WO2018049992A1 - 曲轴、泵体组件和压缩机 - Google Patents

曲轴、泵体组件和压缩机 Download PDF

Info

Publication number
WO2018049992A1
WO2018049992A1 PCT/CN2017/100147 CN2017100147W WO2018049992A1 WO 2018049992 A1 WO2018049992 A1 WO 2018049992A1 CN 2017100147 W CN2017100147 W CN 2017100147W WO 2018049992 A1 WO2018049992 A1 WO 2018049992A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
partition
pump body
disc
body assembly
Prior art date
Application number
PCT/CN2017/100147
Other languages
English (en)
French (fr)
Inventor
阙沛祯
胡艳军
杨欧翔
翟元彬
向柳
黄建峰
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to KR1020197005191A priority Critical patent/KR102253538B1/ko
Priority to EP17850194.6A priority patent/EP3486489B1/en
Priority to JP2019505162A priority patent/JP6714765B2/ja
Publication of WO2018049992A1 publication Critical patent/WO2018049992A1/zh
Priority to US16/280,898 priority patent/US11280337B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0028Internal leakage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/14Features relating to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons

Definitions

  • the present invention relates to the field of gas compression compression technology, and in particular to a crankshaft, a pump body assembly and a compressor.
  • the dual-rotor compressor has the characteristics of large cooling capacity and stable operation, and is widely used in air conditioning systems.
  • the existing two-rotor compressor is superimposed with two cylinders axially separated by a partition.
  • the crankshaft has two eccentric portions, and rollers are respectively placed on the two eccentric portions.
  • the intermediate partition 2' As shown in Fig. 1, after the eccentricity of the crankshaft is increased, in order to enable the intermediate partition 2' to pass through one of the eccentric portions 1', the intermediate partition 2' must be larger than the outer diameter of the eccentric portion 1', and due to the eccentricity If it is too large, there will be a gap between the outer diameter of the roller 3' and the through hole of the intermediate partition 2'. The refrigerant will pass through the gap at the L during the compression process, and compression cannot be achieved. The seal of the machine cavity.
  • the scheme can also realize the partition and the roller under the condition of the large eccentric crankshaft design. seal.
  • the above method of dividing and re-splicing the partition to form a complete partition has difficulty in processing, the processing precision of parts and assembly is extremely high, and it is difficult to mass-produce, and at the same time, seams are easily formed at the joint, resulting in leakage, resulting in leakage.
  • the sealing performance is reduced, and the height of the two spliced partitions is difficult to be the same, and there is a certain height difference, which is not conducive to the free running of the rollers on the partition surface.
  • a crankshaft, a pump body assembly and a compressor are provided, which can increase the eccentricity of the crankshaft while avoiding leakage between the partition plate and the roller, and improve the working performance of the compressor.
  • an embodiment of the present invention provides a crankshaft including a central rotating shaft, a first eccentric portion, a second eccentric portion, a disc partition, and an annular baffle, wherein the disc partition is located at the first eccentric portion and the second Between the eccentric portions, and integrally formed with the central rotating shaft, the annular partition is sleeved outside the disc partition.
  • the disc spacer is mated with the annular spacer.
  • the relationship between the inner diameter ⁇ B of the annular spacer and the outer diameter ⁇ D of the disc spacer satisfies ( ⁇ B - ⁇ D) > 0.01 mm.
  • the thickness of the disk spacer is H1
  • the thickness of the annular spacer is H2
  • a pump body assembly including a crankshaft, an upper cylinder and a lower cylinder, the crankshaft being the crankshaft described above, the upper cylinder sleeve being disposed outside the first eccentric portion, and the lower cylinder sleeve being disposed at the second eccentricity Outside the department.
  • the relationship between the outer diameter ⁇ D of the disk spacer and the inner diameter ⁇ C of the cylinder satisfies ( ⁇ D - ⁇ C) > 2 mm.
  • the disc spacers are spaced apart between the upper and lower cylinders and are mated with the upper cylinder.
  • the inner peripheral side of the annular partition or the outer peripheral side of the disc partition is provided with an annular oil passage, and the oil passage communicates with the oil pool through the oil passage.
  • the inner peripheral side of the annular partition plate is provided with an oil passage groove, and the oil passage passage is an oil passage hole penetrating the annular partition plate in the radial direction.
  • the upper cylinder, the annular partition and the lower cylinder are fixedly connected by bolts.
  • the upper end of the outer peripheral wall of the disc partition is provided with a first boring groove communicating with the compression chamber of the upper cylinder
  • the annular partition is provided with a boring hole
  • the bottom of the upper cylinder is provided with a first boring groove a first communication passage communicating with the boring hole
  • a lower end of the outer peripheral wall of the disc partition is provided with a second creping groove communicating with the compression chamber of the lower cylinder
  • the annular partition is provided with a boring hole
  • the lower The top of the cylinder is provided with a second communication passage that communicates the second boring groove and the boring hole.
  • the disc baffle is provided with a first boring groove and a second boring groove
  • the boring hole is a three-way boring hole
  • the three-way boring hole comprises a radially extending inlet and a first communicating with the inlet An outlet and a second outlet, wherein the first outlet communicates with the first augmentation channel through the first communication channel, and the second outlet communicates with the second augmentation channel through the second communication channel.
  • the first communication passage and the second communication passage are both arcuate grooves.
  • the upper cylinder is provided with a first sliding vane groove
  • the lower cylinder is provided with a second sliding vane groove.
  • the angle between the starting end of the first communication passage and the first sliding vane is ⁇ 1, and the second connecting passage
  • the angle with the second vane groove is ⁇ 2, where 30° ⁇ ⁇ 1 ⁇ 80°; 30° ⁇ ⁇ 2 ⁇ 80°.
  • the angle of the first communication passage is 30° ⁇ 1 ⁇ 100°; the angle of the second communication passage is 30° ⁇ 2 ⁇ 100°.
  • a compressor comprising a pump body assembly, the pump body assembly being the pump body assembly described above.
  • the compressor is a two-cylinder compressor, a multi-cylinder compressor or a multi-stage compressor.
  • the crankshaft includes a central rotating shaft, a first eccentric portion, a second eccentric portion, a disc partition and an annular baffle, and the disc partition is located between the first eccentric portion and the second eccentric portion, and It is integrally formed with the central shaft, and the annular partition is sleeved outside the disc partition.
  • the partition of the crankshaft includes a disc partition and an annular baffle, and the disc partition is integrally formed with the central rotating shaft, so that the center of the partition can be solid without leaving a first eccentric portion or a second eccentricity during installation.
  • the required mounting hole of the part prevents the mounting hole from being too large, and the fitting gap occurs between the partition plate and the roller mounting hole.
  • the eccentricity of the crankshaft can be made large and can be effectively improved. Compressor displacement. Since the disc partition is integrally formed with the central rotating shaft, there is no need to splicing the partition, and the processing difficulty of the partition is also reduced, so that the overallity of the partition is better, the compatibility with the cylinder is better, and the work of the compressor is improved. performance.
  • FIG. 1 is a cross-sectional structural view of a prior art pump body assembly
  • Figure 2 is a cross-sectional structural view showing a compressor of a first embodiment of the present invention
  • Figure 3 is a perspective structural view of an annular partition plate of a crankshaft of a compressor pump assembly of a first embodiment of the present invention
  • Figure 4 is a perspective structural view of a crankshaft of a compressor pump assembly of a first embodiment of the present invention
  • Figure 5 is a cross-sectional structural view showing a pump body assembly of a first embodiment of the present invention
  • Figure 6 is a schematic enlarged view of the structure at Q of Figure 5;
  • Figure 7 is a structural view of a compressor according to a second embodiment of the present invention.
  • Figure 8 is a view showing the cooperation structure of a cylinder and a partition of a pump body assembly of a second embodiment of the present invention.
  • Figure 9 is an exploded structural view showing a pump body assembly of a second embodiment of the present invention.
  • Figure 10 is a first motion structural view of the partition plate of the compressor pump assembly of the second embodiment of the present invention mated with the cylinder;
  • Figure 11 is a second motion structural view of the partition of the compressor pump assembly of the second embodiment of the present invention in cooperation with the cylinder;
  • Figure 12 is a third motion structural view of the partition of the compressor pump assembly of the second embodiment of the present invention engaged with the cylinder.
  • the crankshaft includes a central rotating shaft 1, a first eccentric portion 2, a second eccentric portion 3, a disc partition plate 18, and an annular partition plate 4, and the disc partition
  • the plate 18 is located between the first eccentric portion 2 and the second eccentric portion 3, and is integrally formed with the central rotating shaft 1, and the annular partition plate 4 is sleeved outside the disk partition 18.
  • the partition of the crankshaft includes two parts of a disc partition 18 and an annular partition 4, and the disc partition 18 is integrally formed with the central rotating shaft 1, so that the center of the partition can be solid, without leaving the installation
  • the mounting hole required for the eccentric portion 2 or the second eccentric portion 3 prevents the installation hole from being too large, and the refrigerant leakage occurs when a matching gap occurs between the partition plate and the roller mounting hole. Since the first eccentric portion 2 and the second eccentric portion 3 do not affect the installation of the partition plate, the eccentric amount of the crankshaft can be made large, and the displacement of the compressor can be effectively improved.
  • the disc partition 18 is integrally formed with the central rotating shaft 1, there is no need to splicing the partition, and the processing difficulty of the partition is also reduced, so that the integrity of the partition is better, the compatibility with the cylinder is better, and the compressor is improved. Work performance.
  • the rotational fit between the annular baffle 4 and the disc baffle 18 allows the annular baffle to be fixedly coupled to other portions of the pump body assembly without affecting the rotation of the disc baffle 18 with the central shaft 1
  • the partition as a whole can be well mounted and fixed.
  • the disc spacer 18 is matched with the annular partition 4 to reduce the wear occurring during the relative rotation of the disc partition 18 and the annular partition 4, and reduce the disc partition 18 and the ring.
  • the wear loss of the partition 4 prolongs the service life of the two, and the gap between the two also enables the lubricating oil to better enter the opposite moving surfaces of the two for lubrication cooling, and the disc partition 18 and the circle are improved.
  • the relationship between the inner diameter ⁇ B of the annular spacer 4 and the outer diameter ⁇ D of the disc spacer 18 satisfies ⁇ B - ⁇ D > 0.01 mm such that the inner diameter of the annular spacer 4 and the outer diameter of the disc spacer 18 There is enough clearance between them to avoid friction loss during the mutual movement of the two.
  • the gap should also be limited to a certain range to avoid excessive clearance and affect the circumferential fit between the disc spacer 18 and the annular partition 4.
  • the thickness of the disc spacer 18 is H1, the thickness of the annular spacer 4 is H2, and H2-H1 > 0.01 mm is satisfied between H2 and H1. Since the thickness of the annular partition 4 is thicker than the thickness of the disc partition 18, the engagement between the disc partition 18 and the upper cylinder can be avoided by the cooperation between the annular partition 4 and the upper and lower cylinders, so that the disc There is a gap between the partition plate 18 and the end surface of the upper cylinder to prevent rotational friction between the disc partition 18 and the upper cylinder during the rotation of the central partition shaft 1, which may occur between the disc partition 18 and the upper cylinder. The wear and tear prolongs the service life of the disc spacer 18 while reducing the power required for the crankshaft to rotate, reducing the extra power loss, and improving the rotational efficiency of the crankshaft.
  • the pump assembly includes a crankshaft, an upper cylinder 5 and a lower cylinder 6, the crankshaft being the crankshaft described above, and the upper cylinder 5 sleeves.
  • the lower cylinder 6 is disposed outside the first eccentric portion 2 and is disposed outside the second eccentric portion 3.
  • the upper cylinder 5 and the lower cylinder 6 cooperate with the disc partition 18 to form an axial direction limit to the disc partition 18, and at the same time, the annular partition 4 and the upper cylinder 5 and the lower cylinder
  • the fixed connection 6 forms a limit in the circumferential direction of the disk partition 18, so that the crankshaft can be supported on the upper end surface of the lower cylinder 6 through the disk partition 18, so that the mounting position can be stably maintained.
  • the relationship between the outer diameter ⁇ D of the disc spacer 18 and the inner diameter ⁇ C of the cylinder satisfies ⁇ D - ⁇ C > 2 mm, so that the outer diameter of the disc spacer 18 can be larger than the inner diameter of the cylinder, where the inner diameter of the cylinder is upper
  • the inner diameter of the cylinder 5 and the lower cylinder 6 is larger. Since the outer diameter of the disc partition 18 is larger than the inner diameter of the cylinder and exceeds the inner diameter of the cylinder by a certain thickness, the disc partition 18 can have a sufficient diameter to avoid snagging with the inner diameter of the cylinder, preventing the refrigerant from being detached from the disc.
  • the partition 18 leaks between the inner cavity of the cylinder and improves the stability and reliability of the mating structure between the crankshaft and the cylinder.
  • the disc spacers 18 are spaced between the upper cylinder 5 and the lower cylinder 6, and are in clearance engagement with the upper cylinder 5. In this configuration, the thickness of the disc spacer 18 is required to be lower than the gap between the lower end surface of the upper cylinder 5 and the upper end surface of the lower cylinder 6, at which time the bottom of the disc spacer 18 passes through the upper end surface of the lower cylinder 6.
  • the support makes the crankshaft have a good axial positioning structure.
  • the gap between the disc partition 18 and the upper cylinder 5 and the lower cylinder 6 is such that the axial positioning of the crankshaft is mainly achieved by the cooperation between the second eccentric portion 3 and the lower end cover 27.
  • the inner peripheral side of the annular partition 4 or the outer peripheral side of the disc partition 18 is provided with an annular oil passage 7 through which the oil passage 7 communicates with the oil sump.
  • the oil in the oil pool can enter the oil passage 7 through the oil passage, and then distributes around the annular partition 4 and the disc partition 18 along the oil passage 7.
  • the rotational fit of the annular partition 4 and the disc partition 18 is lubricated and cooled.
  • the oil passage here is disposed on the annular partition 4, and since the annular partition 4 is fixedly connected with the upper cylinder 5 and the lower cylinder 6, the oil in the oil pool can be stably conveyed to the oil passage through the oil passage. At 7 locations, a stable and continuous supply of lubricating oil is guaranteed.
  • the inner peripheral side of the annular partition plate 4 is provided with an oil passage groove 7 which is an oil passage hole 8 which penetrates the annular partition plate 4 in the radial direction. Since the oil passage hole 8 penetrates the annular partition plate 4 in the radial direction, the oil located outside the pump body assembly can be easily introduced from the oil passage hole 8 into the inner circumferential side oil passage groove 7 of the annular partition plate 4. In order to facilitate the entry of the oil, the oil passage hole 8 can be inclined obliquely downward in the flow direction of the oil.
  • the upper cylinder 5, the annular partition 4 and the lower cylinder 6 are fixedly connected by bolts 9, which can improve the stability of the connection structure between the upper cylinder 5, the annular partition 4 and the lower cylinder 6, and at the same time It is more effective to ensure the direct connection sealing of the three and improve the working performance of the pump body assembly.
  • the crankshaft has a disk partition 18 between the first eccentric portion 2 and the second eccentric portion 3, and the disk partition plate 18 and the central rotating shaft 1 of the crankshaft are integral, and the coaxial shaft 1 is Can be rotated together.
  • a circular partition plate 4 is attached between the upper cylinder 5 and the lower cylinder 6, and a disk partition 18 of the crankshaft is placed between the upper cylinder 5 and the lower cylinder 6.
  • the outer circumference of the disc partition 18 of the crankshaft is placed in the inner circle of the annular partition 4, and the outer circumference of the disc partition 18 and the inner circle of the annular partition 4 are clearance fit.
  • the outer diameter of the disc partition 18 is ⁇ D, which is smaller than the inner diameter ⁇ B of the annular partition 4, and larger than the inner diameter ⁇ C of the upper cylinder 5 and the lower cylinder 6.
  • the dimensional relationship is ⁇ B- ⁇ D>0.01mm, and ⁇ D- ⁇ C>2mm. According to the above dimensional relationship, the lower end surface of the disk partition 18 of the crankshaft can be supported on the upper end surface of the lower cylinder 6. Further, the thickness of the disk spacer 18 is H1, and the thickness of the annular spacer 4 is H2, and H2-H1 > 0.01 mm.
  • the disk partition 18 of the crankshaft is placed between the upper cylinder 5 and the lower cylinder 6, and is restrained in the axial direction between the two end faces of the upper and lower cylinders, and is restrained in the circumferential direction in the annular partition 4 In the inner circle.
  • the upper roller and the lower roller are respectively fitted over the first eccentric portion 2 and the second eccentric portion 3 of the crankshaft, and the upper roller and the lower roller are separated by the disk partition 18 of the crankshaft.
  • the upper roller rotates together with the first eccentric portion 2 of the crankshaft, and is sealed by the upper end surface of the disc partition 18 of the crankshaft, the lower end surface of the upper bearing, and the inner circumference of the upper cylinder 5 to form an upper compression chamber, the upper slide and the upper roller.
  • the outer circular circle is fitted, and the upper compression chamber is divided into a high pressure chamber and a low pressure chamber, so that the compression of the refrigerant in the upper cylinder 5 can be realized.
  • the lower roller rotates together with the second eccentric portion 3 of the crankshaft, and is sealed by the lower end surface of the disc partition 18 of the crankshaft, the upper end surface of the lower bearing, and the inner circumference of the lower cylinder 6, forming an upper compression chamber and sliding up.
  • the sheet is fitted to the outer circumference of the upper roller, and the lower compression chamber is divided into a high pressure chamber and a low pressure chamber, so that the compression of the refrigerant in the lower cylinder 6 can be achieved.
  • the lower end surface of the disc partition 18 is supported on the lower cylinder 6 by forming a disc partition 18 integrally formed with the center shaft 1 between the first eccentric portion 2 and the second eccentric portion 3 of the crankshaft.
  • the end face achieves axial support while still passing
  • the disc partition 18 separates the volume chambers of the upper cylinder 5 and the lower cylinder 6, realizing two compression chambers and ensuring that no refrigerant leakage occurs between the diaphragm and the cylinder.
  • a circular oil passage groove 7 is provided at the inner circumference of the annular partition plate 4.
  • the annular oil passage 7 communicates with the oil pool outside the pump body through the oil passage hole 8, which ensures the axial and circumferential lubrication of the disk partition 18 of the crankshaft, and also ensures the mating surface. The seal between the two reduces the leakage of helium between the upper and lower cylinders.
  • the crankshaft in the two-cylinder compressor, by forming the disk partition 18 integrated with the center shaft 1 between the first eccentric portion 2 and the second eccentric portion 3 of the crankshaft, the crankshaft can be obtained very well.
  • the large expansion increases the effective compressor volume, and solves the problem of leakage between the outer circle of the roller and the inner circle of the separator after the eccentric amount of the conventional compressor is increased, thereby realizing miniaturization and low cost of the compressor.
  • a second embodiment of a pump body assembly according to the present invention has the same basic structure as the first embodiment of the pump body assembly, except that in the present embodiment, The first embodiment adds a jet-enhancing structure to the upper cylinder 5 and/or the lower cylinder 6, and can realize a double-cylinder enhanced operation, which can further improve the refrigeration capacity and energy efficiency of the compressor.
  • the upper end of the outer peripheral wall of the disc partition plate 18 is provided with a first boring groove 10 communicating with the compression chamber of the upper cylinder 5, and the annular partition plate 4 is provided with a boring hole, the bottom of the upper cylinder 5 A first communication passage 12 that communicates the first sump 10 and the boring hole is provided, and/or a lower end of the outer peripheral wall of the disk partition 18 is provided with a second crevice 11 that communicates with the compression chamber of the lower cylinder 6.
  • the annular partition 4 is provided with a boring hole, and the top of the lower cylinder 6 is provided with a second communication passage 13 that communicates the second boring groove 11 and the boring hole.
  • the disc spacer 18 is provided with a first entrainment groove 10 and a second entrainment groove 11, the reinforcement opening is a three-way reinforcement opening 14, and the three-way reinforcement opening 14 includes a radial extension The inlet and the first outlet and the second outlet connected to the inlet, wherein the first outlet communicates with the first sulking tank 10 through the first communication passage 12, and the second outlet passes through the second communication passage 13 and the second reinforced tank 11 Connected.
  • the three-way boring hole 14 can connect the external air-enhanced refrigerant to the annular partition plate 4 through the inlet, and then the qi-enhanced refrigerant is divided into two at the fork and one through the first outlet.
  • the first communication passage 12 and the first reinforcement groove 10 enter the compression chamber of the upper cylinder 5, and the other one enters the compression of the lower cylinder 6 via the second outlet, the second communication passage 13 and the second reinforcement groove 11.
  • the air supply to the compressor is completed.
  • the first communication passage 12 and the second communication passage 13 are both arcuate grooves, and the shapes of the first communication passage 12 and the second communication passage 13 can be matched with the shape of the inner cavity of the cylinder in which the cylinder is located, thereby making the air supply.
  • the process of increasing the temperature of the refrigerant is stable and uniform, the effect of increasing the enthalpy is good, and the efficiency of qi and enthalpy is improved.
  • the upper cylinder 5 is provided with a first sliding vane groove 15, and the lower cylinder 6 is provided with a second sliding vane groove 16.
  • the angle between the starting end of the first communicating passage 12 and the first sliding vane 15 is ⁇ 1, the angle between the second communication passage 13 and the second vane groove 16 is ⁇ 2, wherein 30° ⁇ ⁇ 1 ⁇ 80°; 30° ⁇ ⁇ 2 ⁇ 80°.
  • the structure can effectively ensure that the first sulking tank 10 and the first communication passage 12 can be isolated when the pressure in the compressor chamber reaches the reinforced pressure, or the second boring tank 11 and the second communication passage are 13 is isolated to prevent the compression refrigerant from flowing back to the sputum and improve the stability of the qi and sputum.
  • the angle of the first communication passage 12 ranges from 30° ⁇ 1 ⁇ 100°; the angle of the second communication passage 13 ranges from 30° ⁇ 2 ⁇ 100°.
  • the structure can make the first communication passage 12 and the second communication passage 13 have sufficient length to meet the requirements of the injection increase, improve the air supply and increase capacity of the compressor, and enhance the air supply and increase efficiency of the compressor.
  • the low-pressure Ps refrigerant passing through the evaporator 19 flows into the upper cylinder 5 of the compressor and the suction port of the lower cylinder 6, respectively, after the intake of the upper cylinder 5 and the lower cylinder 6 is completed.
  • the roller compresses the mixed refrigerant into a high-pressure refrigerant, and finally discharges the compressor and enters the condenser.
  • the flasher 23 is flashed, the medium-pressure Pm gaseous refrigerant flows into the boosting pipeline, passes through the electromagnetic valve 24 and the check valve 25, and then passes through the three-way boring hole.
  • the booster line inlet of 14 enters the compression chamber of the upper and lower cylinders and mixes with the low pressure Ps refrigerant.
  • the liquid refrigerant in the flasher 23 is throttled by the secondary throttle mechanism 22, enters the evaporator 19, and enters the suction port of the upper and lower cylinders, thereby completing a cycle of the refrigerant.
  • the first creping groove 10 and the second creping groove 11 are respectively opened at the outer and outer ends of the disk partition plate 18 of the crankshaft, and a three-mouth type is opened on the side of the annular partition plate 4.
  • the three-way boring hole 14 is provided with a curved groove with a circular introduction port on the lower end surface of the upper cylinder 5 on the crank disk partition 18, that is, the first communication passage 12, and the crankshaft of the lower cylinder 6
  • the upper end surface of the disc spacer 18 is provided with a section of an arcuate groove having a circular introduction port, that is, a second communication passage 13.
  • the three-port type three-way boring hole 14 of the annular partition 4 can communicate with the arcuate grooves of the upper and lower cylinders with a circular introduction port.
  • the starting point of the arcuate groove with the circular inlet port of the upper cylinder 5 is ⁇ 1 with the cylinder sliding groove
  • the angle of the arc groove is ⁇ 1
  • the arc groove of the lower cylinder 6 with the circular inlet The angle between the starting point and the cylinder sliding groove is ⁇ 2, and the angle of the circular groove is ⁇ 2.
  • the above angle needs to be specifically set according to the actual operating conditions of the compressor.
  • the following cylinder 6 is taken as an example.
  • the suction port of the compressor compression chamber and the lower cylinder is lowered by the roller.
  • the in-cylinder pressure Pd is the low pressure Ps, Pd ⁇ Pm, and the second connecting passage of the second entraining groove 11 and the lower cylinder 6 of the crank disk partition 18 at this time
  • the intermediate pressure refrigerant from the inlet of the enhanced pipeline can be injected into the compression chamber of the lower cylinder 6, thereby realizing the gas supply and the increase in the compressor process.
  • the figure shows the process of the roller passing through the second communication passage 13.
  • the pressure Pd rises, but still Pd ⁇ Pm
  • the medium pressure refrigerant from the inlet of the enhanced pipeline is still injected into the cylinder.
  • the compression chamber reduces the amount of refrigerant injected into the cylinder compression chamber.
  • Pd>Pm the second enthalpy 11 of the crank disk partition 18 is separated from the second communication passage 13 of the lower cylinder 6, and the intermediate pressure refrigerant from the inlet of the reinforced pipeline cannot be injected into the cylinder.
  • the compression chamber is then increased by the cutoff.
  • the roller continuously compresses the mixed refrigerant in the cylinder until the exhaust back pressure is reached, and the cylinder is discharged, and the refrigerant enters the external circulation.
  • the process of increasing the upper cylinder 5 is the same as that of the lower cylinder 6, except that the phases are 180° out of phase.
  • the focus is on the angle ⁇ 1 of the starting position of the arc groove with the circular inlet port of the upper cylinder 5 and the cylinder slide groove, the angle ⁇ 1 of the arc groove, and Curved recess of the lower cylinder 6 with a circular inlet
  • the angle between the starting point of the groove and the cylinder slide groove is ⁇ 2, and the angle ⁇ 2 of the circular groove is set.
  • the upper first communication passage 12 communicates with the injection enhancement
  • the second expansion passage 11 communicates with the second communication passage 13 on the lower cylinder 6 for injection enhancement.
  • the first enthalpy 10 can be separated from the first communication passage 12 on the upper cylinder 5, and the second boring tank 11 and the lower cylinder 6 can The second communication passage 13 is separated to prevent the compressed refrigerant from flowing back to the garter.
  • the cylinder completes a complete cycle of inhalation, enthalpy, compression, and exhaust.
  • the increase of the refrigeration capacity per unit volume is achieved, the energy efficiency is effectively increased, and the problems of the enthalpy gas and the low pressure Ps suction venting existing in the conventional single-stage simmering rotary compressor are overcome.
  • a compressor includes a pump body assembly that is the pump body assembly described above.
  • the compressor is, for example, a two-cylinder compressor, a multi-cylinder compressor, or a multi-stage compressor.
  • the compressor is a rotary compressor.
  • the rotary compressor includes a housing 17, a motor stator, a motor rotor and a pump body assembly.
  • the upper cover assembly of the housing 17 is provided with an exhaust pipe, and the motor stator is fixed in the housing 17.
  • the motor stator is fixed to the inner wall of the casing 17, and the motor rotor is fixed on the crankshaft of the pump body assembly and placed in the inner hole of the motor stator, and the pump body assembly is welded and fixed to the casing 17.
  • the pump body assembly includes an upper end cover 26, an upper bearing, a lower bearing, an upper cylinder 5, a partition plate, a lower cylinder 6, a lower end cover 27 and a crankshaft, and an upper cylinder and a lower cylinder 6 are disposed between the upper bearing and the lower bearing, and the upper cylinder 5 and the lower cylinder 6 are separated by an annular partition 4 in the middle.
  • Upper and lower rollers are respectively mounted in the upper cylinder 5 and the lower cylinder 6, and the upper roller and the lower roller are respectively fitted over the first eccentric portion 2 and the second eccentric portion 3 of the crankshaft.
  • a liquid separator member is disposed outside the casing 17, and the two pipe benders are connected to the suction ports of the upper cylinder 5 and the lower cylinder 6.
  • a lower cover and a mounting base are mounted on the bottom of the housing 17, and an upper cover assembly is mounted on the upper portion to form a closed cavity.
  • the compressor When the compressor is running, the refrigerant is sucked from the liquid separator part, and the refrigerant enters the cylinder to be compressed.
  • the compressed high-pressure refrigerant enters the cavity of the casing 17, and enters the upper part of the motor through the flow hole between the stator and the rotor of the motor and the rotor flow hole. In the cavity, the refrigerant finally exits the compressor from the upper exhaust pipe and enters the air conditioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种曲轴包括中心转轴(1)、第一偏心部(2)、第二偏心部(3)、圆盘隔板(18)和圆环隔板(4),圆盘隔板(18)位于第一偏心部(2)和第二偏心部(3)之间,并与中心转轴(1)一体成型,圆环隔板(4)套设在圆盘隔板(18)外。该曲轴能够在加大曲轴;偏心量的同时避免隔板与滚子之间发生泄漏,提高压缩机的工作性能。还包括一种具有该曲轴的泵组件和压缩机。

Description

曲轴、泵体组件和压缩机 技术领域
本发明涉及气体压缩压缩技术领域,具体而言,涉及一种曲轴、泵体组件和压缩机。
背景技术
双转子压缩机具有冷量大,运转平稳的特点,在空调***中广泛使用。现有的双转子压缩机采用两个气缸轴向叠加起来,中间采用隔板分隔开。曲轴具有两个偏心部,在两个偏心部上分别套有滚子。
为了压缩机的小型化低成本设计,需在相对小的压缩机结构上实现更大的排量。目前增大排量主要通过增大气缸高度、加大气缸直径以及加大曲轴的偏心量来实现。然而加大气缸高度、加大气缸直径在结构上需加大尺寸,难以实现小型化和低成本化,同时曲轴的受力加大,可靠性变差,所以通过加大偏心量来加大压缩机的排量上能满足小型化低成本。
如图1所示,在曲轴偏心量加大后,为了使中间隔板2’能够穿过其中一个偏心部1’,中间隔板2’必须大于偏心部1’的外径,而由于偏心量过大,会导致滚子3’的外径和中间隔板2’的通孔之间存在L处所示的缝隙,冷媒在压缩的过程中会通过L处的缝隙存在窜通,无法实现压缩机腔的密封。
目前有采用将中间隔板一分为二,通过隔板拼接的方式来减小隔板中间的贯通孔的方案,该方案同时还能实现在大偏心量曲轴设计情况下隔板和滚子的密封。但上述的采用隔板分割再拼接形成一个完整隔板的方式,存在加工困难,零件加工和装配精度要求极高,难以大批量生产的问题,同时在拼接处容易存在接缝,造成泄漏,导致密封性能降低,同时两块拼接的隔板高度难以相同,存在一定的高度差,不利于滚子在隔板面上自由运转。
发明内容
本发明实施例中提供一种曲轴、泵体组件和压缩机,能够在加大曲轴偏心量的同时避免隔板与滚子之间发生泄漏,提高压缩机的工作性能。
为实现上述目的,本发明实施例提供一种曲轴,包括中心转轴、第一偏心部、第二偏心部、圆盘隔板和圆环隔板,圆盘隔板位于第一偏心部和第二偏心部之间,并与中心转轴一体成型,圆环隔板套设在圆盘隔板外。
作为优选,圆盘隔板与圆环隔板间隙配合。
作为优选,圆环隔板的内径ΦB与圆盘隔板的外径ΦD之间的关系满足(ΦB-ΦD)>0.01mm。
作为优选,圆盘隔板的厚度为H1,圆环隔板的厚度为H2,H2与H1之间满足(H2-H1)>0.01mm。
根据本发明的另一方面,提供了一种泵体组件,包括曲轴、上气缸和下气缸,曲轴为上述的曲轴,上气缸套设在第一偏心部外,下气缸套设在第二偏心部外。
作为优选,圆盘隔板的外径ΦD与气缸的内径ΦC之间的关系满足(ΦD-ΦC)>2mm。
作为优选,圆盘隔板间隔设置在上气缸和下气缸之间,并与上气缸间隙配合。
作为优选,圆环隔板的内周侧或者圆盘隔板的外周侧设置有环形的通油槽,通油槽通过通油通道与油池连通。
作为优选,圆环隔板的内周侧设置有通油槽,通油通道为沿径向贯穿圆环隔板的通油孔。
作为优选,上气缸、圆环隔板和下气缸之间通过螺栓固定连接。
作为优选,圆盘隔板的外周壁上端设置有与上气缸的压缩腔连通的第一增焓槽,圆环隔板上设置有增焓孔,上气缸的底部设置有将第一增焓槽和增焓孔连通的第一连通通道,和/或圆盘隔板的外周壁下端设置有与下气缸的压缩腔连通的第二增焓槽,圆环隔板上设置有增焓孔,下气缸的顶部设置有将第二增焓槽和增焓孔连通的第二连通通道。
作为优选,圆盘隔板上设置有第一增焓槽和第二增焓槽,增焓孔为三通增焓孔,三通增焓孔包括沿径向延伸的入口和与入口连通的第一出口、第二出口,其中第一出口通过第一连通通道与第一增焓槽连通,第二出口通过第二连通通道与第二增焓槽连通。
作为优选,第一连通通道和第二连通通道均为弧形凹槽。
作为优选,上气缸上设置有第一滑片槽,下气缸上设置有第二滑片槽,第一连通通道的起始端与第一滑片槽之间的夹角为θ1,第二连通通道与第二滑片槽之间的夹角为θ2,其中30°<θ1<80°;30°<θ2<80°。
作为优选,第一连通通道的角度范围为30°<β1<100°;第二连通通道的角度范围为30°<β2<100°。
根据本发明的再一方面,提供了一种压缩机,包括泵体组件,该泵体组件为上述的泵体组件。
作为优选,压缩机为双缸压缩机、多缸压缩机或多级压缩机。
应用本发明的技术方案,曲轴包括中心转轴、第一偏心部、第二偏心部、圆盘隔板和圆环隔板,圆盘隔板位于第一偏心部和第二偏心部之间,并与中心转轴一体成型,圆环隔板套设在圆盘隔板外。该曲轴的隔板包括圆盘隔板和圆环隔板,圆盘隔板与中心转轴一体成型,因此使得隔板中心可以为实体,无需留下安装时穿过第一偏心部或第二偏心部所需的安装孔,避免该安装孔过大而导致隔板与滚子安装孔之间出现配合间隙发生泄漏,由于第一偏心部和第二偏心部对隔板的安装不造成影响,因此使得曲轴的偏心量可以做的很大,能够有效提高 压缩机排量。由于圆盘隔板与中心转轴一体成型,因此无需对隔板进行拼接,也降低了隔板的加工难度,使得隔板的整体性更好,与气缸的配合性较好,提高压缩机的工作性能。
附图说明
图1是现有技术中的泵体组件的剖视结构示意图;
图2是本发明第一实施例的压缩机的剖视结构示意图;
图3是本发明第一实施例的压缩机泵体组件的曲轴的圆环隔板的立体结构图;
图4是本发明第一实施例的压缩机泵体组件的曲轴的立体结构图;
图5是本发明第一实施例的压缩机泵体组件的剖视结构图;
图6是图5的Q处的放大结构示意图;
图7是本发明第二实施例的压缩机的结构图;
图8是本发明第二实施例的压缩机泵体组件的气缸与隔板的配合结构图;
图9是本发明第二实施例的压缩机泵体组件的分解结构图;
图10是本发明第二实施例的压缩机泵体组件的隔板与气缸配合的第一运动结构图;
图11是本发明第二实施例的压缩机泵体组件的隔板与气缸配合的第二运动结构图;以及
图12是本发明第二实施例的压缩机泵体组件的隔板与气缸配合的第三运动结构图。
附图标记说明:1、中心转轴;2、第一偏心部;3、第二偏心部;4、圆环隔板;5、上气缸;6、下气缸;7、通油槽;8、通油孔;9、螺栓;10、第一增焓槽;11、第二增焓槽;12、第一连通通道;13、第二连通通道;14、三通增焓孔;15、第一滑片槽;16、第二滑片槽;17、壳体;18、圆盘隔板;19、蒸发器;20、冷凝器;21、一级节流机构;22、二级节流机构;23、闪蒸器;24、电磁阀;25、单向阀;26、上端盖;27、下端盖。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。
结合参见图3和图4所示,根据本发明的实施例,曲轴包括中心转轴1、第一偏心部2、第二偏心部3、圆盘隔板18和圆环隔板4,圆盘隔板18位于第一偏心部2和第二偏心部3之间,并与中心转轴1一体成型,圆环隔板4套设在圆盘隔板18外。
该曲轴的隔板包括圆盘隔板18和圆环隔板4两个部分,圆盘隔板18与中心转轴1一体成型,因此使得隔板中心可以为实体,无需留下安装时穿过第一偏心部2或第二偏心部3所需的安装孔,避免该安装孔过大而导致隔板与滚子安装孔之间出现配合间隙发生冷媒泄漏, 由于第一偏心部2和第二偏心部3对隔板的安装不会造成影响,因此使得曲轴的偏心量可以做的很大,能够有效提高压缩机排量。由于圆盘隔板18与中心转轴1一体成型,因此无需对隔板进行拼接,也降低了隔板的加工难度,使得隔板的整体性更好,与气缸的配合性较好,提高压缩机的工作性能。
圆环隔板4与圆盘隔板18之间转动配合,使得圆环隔板可以与泵体组件的其他部分固定连接,同时又不会影响圆盘隔板18随中心转轴1的转动,使得隔板整体能够起到很好的安装固定以及分隔效果。
优选地,圆盘隔板18与圆环隔板4间隙配合,可以减小圆盘隔板18与圆环隔板4相对转动过程中所发生的磨损作用,降低圆盘隔板18与圆环隔板4的磨损损耗,延长两者的使用寿命,同时两者之间的间隙也使得润滑油能够更好地进入到两者的相对运动表面上进行润滑冷却,提高圆盘隔板18与圆环隔板4的工作性能。
优选地,圆环隔板4的内径ΦB与圆盘隔板18的外径ΦD之间的关系满足ΦB-ΦD>0.01mm,使得圆环隔板4的内径与圆盘隔板18的外径之间具有足够的间隙,避免两者相互运动过程中发生摩擦损耗。该间隙也应该局限在一定范围之内,避免间隙过大而影响圆盘隔板18与圆环隔板4之间的周向配合效果。
圆盘隔板18的厚度为H1,圆环隔板4的厚度为H2,H2与H1之间满足H2-H1>0.01mm。由于圆环隔板4的厚度比圆盘隔板18的厚度较厚,因此可以通过圆环隔板4与上下气缸之间的配合避免圆盘隔板18与上气缸之间接触,使得圆盘隔板18与上气缸的端面之间能够存在间隙,避免圆盘隔板18随中心转轴1转动的过程中与上气缸之间发生转动摩擦,降低圆盘隔板18和上气缸之间可能发生的磨损,延长圆盘隔板18的使用寿命,同时减小曲轴转动所需的动力,减少额外功率损耗,提高曲轴的转动效率。
结合参见图2、图5和图6所示,根据本发明的泵体组件的第一实施例,泵体组件包括曲轴、上气缸5和下气缸6,曲轴为上述的曲轴,上气缸5套设在第一偏心部2外,下气缸6套设在第二偏心部3外。该泵体组件中,上气缸5和下气缸6与圆盘隔板18相配合,对圆盘隔板18形成轴向方向的限位,同时,圆环隔板4与上气缸5和下气缸6固定连接,对圆盘隔板18形成周向方向上的限位,从而使得曲轴能够通过圆盘隔板18支撑在下气缸6的上端面上,可以稳定安装定位。
优选地,圆盘隔板18的外径ΦD与气缸的内径ΦC之间的关系满足ΦD-ΦC>2mm,使得圆盘隔板18的外径可以大于气缸的内径,此处的气缸内径为上气缸5和下气缸6中内径较大者。由于圆盘隔板18的外径大于气缸的内径,且超出气缸的内径一定厚度,因此使得圆盘隔板18能够具有足够的直径避免与气缸的内径之间发生窜通,防止冷媒从圆盘隔板18与气缸的内腔之间泄露,提高曲轴与气缸之间配合结构的稳定性和可靠性。
圆盘隔板18间隔设置在上气缸5和下气缸6之间,并与上气缸5间隙配合。此种结构下,则需要圆盘隔板18的厚度低于上气缸5的下端面和下气缸6的上端面之间的间距,此时圆盘隔板18的底部通过下气缸6的上端面支撑,使得曲轴具有良好的轴向定位结构。当然,也可 以使圆盘隔板18与上气缸5和下气缸6之间均为间隙配合,此时曲轴的轴向定位主要通过第二偏心部3与下端盖27之间的配合来实现。
优选地,圆环隔板4的内周侧或者圆盘隔板18的外周侧设置有环形的通油槽7,通油槽7通过通油通道与油池连通。在圆盘隔板18转动的过程中,油池里面的油液可以通过通油通道进入到通油槽7内,然后沿着通油槽7分配在圆环隔板4和圆盘隔板18的周向配合面上,对圆环隔板4和圆盘隔板18的转动配合进行润滑降温。此处的通油通道设置在圆环隔板4上,由于圆环隔板4与上气缸5和下气缸6固定连接,因此油池中的油液可以稳定地经通油通道输送到通油槽7处,保证了润滑油的稳定连续供应。
在本实施例中,圆环隔板4的内周侧设置有通油槽7,通油通道为沿径向贯穿圆环隔板4的通油孔8。由于通油孔8沿径向贯穿圆环隔板4,因此使得位于泵体组件外的油液可以方便地从通油孔8处进入到圆环隔板4的内周侧通油槽7内。为了便于油液进入,通油孔8可以沿油液流动方向斜向下倾斜。
优选地,上气缸5、圆环隔板4和下气缸6之间通过螺栓9固定连接,可以提高上气缸5、圆环隔板4和下气缸6之间的连接结构的稳定性,同时能够更加有效保证三者直接的连接密封性,提高泵体组件的工作性能。
根据本实施例的泵体组件,曲轴在第一偏心部2和第二偏心部3之间具有圆盘隔板18,圆盘隔板18和曲轴的中心转轴1为一个整体,同中心转轴1可以一起旋转。在上气缸5和下气缸6之间安装有圆环隔板4,的曲轴的圆盘隔板18放置于上气缸5和下气缸6之间。曲轴的圆盘隔板18的外圆置于圆环隔板4内圆,圆盘隔板18的外圆和圆环隔板4的内圆为间隙配合。其中圆盘隔板18的外径为ΦD,小于圆环隔板4的内圆直径ΦB,并且大于上气缸5和下气缸6的内径ΦC。尺寸关系为ΦB-ΦD>0.01mm,ΦD-ΦC>2mm。根据以上尺寸关系,曲轴的圆盘隔板18的下端面可以支撑在下气缸6的上端面上。此外圆盘隔板18的厚度为H1,圆环隔板4的厚度为H2,H2-H1>0.01mm。也就是说,曲轴的圆盘隔板18放置于上气缸5和下气缸6之间,在轴向方向上被约束在上下气缸的两个端面中间,在周向上被约束在圆环隔板4的内圆之中。
另外上滚子和下滚子分别套于曲轴的第一偏心部2和第二偏心部3上,上滚子和下滚子被曲轴的圆盘隔板18分隔开。上滚子随曲轴第一偏心部2一起旋转,通过曲轴的圆盘隔板18的上端面、上轴承下端面以及上气缸5的内圆密封,形成一个上压缩腔,上滑片与上滚子外圆相贴合,将上压缩腔分为高压腔和低压腔,可以实现在上气缸5内进行冷媒的压缩。同理,下滚子随曲轴第二偏心部3一起旋转,通过曲轴的圆盘隔板18的下端面、下轴承的上端面以及下气缸6的内圆密封,形成一个上压缩腔,上滑片与上滚子的外圆相贴合,将下压缩腔分为高压腔和低压腔,可以实现在下气缸6内进行冷媒的压缩。
由此,通过在曲轴的第一偏心部2和第二偏心部3之间形成与中心转轴1一体化结构的圆盘隔板18,将圆盘隔板18的下端面支撑在下气缸6的上端面实现了轴向支撑,同时还通过 圆盘隔板18将上气缸5和下气缸6的容积腔分隔开,实现了两个压缩腔,并且保证了隔板与气缸之间不会发生冷媒泄漏。
另外为了保证曲轴的圆盘隔板18外圆与圆环隔板4的内圆,以及上下气缸端面之间的润滑,在圆环隔板4的内圆处设置有圆环形的通油槽7,圆环形的通油槽7通过通油孔8与泵体外部的油池相连通,这样既保证了曲轴的圆盘隔板18旋转时轴向和周向的润滑,也保证了配合面之间的密封,减小上下气缸之间的窜气泄漏。
通过上述的本发明结构,在双缸压缩机中,通过在曲轴的第一偏心部2和第二偏心部3之间形成与中心转轴1一体化的圆盘隔板18,可以使曲轴得到很大的扩大,提高了有效压缩机容积,并且解决了常规压缩机偏心量加大后滚子外圆和隔板内圆之间的泄漏问题,实现压缩机的小型化和低成本。
结合参见图7至图12所示,根据本发明的泵体组件的第二实施例,其与泵体组件的第一实施例的基本结构相同,不同之处在于,在本实施例中,在第一实施例的基础上增加了对上气缸5和/或下气缸6的喷气增焓结构,可以实现双缸增焓运行,能够进一步提升压缩机的制冷能力以及能效。
在本实施例中,圆盘隔板18的外周壁上端设置有与上气缸5的压缩腔连通的第一增焓槽10,圆环隔板4上设置有增焓孔,上气缸5的底部设置有将第一增焓槽10和增焓孔连通的第一连通通道12,和/或圆盘隔板18的外周壁下端设置有与下气缸6的压缩腔连通的第二增焓槽11,圆环隔板4上设置有增焓孔,下气缸6的顶部设置有将第二增焓槽11和增焓孔连通的第二连通通道13。
在本实施例中,圆盘隔板18上设置有第一增焓槽10和第二增焓槽11,增焓孔为三通增焓孔14,三通增焓孔14包括沿径向延伸的入口和与入口连通的第一出口、第二出口,其中第一出口通过第一连通通道12与第一增焓槽10连通,第二出口通过第二连通通道13与第二增焓槽11连通。此处的三通增焓孔14可以通过入口将外界的补气增焓冷媒接入到圆环隔板4上,然后补气增焓冷媒在分叉口分成两股,一股经第一出口、第一连通通道12和第一增焓槽10进入到上气缸5的压缩腔内,另一股经第二出口、第二连通通道13和第二增焓槽11进入到下气缸6的压缩腔内,完成对压缩机的补气增焓。通过对压缩机进行补气增焓,能够有效提高压缩机的制冷能力及工作能效。
优选地,第一连通通道12和第二连通通道13均为弧形凹槽,可以使第一连通通道12和第二连通通道13的形状与其所在气缸的内腔形状相匹配,从而使补气增焓冷媒的增焓过程稳定均匀,增焓效果好,提高补气增焓的效率。
优选地,上气缸5上设置有第一滑片槽15,下气缸6上设置有第二滑片槽16,第一连通通道12的起始端与第一滑片槽15之间的夹角为θ1,第二连通通道13与第二滑片槽16之间的夹角为θ2,其中30°<θ1<80°;30°<θ2<80°。此种结构可以有效保证在压缩机腔内的压力达到增焓压力时,能够将第一增焓槽10和第一连通通道12隔离开,或者是将第二增焓槽11和第二连通通道13隔离开,防止压缩冷媒往增焓口逆流,提高补气增焓的稳定性。
优选地,第一连通通道12的角度范围为30°<β1<100°;第二连通通道13的角度范围为30°<β2<100°。此结构可以使第一连通通道12和第二连通通道13具有足够的长度可以满足喷射增焓要求,提高压缩机的补气增焓能力,增强压缩机的补气增焓效果。
当然,也可以仅仅只在上气缸5处或者是下气缸6处进行补气增焓,从而降低加工工艺难度。
在本实施例的泵体组件中,经过蒸发器19后的低压Ps冷媒分别流入到压缩机的上气缸5以及下气缸6的吸气口,在上气缸5和下气缸6吸气结束后,准备开始压缩冷媒时,与经三通增焓孔14的增焓管路流入口的中压Pm冷媒进行混合,然后滚子将混合后的冷媒压缩成高压冷媒,最后排出压缩机后进入冷凝器20,此后经过一级节流机构21节流后进入闪蒸器23中经过闪发,中压Pm气态冷媒流入增焓管路,通过电磁阀24和单向阀25,再经过三通增焓孔14的增焓管路流入口进入上下气缸的压缩腔与低压Ps冷媒进行混合。闪蒸器23中的液态冷媒则经过二级节流机构22节流后进入蒸发器19,再进入上下气缸的吸气口,至此,完成了冷媒的一个循环。为了实现上述的喷焓功能,下面对实现该功能的零件结构进行描述。
在本实施例中,在曲轴的圆盘隔板18的上下端面靠外圆处分别开设有第一增焓槽10和第二增焓槽11,在圆环隔板4的侧面开设有三岔口型的三通增焓孔14,在上气缸5的靠曲轴圆盘隔板18的下端面设置有一段带圆形导入口的弧形凹槽,即第一连通通道12,在下气缸6的靠曲轴圆盘隔板18的上端面设置有一段带圆形导入口的弧形凹槽,即第二连通通道13。圆环隔板4和上、下气缸层叠装配后,圆环隔板4的三岔口型的三通增焓孔14可以同上、下气缸的带圆形导入口的弧形凹槽相连通。上气缸5的带圆形导入口的弧形凹槽起点位置同气缸滑片槽的夹角为θ1,圆弧槽的夹角为β1,下气缸6的带圆形导入口的弧形凹槽起点位置同气缸滑片槽的夹角为θ2,圆弧槽的夹角为β2,上述的角度需根据压缩机实际运行的工况进行具体设置。曲轴滚子旋转运动时,曲轴圆盘隔板18的上下端面靠外圆处第一增焓槽10和第二增焓槽11与上、下气缸的带圆形导入口的弧形凹槽相连通的位置关系如图8所示。
参见图9至图11所示,以下气缸6为例,随着曲轴的旋转,滚子在滚过下气缸6的吸气口后,压缩机压缩腔与下气缸的吸气口被下滚子分隔开,此时压缩机腔内刚开始压缩,缸内压力Pd为低压Ps,Pd<Pm,此时曲轴圆盘隔板18的第二增焓槽11与下气缸6的第二连通通道13开始相连通,来自增焓管路流入口的中压冷媒就可以喷射进入下气缸6的压缩腔,实现了压缩机过程中的补气增焓。图为滚子经过第二连通通道13过程中,此时气缸中的冷媒经过一定压缩后压力Pd有所上升,但仍然Pd<Pm,来自增焓管路流入口的中压冷媒仍然喷射进入气缸的压缩腔,喷射进入气缸压缩腔的冷媒量减少。当Pd>Pm时,曲轴圆盘隔板18的第二增焓槽11与下气缸6的第二连通通道13分离开后,来自增焓管路流入口的中压冷媒就不能在喷射进入气缸的压缩腔,此后增焓截止。此时滚子将气缸内的混合冷媒不断进行压缩,直到达到排气背压后,排出气缸,冷媒再进入外部循环。上气缸5的增焓过程和下气缸6一样,只是相位相差180°。
为实现此压缩机运行过程中的喷气增焓,重点在于上气缸5的带圆形导入口的弧形凹槽起点位置同气缸滑片槽的夹角θ1,圆弧槽的夹角β1,以及下气缸6的带圆形导入口的弧形凹 槽起点位置同气缸滑片槽的夹角θ2,圆弧槽的夹角β2的设定。同时还需配合第一增焓槽10和第二增焓槽11的位置,要保证气缸压缩腔和气缸的吸气口被滚子分隔开后,第一增焓槽10能和上气缸5上的第一连通通道12连通进行喷射增焓,第二增焓槽11能和下气缸6上的第二连通通道13连通进行喷射增焓。同时在保证压缩机腔内的压力达到增焓压力时,要使第一增焓槽10能和上气缸5上的第一连通通道12分离,第二增焓槽11能和下气缸6上的第二连通通道13分离,防止压缩冷媒往增焓口逆流。
由此,气缸完成了一个完整的吸气、增焓、压缩、排气循环。通过本实施例的喷焓结构,实现了单位容积制冷量的增加,能效得到有效升高,并且克服了传统单级增焓旋转压缩机存在的增焓气体和低压Ps吸气窜通的问题。
结合参见图2所示,根据本发明的实施例,压缩机包括泵体组件,该泵体组件为上述的泵体组件。
压缩机例如为双缸压缩机、多缸压缩机或多级压缩机等。
该压缩机为旋转时压缩机,旋转式压缩机包括壳体17、电机定子、电机转子和泵体组件,壳体17的上盖组件上设置有排气管,电机定子固定于壳体17内,电机定子固定于壳体17内壁,电机转子固定于泵体组件的曲轴上,并置于电机定子内孔中,泵体组件焊接固定于壳体17上。泵体组件包括上端盖26、上轴承、下轴承、上气缸5、隔板、下气缸6、下端盖27和曲轴,在上轴承与下轴承之间设置有上气缸和下气缸6,上气缸5和下气缸6中间具有圆环隔板4分隔开。上气缸5和下气缸6内分别安装有上滚子和下滚子,上滚子和下滚子分别套于曲轴的第一偏心部2和第二偏心部3。在壳体17外部设置有分液器部件,分液器部件两弯管与上气缸5和下气缸6的吸气口相连。在壳体17底部安装有下盖和安装底板,上部安装有上盖组件,这样形成一个密闭腔体。压缩机运行时,从分液器部件吸入冷媒,冷媒进入气缸内进行压缩,压缩后的高压冷媒进入壳体17的腔内,并通过电机定子和电机转子间流通孔及转子流通孔进入电机上部空腔,冷媒最终从上盖排气管排出压缩机,进入空调***。
当然,以上是本发明的优选实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明基本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (17)

  1. 一种曲轴,其特征在于,包括中心转轴(1)、第一偏心部(2)、第二偏心部(3)、圆盘隔板(18)和圆环隔板(4),所述圆盘隔板(18)位于所述第一偏心部(2)和所述第二偏心部(3)之间,并与所述中心转轴(1)一体成型,所述圆环隔板(4)套设在所述圆盘隔板(18)外。
  2. 根据权利要求1所述的曲轴,其特征在于,所述圆盘隔板(18)与所述圆环隔板(4)间隙配合。
  3. 根据权利要求2所述的曲轴,其特征在于,所述圆环隔板(4)的内径ΦB与所述圆盘隔板(18)的外径ΦD之间的关系满足(ΦB-ΦD)>0.01mm。
  4. 根据权利要求2所述的曲轴,其特征在于,所述圆盘隔板(18)的厚度为H1,所述圆环隔板(4)的厚度为H2,H2与H1之间满足(H2-H1)>0.01mm。
  5. 一种泵体组件,其特征在于,包括曲轴、上气缸(5)和下气缸(6),所述曲轴为权利要求1至4中任一项所述的曲轴,所述上气缸(5)套设在所述第一偏心部(2)外,所述下气缸(6)套设在所述第二偏心部(3)外。
  6. 根据权利要求5所述的泵体组件,其特征在于,所述圆盘隔板(18)的外径ΦD与气缸的内径ΦC之间的关系满足(ΦD-ΦC)>2mm。
  7. 根据权利要求5所述的泵体组件,其特征在于,所述圆盘隔板(18)间隔设置在所述上气缸(5)和所述下气缸(6)之间,并与所述上气缸(5)间隙配合。
  8. 根据权利要求5所述的泵体组件,其特征在于,所述圆环隔板(4)的内周侧或者所述圆盘隔板(18)的外周侧设置有环形的通油槽(7),所述通油槽(7)通过通油通道与油池连通。
  9. 根据权利要求8所述的泵体组件,其特征在于,所述圆环隔板(4)的内周侧设置有所述通油槽(7),所述通油通道为沿径向贯穿所述圆环隔板(4)的通油孔(8)。
  10. 根据权利要求5所述的泵体组件,其特征在于,所述上气缸(5)、所述圆环隔板(4)和所述下气缸(6)之间通过螺栓(9)固定连接。
  11. 根据权利要求5至10中任一项所述的泵体组件,其特征在于,所述圆盘隔板(18)的外周壁上端设置有与所述上气缸(5)的压缩腔连通的第一增焓槽(10),所述圆环隔板(4)上设置有增焓孔,所述上气缸(5)的底部设置有将所述第一增焓槽(10)和所述增焓孔连通的第一连通通道(12),和/或所述圆盘隔板(18)的外周壁下端设置有与所述下气缸(6)的压缩腔连通的第二增焓槽(11),所述圆环隔板(4)上设置有增焓孔,所述下气缸(6)的顶部设置有将所述第二增焓槽(11)和所述增焓孔连通的第二连通通道(13)。
  12. 根据权利要求11所述的泵体组件,其特征在于,所述圆盘隔板(18)上设置有所述第一增焓槽(10)和所述第二增焓槽(11),所述增焓孔为三通增焓孔(14),所述三通增焓孔(14)包括沿径向延伸的入口和与所述入口连通的第一出口、第二出口,其中所述第一出 口通过所述第一连通通道(12)与所述第一增焓槽(10)连通,所述第二出口通过所述第二连通通道(13)与所述第二增焓槽(11)连通。
  13. 根据权利要求12所述的泵体组件,其特征在于,所述第一连通通道(12)和所述第二连通通道(13)均为弧形凹槽。
  14. 根据权利要求13所述的泵体组件,其特征在于,所述上气缸(5)上设置有第一滑片槽(15),所述下气缸(6)上设置有第二滑片槽(16),所述第一连通通道(12)的起始端与所述第一滑片槽(15)之间的夹角为θ1,所述第二连通通道(13)与所述第二滑片槽(16)之间的夹角为θ2,其中30°<θ1<80°;30°<θ2<80°。
  15. 根据权利要求13所述的泵体组件,其特征在于,所述第一连通通道(12)的角度范围为30°<β1<100°;所述第二连通通道(13)的角度范围为30°<β2<100°。
  16. 一种压缩机,包括泵体组件,其特征在于,所述泵体组件为权利要求5至15中任一项所述的泵体组件。
  17. 根据权利要求16所述的压缩机,其特征在于,所述压缩机为双缸压缩机、多缸压缩机或多级压缩机。
    -
PCT/CN2017/100147 2016-09-18 2017-09-01 曲轴、泵体组件和压缩机 WO2018049992A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197005191A KR102253538B1 (ko) 2016-09-18 2017-09-01 크랭크 샤프트, 펌프 몸체 구성 요소, 및 압축기
EP17850194.6A EP3486489B1 (en) 2016-09-18 2017-09-01 Pump body component with crank shaft and compressor
JP2019505162A JP6714765B2 (ja) 2016-09-18 2017-09-01 ポンプ本体組立体及びコンプレッサ
US16/280,898 US11280337B2 (en) 2016-09-18 2019-02-20 Pump body assembly and compressor having crank shaft with eccentric components, disc partition plate, and annular partition plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610829958.0 2016-09-18
CN201610829958.0A CN106246551B (zh) 2016-09-18 2016-09-18 曲轴、泵体组件和压缩机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/280,898 Continuation US11280337B2 (en) 2016-09-18 2019-02-20 Pump body assembly and compressor having crank shaft with eccentric components, disc partition plate, and annular partition plate

Publications (1)

Publication Number Publication Date
WO2018049992A1 true WO2018049992A1 (zh) 2018-03-22

Family

ID=57600270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100147 WO2018049992A1 (zh) 2016-09-18 2017-09-01 曲轴、泵体组件和压缩机

Country Status (6)

Country Link
US (1) US11280337B2 (zh)
EP (1) EP3486489B1 (zh)
JP (1) JP6714765B2 (zh)
KR (1) KR102253538B1 (zh)
CN (1) CN106246551B (zh)
WO (1) WO2018049992A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246551B (zh) 2016-09-18 2018-04-13 珠海格力节能环保制冷技术研究中心有限公司 曲轴、泵体组件和压缩机
CN108194359B (zh) * 2018-01-08 2024-03-29 珠海凌达压缩机有限公司 泵体结构及压缩机
CN112502977A (zh) * 2020-11-18 2021-03-16 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、隔板调心方法、压缩机和空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024640A (zh) * 2011-10-25 2014-09-03 三菱电机株式会社 多气缸旋转式压缩机及其压缩室的隔板的接合方法
CN104179685A (zh) * 2013-05-20 2014-12-03 珠海格力节能环保制冷技术研究中心有限公司 滚动转子式压缩机及其运行控制方法
JP2015113744A (ja) * 2013-12-10 2015-06-22 三菱重工業株式会社 冷媒圧縮装置、冷媒圧縮装置の運転方法
CN204877956U (zh) * 2015-08-04 2015-12-16 广东美芝制冷设备有限公司 多缸旋转式压缩机
CN106246551A (zh) * 2016-09-18 2016-12-21 珠海格力节能环保制冷技术研究中心有限公司 曲轴、泵体组件和压缩机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547471U (ja) * 1991-11-21 1993-06-25 ダイキン工業株式会社 多気筒ロータリー圧縮機
JP4862925B2 (ja) * 2009-07-31 2012-01-25 株式会社富士通ゼネラル ロータリ圧縮機
JP5466027B2 (ja) * 2010-02-03 2014-04-09 三菱電機株式会社 2シリンダロータリ圧縮機
KR101870179B1 (ko) * 2012-01-04 2018-06-22 엘지전자 주식회사 두 개의 편심부를 갖는 로터리 압축기
JP6076643B2 (ja) * 2012-07-31 2017-02-08 三菱重工業株式会社 ロータリ流体機械及びその組立方法
CN203161538U (zh) * 2012-10-31 2013-08-28 珠海格力电器股份有限公司 一种压缩机的止推结构
CN103147987B (zh) * 2013-01-29 2015-10-14 珠海格力电器股份有限公司 一种双缸旋转压缩机及其偏心组装方法
JP6045468B2 (ja) * 2013-09-27 2016-12-14 三菱重工業株式会社 ロータリ圧縮機
JP2015068262A (ja) * 2013-09-30 2015-04-13 パナソニックIpマネジメント株式会社 ロータリコンプレッサ
JP6233145B2 (ja) * 2014-03-31 2017-11-22 株式会社富士通ゼネラル ロータリ圧縮機
CN206190529U (zh) * 2016-09-18 2017-05-24 珠海格力节能环保制冷技术研究中心有限公司 曲轴、泵体组件和压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024640A (zh) * 2011-10-25 2014-09-03 三菱电机株式会社 多气缸旋转式压缩机及其压缩室的隔板的接合方法
CN104179685A (zh) * 2013-05-20 2014-12-03 珠海格力节能环保制冷技术研究中心有限公司 滚动转子式压缩机及其运行控制方法
JP2015113744A (ja) * 2013-12-10 2015-06-22 三菱重工業株式会社 冷媒圧縮装置、冷媒圧縮装置の運転方法
CN204877956U (zh) * 2015-08-04 2015-12-16 广东美芝制冷设备有限公司 多缸旋转式压缩机
CN106246551A (zh) * 2016-09-18 2016-12-21 珠海格力节能环保制冷技术研究中心有限公司 曲轴、泵体组件和压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486489A4 *

Also Published As

Publication number Publication date
EP3486489B1 (en) 2021-08-18
JP2019528394A (ja) 2019-10-10
CN106246551A (zh) 2016-12-21
US11280337B2 (en) 2022-03-22
JP6714765B2 (ja) 2020-06-24
EP3486489A1 (en) 2019-05-22
KR102253538B1 (ko) 2021-05-17
EP3486489A4 (en) 2020-03-04
CN106246551B (zh) 2018-04-13
KR20190029726A (ko) 2019-03-20
US20190249668A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2018049992A1 (zh) 曲轴、泵体组件和压缩机
KR19990077967A (ko) 용적형유체기계
CN113446219B (zh) 旋转式压缩机
JP3924817B2 (ja) 容積形流体機械
US5567137A (en) Scroll compressor with shaft seal lubrication
KR100192066B1 (ko) 용적형 유체기계
CN111836965B (zh) 旋转压缩机以及制冷循环装置
WO2023097898A1 (zh) 泵体组件及增焓转子压缩机
CN115126696B (zh) 压缩机泵体、压缩机及温度调节***
EP3557066B1 (en) Rotary compressor and refrigeration cycle device
JP3924834B2 (ja) 容積型流体機械
CN206206159U (zh) 旋转式压缩机和具有其的冷冻循环装置
US11703055B2 (en) Rotary compressor including a bearing containing an asymmetrical pocket to improve compressor efficiency
CN206190529U (zh) 曲轴、泵体组件和压缩机
CN105179241A (zh) 卧式全封闭椭圆转子回转压缩机
KR20210010808A (ko) 스크롤 압축기
CN113775522B (zh) 反切圆弧空调压缩机及空调
CN219281960U (zh) 螺杆压缩机以及具有其的制冷***
CN115126697B (zh) 压缩机泵体、压缩机及温度调节***
CN108331733A (zh) 一种开启式中间补气双缸活塞制冷压缩机
CN217898186U (zh) 压缩机泵体、压缩机及温度调节***
WO2023098102A1 (zh) 压缩机转子、压缩机泵体、压缩机及温度调节***
CN216842199U (zh) 涡旋压缩机轴系平衡结构、涡旋压缩机、空调器
WO2022124271A1 (ja) ロータリ圧縮機
KR200382914Y1 (ko) 복식 로터리 압축기의 어큐뮬레이터 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197005191

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017850194

Country of ref document: EP

Effective date: 20190215

NENP Non-entry into the national phase

Ref country code: DE