaging process is crucial.
  • a large number of research results show that the attenuation of the efficiency of OLED devices is inseparable from the degradation of materials caused by self-heating. Therefore, how to effectively block the external water oxygen and reduce the thermal decomposition caused by the heat of the device is very important to improve the life of the device.
  • the most extensive thin film encapsulation process generally adopts an inorganic/organic/inorganic alternating structure, such as the thin film encapsulation structure disclosed in the patent document US8569951, which adopts an inorganic organic circulation alternate manner, and an inorganic layer is used to block external water. Oxygen, the organic layer is used to relieve stress and flattening coverage of the particles.
  • we know that the thermal conductivity of inorganic metal oxides and organic materials used in this packaging process is often very low. It is difficult to transfer the heat generated by the component.
  • the Korea Institute of Industrial Technology reported an OLED element structure in the journal Organic Electronics. Its TFE structure uses a multilayer polymer layer and an alternating structure of aluminum oxide (Al 2 O 3 ) layers. Finally, The uppermost layer of the TFE structure is provided with a copper (Cu) heat sink; the OLED element with copper heat sink has a significantly lower operating temperature than the component without the copper heat sink, and, with the passage of working time, the component with the copper heat sink The upward trend in temperature is significantly suppressed. This process provides a better guiding scheme for heat transfer of OLED components. However, the transmittance of Cu is not high enough, especially for top emitting devices used in the display field, which is greatly limited.
  • An object of the present invention is to provide an OLED display capable of effectively transferring heat generated during operation of an OLED device, reducing thermal decomposition of an OLED device material, and improving device lifetime while ensuring sufficient resistance to external water oxygen.
  • Another object of the present invention is to provide a method for fabricating an OLED display, which introduces a patterned high thermal conductive layer into a thin film encapsulation structure, can effectively transfer heat generated during operation of the OLED device, and reduce thermal decomposition of the OLED device material. Ensure that the device has sufficient resistance to external water oxygen while increasing device lifetime.
  • the present invention provides an OLED display, comprising an OLED substrate, and a thin film encapsulation layer disposed on the OLED substrate;
  • the thin film encapsulation layer includes a first inorganic passivation layer disposed on the OLED substrate, a high thermal conductive layer disposed on the first inorganic passivation layer, a first inorganic passivation layer, and a high a first organic buffer layer on the heat conductive layer, and a second inorganic passivation layer disposed on the first organic buffer layer;
  • the OLED substrate includes a plurality of pixel units arranged in an array, each pixel unit having a plurality of sub-pixel regions arranged in an array;
  • the high thermal conductive layer is provided with a plurality of openings corresponding to the plurality of sub-pixel regions of the plurality of pixel units, and the first organic buffer layer completely fills the plurality of openings on the high thermal conductive layer.
  • the material of the high thermal conductivity layer is diamond-like, silver, aluminum, aluminum nitride, graphene, or copper.
  • the highly thermally conductive layer has a thickness of from 1 to 1000 nm.
  • the thin film encapsulation layer further includes a second organic buffer layer disposed on the second inorganic passivation layer and a third inorganic passivation layer disposed on the second organic buffer layer.
  • the materials of the first, second, and third inorganic passivation layers are all Al 2 O 3 , TiO 2 , SiNx, SiCNx, or SiOx, and the thicknesses of the first, second, and third inorganic passivation layers are both 0.5-1 ⁇ m;
  • the materials of the first and second organic buffer layers are all hexamethyldisiloxane, a polyacrylate polymer, a polycarbonate polymer, or polystyrene, and the first and second organic buffers
  • the thickness of the layers is 4-8 ⁇ m.
  • Each pixel unit has four sub-pixel regions arranged in a 2 ⁇ 2 matrix, and the four sub-pixel regions are respectively white, red, blue, and green sub-pixel regions.
  • the invention also provides a method for manufacturing an OLED display, comprising the following steps:
  • Step 1 providing an OLED substrate, the OLED substrate includes a plurality of pixel units arranged in an array, each pixel unit having a plurality of sub-pixel regions arranged in an array;
  • Step 2 forming a thin film encapsulation layer on the OLED substrate to obtain an OLED display
  • the forming process of the thin film encapsulation layer comprises the following steps:
  • Step 21 depositing a first inorganic passivation layer on the OLED substrate
  • Step 22 forming a high thermal conductive layer on the first inorganic passivation layer, wherein the high thermal conductive layer is provided with a plurality of openings corresponding to a plurality of sub-pixel regions of the plurality of pixel units;
  • Step 23 forming a first organic buffer layer on the first inorganic passivation layer and the high thermal conductive layer, the first organic buffer layer completely filling a plurality of openings on the high thermal conductive layer;
  • Step 24 depositing a second inorganic passivation layer on the first organic buffer layer.
  • the step 22 is specifically to directly form a high thermal conductive layer having the plurality of openings by vacuum evaporation using a mask, or specifically,
  • thermal conductive film First depositing a thermal conductive film by plasma enhanced chemical vapor deposition, atomic layer deposition, pulsed laser deposition, or sputtering deposition, and then performing photolithography on the thermally conductive film to form a number on the thermally conductive film Openings to obtain a highly thermally conductive layer;
  • the material of the high heat conductive layer is diamond-like, silver, aluminum, aluminum nitride, graphene, or copper, and the high heat conductive layer has a thickness of 1 to 1000 nm.
  • the forming process of the thin film encapsulation layer further includes:
  • Step 25 forming a second organic buffer layer on the second inorganic passivation layer
  • Step 26 depositing a third inorganic passivation layer on the second organic buffer layer.
  • the first, second, and third inorganic passivation layers are each formed by a plasma enhanced chemical vapor deposition method, an atomic layer deposition method, a pulsed laser deposition method, or a sputtering deposition method, the first, second, and
  • the material of the three inorganic passivation layers is Al 2 O 3 , TiO 2 , SiNx, SiCNx, or SiOx, and the thickness of each of the first, second, and third inorganic passivation layers is 0.5-1 ⁇ m;
  • the first and second organic buffer layers are all formed by inkjet printing, plasma enhanced chemical vapor deposition, screen printing, or slit coating, and the materials of the first and second organic buffer layers are all six.
  • the methyl dimethicone, the polyacrylate polymer, the polycarbonate polymer, or the polystyrene, the first and second organic buffer layers each have a thickness of 4 to 8 ⁇ m.
  • each pixel unit has four sub-pixel regions arranged in a 2 ⁇ 2 matrix, and the four sub-pixel regions are respectively white, red, blue, and green sub-pixel regions.
  • the present invention also provides an OLED display, comprising an OLED substrate, and a thin film encapsulation layer disposed on the OLED substrate;
  • the thin film encapsulation layer includes a first inorganic passivation layer disposed on the OLED substrate, a high thermal conductive layer disposed on the first inorganic passivation layer, a first inorganic passivation layer, and a high a first organic buffer layer on the heat conductive layer, and a second inorganic passivation layer disposed on the first organic buffer layer;
  • the OLED substrate includes a plurality of pixel units arranged in an array, each pixel unit having a plurality of sub-pixel regions arranged in an array;
  • the high thermal conductive layer is provided with a plurality of openings corresponding to the plurality of sub-pixel regions of the plurality of pixel units, and the first organic buffer layer completely fills the plurality of openings on the high thermal conductive layer;
  • the material of the high thermal conductivity layer is diamond-like, silver, aluminum, aluminum nitride, graphene, or copper, and the high thermal conductive layer has a thickness of 1-1000 nm;
  • Each of the pixel units has four sub-pixel regions arranged in a 2 ⁇ 2 matrix, and the four sub-pixel regions are respectively white, red, blue, and green sub-pixel regions.
  • the OLED display of the present invention includes an OLED substrate and a thin film encapsulation layer disposed on the OLED substrate; wherein the thin film encapsulation layer comprises a patterned high thermal conductivity layer, and the high thermal conductivity layer is provided There are several openings corresponding to the plurality of sub-pixel regions on the OLED substrate, which not only avoids the absorption of light by the high thermal conductive layer, but also avoids the limitation that the top emitting device can only use materials having high transmittance, thereby While reducing the light-emitting efficiency of the device, the heat generated by the OLED device during operation can be effectively transferred, the thermal decomposition of the OLED device material can be reduced, and the device can have sufficient ability to block external water oxygen and improve device life; the OLED display of the present invention The method of manufacturing the OLED device by using a thin film encapsulation method, and introducing a patterned high thermal conductive layer into the thin film encapsulation structure, wherein the high thermal conductive layer is provided with a plurality of sub-
  • Opening not only avoids the absorption of light by the high thermal conductivity layer, but also avoids the high transmittance of the top emitting device. Material limits, so that the same time without lowering the optical efficiency of the device can effectively transfer heat generated by the OLED device in operation, an OLED device to reduce thermally decomposable material, and to ensure the device has sufficient The ability to block external water oxygen and improve device life.
  • FIG. 1 is a schematic structural view of a first embodiment of an OLED display of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of an OLED display of the present invention.
  • FIG. 3 is a schematic flow chart of a method for fabricating an OLED display of the present invention.
  • step 21 of a method of fabricating an OLED display of the present invention is a schematic diagram of step 21 of a method of fabricating an OLED display of the present invention.
  • step 22 of a method of fabricating an OLED display of the present invention is a schematic diagram of step 22 of a method of fabricating an OLED display of the present invention.
  • FIG. 6 is a schematic diagram of step 23 of a method of fabricating an OLED display of the present invention.
  • step 25 of a second embodiment of a method of fabricating an OLED display of the present invention is a schematic diagram of step 25 of a second embodiment of a method of fabricating an OLED display of the present invention.
  • the OLED display includes an OLED substrate 101 and a thin film encapsulation layer disposed on the OLED substrate 101.
  • the thin film encapsulation layer includes a first inorganic passivation layer 201 disposed on the OLED substrate 101, a high thermal conductive layer 301 disposed on the first inorganic passivation layer 201, and the first inorganic passivation layer. a layer 201, a first organic buffer layer 401 on the high thermal conductivity layer 301, and a second inorganic passivation layer 202 disposed on the first organic buffer layer 401;
  • the OLED substrate 101 includes a plurality of pixel units arranged in an array, each pixel unit having a plurality of sub-pixel regions arranged in an array;
  • the high thermal conductive layer 301 is provided with a plurality of openings 3011 corresponding to the plurality of sub-pixel regions of the plurality of pixel units, and the first organic buffer layer 401 completely fills the plurality of openings on the high thermal conductive layer 301. 3011.
  • the plurality of openings 3011 of the high heat conductive layer 301 and the plurality of images The arrangement of the plurality of sub-pixel regions of the prime unit is consistent, and the size of each opening 3011 is consistent with the size of the corresponding sub-pixel region, thereby avoiding the absorption of light emitted by the high thermal conductive layer 301 to the corresponding sub-pixel region, and avoiding
  • the top-emitting device can only use the material with high transmittance, can effectively transfer the heat generated by the OLED device during operation, reduce the thermal decomposition of the OLED device material, and ensure that the device has sufficient capacity without reducing the light-emitting efficiency of the device. The ability to block external water oxygen and improve device life.
  • each pixel unit has four sub-pixel regions arranged in a 2 ⁇ 2 matrix, and the four sub-pixel regions are respectively white, red, blue, and green sub-pixel regions, each of which is
  • the size of the opening 3011 corresponding to the white sub-pixel region is the same as the size of the white sub-pixel region.
  • the size of the opening 3011 corresponding to the red, blue, and green sub-pixel regions respectively is different from the red, blue, and green sub-pixel regions.
  • the dimensions are the same.
  • the material of the high thermal conductive layer 301 is a metal or non-metal high thermal conductivity material such as diamond-like carbon (DLC), silver, aluminum (Al), aluminum nitride (AlN), graphene, copper or the like.
  • DLC diamond-like carbon
  • Al aluminum
  • AlN aluminum nitride
  • graphene copper or the like.
  • the high heat conductive layer 301 has a thickness of 1 to 1000 nm.
  • the materials of the first and second inorganic passivation layers 201 and 202 are both Al 2 O 3 , titanium oxide (TiO 2 ), silicon nitride (SiNx), silicon carbonitride (SiCNx), and silicon oxide. (SiOx) or the like for blocking external water oxygen.
  • the first and second inorganic passivation layers 201 and 202 have a thickness of 0.5-1 ⁇ m.
  • the material of the first organic buffer layer 401 is hexamethyldisiloxane (HMDSO), a polyacrylate polymer (for example, Acrylic), a polycarbonate polymer, or A material such as polystyrene used to relieve stress and cover particulate matter.
  • HMDSO hexamethyldisiloxane
  • a polyacrylate polymer for example, Acrylic
  • a polycarbonate polymer for example, polycarbonate polymer
  • a material such as polystyrene used to relieve stress and cover particulate matter is hexamethyldisiloxane (HMDSO), a polyacrylate polymer (for example, Acrylic), a polycarbonate polymer, or A material such as polystyrene used to relieve stress and cover particulate matter.
  • the first organic buffer layer 401 has a thickness of 4-8 ⁇ m.
  • the thin film encapsulation layer further includes a second inorganic passivation layer 202.
  • the second organic buffer layer 402 and the third inorganic passivation layer 203 disposed on the second organic buffer layer 402.
  • the material of the second organic buffer layer 402 and the first organic buffer layer 401 is hexamethyldisiloxane, a polyacrylate polymer, a polycarbonate polymer, or polystyrene.
  • the thickness of the second organic buffer layer 402 and the first organic buffer layer 401 is 4-8 ⁇ m.
  • the material of the third inorganic passivation layer 203 and the first and second inorganic passivation layers 201, 202 are both Al 2 O 3 , TiO 2 , SiNx, SiCNx, or SiOx, and the third inorganic passivation layer 203
  • the thicknesses of the first and second inorganic passivation layers 201 and 202 are both 0.5-1 ⁇ m. Others are the same as the first embodiment described above, and are not described herein again.
  • the present invention further provides a method for fabricating an OLED display. Specifically, the first embodiment includes the following steps:
  • Step 1 An OLED substrate 101 is provided.
  • the OLED substrate 101 includes a plurality of pixel units arranged in an array, and each pixel unit has a plurality of sub-pixel regions arranged in an array.
  • Step 2 forming a thin film encapsulation layer on the OLED substrate 101 to obtain an OLED display;
  • the forming process of the thin film encapsulation layer comprises the following steps:
  • Step 21 as shown in FIG. 4, on the OLED substrate by plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), pulsed laser deposition (PLD), or sputter deposition (Sputter)
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • PLD pulsed laser deposition
  • Sputter sputter deposition
  • the material of the first inorganic passivation layer 201 is a material for blocking external water oxygen such as Al 2 O 3 , TiO 2 , SiNx, SiCNx, SiOx or the like.
  • the first inorganic passivation layer 201 has a thickness of 0.5-1 ⁇ m.
  • Step 22 as shown in FIG. 5, a high thermal conductive layer 301 is formed on the first inorganic passivation layer 201, and the high thermal conductive layer 301 is provided with a plurality of sub-pixel regions corresponding to the plurality of pixel units. Corresponding opening 3011.
  • the step 22 specifically forms a high thermal conductive layer 301 having the plurality of openings 3011 by vacuum evaporation using a mask; or specifically,
  • a thermal conductive film is deposited by a plurality of metal or non-metal deposition processes such as plasma enhanced chemical vapor deposition, atomic layer deposition, pulsed laser deposition, and sputtering deposition, and then the photoconductive process is performed on the thermally conductive film.
  • a plurality of openings 3011 are formed on the thermally conductive film to obtain a highly thermally conductive layer 301.
  • the plurality of openings 3011 of the high thermal conductive layer 301 are aligned with the plurality of sub-pixel regions of the plurality of pixel units, and the size of each opening 3011 and the size of the corresponding sub-pixel region Consistently, the absorption of light emitted by the high-heat-conducting layer 301 to the sub-pixel region is avoided, and the top emission device can be prevented from using only the material having high transmittance, and can be effectively transferred without lowering the light-emitting efficiency of the device.
  • the heat generated by the OLED device during operation reduces the thermal decomposition of the OLED device material and ensures that the device has sufficient resistance to external water oxygen and improves device lifetime.
  • each pixel unit has four sub-pixel regions arranged in a 2 ⁇ 2 matrix, and the four sub-pixel regions are respectively white, red, blue, and green sub-pixel regions, each of which is
  • the size of the opening 3011 corresponding to the white sub-pixel region is the same as the size of the white sub-pixel region.
  • the size of the opening 3011 corresponding to the red, blue, and green sub-pixel regions respectively is different from the red, blue, and green sub-pixel regions.
  • the dimensions are the same.
  • the material of the high thermal conductive layer 301 is a metal or non-metal high thermal conductivity material such as diamond-like, silver, aluminum, aluminum nitride, graphene, copper or the like.
  • the high heat conductive layer 301 has a thickness of 1 to 1000 nm.
  • Step 23 as shown in FIG. 6, in the first inorganic passivation by inkjet printing (IJP), plasma enhanced chemical vapor deposition, screen printing, or slot coating
  • a first organic buffer layer 401 is formed on the layer 201 and the high heat conductive layer 301, and the first organic buffer layer 401 completely fills the plurality of openings 3011 on the high heat conductive layer 301.
  • the material of the first organic buffer layer 401 is hexamethyldisiloxane, a polyacrylate polymer (for example, acrylic), a polycarbonate polymer, or polystyrene. Relieves stress and materials that cover particulate matter.
  • the first organic buffer layer 401 has a thickness of 4-8 ⁇ m.
  • Step 24 depositing a second inorganic passivation layer 202 on the first organic buffer layer 401 by plasma enhanced chemical vapor deposition, atomic layer deposition, pulsed laser deposition, or sputtering deposition, thereby obtaining The OLED display shown in Figure 1.
  • the material of the second inorganic passivation layer 202 is Al 2 O 3 , TiO 2 , SiNx, SiCNx, SiOx or the like for blocking external water oxygen, and the thickness of the second inorganic passivation layer 202 is 0.5-1 ⁇ m.
  • the forming process of the thin film encapsulation layer further includes:
  • Step 25 as shown in FIG. 7, coating a second organic buffer layer 402 on the second inorganic passivation layer 202.
  • the second organic buffer layer 402 and the first organic buffer layer 401 are each formed by inkjet printing, plasma enhanced chemical vapor deposition, screen printing, or slit coating, the second organic
  • the material of the buffer layer 402 and the first organic buffer layer 401 is hexamethyldisiloxane, a polyacrylate polymer, a polycarbonate polymer, or polystyrene, and the second organic buffer layer 402 and the first organic buffer layer 401 have a thickness of 4-8 ⁇ m.
  • Step 26 forming a third inorganic passivation layer 203 on the second organic buffer layer 402, thereby obtaining an OLED display as shown in FIG. 2.
  • the third inorganic passivation layer 203 and the first and second inorganic passivation layers 201 and 202 are both subjected to plasma enhanced chemical vapor deposition, atomic layer deposition, pulsed laser deposition, or sputtering.
  • the material of the third inorganic passivation layer 203 and the first and second inorganic passivation layers 201, 202 are both Al 2 O 3 , TiO 2 , SiNx, SiCNx, or SiOx,
  • the thickness of the three inorganic passivation layers 203 and the first and second inorganic passivation layers 201 and 202 is 0.5-1 ⁇ m.
  • the OLED display of the present invention includes an OLED substrate and a thin film encapsulation layer disposed on the OLED substrate; wherein the thin film encapsulation layer comprises a patterned high thermal conductivity layer, and
  • the high thermal conductive layer is provided with a plurality of openings corresponding to the plurality of sub-pixel regions on the OLED substrate, which not only avoids the absorption of light by the high thermal conductive layer, but also avoids the high transmittance of the top emitting device.
  • the limitation of the material can effectively transfer the heat generated by the OLED device during operation without reducing the light-emitting efficiency of the device, reduce the thermal decomposition of the OLED device material, and ensure that the device has sufficient ability to block external water oxygen and improve device life.
  • the OLED device is packaged by a thin film encapsulation method, and the patterned high thermal conductive layer is introduced into the thin film encapsulation structure, and the high thermal conductive layer is provided with a plurality of numbers on the OLED substrate.
  • the one-to-one corresponding opening of the sub-pixel region not only avoids the absorption of light by the high thermal conductive layer, but also avoids the limitation that the top-emitting device can only use the material having high transmittance, thereby being effective without reducing the light-emitting efficiency of the device.
  • Transfer the heat generated by the OLED device during operation reduce the thermal decomposition of the OLED device material, and ensure that the device has sufficient The ability to block external oxygen in water, to improve device lifetime.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供一种OLED显示器及其制作方法。OLED显示器包括OLED基板(101)及设于OLED基板(101)上的薄膜封装层;其中,薄膜封装层包括图案化的高导热层(301),高导热层(301)上设有数个与OLED基板(101)上的数个子像素区域一一对应的开口(3011),不但避免了高导热层对光的吸收,而且避免了顶发射器件仅能够使用具有高透过率材料的限制,从而在不降低器件出光效率的同时,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,并保证器件具有足够的阻隔外界水氧的能力,提高器件寿命。

Description

OLED显示器及其制作方法 技术领域
本发明涉及平板显示技术领域,尤其涉及一种OLED显示器及其制作方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器,具备自发光、高亮度、宽视角、高对比度、可挠曲、低能耗等特性,因此受到广泛的关注,并作为新一代的显示方式,已开始逐渐取代传统液晶显示器。目前,从小尺寸的移动电话显示屏,到大尺寸高分辨率的平板电视,应用OLED显示面板都成为一种高端的象征。
OLED显示技术与传统的液晶显示技术不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。但是由于有机材料易与水汽或氧气反应,作为基于有机材料的显示设备,OLED显示屏对封装的要求非常高,因此,通过OLED器件的封装提高器件内部的密封性,尽可能的与外部环境隔离,对于OLED器件的稳定发光至关重要。
目前对于OLED器件的封装,最常用的方法是利用紫外光固化胶加硬质封装基板(如玻璃或金属)覆盖封装,但是该方法并不适用于柔性器件,因此,也有技术方案采用通过叠层的薄膜对OLED器件进行封装的薄膜封装(TFE),由于柔性显示作为未来的主流技术,其对应的薄膜封装工艺至关重要。另一方面,大量研究结果表明,OLED器件效率的衰减与自身发热引起的材料降解密不可分,因此如何有效的阻隔外界的水氧以及降低器件发热引起的热分解对提高器件的寿命十分重要。
目前,最为广泛的薄膜封装工艺一般采用无机/有机/无机交替的结构,如专利文件US8569951上公开的薄膜封装结构,该薄膜封装结构采用无机有机循环交替的方式,无机层用于阻隔外界的水氧,有机层用于缓解应力以及颗粒物的平坦化覆盖。随后,三星公司大量报道了一系列次类型的TFE工艺,如US20090252975、US20150188084、US20150153779、US20150079707等,然而我们知道,这种封装工艺中采用的无机金属氧化物和有机物的热导率往往都很低,很难转移元件产生的热量。
韩国工业研究院在期刊《Organic Electronics》(有机电子学)上报道了 一种OLED元件结构,其TFE结构采用多层聚合物层、氧化铝(Al2O3)层交替的结构,最后,其TFE结构的最上层设置有一层铜(Cu)散热片;有铜散热片的OLED元件的操作温度明显小于没有铜散热片的元件,而且,随着工作时间的推移,具有铜散热片的元件的温度上升趋势被明显的抑制。这种工艺为OLED元件的热量转移提供了较好的指导方案,然而Cu的穿透率不够高,特别是用于显示领域的顶发射器件,这种方案便受到很大的限制。
韩国技术研究院在期刊《Journal of Information Display》(信息显示杂志)上报道了一种具有银插层的薄膜封装工艺,这种薄膜封装工艺采用含有硅纳米颗粒的聚合物作为有机层,氧化铝(Al2O3)作为无机层,超薄银(Ag)夹在两层Al2O3无机层之间,同时最顶层再加一层Ag,采用这种方式的薄膜封装结构使得薄膜的水氧透过率(WVTR)降低到10-5g/m2/d,同时Ag的加入能够有效的传递元件内部产生的热,从而提高器件的稳定性。然而Ag整面覆盖的薄膜在顶发射器件中会降低出光,作为导热材料会受到一定的限制。
发明内容
本发明的目的在于提供一种OLED显示器,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,在保证器件具有足够的阻隔外界水氧能力的同时提高器件寿命。
本发明的另一目的在于提供一种OLED显示器的制作方法,将图案化的高导热层引入薄膜封装结构中,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,在保证器件具有足够的阻隔外界水氧能力的同时提高器件寿命。
为实现上述目的,本发明提供一种OLED显示器,包括OLED基板、及设于所述OLED基板上的薄膜封装层;
所述薄膜封装层包括设于所述OLED基板上的第一无机钝化层、设于所述第一无机钝化层上的高导热层、设于所述第一无机钝化层、及高导热层上的第一有机缓冲层、及设于第一有机缓冲层上的第二无机钝化层;
所述OLED基板包括数个阵列排布的像素单元,每一像素单元具有数个阵列排布的子像素区域;
所述高导热层上设有数个与所述数个像素单元的数个子像素区域一一对应的开口,所述第一有机缓冲层完全填充所述高导热层上的数个开口。
所述高导热层的材料为类金刚石、银、铝、氮化铝、石墨烯、或铜, 所述高导热层的厚度为1-1000nm。
所述薄膜封装层还包括设于所述第二无机钝化层上的第二有机缓冲层、及设于第二有机缓冲层上的第三无机钝化层。
所述第一、第二、第三无机钝化层的材料均为Al2O3、TiO2、SiNx、SiCNx、或SiOx,所述第一、第二、第三无机钝化层的厚度均为0.5-1μm;
所述第一、第二有机缓冲层的材料均为六甲基二甲硅醚、聚丙烯酸酯类聚合物、聚碳酸酯类聚合物、或聚苯乙烯,所述第一、第二有机缓冲层的厚度均为4-8μm。
每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域。
本发明还提供一种OLED显示器的制作方法,包括如下步骤:
步骤1、提供OLED基板,所述OLED基板包括数个阵列排布的像素单元,每一像素单元具有数个阵列排布的子像素区域;
步骤2、在所述OLED基板上形成薄膜封装层,得到OLED显示器;
其中,所述薄膜封装层的形成过程包括如下步骤:
步骤21、在所述OLED基板上沉积形成第一无机钝化层;
步骤22、在所述第一无机钝化层上形成高导热层,所述高导热层上设有数个与所述数个像素单元的数个子像素区域一一对应的开口;
步骤23、在所述第一无机钝化层、及高导热层上形成第一有机缓冲层,所述第一有机缓冲层完全填充所述高导热层上的数个开口;
步骤24、在所述第一有机缓冲层上沉积形成第二无机钝化层。
所述步骤22具体为利用掩模板通过真空蒸镀法直接形成具有所述数个开口的高导热层,或者具体为,
先通过等离子体增强化学气相沉积法、原子层沉积法、脉冲激光沉积法、或溅镀沉积法沉积一层导热膜,然后对所述导热膜进行光刻工艺处理,在该导热膜上形成数个开口,得到高导热层;
所述高导热层的材料为类金刚石、银、铝、氮化铝、石墨烯、或铜,所述高导热层的厚度为1-1000nm。
所述薄膜封装层的形成过程还包括:
步骤25、在所述第二无机钝化层上形成第二有机缓冲层;
步骤26、在所述第二有机缓冲层上沉积形成第三无机钝化层。
所述第一、第二、第三无机钝化层均通过等离子体增强化学气相沉积法、原子层沉积法、脉冲激光沉积法、或溅镀沉积法形成,所述第一、第二、第三无机钝化层的材料均为Al2O3、TiO2、SiNx、SiCNx、或SiOx,所 述第一、第二、第三无机钝化层的厚度均为0.5-1μm;
所述第一、第二有机缓冲层均通过喷墨印刷、等离子体增强化学气相沉积法、丝网印刷、或狭缝涂布形成,所述第一、第二有机缓冲层的材料均为六甲基二甲硅醚、聚丙烯酸酯类聚合物、聚碳酸酯类聚合物、或聚苯乙烯,所述第一、第二有机缓冲层的厚度均为4-8μm。
所述步骤1提供的OLED基板,每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域。
本发明还提供一种OLED显示器,包括OLED基板、及设于所述OLED基板上的薄膜封装层;
所述薄膜封装层包括设于所述OLED基板上的第一无机钝化层、设于所述第一无机钝化层上的高导热层、设于所述第一无机钝化层、及高导热层上的第一有机缓冲层、及设于第一有机缓冲层上的第二无机钝化层;
所述OLED基板包括数个阵列排布的像素单元,每一像素单元具有数个阵列排布的子像素区域;
所述高导热层上设有数个与所述数个像素单元的数个子像素区域一一对应的开口,所述第一有机缓冲层完全填充所述高导热层上的数个开口;
其中,所述高导热层的材料为类金刚石、银、铝、氮化铝、石墨烯、或铜,所述高导热层的厚度为1-1000nm;
其中,每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域。
本发明的有益效果:本发明的OLED显示器,包括OLED基板、及设于所述OLED基板上的薄膜封装层;其中,所述薄膜封装层包括图案化的高导热层,该高导热层上设有数个与所述OLED基板上的数个子像素区域一一对应的开口,不但避免了高导热层对光的吸收,而且避免了顶发射器件仅能够使用具有高透过率材料的限制,从而在不降低器件出光效率的同时,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,并保证器件具有足够的阻隔外界水氧的能力,提高器件寿命;本发明的OLED显示器的制作方法,采用薄膜封装方式对OLED器件进行封装,且将图案化的高导热层引入薄膜封装结构中,该高导热层上设有数个与所述OLED基板上的数个子像素区域一一对应的开口,不但避免了高导热层对光的吸收,而且避免了顶发射器件仅能够使用具有高透过率材料的限制,从而在不降低器件出光效率的同时,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,并保证器件具有足够 的阻隔外界水氧的能力,提高器件寿命。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明的OLED显示器的第一实施例的结构示意图;
图2为本发明的OLED显示器的第二实施例的结构示意图;
图3为本发明的OLED显示器的制作方法的流程示意图;
图4为本发明的OLED显示器的制作方法的步骤21的示意图;
图5为本发明的OLED显示器的制作方法的步骤22的示意图;
图6为本发明的OLED显示器的制作方法的步骤23的示意图;
图7为本发明的OLED显示器的制作方法的第二实施例的步骤25的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,为本发明的OLED显示器的第一实施例的结构示意图,在本实施例中,所述OLED显示器包括OLED基板101、及设于所述OLED基板101上的薄膜封装层;
所述薄膜封装层包括设于所述OLED基板101上的第一无机钝化层201、设于所述第一无机钝化层201上的高导热层301、设于所述第一无机钝化层201、及高导热层301上的第一有机缓冲层401、及设于第一有机缓冲层401上的第二无机钝化层202;
所述OLED基板101包括数个阵列排布的像素单元,每一像素单元具有数个阵列排布的子像素区域;
所述高导热层301上设有数个与所述数个像素单元的数个子像素区域一一对应的开口3011,所述第一有机缓冲层401完全填充所述高导热层301上的数个开口3011。
具体地,本发明中,所述高导热层301的数个开口3011与所述数个像 素单元的数个子像素区域的排列方式相一致,每一开口3011的尺寸与对应的子像素区域的尺寸一致,从而不但避免了高导热层301对相应子像素区域发出的光的吸收,而且避免了顶发射器件仅能够使用具有高透过率材料的限制,在不降低器件出光效率的同时,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,并保证器件具有足够的阻隔外界水氧的能力,提高器件寿命。
具体地,在本实施例中,每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域,每一与白色子像素区域对应的开口3011的尺寸与白色子像素区域的尺寸一致,同样的,分别与红色、蓝色、绿色子像素区域对应的开口3011的尺寸分别与红色、蓝色、绿色子像素区域的尺寸一致。
具体地,所述高导热层301的材料为类金刚石(DLC)、银、铝(Al)、氮化铝(AlN)、石墨烯、铜等金属类或非金属类的高热导材料。
具体地,所述高导热层301的厚度为1-1000nm。
具体地,所述第一、第二无机钝化层201、202的材料均为Al2O3、氧化钛(TiO2)、氮化硅(SiNx)、碳氮化硅(SiCNx)、氧化硅(SiOx)等用于阻隔外界水氧的材料。
具体地,所述第一、第二无机钝化层201、202的厚度均为0.5-1μm。
具体地,所述第一有机缓冲层401的材料为六甲基二甲硅醚(HMDSO)、聚丙烯酸酯类聚合物(例如,压克力(Acrylic))、聚碳酸酯类聚合物、或聚苯乙烯等用于缓解应力以及覆盖颗粒物的材料。
具体地,所述第一有机缓冲层401的厚度为4-8μm。
请参阅图2,为本发明的OLED显示器的第二实施例的结构示意图,与上述第一实施例相比,所述薄膜封装层还包括设于所述第二无机钝化层202上的第二有机缓冲层402、及设于第二有机缓冲层402上的第三无机钝化层203。其中,所述第二有机缓冲层402与第一有机缓冲层401的材料均为六甲基二甲硅醚、聚丙烯酸酯类聚合物、聚碳酸酯类聚合物、或聚苯乙烯,所述第二有机缓冲层402与第一有机缓冲层401的厚度均为4-8μm。所述第三无机钝化层203与第一、第二无机钝化层201、202的材料均为Al2O3、TiO2、SiNx、SiCNx、或SiOx,所述第三无机钝化层203与第一、第二无机钝化层201、202的厚度均为0.5-1μm。其他与上述第一实施例相同,在此不再赘述。
基于上述OLED显示器,请参阅图3,本发明还提供一种OLED显示器的制作方法,具体地,其第一实施例包括如下步骤:
步骤1、提供OLED基板101,所述OLED基板101包括数个阵列排布的像素单元,每一像素单元具有数个阵列排布的子像素区域。
步骤2、在所述OLED基板101上形成薄膜封装层,得到OLED显示器;
其中,所述薄膜封装层的形成过程包括如下步骤:
步骤21、如图4所示,通过等离子体增强化学气相沉积法(PECVD)、原子层沉积法(ALD)、脉冲激光沉积法(PLD)、或溅镀沉积法(Sputter)在所述OLED基板101上沉积形成第一无机钝化层201。
具体地,所述第一无机钝化层201的材料为Al2O3、TiO2、SiNx、SiCNx、SiOx等用于阻隔外界水氧的材料。
具体地,所述第一无机钝化层201的厚度为0.5-1μm。
步骤22、如图5所示,在所述第一无机钝化层201上形成高导热层301,所述高导热层301上设有数个与所述数个像素单元的数个子像素区域一一对应的开口3011。
具体地,所述步骤22具体为利用掩模板通过真空蒸镀法直接形成具有所述数个开口3011的高导热层301;或者具体为,
先通过等离子体增强化学气相沉积法、原子层沉积法、脉冲激光沉积法、溅镀沉积法等多种金属或非金属沉积工艺沉积一层导热膜,然后对所述导热膜进行光刻工艺处理,在该导热膜上形成数个开口3011,得到高导热层301。
具体地,本发明中,所述高导热层301的数个开口3011与所述数个像素单元的数个子像素区域的排列方式相一致,每一开口3011的尺寸与对应的子像素区域的尺寸一致,从而不但避免了高导热层301对子像素区域发出的光的吸收,而且避免了顶发射器件仅能够使用具有高透过率材料的限制,在不降低器件出光效率的同时,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,并保证器件具有足够的阻隔外界水氧能力,提高器件寿命。
具体地,在本实施例中,每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域,每一与白色子像素区域对应的开口3011的尺寸与白色子像素区域的尺寸一致,同样的,分别与红色、蓝色、绿色子像素区域对应的开口3011的尺寸分别与红色、蓝色、绿色子像素区域的尺寸一致。
具体地,所述高导热层301的材料为类金刚石、银、铝、氮化铝、石墨烯、铜等金属类或非金属类的高热导材料。
具体地,所述高导热层301的厚度为1-1000nm。
步骤23、如图6所示,通过喷墨印刷(IJP)、等离子体增强化学气相沉积法、丝网印刷(Screen printing)、或狭缝涂布(slot coating)在所述第一无机钝化层201、及高导热层301上形成第一有机缓冲层401,所述第一有机缓冲层401完全填充所述高导热层301上的数个开口3011。
具体地,所述第一有机缓冲层401的材料为六甲基二甲硅醚、聚丙烯酸酯类聚合物(例如,压克力)、聚碳酸酯类聚合物、或聚苯乙烯等用于缓解应力以及覆盖颗粒物的材料。
具体地,所述第一有机缓冲层401的厚度为4-8μm。
步骤24、通过等离子体增强化学气相沉积法、原子层沉积法、脉冲激光沉积法、或溅镀沉积法在所述第一有机缓冲层401上沉积形成第二无机钝化层202,从而得到如图1所示的OLED显示器。
具体地,所述第二无机钝化层202的材料为Al2O3、TiO2、SiNx、SiCNx、SiOx等用于阻隔外界水氧的材料,所述第二无机钝化层202的厚度为0.5-1μm。
本发明的OLED显示器的制作方法的第二实施例,与上述第一实施例相比,所述薄膜封装层的形成过程还包括:
步骤25、如图7所示,在所述第二无机钝化层202上涂布形成第二有机缓冲层402。
具体地,所述第二有机缓冲层402与所述第一有机缓冲层401均通过喷墨印刷、等离子体增强化学气相沉积法、丝网印刷、或狭缝涂布形成,所述第二有机缓冲层402与所述第一有机缓冲层401的材料均为六甲基二甲硅醚、聚丙烯酸酯类聚合物、聚碳酸酯类聚合物、或聚苯乙烯,所述第二有机缓冲层402与所述第一有机缓冲层401的厚度均为4-8μm。
步骤26、在所述第二有机缓冲层402上涂布形成第三无机钝化层203,从而得到如图2所示的OLED显示器。
具体地,所述第三无机钝化层203与所述第一、第二无机钝化层201、202均通过等离子体增强化学气相沉积法、原子层沉积法、脉冲激光沉积法、或溅镀沉积法形成,所述第三无机钝化层203与所述第一、第二无机钝化层201、202的材料均为Al2O3、TiO2、SiNx、SiCNx、或SiOx,所述第三无机钝化层203与所述第一、第二无机钝化层201、202的厚度均为0.5-1μm。
综上所述,本发明的OLED显示器,包括OLED基板、及设于所述OLED基板上的薄膜封装层;其中,所述薄膜封装层包括图案化的高导热层,且 该高导热层上设有数个与所述OLED基板上的数个子像素区域一一对应的开口,不但避免了高导热层对光的吸收,而且避免了顶发射器件仅能够使用具有高透过率材料的限制,从而在不降低器件出光效率的同时,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,并保证器件具有足够的阻隔外界水氧的能力,提高器件寿命;本发明的OLED显示器的制作方法,采用薄膜封装方式对OLED器件进行封装,且将图案化的高导热层引入薄膜封装结构中,该高导热层上设有数个与所述OLED基板上的数个子像素区域一一对应的开口,不但避免了高导热层对光的吸收,而且避免了顶发射器件仅能够使用具有高透过率材料的限制,从而在不降低器件出光效率的同时,能够有效转移OLED器件在工作时产生的热量,降低OLED器件材料的热分解,并保证器件具有足够的阻隔外界水氧的能力,提高器件寿命。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (13)

  1. 一种OLED显示器,包括OLED基板、及设于所述OLED基板上的薄膜封装层;
    所述薄膜封装层包括设于所述OLED基板上的第一无机钝化层、设于所述第一无机钝化层上的高导热层、设于所述第一无机钝化层、及高导热层上的第一有机缓冲层、及设于第一有机缓冲层上的第二无机钝化层;
    所述OLED基板包括数个阵列排布的像素单元,每一像素单元具有数个阵列排布的子像素区域;
    所述高导热层上设有数个与所述数个像素单元的数个子像素区域一一对应的开口,所述第一有机缓冲层完全填充所述高导热层上的数个开口。
  2. 如权利要求1所述的OLED显示器,其中,所述高导热层的材料为类金刚石、银、铝、氮化铝、石墨烯、或铜,所述高导热层的厚度为1-1000nm。
  3. 如权利要求1所述的OLED显示器,其中,所述薄膜封装层还包括设于所述第二无机钝化层上的第二有机缓冲层、及设于第二有机缓冲层上的第三无机钝化层。
  4. 如权利要求3所述的OLED显示器,其中,所述第一、第二、第三无机钝化层的材料均为Al2O3、TiO2、SiNx、SiCNx、或SiOx,所述第一、第二、第三无机钝化层的厚度均为0.5-1μm;
    所述第一、第二有机缓冲层的材料均为六甲基二甲硅醚、聚丙烯酸酯类聚合物、聚碳酸酯类聚合物、或聚苯乙烯,所述第一、第二有机缓冲层的厚度均为4-8μm。
  5. 如权利要求1所述的OLED显示器,其中,每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域。
  6. 一种OLED显示器的制作方法,包括如下步骤:
    步骤1、提供OLED基板,所述OLED基板包括数个阵列排布的像素单元,每一像素单元具有数个阵列排布的子像素区域;
    步骤2、在所述OLED基板上形成薄膜封装层,得到OLED显示器;
    其中,所述薄膜封装层的形成过程包括如下步骤:
    步骤21、在所述OLED基板上沉积形成第一无机钝化层;
    步骤22、在所述第一无机钝化层上形成高导热层,所述高导热层上设 有数个与所述数个像素单元的数个子像素区域一一对应的开口;
    步骤23、在所述第一无机钝化层、及高导热层上形成第一有机缓冲层,所述第一有机缓冲层完全填充所述高导热层上的数个开口;
    步骤24、在所述第一有机缓冲层上沉积形成第二无机钝化层。
  7. 如权利要求6所述的OLED显示器的制作方法,其中,所述步骤22具体为利用掩模板通过真空蒸镀法直接形成具有所述数个开口的高导热层,或者具体为,
    先通过等离子体增强化学气相沉积法、原子层沉积法、脉冲激光沉积法、或溅镀沉积法沉积一层导热膜,然后对所述导热膜进行光刻工艺处理,在该导热膜上形成数个开口,得到高导热层;
    所述高导热层的材料为类金刚石、银、铝、氮化铝、石墨烯、或铜,所述高导热层的厚度为1-1000nm。
  8. 如权利要求6所述的OLED显示器的制作方法,其中,所述薄膜封装层的形成过程还包括:
    步骤25、在所述第二无机钝化层上形成第二有机缓冲层;
    步骤26、在所述第二有机缓冲层上沉积形成第三无机钝化层。
  9. 如权利要求8所述的OLED显示器的制作方法,其中,所述第一、第二、第三无机钝化层均通过等离子体增强化学气相沉积法、原子层沉积法、脉冲激光沉积法、或溅镀沉积法形成,所述第一、第二、第三无机钝化层的材料均为Al2O3、TiO2、SiNx、SiCNx、或SiOx,所述第一、第二、第三无机钝化层的厚度均为0.5-1μm;
    所述第一、第二有机缓冲层均通过喷墨印刷、等离子体增强化学气相沉积法、丝网印刷、或狭缝涂布形成,所述第一、第二有机缓冲层的材料均为六甲基二甲硅醚、聚丙烯酸酯类聚合物、聚碳酸酯类聚合物、或聚苯乙烯,所述第一、第二有机缓冲层的厚度均为4-8μm。
  10. 如权利要求6所述的OLED显示器的制作方法,其中,所述步骤1提供的OLED基板,每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域。
  11. 一种OLED显示器,包括OLED基板、及设于所述OLED基板上的薄膜封装层;
    所述薄膜封装层包括设于所述OLED基板上的第一无机钝化层、设于所述第一无机钝化层上的高导热层、设于所述第一无机钝化层、及高导热层上的第一有机缓冲层、及设于第一有机缓冲层上的第二无机钝化层;
    所述OLED基板包括数个阵列排布的像素单元,每一像素单元具有数 个阵列排布的子像素区域;
    所述高导热层上设有数个与所述数个像素单元的数个子像素区域一一对应的开口,所述第一有机缓冲层完全填充所述高导热层上的数个开口;
    其中,所述高导热层的材料为类金刚石、银、铝、氮化铝、石墨烯、或铜,所述高导热层的厚度为1-1000nm;
    其中,每一像素单元具有四个呈2×2矩阵排布的子像素区域,该四个子像素区域分别为白色、红色、蓝色、绿色子像素区域。
  12. 如权利要求11所述的OLED显示器,其中,所述薄膜封装层还包括设于所述第二无机钝化层上的第二有机缓冲层、及设于第二有机缓冲层上的第三无机钝化层。
  13. 如权利要求12所述的OLED显示器,其中,所述第一、第二、第三无机钝化层的材料均为Al2O3、TiO2、SiNx、SiCNx、或SiOx,所述第一、第二、第三无机钝化层的厚度均为0.5-1μm;
    所述第一、第二有机缓冲层的材料均为六甲基二甲硅醚、聚丙烯酸酯类聚合物、聚碳酸酯类聚合物、或聚苯乙烯,所述第一、第二有机缓冲层的厚度均为4-8μm。
PCT/CN2016/109572 2016-10-20 2016-12-13 Oled显示器及其制作方法 WO2018072283A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16919480.0A EP3531454B1 (en) 2016-10-20 2016-12-13 Oled display device and manufacturing method thereof
KR1020197014301A KR102290118B1 (ko) 2016-10-20 2016-12-13 Oled 디스플레이 및 그 제작 방법
US15/328,895 US10062866B2 (en) 2016-10-20 2016-12-13 OLED display and manufacturing method thereof
JP2019520835A JP6734993B2 (ja) 2016-10-20 2016-12-13 Oledディスプレイ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610914584.2A CN106384743B (zh) 2016-10-20 2016-10-20 Oled显示器及其制作方法
CN201610914584.2 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018072283A1 true WO2018072283A1 (zh) 2018-04-26

Family

ID=57958793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109572 WO2018072283A1 (zh) 2016-10-20 2016-12-13 Oled显示器及其制作方法

Country Status (6)

Country Link
US (1) US10062866B2 (zh)
EP (1) EP3531454B1 (zh)
JP (1) JP6734993B2 (zh)
KR (1) KR102290118B1 (zh)
CN (1) CN106384743B (zh)
WO (1) WO2018072283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545322A (zh) * 2023-11-28 2024-02-09 惠科股份有限公司 显示面板和显示装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085116B2 (en) * 2017-03-22 2021-08-10 The Boeing Company Engine shaft assembly and method
CN108666341B (zh) * 2017-03-30 2021-04-02 昆山国显光电有限公司 显示装置及其制作方法
CN106972113B (zh) 2017-05-25 2018-09-11 深圳市华星光电技术有限公司 Oled器件的封装组件及封装方法、显示装置
CN107154465A (zh) * 2017-05-26 2017-09-12 深圳市华星光电技术有限公司 Oled器件的封装组件及封装方法、显示装置
CN107331792B (zh) * 2017-07-24 2018-11-09 深圳市华星光电技术有限公司 Oled封装方法与oled封装结构
CN107565055B (zh) 2017-08-29 2019-06-25 上海天马有机发光显示技术有限公司 有机发光显示面板及有机发光显示装置
KR102505255B1 (ko) * 2017-12-26 2023-02-28 엘지디스플레이 주식회사 디스플레이 장치
CN108054290A (zh) * 2017-12-27 2018-05-18 深圳市华星光电技术有限公司 Oled显示装置的封装结构及封装方法
TWI651698B (zh) * 2018-01-17 2019-02-21 友達光電股份有限公司 可撓性顯示器及其製造方法
CN108417544A (zh) * 2018-04-13 2018-08-17 业成科技(成都)有限公司 散热元件、应用其的电子装置和电子装置的制作方法
CN108389885B (zh) * 2018-04-13 2021-05-18 业成科技(成都)有限公司 散热结构及应用其的电子装置和显示装置
CN108598284B (zh) * 2018-05-14 2020-02-14 昆山国显光电有限公司 显示面板、显示面板制备方法及显示装置
CN108638621B (zh) * 2018-05-11 2020-07-24 昆山国显光电有限公司 薄膜封装结构及显示装置
US10784467B2 (en) 2018-05-11 2020-09-22 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Thin film packaging structures and display devices
KR102491276B1 (ko) * 2018-05-14 2023-01-26 삼성디스플레이 주식회사 유기 발광 표시 장치
CN109449305B (zh) * 2018-08-31 2020-09-11 广州国显科技有限公司 复合薄膜、柔性显示面板及其制备方法
CN109585510B (zh) * 2018-11-30 2021-01-05 云谷(固安)科技有限公司 显示屏体
CN109920934B (zh) * 2019-03-11 2021-08-06 江苏斯迪克新材料科技股份有限公司 柔性oled显示用高阻隔高导热封装结构及其制备方法
CN110335970B (zh) * 2019-07-15 2022-01-18 京东方科技集团股份有限公司 柔性显示基板及其制造方法、柔性显示装置
CN110459565A (zh) 2019-08-01 2019-11-15 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN110993790A (zh) * 2019-11-14 2020-04-10 武汉华星光电半导体显示技术有限公司 金属掩模板及柔性oled面板
CN110911582A (zh) * 2019-11-28 2020-03-24 云谷(固安)科技有限公司 显示面板及显示装置
CN110993827B (zh) * 2019-12-23 2022-09-27 武汉华星光电半导体显示技术有限公司 Oled显示面板和显示装置
CN111403619B (zh) * 2020-03-25 2022-08-16 昆山国显光电有限公司 显示面板、显示模组及显示终端
US20240210995A1 (en) * 2022-12-21 2024-06-27 Apple Inc. Stretchable Display

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218421A1 (en) * 2002-05-23 2003-11-27 Kuan-Chang Peng Organic electroluminescent device with efficient heat dissipation and method for manufacturing the same
JP2007165735A (ja) * 2005-12-16 2007-06-28 Drill Center:Kk Led実装基板及びその製造方法
US20090252975A1 (en) 2008-04-04 2009-10-08 Samsung Electronics Co., Ltd. Protective film and encapsulation material comprising the same
CN101562192A (zh) * 2009-05-26 2009-10-21 上海大学 有机电致发光照明用显示器及其制作方法
CN202003622U (zh) * 2011-04-14 2011-10-05 石家庄市京华电子实业有限公司 高集成度全彩三合一led显示器件
US8569951B2 (en) 2010-12-10 2013-10-29 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US20150079707A1 (en) 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Method of manufacturing an organic light emitting display device
US20150153779A1 (en) 2013-12-02 2015-06-04 Samsung Display Co., Ltd. Flexible display device including touch sensor
US20150188084A1 (en) 2014-01-02 2015-07-02 Samsung Display Co., Ltd. Flexible organic light-emitting display apparatus and method of manufacturing the same
CN105470409A (zh) * 2016-01-04 2016-04-06 京东方科技集团股份有限公司 一种oled封装结构及其制作方法、显示器件

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548860B (en) * 2001-06-20 2003-08-21 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
JP2003208980A (ja) * 2002-01-11 2003-07-25 Fuji Electric Co Ltd 色変換フィルタ基板およびそれを用いた色変換カラーディスプレイ
US7109653B2 (en) * 2002-01-15 2006-09-19 Seiko Epson Corporation Sealing structure with barrier membrane for electronic element, display device, electronic apparatus, and fabrication method for electronic element
KR100771610B1 (ko) * 2005-01-19 2007-10-31 엘지전자 주식회사 유기 el 소자
JP2006251552A (ja) * 2005-03-11 2006-09-21 Ricoh Co Ltd 筐体構造及び電子写真方式の画像形成装置
JP2006259307A (ja) * 2005-03-17 2006-09-28 Sony Corp 表示装置および撮像装置
KR100634676B1 (ko) * 2005-05-18 2006-10-13 엘지전자 주식회사 유기 전계 발광 소자
JP4978138B2 (ja) * 2006-09-29 2012-07-18 セイコーエプソン株式会社 電気光学装置及び電子機器
JP2008251552A (ja) * 2008-07-16 2008-10-16 Seiko Epson Corp 発光装置及び電子機器
JP2010231908A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 有機エレクトロルミネッセンス装置、電子機器
JP2011003339A (ja) * 2009-06-17 2011-01-06 Seiko Epson Corp 有機el装置、および電子機器
JP5960047B2 (ja) * 2010-02-23 2016-08-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及びその製造方法
KR101769068B1 (ko) * 2010-12-14 2017-08-18 삼성디스플레이 주식회사 유기 발광 표시 장치
JP5775161B2 (ja) * 2011-07-19 2015-09-09 株式会社Joled 有機el表示パネル及び表示装置
KR101773544B1 (ko) * 2011-07-28 2017-09-01 주성엔지니어링(주) 발광 소자
KR101862676B1 (ko) * 2011-10-06 2018-06-01 삼성디스플레이 주식회사 유기발광 표시장치
KR102111022B1 (ko) * 2014-01-17 2020-05-15 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN103972426A (zh) * 2014-05-27 2014-08-06 四川虹视显示技术有限公司 Oled强化封装方法及专用感光板
CN104201190A (zh) * 2014-08-26 2014-12-10 上海和辉光电有限公司 有机发光装置及其制备方法
JP2016119185A (ja) * 2014-12-19 2016-06-30 株式会社ジャパンディスプレイ 画像表示装置
DE102015105484A1 (de) * 2015-01-13 2016-07-14 Osram Oled Gmbh Organisches Licht emittierendes Bauelement

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030218421A1 (en) * 2002-05-23 2003-11-27 Kuan-Chang Peng Organic electroluminescent device with efficient heat dissipation and method for manufacturing the same
JP2007165735A (ja) * 2005-12-16 2007-06-28 Drill Center:Kk Led実装基板及びその製造方法
US20090252975A1 (en) 2008-04-04 2009-10-08 Samsung Electronics Co., Ltd. Protective film and encapsulation material comprising the same
CN101562192A (zh) * 2009-05-26 2009-10-21 上海大学 有机电致发光照明用显示器及其制作方法
US8569951B2 (en) 2010-12-10 2013-10-29 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
CN202003622U (zh) * 2011-04-14 2011-10-05 石家庄市京华电子实业有限公司 高集成度全彩三合一led显示器件
US20150079707A1 (en) 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Method of manufacturing an organic light emitting display device
US20150153779A1 (en) 2013-12-02 2015-06-04 Samsung Display Co., Ltd. Flexible display device including touch sensor
US20150188084A1 (en) 2014-01-02 2015-07-02 Samsung Display Co., Ltd. Flexible organic light-emitting display apparatus and method of manufacturing the same
CN105470409A (zh) * 2016-01-04 2016-04-06 京东方科技集团股份有限公司 一种oled封装结构及其制作方法、显示器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEONG H.K.: "Metal-containing thin 1m encappsulation with exibility and heat transfer", JOURNAL OF INFORMATION DISPLAY, vol. 16, no. 2, 9 June 2015 (2015-06-09), pages 123 - 128, XP055591674 *
See also references of EP3531454A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545322A (zh) * 2023-11-28 2024-02-09 惠科股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
US10062866B2 (en) 2018-08-28
EP3531454A1 (en) 2019-08-28
US20180212191A1 (en) 2018-07-26
CN106384743A (zh) 2017-02-08
CN106384743B (zh) 2019-12-24
JP2019533291A (ja) 2019-11-14
KR20190067880A (ko) 2019-06-17
JP6734993B2 (ja) 2020-08-05
KR102290118B1 (ko) 2021-08-17
EP3531454A4 (en) 2020-07-29
EP3531454B1 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
WO2018072283A1 (zh) Oled显示器及其制作方法
WO2018086191A1 (zh) Oled显示器及其制作方法
JP6054589B2 (ja) 有機発光装置
WO2019205426A1 (zh) Oled显示面板及其制作方法
TWI524809B (zh) 用於可撓性顯示裝置之基板部分、製造基板部分之方法以及製造包含基板之有機發光顯示裝置之方法
WO2018113007A1 (zh) Oled封装方法与oled封装结构
WO2016145757A1 (zh) 一种oled基板、其制造方法、面板及显示装置
WO2017156830A1 (zh) Oled器件的封装方法与oled封装结构
US9349988B2 (en) Organic light emitting display device
KR20110018785A (ko) 유기 발광 표시 장치
CN105938843B (zh) 透明有机发光显示设备以及制造其的方法
WO2019051920A1 (zh) Oled显示面板的封装方法
WO2021026996A1 (zh) 一种显示面板及其制备方法
US20180363135A1 (en) Encapsulation method for oled panel
WO2020237830A1 (zh) 柔性有机发光二极管显示面板及其制造方法
WO2021128540A1 (zh) 显示面板及其制作方法
WO2018113005A1 (zh) Oled封装方法与oled封装结构
WO2021031417A1 (zh) 一种柔性封装结构及柔性显示面板
KR100855489B1 (ko) 평판표시소자 및 그 제조방법
US20140125219A1 (en) Organic light emitting device and manufacturing method thereof
JP4722746B2 (ja) El装置
KR101298611B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
CN107845734A (zh) 一种薄膜封装材料、薄膜封装结构和oled显示面板
WO2020062486A1 (zh) 显示面板及其制作方法、显示模组
JP2005243604A (ja) 有機エレクトロルミネセンス装置及びそれを製造する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15328895

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014301

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016919480

Country of ref document: EP

Effective date: 20190520