WO2018061823A1 - マルチコプターの制御システム - Google Patents

マルチコプターの制御システム Download PDF

Info

Publication number
WO2018061823A1
WO2018061823A1 PCT/JP2017/033422 JP2017033422W WO2018061823A1 WO 2018061823 A1 WO2018061823 A1 WO 2018061823A1 JP 2017033422 W JP2017033422 W JP 2017033422W WO 2018061823 A1 WO2018061823 A1 WO 2018061823A1
Authority
WO
WIPO (PCT)
Prior art keywords
load amount
motor
multicopter
unit
control system
Prior art date
Application number
PCT/JP2017/033422
Other languages
English (en)
French (fr)
Inventor
征志 高尾
義成 加藤
心路 竹本
蘭 皇甫
未来 廣瀬
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201780059672.1A priority Critical patent/CN109803887B/zh
Priority to JP2018542395A priority patent/JP7040450B2/ja
Publication of WO2018061823A1 publication Critical patent/WO2018061823A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • This disclosure relates to a multicopter control system.
  • a multicopter drone
  • the multicopter has a plurality of propellers rotated by a motor
  • the multicopter can perform operations such as ascending / descending, lateral movement, and rotation in the air.
  • Japanese Unexamined Patent Publication No. 2016-88121 discloses a conventional multicopter having four propellers.
  • the multicopter has a motor that rotates the propeller, but the motor has a lifetime.
  • the life of the motor varies depending on the usage situation. For example, when a motor is driven at a high rotation speed for a continuous time, the load applied to the motor increases and the life is shortened.
  • An exemplary multi-copter control system of the present disclosure includes a plurality of motors that rotate a propeller; A controller that reads drive information of the motor, The controller is A calculation unit for calculating a cumulative load amount of the motor based on a driving time of the motor; A signal output unit that outputs an alarm signal when the calculated cumulative load amount is equal to or greater than a first set load amount.
  • An exemplary multicopter control system includes a multicopter body having a plurality of motors that rotate a propeller; A control unit for reading drive information of the motor; A positioning system for measuring the current location of the multicopter body; A destination setting unit for setting a destination of the multicopter body; A cumulative load amount estimating unit that calculates an estimated cumulative load amount that is estimated to be received when the multicopter body flies from the current location to the destination; With The controller is A calculation unit for calculating a cumulative load amount of the motor based on a driving time of the motor; A signal output unit that outputs an alarm signal when the calculated cumulative load amount is equal to or greater than a first set load amount; With When the cumulative load amount is lower than the first set load amount, The signal output unit outputs an alarm signal when the sum of the accumulated load amount and the estimated accumulated load amount is equal to or greater than the first set load amount.
  • the exemplary multicopter control system of the present disclosure can sufficiently maintain the flight function of the multicopter.
  • FIG. 1 is a schematic perspective view showing an appearance of a multicopter main body according to the first embodiment.
  • FIG. 2 is a block diagram of the multicopter control system according to the first embodiment.
  • FIG. 3 is a flowchart regarding processing at the time of activation according to the first embodiment.
  • FIG. 4 is a flowchart relating to processing after activation according to the first embodiment.
  • FIG. 5 is a graph showing an example of the relationship between the accumulated load amount and the driving time.
  • FIG. 6 is a block configuration diagram of a multicopter body in the multicopter control system according to the first modification of the first embodiment.
  • FIG. 7 is a block diagram of a multicopter control system according to a second modification of the first embodiment.
  • FIG. 8 is a block diagram of a multicopter control system according to the second embodiment.
  • FIG. 9 is a flowchart regarding processing at the time of activation according to the second embodiment.
  • FIG. 10 is a flowchart relating to the processing after activation according to the second embodiment.
  • FIG. 1 is a schematic perspective view showing an appearance of a multicopter main body 10 according to the first embodiment.
  • the multicopter main body 10 includes a main body 100, a first motor 101A, a second motor 101B, a third motor 101C, and a fourth motor 101D, a first propeller 102A, a second propeller 102B, a third propeller 102C, and a first propeller 102C. 4 propellers 102D.
  • the main body 100 has a shape that branches from the center to four directions and includes arms 100A to 100D.
  • the first motor 101A, the second motor 101B, the third motor 101C, and the fourth motor 101D are supported on the respective distal ends of the arms 100A to 100D.
  • the first propeller 102A to the fourth propeller 102D are fixed to the rotors of the first motor 101A to the fourth motor 101D. That is, in the multicopter 10, four propellers are rotated by four motors.
  • the number of motors and propellers is not limited to four, and may be at least two.
  • FIG. 2 is a block diagram of the multicopter control system 30 according to the first embodiment. As shown in FIG. 2, the multicopter control system 30 includes a multicopter main body 10 and a controller 20.
  • the multicopter body 10 includes a first motor 101A to a fourth motor 101D, drive circuits 103A to 103D, a control unit 104, a sensor group 105, an operation unit 106, a communication unit 107, a power supply circuit 108, a battery 109 and a display unit 110.
  • the first motor 101A to the fourth motor 101D are composed of a DC brushless motor, a motor with a DC brush, or the like, and have windings L1 to L4, respectively.
  • the first motor 101A to the fourth motor 101D have temperature sensors T1 to T4, respectively.
  • the temperature sensors T1 to T4 detect the temperatures of the windings L1 to L4, respectively.
  • a method for detecting the winding temperature for example, a temperature measurement method using a resistance method is employed.
  • the drive circuits 103A to 103D for driving the first motor 101A to the fourth motor 101D have a microcomputer (not shown), a PWM (Pulse Width Modulation) output circuit, and the like.
  • the control unit 104 is a unit that controls the multicopter main body 10 in an integrated manner, and includes, for example, a microcomputer.
  • the control unit 104 includes a calculation unit 104A, a signal output unit 104B, a command unit 104C, and a storage unit 104D, which will be described later.
  • the sensor group 105 includes, for example, a three-axis gyro sensor, a three-axis acceleration sensor, an atmospheric pressure sensor, a magnetic sensor, and an ultrasonic sensor.
  • the 3-axis gyro sensor detects the front and back tilt, the left and right tilt, and the angular velocity of rotation of the multicopter body 10, and detects the attitude and movement of the aircraft.
  • the triaxial acceleration sensor detects accelerations in the front-rear direction, the left-right direction, and the up-down direction of the multicopter body 10.
  • the atmospheric pressure sensor is used to grasp the altitude of the aircraft.
  • the magnetic sensor detects the direction.
  • the ultrasonic sensor detects a distance to the ground by transmitting an ultrasonic wave to the ground and detecting a reflected signal.
  • the operation unit 106 includes, for example, a hard key (power button or the like) for operating the multicopter body 10.
  • the communication unit 107 performs wireless communication with the controller 20 described later.
  • wireless communication for example, Wi-Fi standard communication is used.
  • the power supply circuit 108 is a circuit that supplies power to each part of the multicopter body 10 based on the power supplied from the battery 109.
  • a lithium polymer secondary battery is used as the battery 109.
  • the display unit 110 includes, for example, a liquid crystal display unit or an LED display unit.
  • the controller 20 used for operating the multicopter main body 10 includes a control unit 201, a communication unit 202, a display unit 203, and an operation unit 204.
  • the control unit 201 is a unit that comprehensively controls each unit of the controller 20, and is configured by a microcomputer, for example.
  • the communication unit 202 performs wireless communication with the communication unit 107 of the multicopter body 10.
  • the display unit 203 includes, for example, a liquid crystal display unit or an LED display unit.
  • the operation unit 204 includes, for example, a stick for operating the multicopter body 10.
  • the user holds the controller 30 with his / her hand and operates the multicopter main body 10 by the operation unit 204.
  • the operation of this machine includes, for example, up and down, rotation, back and forth movement, and left and right movement.
  • the control unit 201 wirelessly transmits an operation signal to the communication unit 107 of the multicopter body 10 via the communication unit 202.
  • the operation signal received by the communication unit 107 is sent to the control unit 104.
  • the control unit 104 outputs a motor control signal to the drive circuits 103A to 103D based on the received operation signal.
  • the drive circuits 103A to 103D output drive currents to the first motor 101A to the fourth motor 101D to drive and control each motor.
  • the machine body of the multicopter main body 10 is operated by controlling the rotation speed (rotation speed) of the motor.
  • the drive circuits 103A to 103D can detect the number of rotations of the motor based on current signals or voltage signals generated in the first motor 101A to the fourth motor 101D.
  • the detection signal from the sensor group 105 is always input to the control unit 104, and the control unit 104 outputs an appropriate motor control signal to the drive circuits 103A to 103D based on the acquired detection signal.
  • the multicopter control system 30 has a function of detecting that the motor is nearing the end of its life and notifying the user of an alarm. This function is shown in FIGS. 3 and 4 below. This will be described with reference to a flowchart.
  • the calculation unit 104A included in the control unit 104 calculates, for each of the first motor 101A to the fourth motor 101D, an accumulated load amount indicating an amount of time accumulated in the load applied to the motor.
  • the calculated cumulative load amount is stored in the storage unit 104D included in the control unit 104.
  • the control unit 104 accumulates multiplication values of the motor rotation speeds detected by the drive circuits 103A to 103D and the winding temperatures of the windings L1 to L4 respectively detected by the temperature sensors T1 to T4 according to the time transition.
  • the accumulated load amount is calculated.
  • the accumulated load amount may be calculated by accumulating any one of the rotation number of the motor and the detection value by the temperature sensor according to the time transition.
  • the life of the motor is determined by the life of the grease contained in the motor bearing.
  • the service life of the grease depends on the rotation speed of the bearing and the temperature of the bearing. Accordingly, the life of the motor can be grasped by calculating the accumulated load amount based on the motor speed and the winding temperature as described above.
  • the motor mounted on the multicopter is subjected to a larger load in order to maintain the lift, direction development, and posture of the multicopter.
  • the following mathematical formula can be generally used as one element for estimating the life of a motor using a ball bearing.
  • the average life of grease varies mainly depending on the rotation speed and temperature of the bearing.
  • the lifetime of the grease is determined by the temperature, and the lifetime of the motor can be estimated by calculating the cumulative load amount accompanying the temperature change.
  • the lifetime of the motor can be grasped by calculating the cumulative load amount over time. That is, it is possible to grasp the life of the motor by calculating the cumulative load amount according to the use conditions of the user.
  • FIG. 5 shows an example of two patterns (solid line and one-dot chain line) of the accumulated load.
  • the load conditions differ depending on the motor speed and winding temperature, and the solid line has a larger load than the alternate long and short dash line pattern, so the cumulative load rises faster and ahead of the alternate long and short dash line pattern.
  • the accumulated load amount reaches the first set load amount and the second set load amount.
  • the second set load amount is a predetermined load amount corresponding to the vicinity of the life of the motor
  • the first set load amount is a predetermined load amount set lower than the second set load amount. That is, the first set load amount is an index indicating that the motor is approaching the end of its life. Accordingly, in FIG. 5, the life of the solid line is shorter than that of the one-dot chain line pattern due to the difference in load conditions.
  • step S1 of FIG. 3 the control unit 104 checks the cumulative load amount of the target motor among the cumulative load amounts of the first motor 101A to the fourth motor 101D stored in the storage unit 104D, and determines the cumulative load amount. It is determined whether the amount is greater than or equal to the first set load amount. If it is not greater than the first set load amount (N in step S1), the process proceeds to step S11.
  • step S11 the control unit 104 determines whether the accumulated load amount has been confirmed for all the motors. If not (N in step S11), the control unit 104 changes the target motor ( Step S12), returning to step S1.
  • step S1 If the accumulated load amount is greater than or equal to the first set load amount in step S1 (Y in step S1), the process proceeds to step 2, and the control unit 104 determines whether the accumulated load amount is greater than or equal to the second set load amount. . If it is not equal to or greater than the second set load amount (N in step S2), the process proceeds to step S7 assuming that the target motor is nearing the end of its life.
  • step S7 the control unit 104 determines whether the target motor has been replaced with a new motor.
  • the determination of motor replacement can be made by, for example, reading an ID stored in the motor and checking whether the ID has changed.
  • Step S7 the process proceeds to Step S9, and the signal output unit 104B included in the control unit 104 outputs a display control signal as an alarm signal to the display unit 110.
  • the display unit 110 performs a display prompting the user to replace the target motor.
  • the display unit 110 is, for example, a liquid crystal display unit
  • the user may be prompted to replace the motor by displaying characters or the like.
  • the display unit 110 is, for example, an LED display unit
  • the corresponding LED is turned on. The user may be prompted to replace the target motor according to the lighting color.
  • the signal output unit 104B may transmit a display control signal to the controller 20 side using the communication unit 107 and cause the display unit 203 of the controller 20 to display an alarm.
  • step S9 the process proceeds to step S10, in which the control unit 104 sets a low-speed rotation mode for rotating the first motor 101A to the fourth motor 101D at a low speed, and then proceeds to step S11.
  • step S7 determines whether the target motor has been replaced with a new motor (Y in step S7). If it is determined in step S7 that the target motor has been replaced with a new motor (Y in step S7), the process proceeds to step S8, and the control unit 104 resets the target cumulative load amount to zero load amount. To do. After step S8, the process proceeds to step S11.
  • step S3 the control unit 104 determines whether the target motor has been replaced with a new motor. If not exchanged (N in Step S3), the signal output unit 104B outputs a display control signal as an alarm signal to the display unit 110. Thereby, the display unit 110 performs a display prompting the user to replace the target motor.
  • the display here may be a display for notifying the user that the urgency of replacement is required as compared with the display in step S9.
  • step S6 the control unit 104 controls the power supply circuit 108 so as not to supply power to at least the drive circuits 103A to 103D. That is, the energization to the first motor 101A to the fourth motor 101D is stopped, and the multicopter body 10 is not started.
  • step S3 if the motor has been replaced in step S3 (Y in step S3), the process proceeds to step S4, and the control unit 104 resets the target accumulated load amount to zero load amount. After step S4, the process proceeds to step S11.
  • step S11 the control unit 104 controls the power supply circuit 108 to supply power to each unit including the drive circuits 103A to 103D, thereby enabling energization of the first motor 101A to the fourth motor 101D. That is, the multicopter body 10 is activated. Thereafter, the flight of the multicopter body 10 can be controlled by operating the controller 20.
  • the command unit 104C included in the control unit 104 subsequently drives the first motor 101A to the fourth motor 101D by limiting the number of rotations.
  • a motor control signal is sent to the drive circuits 103A to 103D. That is, the command unit 104C issues a command for driving the motor in the low-speed rotation mode.
  • step S13 When the multicopter body 10 is activated in step S13, the process proceeds to the flowchart shown in FIG. In FIG. 4, first in step S21, the calculation unit 104A included in the control unit 104 calculates the cumulative load amount for the target motor among the first motor 101A to the fourth motor 101D.
  • step S22 the control part 104 determines whether the calculated cumulative load amount is more than 1st setting load amount. If not more than the first set load amount (N in Step S22), the process proceeds to Step S28, the target motor is changed, and the process returns to Step S21.
  • step S22 when the accumulated load amount is equal to or greater than the first set load amount (Y in step S22), the process proceeds to step S23, and the control unit 104 determines whether the accumulated load amount is equal to or greater than the second set load amount. If not more than the second set load amount (N in step S23), the process proceeds to step S25.
  • step S25 the signal output unit 104B included in the control unit 104 outputs a display control signal as an alarm signal to the communication unit 107. Accordingly, the display control signal is sent from the communication unit 107 to the controller 20 side, and the display unit 203 in the controller 20 performs a display prompting the user to replace the target motor based on the display control signal. Thereby, during the flight of the multicopter main body 10, the user can confirm the alarm with the controller 20 at hand.
  • step S26 the control unit 104 determines whether the low speed rotation mode has already been set. If it has been set (Y in step S26), the process proceeds to step S28. On the other hand, when the low-speed rotation mode is not set (N in Step S26), the process proceeds to Step S27, and the control unit 104 sets the low-speed rotation mode. Thereafter, the command unit 104C issues a command for driving the motor in the low-speed rotation mode. After step 27, the process proceeds to step S28.
  • step S24 If the accumulated load amount is greater than or equal to the second set load amount in step S23 (Y in step SS23), the process proceeds to step S24, and the signal output unit 104B included in the control unit 104 performs display control as an alarm signal.
  • the signal is output to the communication unit 107.
  • the display control signal is sent from the communication unit 107 to the controller 20 side, and the display unit 203 in the controller 20 performs a display prompting the user to replace the target motor based on the display control signal.
  • the display at this time may be a display indicating that the urgency of motor replacement is higher than the display in step S25. Then, the process proceeds to step S28.
  • the process shown in FIG. 4 is continued while the multicopter main body 10 is activated while repeating the change of the target motor in step S28.
  • the accumulated load amount calculated and stored in the storage unit 104D is used for determination in the process at the time of activation shown in FIG.
  • the multicopter control system includes a plurality of motors (101A to 101D) that rotate the propellers (102A to 102D) and drive information of the motors.
  • a signal output unit (104B) The control unit (104) for reading, The control unit calculates a cumulative load amount of the motor based on the driving time of the motor (104A), and an alarm signal when the calculated cumulative load amount is greater than or equal to a first set load amount.
  • the multicopter when the motor is near the end of its life, the user can be prompted to replace the motor, and the multicopter can obtain sufficient lift by replacing the motor. In other words, the flight function of the multicopter can be sufficiently maintained.
  • the calculation unit when the motor is replaced with another motor different from the motor, the calculation unit resets the accumulated load amount to zero load amount. Thereby, when the motor is replaced, it is possible to start calculating a new accumulated load amount from the reset value.
  • control unit instructs the motor to be driven in a low-speed rotation mode in which the motor is limited and driven when the cumulative load amount is equal to or greater than the first set load amount.
  • a command unit (104C) is further provided. This makes it possible to extend the life when the motor is nearing the end of its life.
  • the command unit releases the low-speed rotation mode. Therefore, if a motor is replaced
  • control unit stops energization of the motor when the cumulative load amount is equal to or larger than a second set load amount that is larger than the first set load amount. Thereby, the flight of the multicopter main body can be prohibited when the motor has reached the end of its life or is approaching the end of its life.
  • the control unit releases the stop of energization of the motor. Thereby, when the motor is replaced, the multicopter body can fly.
  • the multicopter control system 30 includes a multicopter main body (10) and a controller (20) for operating the multicopter main body.
  • the multicopter body includes a communication unit (107) that transmits the alarm signal to the controller. Thereby, during the flight of the multicopter main body, the user can confirm the alarm with the controller at hand.
  • the calculation unit calculates the cumulative load amount by multiplying at least one of the rotation speed information of the motor and the temperature information of the motor with respect to the driving time. Thereby, the cumulative load amount can be calculated in consideration of the rotation speed and temperature related to the life of the motor.
  • the multicopter control system 30 further includes temperature sensors (T1 to T4) for detecting the winding temperature of the motor, and the temperature information of the motor is a temperature detected by the temperature sensor. Thereby, it is possible to calculate the cumulative load amount based on the winding temperature particularly related to the life of the motor.
  • the cumulative load amount is calculated for each of the plurality of motors, and it is determined whether each of the calculated cumulative load amounts is equal to or greater than the first set load amount. Thereby, the user can confirm which motor should be replaced by the alarm signal.
  • FIG. 6 is a block configuration diagram of the multicopter main body 10a in the multicopter control system according to the first modification of the embodiment.
  • the multicopter main body 10a shown in FIG. 6 includes temperature sensors T1a to T4a as structural differences from the first embodiment described above.
  • the temperature sensors T1a to T4a are fixed to the outer wall surfaces of the respective housings of the first motor 101A to the fourth motor 101D.
  • the control unit 104 calculates the cumulative load amount based on detection signals from the temperature sensors T1a to T4a. Also in such an embodiment, the cumulative load amount can be calculated in consideration of the motor temperature related to the lifetime.
  • FIG. 7 is a block diagram of a control system for a multicopter according to a second modification of the embodiment.
  • the multicopter control system shown in FIG. 7 includes a multicopter main body 10b and a controller 20a.
  • control unit 1201 included in the controller 20a includes a calculation unit 1201A, a signal output unit 1201B, a command unit 1201C, and a storage unit 1201D. That is, the control unit may be provided in either the multicopter main body (first embodiment) or the controller (this modification).
  • the calculation unit 1201A calculates the cumulative load amount. At this time, the calculation unit 1201A requests and acquires information on the motor rotation speed and the winding temperature from the control unit 104a of the multicopter body through communication using the communication unit 202. The calculated cumulative load amount is stored in the storage unit 1201D.
  • the control unit 1201 performs the determination processing in steps S22 and S23.
  • the alarm display in steps S24 and S25 is performed by the signal output unit 1201B of the control unit 1201 on the display unit 203.
  • the determination process in step S26 is performed by the control unit 1201, and in step S27, the command unit 1201C of the control unit 1201 sets the low-speed rotation mode in the control unit 104a by communication using the communication unit 202.
  • control unit 1201 makes a determination based on the accumulated load amount stored in the storage unit 1201D.
  • control unit 1201 determines whether the motor has been replaced. At this time, the control unit 1201 requests, for example, a motor ID from the control unit 104a.
  • Steps S4 and S8 the control unit 1201 resets the accumulated load amount to zero load amount.
  • the signal output unit 1201B of the control unit 1201 causes the display unit 203 or the display unit 110 to display an alarm.
  • the control unit 1201 causes the control unit 104a to stop energization of the motor.
  • the command unit 1201C of the control unit 1201 sets the low-speed rotation mode in the control unit 104a by communication using the communication unit 202.
  • step S13 the control unit 1201 instructs the control unit 104a to start.
  • the control unit 104 of the multicopter main body 10 uses the communication by the communication unit 107 to transmit the accumulated load amount data calculated by the calculation unit 104A to the controller 20. You may make it transmit to the control part 201 of. That is, the multicopter main body (10) may include a communication unit (107) that transmits the calculated cumulative load amount data to the controller (20).
  • the accumulated load amount data is transmitted to the controller at hand of the user, and the accumulated load amount can be grasped by the controller.
  • the cumulative load amount is calculated for each of the first motor 101A to the fourth motor 101D.
  • the cumulative load amount may be calculated as an average value of the cumulative load amounts calculated for each motor. . That is, the cumulative load amount may be calculated as an average value for a plurality of motors.
  • FIG. 8 is a block configuration diagram of a multicopter control system 60 according to the second embodiment of the present disclosure.
  • the multicopter control system 60 includes a multicopter main body 40 and a controller 50.
  • the difference between the multicopter main body 40 and the first embodiment is that a control unit 1041 and a positioning system 111 are provided.
  • the positioning system 111 measures the current location of the multicopter main body 40.
  • the difference of the controller 50 from the first embodiment is that a controller 2011 is provided.
  • the control unit 2011 includes a calculation unit 2011A, a cumulative load amount estimation unit 2011B, a command unit 2011C, a storage unit 2011D, a signal output unit 2011E, and a destination setting unit 2011F.
  • step S31 of FIG. 9 the cumulative load amount estimation unit 2011B receives the estimated cumulative load amount that is estimated to be received when the multicopter body 40 flies from the current location to the destination, in the first motor 101A to the fourth motor 101D. Among the target motors.
  • the cumulative load amount estimation unit 2011B has the scheduled flight route determined from the current location measured by the positioning system 111, the destination set by the destination setting unit 2011F, and the previous activation of the multicopter body 40.
  • the estimated accumulated load amount is calculated on the basis of the accumulated load amount of the accumulated amount and the previous actual flight path of the multicopter main body 40.
  • the accumulated load amount data accumulated during the previous activation can be stored in the storage unit 2011D.
  • the actual flight path of the previous multicopter body 40 can be grasped by sequentially storing the current location data measured by the positioning system 111 during the previous activation in the storage unit 2011D.
  • step S32 the control unit 2011 determines whether the sum of the accumulated load amount stored in the storage unit 2011D and the calculated estimated accumulated load amount is greater than or equal to the first set load amount. If it is not equal to or greater than the first set load amount (N in step S32), the process proceeds to step S37.
  • step S37 the control unit 2011 confirms whether or not all the motors have been determined. If not (N in step S37), the process proceeds to step S38, the target motor is changed, and the process returns to step S31.
  • step S32 determines whether the target motor has already been replaced with a new motor. If not exchanged (N in Step S33), the process proceeds to Step S34, and the signal output unit 2011E outputs a display control signal as an alarm signal to the display unit 203. Thereby, the display unit 203 performs a display prompting the user to replace the target motor based on the display control signal.
  • step S35 the process proceeds to step S35, and the control unit 2011 does not give a start instruction to the control unit 1041 of the multicopter main body 40, so the multicopter main body 40 does not start.
  • step S33 If the motor has already been replaced in step S33 (Y in step S33), the process proceeds to step S36, and the control unit 2011 resets the accumulated load amount stored in the storage unit 2011D to zero load amount. Then, the process proceeds to step S37.
  • step S37 If it is determined in step S37 that all the motors have been determined (Y in step S37), the process proceeds to step S39, and the control unit 2011 transmits the multi-copter body 40 to the control unit 1041 via the communication by the communication unit 202. Instructs activation of the copter body 40.
  • the control unit 1041 controls the power supply circuit 108 to supply power to each unit including the drive circuits 103A to 103D, thereby enabling energization to the first motor 101A to the fourth motor 101D. That is, the multicopter body 40 is activated.
  • the control unit 1041 transmits the first motor 101A to the first motor via the drive circuits 103A to 103D. 4
  • the motor 101D is driven and controlled so that the multicopter body 40 is guided to the destination.
  • step S41 of FIG. 10 the calculation unit 2011A calculates the cumulative load amount for the target motor.
  • the accumulated load amount is calculated based on the rotational speed data of the motor and the winding temperature data sent from the control unit 1041 via communication by the communication unit 107.
  • step S42 the control unit 2011 determines whether the calculated cumulative load amount is greater than or equal to the first set load amount. If not (N in step S42), the process proceeds to step S46, and the target motor And return to step S41.
  • step S42 If the accumulated load amount is greater than or equal to the first set load amount in step S42 (Y in step S42), the process proceeds to step S43, and the signal output unit 2011E sends a display control signal as an alarm signal to the display unit 203. Output. Thereby, the display unit 203 performs a display prompting the user to replace the target motor based on the display control signal.
  • step S44 the control unit 2011 determines whether or not the low-speed rotation mode is set in the multicopter main body 40. If not set (N in step S44), the process proceeds to step S45.
  • step S45 command unit 2011C causes control unit 1041 to set the low-speed rotation mode via communication by communication unit 202. Thereby, the multicopter main body 40 shifts to an operation in the low-speed rotation mode. Then, the process proceeds to step S46.
  • step S44 when the low-speed rotation mode is set in step S44 (Y in step S44), the process proceeds to step S46.
  • the process shown in FIG. 10 is continued while the multicopter main body 40 is activated while repeating the change of the target motor in step S46.
  • the accumulated load amount calculated and stored in the storage unit 104D is used for determination in the process at the time of activation shown in FIG.
  • the multicopter control system includes a multicopter main body (40) having a plurality of motors (101A to 101D) for rotating the propeller, A control unit (2011) for reading drive information of the motor; A positioning system (111) for measuring the current location of the multicopter body; A destination setting unit (2011F) for setting a destination of the multicopter body; An accumulated load amount estimation unit (2011B) that calculates an estimated accumulated load amount that is estimated to be received when the multicopter body flies from the current location to the destination; With The controller is A calculation unit (2011A) for calculating a cumulative load amount of the motor based on a driving time of the motor; A signal output unit (2011E) that outputs an alarm signal when the calculated cumulative load amount is equal to or greater than a first set load amount; With When the cumulative load amount is lower than the first set load amount, The signal output unit outputs an alarm signal when the sum of the cumulative load amount and the estimated cumulative load amount
  • the same effect as in the first embodiment can be enjoyed, and even if the current cumulative load amount is lower than the first set load amount, it is predicted by the load due to the flight from the current location to the destination. If the accumulated load amount is equal to or greater than the first set load amount, an alarm can be notified to the user in advance before the flight.
  • the calculation unit when the motor is replaced with another motor different from the motor, the calculation unit resets the accumulated load amount to zero load amount.
  • the user who is prompted to replace the motor by the alarm replaces the motor, a new accumulated load amount can be calculated from the reset value.
  • the cumulative load amount and the estimated cumulative load amount are calculated for each of the plurality of motors, and the sum of the calculated cumulative load amount and the estimated cumulative load amount is the first It is determined whether or not the load is greater than the set load amount.
  • an alarm can be output for each of a plurality of motors, and the user can be notified of which motor to replace.
  • the accumulated load amount and the estimated accumulated load amount may be calculated as an average value of values calculated for each of the first motor 101A to the fourth motor 101D. That is, the cumulative load amount and the estimated cumulative load amount may be calculated as an average value in the plurality of motors. Thereby, the determination process about the sum of the accumulated load amount and the estimated accumulated load amount is simplified.
  • the signal output unit may output an audio signal as an alarm signal. That is, the user may be prompted to replace the motor by voice.
  • the present disclosure can be suitably used for multicopters such as hobby use and business use.
  • Multicopter main body 100 ... Main body, 100A to 100D ... Arm, 101A ... First motor, 101B ... Second motor, 101C ... Third motor , 101D, fourth motor, 102A, first propeller, 102B, second propeller, 102C, third propeller, 102D, fourth propeller, 103A to 103D, drive circuit, 104, 104a ... control unit, 104A ... calculation unit, 104B ... signal output unit, 104C ... command unit, 104D ... storage unit, 105 ... sensor group, 106 ... operation 107: Communication unit 108: Power circuit 109 ...
  • Battery 110 Display unit 111 Positioning system L1-L4 Winding T1-T4 T1a ⁇ 4a ... Temperature sensor, 20, 20a ... Controller, 201, 1201 ... Control unit, 202 ... Communication unit, 203 ... Display unit, 204 ... Operation unit, 1201A ... Calculation 1201B ... Signal output unit, 1201C ... Command unit, 1201D ... Storage unit, 30 ... Multicopter main body control system, 40 ... Multicopter main body, 1041 ... Control unit, 50 ... Controller, 2011 ... Control unit, 2011A ... Calculation unit, 2011B ... Cumulative load amount estimation unit, 2011C ... Command unit, 2011D ... Storage unit, 2011E ... Signal output Part, 2011F ... destination setting part, 60 ... multicopter control system

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本開示の例示的な制御システムは、プロペラを回転させる複数のモータと、前記モータの駆動情報を読み取る制御部と、を備え、前記制御部は、前記モータの駆動時間に基づいて前記モータの累積負荷量を算出する算出部と、算出された前記累積負荷量が第1設定負荷量以上であるときに、アラーム信号を出力する信号出力部と、を備えるマルチコプターの制御システムとする。

Description

マルチコプターの制御システム
 本開示は、マルチコプターの制御システムに関する。
 昨今、マルチコプター(ドローン)と呼ばれる飛行体の開発・普及が盛んである。マルチコプターは、モータにより回転される複数のプロペラを有することで、空中において上昇・下降、横移動、回転などの動作が可能である。例えば、日本国公開公報特開2016-88121号公報には、4つのプロペラを有する従来のマルチコプターが開示される。
特開2016-88121号公報
 上述のように、マルチコプターはプロペラを回転させるモータを有するが、モータには寿命が存在する。モータの寿命は、使用状況に応じて変化する。例えば、高回転数で連続時間モータを駆動させると、モータに加わる負荷が高くなり、寿命は短くなる。
 従来、ユーザが知らぬ間にマルチコプターのモータが寿命に近づくと、モータの出力が低下し、マルチコプターが十分な揚力を得ることができないという問題があった。
 上記状況に鑑み、本開示は、マルチコプターの飛行機能を十分に維持することが可能となるマルチコプターの制御システムを提供することを目的とする。
 本開示の例示的なマルチコプターの制御システムは、プロペラを回転させる複数のモータと、
 前記モータの駆動情報を読み取る制御部と、を備え、
 前記制御部は、
 前記モータの駆動時間に基づいて前記モータの累積負荷量を算出する算出部と、
 算出された前記累積負荷量が第1設定負荷量以上であるときに、アラーム信号を出力する信号出力部と、を備える構成とする。
 また、本開示の別態様の例示的なマルチコプターの制御システムは、プロペラを回転させる複数のモータを有するマルチコプター本体と、
 前記モータの駆動情報を読み取る制御部と、
前記マルチコプター本体の現在地を測定する測位システムと、
 前記マルチコプター本体の目的地を設定する目的地設定部と、
 前記マルチコプター本体が、前記現在地から前記目的地まで飛行した際に受けると推定される推定累積負荷量を算出する累積負荷量推定部と、
 を備え、
 前記制御部は、
 前記モータの駆動時間に基づいて前記モータの累積負荷量を算出する算出部と、
 算出された前記累積負荷量が第1設定負荷量以上であるときに、アラーム信号を出力する信号出力部と、
 を備え、
 前記累積負荷量が前記第1設定負荷量よりも低いときに、
 前記累積負荷量と前記推定累積負荷量との和が、前記第1設定負荷量以上であるときに、前記信号出力部がアラーム信号を出力する構成とする。
 本開示の例示的なマルチコプターの制御システムによれば、マルチコプターの飛行機能を十分に維持することが可能となる。
図1は、第1実施形態に係るマルチコプター本体の外観を示す概略斜視図である。 図2は、第1実施形態に係るマルチコプターの制御システムのブロック構成図である。 図3は、第1実施形態に係る起動時の処理に関するフローチャートである。 図4は、第1実施形態に係る起動後の処理に関するフローチャートである。 図5は、累積負荷量と駆動時間との関係の一例を示すグラフである。 図6は、第1実施形態の第1変形例に係るマルチコプターの制御システムにおけるマルチコプター本体のブロック構成図である。 図7は、第1実施形態の第2変形例に係るマルチコプターの制御システムのブロック構成図である。 図8は、第2実施形態に係るマルチコプターの制御システムのブロック構成図である。 図9は、第2実施形態に係る起動時の処理に関するフローチャートである。 図10は、第2実施形態に係る起動後の処理に関するフローチャートである。
 以下に本開示の例示的な実施形態について図面を参照して説明する。
<1.第1実施形態>
 ここでは、本開示の第1実施形態に係るマルチコプターの制御システムについて説明する。
<1-1.マルチコプターの制御システムの構成>
 図1は、第1実施形態に係るマルチコプター本体10の外観を示す概略斜視図である。マルチコプター本体10は、本体部100と、第1モータ101A、第2モータ101B、第3モータ101C、および第4モータ101Dと、第1プロペラ102A、第2プロペラ102B、第3プロペラ102C、および第4プロペラ102Dと、を備える。
 本体部100は、中央から四方へ枝分かれする形状を有し、アーム100A~100Dを有する。アーム100A~100Dのそれぞれの先端部には、第1モータ101A、第2モータ101B、第3モータ101C、および第4モータ101Dがそれぞれ支持される。第1モータ101A~第4モータ101Dの各ロータには、第1プロペラ102A~第4プロペラ102Dが固定される。すなわち、マルチコプター10では、4つのモータによって4つのプロペラが回転される。なお、モータとプロペラの個数は、4つに限らず、少なくとも2つであればよい。
 図2は、第1実施形態に係るマルチコプターの制御システム30のブロック構成図である。図2に示すように、マルチコプターの制御システム30は、マルチコプター本体10と、コントローラ20と、を備える。
 マルチコプター本体10は、第1モータ101A~第4モータ101Dと、駆動回路103A~103Dと、制御部104と、センサ群105と、操作部106と、通信部107と、電源回路108と、バッテリ109と、表示部110と、を有する。
 第1モータ101A~第4モータ101Dは、DCブラシレスモータ、またはDCブラシ付きモータ等から構成され、それぞれ巻線L1~L4を有する。また、第1モータ101A~第4モータ101Dは、それぞれ温度センサT1~T4を有する。温度センサT1~T4は、それぞれ巻線L1~L4の温度を検出する。巻線温度の検出手法としては、例えば抵抗法による温度測定方法が採られる。
 第1モータ101A~第4モータ101Dをそれぞれ駆動する駆動回路103A~103Dは、不図示のマイコン、およびPWM(Pulse Width Modulation)出力回路などを有する。
 制御部104は、マルチコプター本体10を統括的に制御するユニットであり、例えばマイコンから構成される。制御部104は、後述する算出部104A、信号出力部104B、指令部104C、および記憶部104Dを有する。
 センサ群105には、例えば3軸ジャイロセンサ、3軸加速度センサ、気圧センサ、磁気センサ、超音波センサなどが含まれる。
 3軸ジャイロセンサは、マルチコプター本体10の前後の傾き、左右の傾き、回転の角速度を検出し、機体の姿勢と動きを検出する。3軸加速度センサは、マルチコプター本体10の前後方向、左右方向、上下方向の加速度を検出する。気圧センサは、機体の高度を把握するために用いられる。磁気センサは、方位を検出する。超音波センサは、地面に対して超音波を発信して反射信号を検出することで、地面に対する距離を検出する。
 操作部106は、例えば、マルチコプター本体10を操作するためのハードキー(電源ボタン等)を有する。通信部107は、後述するコントローラ20との無線通信を行う。無線通信には、例えばWi-Fi規格の通信が用いられる。
 電源回路108は、バッテリ109から供給される電力に基づきマルチコプター本体10の各部に電力を供給する回路である。バッテリ109には、例えば、リチウムポリマ二次電池が用いられる。表示部110は、例えば液晶表示部、またはLED表示部などで構成される。
 マルチコプター本体10を操作するために用いられるコントローラ20は、制御部201と、通信部202と、表示部203と、操作部204と、を有する。
 制御部201は、コントローラ20の各部を統括的に制御するユニットであり、例えばマイコンによって構成される。通信部202は、マルチコプター本体10の通信部107との間で無線通信を行う。表示部203は、例えば液晶表示部、またはLED表示部などで構成される。操作部204は、例えば、マルチコプター本体10を操作するためのスティックなどを有する。
 このような構成のマルチコプターの制御システム30では、ユーザがコントローラ30を手で把持し、操作部204によってマルチコプター本体10を操作する。この機体の操作には、例えば、昇降、回転、前後移動、左右移動が含まれる。ユーザによる操作部204の操作に応じて、制御部201は、操作信号を通信部202を介してマルチコプター本体10の通信部107に無線送信する。
 通信部107により受信された操作信号は、制御部104に送られる。制御部104は、受け取った操作信号に基づき駆動回路103A~103Dにモータ制御信号を出力する。駆動回路103A~103Dは、それぞれ受け取ったモータ制御信号に基づき、第1モータ101A~第4モータ101Dに駆動電流を出力して各モータを駆動制御する。具体的には、モータの回転数(回転速度)を制御することで、マルチコプター本体10の機体を操作する。なお、駆動回路103A~103Dは、第1モータ101A~第4モータ101Dに生じる電流信号または電圧信号に基づきモータの回転数を検出することができる。
 また、制御部104には、センサ群105からの検出信号が常に入力され、制御部104は、取得した検出信号に基づき駆動回路103A~103Dに適切なモータ制御信号を出力する。
<1-2.寿命アラーム機能について>
 本実施形態に係るマルチコプターの制御システム30は、モータが寿命に近づいていることを検出してユーザにアラームを通知する機能を有しており、以下、この機能について図3および図4に示すフローチャートを用いて説明する。
 ここで、制御部104に含まれる算出部104Aは、第1モータ101A~第4モータ101Dのそれぞれについて、モータに加わる負荷の時間的に累積した量を示す累積負荷量を算出する。算出された累積負荷量は、制御部104に含まれる記憶部104Dに記憶される。
 制御部104は、駆動回路103A~103Dによりそれぞれ検出されるモータの回転数と、温度センサT1~T4によりそれぞれ検出される巻線L1~L4の各巻線温度の乗算値を時間推移に従って累積することにより、累積負荷量を算出する。または、モータの回転数、温度センサによる検出値のいずれか一方を時間推移に従って累積して累積負荷量を算出してもよい。
 例えば、モータの寿命は、モータの軸受に含まれるグリースの寿命により決定される。グリースの寿命は、軸受の回転数と軸受の温度に依存する。従って、累積負荷量を上記のようにモータの回転数と巻線温度により算出することで、モータの寿命を把握することができる。
 マルチコプターに搭載されるモータは、マルチコプターの揚力、方向展開、および姿勢を維持するためなどにより大きな負荷が加わる。例えば、玉軸受を用いるモータの寿命を推定する一つの要素として、一般的に下記の数式を用いることができる。下記の数式は、グリースの寿命を表したものである。
 log t = f1 - f2(n/Nmax) - (f3 - f4(n/Nmax))T
 t:グリースの平均寿命
 f1、f2、f3、f4:グリースにより決定される定数
 n:軸受の回転速度
 Nmax:グリース潤滑の許容回転数
 T:軸受の温度
 上記数式のとおり、主に、軸受の回転数および温度によってグリースの平均寿命が変化する。特に、温度によってグリースの寿命は決定され、温度変化を伴う累積負荷量を算出することで、モータの寿命を推定することができる。
 本実施形態において、経時的な累積負荷量を算出することで、モータの寿命を把握することができる。つまり、ユーザの使用条件に応じた累積負荷量を算出することで、モータの寿命を把握することができる。
 ここで、図5は、累積負荷量の2つのパターン(実線と一点鎖線)の一例を示す。実線と一点鎖線のパターンでは、モータ回転数と巻線温度による負荷状況が異なり、実線のほうが一点鎖線のパターンよりも負荷が大きいため、累積負荷量の上昇が速く、一点鎖線のパターンよりも先に累積負荷量が第1設定負荷量および第2設定負荷量に到達する。
 第2設定負荷量はモータの寿命付近に対応する所定の負荷量であり、第1設定負荷量は第2設定負荷量よりも低く設定された所定の負荷量である。つまり、第1設定負荷量は、モータが寿命に近づいていることを示す指標である。従って、図5においては、負荷状況の違いにより、実線のほうが一点鎖線のパターンよりも寿命が短くなっている。
 例えば、マルチコプター本体10の操作部106による操作(電源ボタンのオン等)によって起動指示があると、図3に示すフローチャートが開始される。まず、図3のステップS1において、制御部104は、記憶部104Dに記憶された第1モータ101A~第4モータ101Dの累積負荷量のうち、対象のモータの累積負荷量を確認し、累積負荷量が第1設定負荷量以上であるかを判定する。第1設定負荷量以上でなければ(ステップS1のN)、ステップS11に進む。
 ステップS11では、制御部104によって、全てのモータについて累積負荷量の確認が済んだかを判定し、もし済んでいなければ(ステップS11のN)、制御部104は、対象のモータを変更し(ステップS12)、ステップS1に戻る。
 ステップS1で累積負荷量が第1設定負荷量以上である場合は(ステップS1のY)、ステップ2に進み、制御部104は、累積負荷量が第2設定負荷量以上であるかを判定する。もし、第2設定負荷量以上でない場合は(ステップS2のN)、対象のモータが寿命に近づいているとして、ステップS7に進む。
 ステップS7で、制御部104は、対象のモータは新たなモータへ交換されたかを判定する。モータ交換の判定は、例えば、モータに格納されたIDなどを読出し、IDなどが変化しているかを確認することで行える。
 もし、モータが交換されていなければ(ステップS7のN)、ステップS9に進み、制御部104に含まれる信号出力部104Bは、アラーム信号としての表示制御信号を表示部110へ出力する。これにより、表示部110は、対象のモータを交換することをユーザに促す表示を行う。表示部110が例えば液晶表示部である場合は、文字等の表示によってユーザにモータ交換を促してもよいし、表示部110が例えばLED表示部である場合は、対応するLEDを点灯することでユーザに点灯色によって対象モータの交換を促してもよい。なお、信号出力部104Bは、通信部107を用いてコントローラ20側に表示制御信号を送信し、コントローラ20の表示部203にアラーム表示を行わせるようにしてもよい。
 ステップS9の後、ステップS10に進み、制御部104は、第1モータ101A~第4モータ101Dを低速で回転させる低速回転モードの設定を行い、ステップS11に進む。
 一方、ステップS7で、対象のモータが新たなモータに交換されたと判定された場合は(ステップS7のY)、ステップS8に進み、制御部104は、対象の累積負荷量をゼロ負荷量へリセットする。ステップS8の後、ステップS11へ進む。
 また、ステップS2で、累積負荷量が第2設定負荷量以上である場合は(ステップS2のY)、対象のモータが寿命に到達した、または寿命に非常に近づいているとして、ステップS3へ進む。ステップS3で、制御部104は、対象のモータは新たなモータへ交換されたかを判定する。もし、交換されていない場合は(ステップS3のN)、信号出力部104Bは、アラーム信号としての表示制御信号を表示部110へ出力する。これにより、表示部110は、対象のモータを交換することをユーザに促す表示を行う。ここでの表示は、ステップS9での表示に比べて交換の緊急性を要することをユーザへ伝えるための表示としてもよい。
 そして、ステップS6に進み、制御部104は、少なくとも駆動回路103A~103Dに電源を供給しないように電源回路108を制御する。すなわち、第1モータ101A~第4モータ101Dへの通電を停止させ、マルチコプター本体10は起動しない。
 一方、ステップS3で、モータの交換がされている場合は(ステップS3のY)、ステップS4に進み、制御部104は、対象の累積負荷量をゼロ負荷量へリセットする。ステップS4の後、ステップS11へ進む。
 ステップS11で、第1モータ101A~第4モータ101Dの全てについて累積負荷量の確認が済んだ場合は(ステップS11のY)、ステップS13に進む。ステップS13で、制御部104は、駆動回路103A~103Dを含む各部に電源を供給するよう電源回路108を制御し、第1モータ101A~第4モータ101Dへの通電を可能とする。すなわち、マルチコプター本体10が起動する。以降、コントローラ20の操作により、マルチコプター本体10の飛行を制御することができる。
 なお、ここでステップS10により既に低速回転モードが設定されている場合は、以降、制御部104に含まれる指令部104Cは、第1モータ101A~第4モータ101Dの回転数を制限して駆動させるモータ制御信号を駆動回路103A~103Dへ送る。すなわち、指令部104Cは、低速回転モードでモータを駆動させる指令を行う。
 ステップS13でマルチコプター本体10が起動すると、図4に示すフローチャートへ進む。図4では、まずステップS21で、制御部104に含まれる算出部104Aは、第1モータ101A~第4モータ101Dのうち対象のモータについて累積負荷量を算出する。
 そして、ステップS22に進み、制御部104は、算出された累積負荷量は第1設定負荷量以上であるかを判定する。もし、第1設定負荷量以上でなければ(ステップS22のN)、ステップS28に進み、対象のモータを変更し、ステップS21に戻る。
 一方、累積負荷量が第1設定負荷量以上である場合は(ステップS22のY)、ステップS23に進み、制御部104は、累積負荷量が第2設定負荷量以上であるかを判定する。もし、第2設定負荷量以上でなければ(ステップS23のN)、ステップS25に進む。
 ステップS25で、制御部104に含まれる信号出力部104Bは、アラーム信号としての表示制御信号を通信部107へ出力する。これにより、表示制御信号は通信部107からコントローラ20側へ送られ、コントローラ20における表示部203は、表示制御信号に基づき対象のモータを交換することをユーザに促す表示を行う。これにより、マルチコプター本体10の飛行中に、ユーザは手元にあるコントローラ20にてアラームを確認できる。
 そして、ステップS26に進み、制御部104は、既に低速回転モードが設定されているかを判定し、もし設定されている場合は(ステップS26のY)、ステップS28に進む。一方、低速回転モードが設定されていない場合は(ステップS26のN)、ステップS27に進み、制御部104は、低速回転モードを設定する。以降、指令部104Cは、低速回転モードでモータを駆動させる指令を行う。ステップ27の後、ステップS28に進む。
 また、ステップS23で、累積負荷量が第2設定負荷量以上である場合は(ステップSS23のY)、ステップS24に進み、制御部104に含まれる信号出力部104Bは、アラーム信号としての表示制御信号を通信部107へ出力する。これにより、表示制御信号は通信部107からコントローラ20側へ送られ、コントローラ20における表示部203は、表示制御信号に基づき対象のモータを交換することをユーザに促す表示を行う。このときの表示は、ステップS25の表示に比べてモータ交換の緊急性が高いことを示す表示としてもよい。そして、ステップS28に進む。
 図4に示す処理は、ステップS28での対象モータの変更を繰り返しながら、マルチコプター本体10が起動している間、継続される。ここで、算出されて記憶部104Dに記憶された累積負荷量が、図3に示す起動時の処理における判定に用いられることとなる。
 このように図3および図4に示す処理を行う本実施形態に係るマルチコプターの制御システムは、プロペラ(102A~102D)を回転させる複数のモータ(101A~101D)と、前記モータの駆動情報を読み取る制御部(104)と、を備え、
 前記制御部は、前記モータの駆動時間に基づいて前記モータの累積負荷量を算出する算出部(104A)と、算出された前記累積負荷量が第1設定負荷量以上であるときに、アラーム信号を出力する信号出力部(104B)と、を備える。
 このような構成によれば、モータが寿命に近づいた場合にユーザにモータ交換を促すことができ、モータの交換を行うことによってマルチコプターは十分な揚力を得ることができる。すなわち、マルチコプターの飛行機能を十分に維持することが可能となる。
 また、本実施形態では、前記モータとは異なる他のモータへ交換された場合に、前記算出部は、前記累積負荷量をゼロ負荷量へリセットすることとしている。これにより、モータが交換された場合に、リセットされた値から新たな累積負荷量を算出開始することができる。
 また、本実施形態では、前記制御部は、前記累積負荷量が前記第1設定負荷量以上であるときに、前記モータの回転数を制限して駆動する低速回転モードで前記モータを駆動させる指令を行う指令部(104C)をさらに備える。これにより、モータが寿命に近づいた場合に、寿命を延ばすことが可能となる。
 また、本実施形態では、前記モータとは異なる他のモータへ交換が行われた場合に、前記指令部は、前記低速回転モードを解除する。これにより、モータを交換すれば、モータを通常状態で駆動させることができる。
 また、本実施形態では、前記制御部は、前記累積負荷量が前記第1設定負荷量よりも大きな第2設定負荷量以上であるときに、前記モータへの通電を停止する。これにより、モータが寿命に到達した、または、より寿命に近づいた場合に、マルチコプター本体の飛行を禁止することができる。
 また、本実施形態では、前記モータとは異なる他のモータへ交換が行われた場合に、前記制御部は、前記モータへの通電の停止を解除する。これにより、モータの交換をした場合に、マルチコプター本体の飛行を行うことができる。
 また、本実施形態に係るマルチコプターの制御システム30は、マルチコプター本体(10)と、前記マルチコプター本体を操作するコントローラ(20)と、を備え、
 前記マルチコプター本体は、前記アラーム信号を、前記コントローラに送信する通信部(107)を備える。これにより、マルチコプター本体の飛行中に、ユーザは手元にあるコントローラでアラームを確認することができる。
 また、本実施形態では、前記算出部は、前記駆動時間に対する、前記モータの回転数情報と前記モータの温度情報のうち少なくとも一方の乗算によって前記累積負荷量を算出する。これにより、モータの寿命に関わる回転数および温度を考慮して累積負荷量を算出することができる。
 また、マルチコプターの制御システム30は、前記モータの巻線温度を検出する温度センサ(T1~T4)をさらに備え、前記モータの温度情報は、前記温度センサにより検出される温度である。これにより、特にモータの寿命に関連する巻線温度に基づいて累積負荷量を算出することができる。
 また、本実施形態では、前記累積負荷量は、複数の前記モータの各々について算出され、算出された各々の前記累積負荷量は前記第1設定負荷量以上であるかを判定される。これにより、いずれのモータを交換すべきかをアラーム信号によりユーザが確認できる。
<1-3.第1実施形態の第1変形例>
  図6は、上記実施形態の第1変形例に係るマルチコプターの制御システムにおけるマルチコプター本体10aのブロック構成図である。
 図6に示すマルチコプター本体10aは、先述した第1実施形態との構成上の相違点として、温度センサT1a~T4aを有する。温度センサT1a~T4aは、第1モータ101A~第4モータ101Dのそれぞれの筐体の外壁面に固定される。制御部104は、温度センサT1a~T4aによる検出信号に基づいて累積負荷量を算出する。このような実施形態によっても、寿命に関連するモータ温度を考慮して累積負荷量を算出することができる。
<1-4.第1実施形態の第2変形例>
 図7は、上記実施形態の第2変形例に係るマルチコプターの制御システムのブロック構成図である。図7に示すマルチコプターの制御システムは、マルチコプター本体10bと、コントローラ20aと、を備える。
 本変形例では、コントローラ20aに含まれる制御部1201が、算出部1201Aと、信号出力部1201Bと、指令部1201Cと、記憶部1201Dと、を有する。すなわち、制御部は、マルチコプター本体(第1実施形態)またはコントローラ(本変形例)のいずれか一方に備わればよい。
 本変形例に係るマルチコプターの制御システムにおいても、先述した図3および図4の処理は行われるが、下記のような相違点がある。
 図4のステップS21においては、算出部1201Aが累積負荷量の算出を行う。このとき、算出部1201Aは、通信部202を用いた通信により、マルチコプター本体の制御部104aにモータの回転数と巻線温度の情報を要求して取得する。算出された累積負荷量は、記憶部1201Dに記憶される。
 ステップS22、S23の判定処理は、制御部1201が行う。ステップS24、S25のアラーム表示は、制御部1201の信号出力部1201Bが表示部203に行わせる。ステップS26の判定処理は制御部1201が行い、ステップS27では、制御部1201の指令部1201Cが通信部202を用いた通信により制御部104aに低速回転モードの設定を行う。
 また、図3におけるステップS1、S2では、制御部1201が記憶部1201Dに記憶された累積負荷量に基づき判定を行う。ステップS3、S7では、制御部1201がモータが交換済であるかを判定する。このとき、制御部1201は、例えば制御部104aに対してモータのIDなどを要求する。
 また、ステップS4、S8では、制御部1201が累積負荷量をゼロ負荷量にリセットする。ステップS5、S9では、制御部1201の信号出力部1201Bが表示部203または表示部110にアラーム表示を行わせる。ステップS6では、制御部1201が、制御部104aにモータの通電を停止させる。また、ステップS10では、制御部1201の指令部1201Cが通信部202を用いた通信により制御部104aに低速回転モードの設定を行う。そして、ステップS13では、制御部1201が制御部104aに起動を指令する。
<1-5.第1実施形態のその他の変形例>
 また、上記第1実施形態のさらに別の変形例として、マルチコプター本体10の制御部104が、算出部104Aにより算出された累積負荷量のデータを、通信部107による通信を用いて、コントローラ20の制御部201へ送信するようにしてもよい。すなわち、マルチコプター本体(10)は、算出された前記累積負荷量のデータを、コントローラ(20)に送信する通信部(107)を備えることとしてもよい。
 これにより、マルチコプター本体の飛行中に、ユーザの手元にあるコントローラに累積負荷量のデータが送信され、コントローラで累積負荷量を把握することが可能となる。
 また、上記第1実施形態では、累積負荷量は、第1モータ101A~第4モータ101Dの各々について算出していたが、各モータについて算出された累積負荷量の平均値として算出してもよい。すなわち、累積負荷量は、複数のモータにおける平均値として算出してもよい。
 これにより、累積負荷量の第1設定負荷量との比較判定処理を簡易化することができる。
<2.第2実施形態>
 次に、本開示の第2実施形態について説明する。図8は、本開示の第2実施形態に係るマルチコプターの制御システム60のブロック構成図である。
 本実施形態に係るマルチコプターの制御システム60は、マルチコプター本体40と、コントローラ50と、を備える。マルチコプター本体40の上記第1実施形態との相違点は、制御部1041と、測位システム111を備えることである。測位システム111は、マルチコプター本体40の現在地を測定する。
 コントローラ50の上記第1実施形態との相違点は、制御部2011を備えることである。制御部2011は、算出部2011A、累積負荷量推定部2011B、指令部2011C、記憶部2011D、信号出力部2011E、および目的地設定部2011Fを有する。
 このような構成であるマルチコプターの制御システム60における寿命アラーム機能について図9および図10のフローチャートを用いて説明する。
 操作部204の操作により目的地設定部2011Fがマルチコプター本体40の目的地を設定し、起動指示がなされると、図9に示すフローチャートが開始される。まず、図9のステップS31で、累積負荷量推定部2011Bは、マルチコプター本体40が現在地から目的地まで飛行した際に受けると推定される推定累積負荷量を第1モータ101A~第4モータ101Dのうち対象のモータについて算出する。
 例えば、累積負荷量推定部2011Bは、測位システム111により測定される現在地と、目的地設定部2011Fにより設定された目的地とから決定される飛行予定経路と、前回のマルチコプター本体40の起動中に累積された分の累積負荷量と、前回のマルチコプター本体40の実際の飛行経路と、に基づいて推定累積負荷量を算出する。なお、前回の起動中に累積された分の累積負荷量のデータは、記憶部2011Dに記憶させることができる。また、前回のマルチコプター本体40の実際の飛行経路は、前回の起動中に測位システム111により測定された現在地のデータを逐次、記憶部2011Dに記憶させることで把握することができる。
 次に、ステップS32で、制御部2011は、記憶部2011Dに記憶される累積負荷量と、上記算出された推定累積負荷量との和が第1設定負荷量以上であるかを判定する。もし、第1設定負荷量以上でない場合は(ステップS32のN)、ステップS37に進む。ステップS37では、制御部2011は、全てのモータについて判定したかを確認し、もしそうでない場合は(ステップS37のN)、ステップS38に進み、対象のモータを変更し、ステップS31に戻る。
 一方、ステップS32で、第1設定負荷量以上である場合は(ステップS32のY)、ステップS33に進み、制御部2011は、対象のモータが新たなモータに既に交換されているかを判定する。もし、交換されていない場合は(ステップS33のN)、ステップS34に進み、信号出力部2011Eは、アラーム信号としての表示制御信号を表示部203へ出力する。これにより、表示部203は、表示制御信号に基づき対象のモータを交換することをユーザに促す表示を行う。
 この場合、ステップS35に進み、制御部2011は、マルチコプター本体40の制御部1041に起動指示を行わないので、マルチコプター本体40は起動しない。
 もし、ステップS33で、既にモータが交換されている場合は(ステップS33のY)、ステップS36に進み、制御部2011は、記憶部2011Dに記憶された累積負荷量をゼロ負荷量にリセットする。そして、ステップS37に進む。
 ステップS37で、全てのモータについて判定が済んでいる場合は(ステップS37のY)、ステップS39に進み、制御部2011は、マルチコプター本体40の制御部1041に通信部202による通信を介してマルチコプター本体40の起動を指示する。これにより、制御部1041は、駆動回路103A~103Dを含む各部に電源を供給するよう電源回路108を制御し、第1モータ101A~第4モータ101Dへの通電を可能とする。すなわち、マルチコプター本体40が起動する。
 以降、例えば、制御部2011によって現在地と目的地とから決定されて制御部1041へ送られた飛行予定経路のデータに基づき、制御部1041が駆動回路103A~103Dを介して第1モータ101A~第4モータ101Dを駆動制御し、マルチコプター本体40を目的地へ導くように制御する。
 マルチコプター本体40が起動すると、図10に示すフローチャートが開始される。まず、図10のステップS41で、算出部2011Aは、対象のモータについて累積負荷量を算出する。制御部1041から通信部107による通信を介して送られるモータの回転数データ、および巻線温度データに基づき累積負荷量は算出される。
 そして、ステップS42で、制御部2011は、算出された累積負荷量は第1設定負荷量以上であるかを判定し、もしそうでない場合は(ステップS42のN)、ステップS46に進み、対象モータを変更し、ステップS41に戻る。
 もし、ステップS42で、累積負荷量が第1設定負荷量以上である場合は(ステップS42のY)、ステップS43に進み、信号出力部2011Eは、アラーム信号としての表示制御信号を表示部203へ出力する。これにより、表示部203は、表示制御信号に基づき対象のモータを交換することをユーザに促す表示を行う。
 次に、ステップS44で、制御部2011は、低速回転モードがマルチコプター本体40に設定されているかを判定し、設定されていない場合は(ステップS44のN)、ステップS45に進む。ステップS45で、指令部2011Cは、通信部202による通信を介して制御部1041に低速回転モードを設定させる。これにより、マルチコプター本体40は、低速回転モードでの動作へ移行する。そして、ステップS46に進む。
 一方、ステップS44で、低速回転モードに設定されている場合は(ステップS44のY)、ステップS46に進む。
 図10に示す処理は、ステップS46での対象モータの変更を繰り返しながら、マルチコプター本体40が起動している間、継続される。ここで、算出されて記憶部104Dに記憶された累積負荷量が、図9に示す起動時の処理における判定に用いられることとなる。
 このように図9および図10に示す処理を行う本実施形態に係るマルチコプターの制御システムは、プロペラを回転させる複数のモータ(101A~101D)を有するマルチコプター本体(40)と、
 前記モータの駆動情報を読み取る制御部(2011)と、
前記マルチコプター本体の現在地を測定する測位システム(111)と、
 前記マルチコプター本体の目的地を設定する目的地設定部(2011F)と、
 前記マルチコプター本体が、前記現在地から前記目的地まで飛行した際に受けると推定される推定累積負荷量を算出する累積負荷量推定部(2011B)と、
 を備え、
 前記制御部は、
 前記モータの駆動時間に基づいて前記モータの累積負荷量を算出する算出部(2011A)と、
 算出された前記累積負荷量が第1設定負荷量以上であるときに、アラーム信号を出力する信号出力部(2011E)と、
 を備え、
 前記累積負荷量が前記第1設定負荷量よりも低いときに、
 前記累積負荷量と前記推定累積負荷量との和が、前記第1設定負荷量以上であるときに、前記信号出力部がアラーム信号を出力する構成である。
 このような構成によれば、第1実施形態と同様の効果を享受できると共に、現在の累積負荷量が第1設定負荷量より低くても、現在地から目的地への飛行による負荷によって予想される累積負荷量が第1設定負荷量以上となれば、飛行前にあらかじめユーザにアラームを知らせることができる。
 また、本実施形態では、前記モータとは異なる他のモータへ交換された場合に、前記算出部は、前記累積負荷量をゼロ負荷量へリセットすることとしている。これにより、上記アラームによりモータ交換を促されたユーザが、モータを交換すれば、リセットした値から新たな累積負荷量を算出開始できる。
 また、本実施形態では、前記累積負荷量および前記推定累積負荷量は、複数の前記モータの各々について算出され、算出された各々の前記累積負荷量および前記推定累積負荷量の和は前記第1設定負荷量以上であるかを判定されることとしている。これにより、複数のモータ個々についてアラームを出力でき、どのモータを交換すべきかをユーザに伝えることができる。
 なお、累積負荷量および推定累積負荷量は、第1モータ101A~第4モータ101Dの各々について算出された値の平均値として算出してもよい。すなわち、前記累積負荷量および前記推定累積負荷量は、複数の前記モータにおける平均値として算出してもよい。これにより、累積負荷量と推定累積負荷量との和についての判定処理が簡易化される。
<3.その他>
 以上、本開示の実施形態について説明したが、本開示の趣旨の範囲内であれば、実施形態は種々の変更が可能である。
 例えば、上記信号出力部は、アラーム信号として音声信号を出力してもよい。すなわち、音声によってユーザにモータ交換を促すようにしてもよい。
 本開示は、ホビー用途、業務用途などのマルチコプターに好適に利用することができる。
 10、10a、10b・・・マルチコプター本体、100・・・本体部、100A~100D・・・アーム、101A・・・第1モータ、101B・・・第2モータ、101C・・・第3モータ、101D・・・第4モータ、102A・・・第1プロペラ、102B・・・第2プロペラ、102C・・・第3プロペラ、102D・・・第4プロペラ、103A~103D・・・駆動回路、104、104a・・・制御部、104A・・・算出部、104B・・・信号出力部、104C・・・指令部、104D・・・記憶部、105・・・センサ群、106・・・操作部、107・・・通信部、108・・・電源回路、109・・・バッテリ、110・・・表示部、111・・・測位システム、L1~L4・・・巻線、T1~T4、T1a~T4a・・・温度センサ、20、20a・・・コントローラ、201、1201・・・制御部、202・・・通信部、203・・・表示部、204・・・操作部、1201A・・・算出部、1201B・・・信号出力部、1201C・・・指令部、1201D・・・記憶部、30・・・マルチコプター本体の制御システム、40・・・マルチコプター本体、1041・・・制御部、50・・・コントローラ、2011・・・制御部、2011A・・・算出部、2011B・・・累積負荷量推定部、2011C・・・指令部、2011D・・・記憶部、2011E・・・信号出力部、2011F・・・目的地設定部、60・・・マルチコプターの制御システム

Claims (17)

  1.  プロペラを回転させる複数のモータと、
     前記モータの駆動情報を読み取る制御部と、を備え、
     前記制御部は、
     前記モータの駆動時間に基づいて前記モータの累積負荷量を算出する算出部と、
     算出された前記累積負荷量が第1設定負荷量以上であるときに、アラーム信号を出力する信号出力部と、
     を備えるマルチコプターの制御システム。
  2.  前記モータとは異なる他のモータへ交換された場合に、前記算出部は、前記累積負荷量をゼロ負荷量へリセットする請求項1に記載のマルチコプターの制御システム。
  3.  前記制御部は、前記累積負荷量が前記第1設定負荷量以上であるときに、前記モータの回転数を制限して駆動する低速回転モードで前記モータを駆動させる指令を行う指令部をさらに備える請求項1または請求項2に記載のマルチコプターの制御システム。
  4.  前記モータとは異なる他のモータへ交換が行われた場合に、前記指令部は、前記低速回転モードを解除する請求項3に記載のマルチコプターの制御システム。
  5.  前記制御部は、前記累積負荷量が前記第1設定負荷量よりも大きな第2設定負荷量以上であるときに、前記モータへの通電を停止する請求項1~請求項4のいずれか1項に記載のマルチコプターの制御システム。
  6.  前記モータとは異なる他のモータへ交換が行われた場合に、前記制御部は、前記モータへの通電の停止を解除する請求項5に記載のマルチコプターの制御システム。
  7.  マルチコプター本体と、前記マルチコプター本体を操作するコントローラと、を備え、 前記マルチコプター本体は、前記アラーム信号を、前記コントローラに送信する通信部を備える請求項1~請求項6のいずれか1項に記載のマルチコプターの制御システム。
  8.  マルチコプター本体と、前記マルチコプター本体を操作するコントローラと、を備え、 前記マルチコプター本体は、算出された前記累積負荷量のデータを、前記コントローラに送信する通信部を備える請求項1~請求項7のいずれか1項に記載のマルチコプターの制御システム。
  9.  前記算出部は、前記駆動時間に対する、前記モータの回転数情報と前記モータの温度情報のうち少なくとも一方の乗算によって前記累積負荷量を算出することを特徴とする請求項1~請求項8のいずれか1項に記載のマルチコプターの制御システム。
  10.  前記モータの巻線温度を検出する温度センサをさらに備え、
     前記モータの温度情報は、前記温度センサにより検出される温度である請求項9に記載のマルチコプターの制御システム。
  11.  前記累積負荷量は、複数の前記モータの各々について算出され、
     算出された各々の前記累積負荷量は前記第1設定負荷量以上であるかを判定される、請求項1~請求項10のいずれか1項に記載のマルチコプターの制御システム。
  12.  前記累積負荷量は、複数の前記モータにおける平均値として算出される請求項1~請求項10のいずれか1項に記載のマルチコプターの制御システム。
  13.  マルチコプター本体と、前記マルチコプター本体を操作するコントローラと、を備え、
     前記制御部は、前記マルチコプター本体または前記コントローラのいずれか一方に備わる請求項1~請求項12のいずれか1項に記載のマルチコプターの制御システム。
  14.  プロペラを回転させる複数のモータを有するマルチコプター本体と、
     前記モータの駆動情報を読み取る制御部と、
    前記マルチコプター本体の現在地を測定する測位システムと、
     前記マルチコプター本体の目的地を設定する目的地設定部と、
     前記マルチコプター本体が、前記現在地から前記目的地まで飛行した際に受けると推定される推定累積負荷量を算出する累積負荷量推定部と、
     を備え、
     前記制御部は、
     前記モータの駆動時間に基づいて前記モータの累積負荷量を算出する算出部と、
     算出された前記累積負荷量が第1設定負荷量以上であるときに、アラーム信号を出力する信号出力部と、
     を備え、
     前記累積負荷量が前記第1設定負荷量よりも低いときに、
     前記累積負荷量と前記推定累積負荷量との和が、前記第1設定負荷量以上であるときに、前記信号出力部がアラーム信号を出力するマルチコプターの制御システム。
  15.  前記モータとは異なる他のモータへ交換された場合に、前記算出部は、前記累積負荷量をゼロ負荷量へリセットする請求項14に記載のマルチコプターの制御システム。
  16.  前記累積負荷量および前記推定累積負荷量は、複数の前記モータの各々について算出され、
     算出された各々の前記累積負荷量および前記推定累積負荷量の和は前記第1設定負荷量以上であるかを判定される、請求項14または請求項15に記載のマルチコプターの制御システム。
  17.  前記累積負荷量および前記推定累積負荷量は、複数の前記モータにおける平均値として算出される請求項14または請求項15に記載のマルチコプターの制御システム。
PCT/JP2017/033422 2016-09-30 2017-09-15 マルチコプターの制御システム WO2018061823A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780059672.1A CN109803887B (zh) 2016-09-30 2017-09-15 多轴飞行器的控制***
JP2018542395A JP7040450B2 (ja) 2016-09-30 2017-09-15 マルチコプターの制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016192706 2016-09-30
JP2016-192706 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061823A1 true WO2018061823A1 (ja) 2018-04-05

Family

ID=61760357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033422 WO2018061823A1 (ja) 2016-09-30 2017-09-15 マルチコプターの制御システム

Country Status (3)

Country Link
JP (1) JP7040450B2 (ja)
CN (1) CN109803887B (ja)
WO (1) WO2018061823A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111196268A (zh) * 2018-11-19 2020-05-26 丰田自动车株式会社 电动油泵***和电动油泵的控制方法
JP2020165878A (ja) * 2019-03-29 2020-10-08 株式会社日立製作所 グリース劣化診断装置及びその方法
JPWO2021070308A1 (ja) * 2019-10-09 2021-04-15
CN114286784A (zh) * 2019-08-28 2022-04-05 株式会社电装 电动垂直起降机及电动垂直起降机的控制装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039469A1 (ja) * 2019-08-28 2021-03-04 株式会社デンソー 電動垂直離着陸機の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938845A (ja) * 1995-07-27 1997-02-10 Fanuc Ltd 数値制御装置
JP2012206696A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd アクチュエータ監視システム
JP5857326B1 (ja) * 2015-04-18 2016-02-10 株式会社アドテックス 無人飛翔体及びそのための制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013102194A1 (de) * 2013-03-06 2014-09-11 Werner Eck Antriebseinrichtung für ein sich in einem Fluid bewegendes Fahrzeug
DE102013106838A1 (de) * 2013-06-29 2014-12-31 Ebm-Papst St. Georgen Gmbh & Co. Kg Anordnung zur Abschätzung der Lebensdauer eines Elektromotors
CN105425160B (zh) * 2014-11-24 2018-11-27 北京航空航天大学 一种基于多轴旋翼无人机的航时确定方法及装置
CN204789941U (zh) * 2015-07-10 2015-11-18 巴州极飞农业航空科技有限公司 一种无人机状态检测装置
CN105905307B (zh) * 2016-06-17 2017-09-01 广州极飞科技有限公司 无人机及无人机的电机控制***和电机故障检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938845A (ja) * 1995-07-27 1997-02-10 Fanuc Ltd 数値制御装置
JP2012206696A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd アクチュエータ監視システム
JP5857326B1 (ja) * 2015-04-18 2016-02-10 株式会社アドテックス 無人飛翔体及びそのための制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111196268A (zh) * 2018-11-19 2020-05-26 丰田自动车株式会社 电动油泵***和电动油泵的控制方法
JP2020084834A (ja) * 2018-11-19 2020-06-04 トヨタ自動車株式会社 電動オイルポンプシステム
JP2020165878A (ja) * 2019-03-29 2020-10-08 株式会社日立製作所 グリース劣化診断装置及びその方法
JP7164480B2 (ja) 2019-03-29 2022-11-01 株式会社日立製作所 グリース劣化診断装置及びその方法
CN114286784A (zh) * 2019-08-28 2022-04-05 株式会社电装 电动垂直起降机及电动垂直起降机的控制装置
JPWO2021070308A1 (ja) * 2019-10-09 2021-04-15
JP7324388B2 (ja) 2019-10-09 2023-08-10 日本電信電話株式会社 無人航空機および無人航空機の制御方法

Also Published As

Publication number Publication date
JP7040450B2 (ja) 2022-03-23
JPWO2018061823A1 (ja) 2019-07-18
CN109803887B (zh) 2022-10-04
CN109803887A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2018061823A1 (ja) マルチコプターの制御システム
US10374544B2 (en) Method for estimating service life of motor, motor control system, blower system, and multicopter system
CN111279371B (zh) 用于多个无人飞行器的控制***和方法
CN107077149B (zh) 控制移动设备的方法、控制***和移动设备
JP6776083B2 (ja) 飛行ロボット制御システムおよび飛行ロボット
US9309004B2 (en) Centripetal acceleration determination, centripetal acceleration based velocity tracking system and methods
JP2018055463A (ja) 飛行ロボット制御システムおよび飛行ロボット
JP2017047736A (ja) 無人回転翼機及びプログラム
US11840158B2 (en) Systems and methods for battery capacity management in a fleet of UAVs
CN111867935A (zh) 飞行器和飞行器的控制方法
JP2009225564A (ja) 車両制御装置
JP2017007603A (ja) 運転支援制御装置
JP6999290B2 (ja) 飛行装置、飛行方法及び飛行プログラム
CN115515856B (zh) 马达磨损度量生成器
CN111684307B (zh) 电机控制方法、激光雷达和可移动设备
US11370555B2 (en) Systems and methods for stopping movement of operational members
CN108698694B (zh) 控制方法、飞行器控制***和旋翼飞行器
US11016483B2 (en) Drone with training mode
JPWO2018042676A1 (ja) 無人飛翔体
US20240092464A1 (en) System and method for detecting person overboard
JP2020057944A (ja) 無人飛行装置の部品の状態通知装置、無人飛行装置の部品の状態通知方法及びプログラム
CN111216887B (zh) 用于遥控直升机的驱动控制设备
JP2019156236A (ja) 無人飛行装置、その方法及びプログラム
WO2021140554A1 (ja) 飛行体およびシステム
KR101866534B1 (ko) 하이브리드 드론과 그 제어 방법 및 이를 수행하기 위한 컴퓨팅 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855779

Country of ref document: EP

Kind code of ref document: A1