WO2018049641A1 - 一种提高抗单粒子烧毁能力的槽栅mos器件 - Google Patents

一种提高抗单粒子烧毁能力的槽栅mos器件 Download PDF

Info

Publication number
WO2018049641A1
WO2018049641A1 PCT/CN2016/099165 CN2016099165W WO2018049641A1 WO 2018049641 A1 WO2018049641 A1 WO 2018049641A1 CN 2016099165 W CN2016099165 W CN 2016099165W WO 2018049641 A1 WO2018049641 A1 WO 2018049641A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
conductive type
region
source
dielectric layer
Prior art date
Application number
PCT/CN2016/099165
Other languages
English (en)
French (fr)
Inventor
任敏
林育赐
谢驰
苏志恒
李泽宏
张金平
高巍
张波
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US15/774,291 priority Critical patent/US10546951B2/en
Priority to PCT/CN2016/099165 priority patent/WO2018049641A1/zh
Priority to CN201680057865.9A priority patent/CN108352403B/zh
Publication of WO2018049641A1 publication Critical patent/WO2018049641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode

Definitions

  • the invention belongs to the technical field of semiconductors and relates to a trench gate MOS device for improving the resistance to single-particle burning.
  • VDMOS has become one of the irreplaceable important devices in the field of power electronics.
  • the structure device is usually formed by secondary diffusion or ion implantation technology, is a multi-cell device, is easy to integrate, has high power density, and is multi-sub-conductor with good frequency characteristics.
  • the switching rate of the device is limited.
  • JFET resistors limit the internal saturation current density of the device due to the presence of junction field effect transistors (JFETs) inside the VDMOS device.
  • JFETs junction field effect transistors
  • trench gate MOS device structures over VDMOS are greater channel density, lower power consumption, and smaller cell size.
  • the trench gate MOS has no JFET resistance, so that the cell density of the trench gate MOS can be rapidly increased as the process feature size is reduced.
  • the irradiation effect of semiconductor devices is a complicated problem because different types of irradiation have different effects on semiconductor devices.
  • protons, electrons, neutrons, and gamma rays The most important factors that have an important impact on microelectronic devices are gamma total dose radiation, gamma dose rate radiation, neutron radiation, and single particle effects.
  • the single-particle effect of the trench gate MOS is mainly single-particle burnout (SEB).
  • SEB single-particle burnout
  • the emitter and base of the parasitic transistor are short-circuited by the source metal, thereby having no effect on the external characteristics of the device.
  • the incident particles generate a large number of electron-hole pairs in the trench gate MOS device along the incident track, and a transient current is formed under the dual action of the drift field and the diffusion.
  • the drain When turned off, the drain adds a positive voltage, the source is grounded, and the hole current flows to the source via the Pbody region, causing a voltage drop across the parasitic resistance of the base region.
  • the voltage drop increases to a certain value, the parasitic transistor is turned on.
  • the drain-source voltage of the MOS transistor is greater than the breakdown voltage, the current flowing through the transistor can be further fed back, so that the current density in the depletion region gradually rises, causing a second breakdown between the drain and the source. If the junction temperature exceeds the allowable value, Causes the burning of the source-drain junction.
  • reducing the resistance under the N+ source region of the trench gate MOS device that is, increasing the concentration of the P body region is an effective method for improving the single-particle burn-down of the device.
  • concentration of the Pbody region should not be too large, which has no obvious effect on reducing the resistance under the N+ source region of the VDMOS device, so the resistance of the conventional structure to single-particle burning is poor.
  • the technical solution of the present invention is: a trench gate MOS device for improving the resistance to single-particle burning, wherein the cell structure includes a drain metal electrode 1 and a first conductive type semiconductor substrate 2 which are stacked in this order from bottom to top.
  • the upper surface is connected to the source metal electrode 10; the second conductive type semiconductor body region 6 is located directly under the first conductive type semiconductor source region 7 and the second conductive type semiconductor body contact region 8, and the second conductive type semiconductor body region
  • the upper surface of 6 is connected to the lower surface of the first conductive type semiconductor source region 7 and the second conductive type
  • the lateral width, the lateral width of the portion of the second conductivity type current guiding region 13 beyond the lower surface of the gate dielectric layer 5 is also greater than the lateral width of the first conductivity type semiconductor source region 7, while the second conductivity type current guiding region 13 is beyond the gate dielectric layer
  • a portion of the lower surface 5 extends in a direction close to the second conductive type semiconductor body region 6; the second conductive type semiconductor pillar 11 contains a recombination center to reduce carrier lifetime.
  • the first conductive type semiconductor epitaxial layer 3 further has a plurality of current guiding regions 14 located under the trench gates, and the side surfaces of the current guiding regions 14 and the second conductive type semiconductor pillars 11 connection.
  • the beneficial effects of the present invention are that the present invention greatly improves the single-particle burning resistance of the trench gate MOS with respect to the conventional structure.
  • Embodiment 1 is a schematic cross-sectional structural view of a trench gate MOS for improving single-particle burning resistance provided by Embodiment 1;
  • FIG. 2 is a diagram showing electron and hole flow directions of a trench gate MOS and a conventional trench gate MOS of the present invention when a single particle is incident at a position; (a) is a structure of the present invention, and (b) is a conventional structure;
  • FIG. 3 is a diagram showing electron and hole flow directions of a trench gate MOS and a conventional trench gate MOS of the present invention when a single particle is incident at a position b; (a) is a structure of the present invention, and (b) is a conventional structure;
  • FIG. 4 is a diagram showing electron and hole flow directions of a trench gate MOS of the present invention when a single particle is incident at a position c;
  • Figure 5 is a diagram showing the flow of electrons and holes when a single particle is incident at a position d of the trench gate MOS of the present invention
  • FIG. 6 is a schematic cross-sectional structural view of a trench gate MOS for improving single-particle burning resistance provided by Embodiment 2;
  • FIG. 7 is a schematic cross-sectional structural view of a trench gate MOS for improving single-particle burn-in capability according to Embodiment 3;
  • FIG. 8 is a schematic cross-sectional structural view of a trench gate MOS for improving single-particle burn-in resistance according to Embodiment 4.
  • a trench gate MOS device of the present example which improves the ability to resist single-particle burnout has a cell structure including a drain metal electrode 1 and a first conductive type semiconductor substrate 2 which are stacked in this order from bottom to top.
  • first conductive type semiconductor epitaxial layer 3 and a source metal electrode 10 an upper layer of the first conductive type semiconductor epitaxial layer 3 has a second conductive type semiconductor body region 6, a first conductive type semiconductor source region 7, and a second conductive type a semiconductor body contact region 8 and a trench gate; the second conductive type semiconductor body contact region 8 is located between the first conductive type semiconductor source region 7, and the first conductive type semiconductor source region 7 and the second conductive type semiconductor body contact region The upper surface of 8 is connected to the source metal electrode 10; the second conductive type semiconductor body region 6 is located directly under the first conductive type semiconductor source region 7 and the second conductive type semiconductor body contact region 8, and the second conductive type semiconductor The upper surface of the body region 6 is connected to the lower surface of the first conductive type semiconductor source region 7 and the second conductive type semiconductor body contact region 8; the trench gate is located in the second conductive type semiconductor body region 6 a side surface of the first conductivity type semiconductor source region 7, the trench gate is composed of a gate dielectric layer 5 and a gate
  • the electrons are received by the drain, and only a small portion of the holes pass through the P+ body region to reach the source, and most of the holes move to the low-resistance P pillar 11 under the action of the hole current guiding region 13. Since the low-resistance P-pillar 11 has the metal electrode 12 connected to the source electrode 10, and the low-resistance P-pillar 11 has a low carrier lifetime, the hole is quickly received in the P-pillar 11; There is no n-type structure in 11, so there is no parasitic transistor, which effectively avoids the opening of the parasitic transistor.
  • the electrons are received by the drain, and almost all of the holes move to the low-resistance P pillar 11 under the action of the hole current guiding region 13, since the low-resistance P pillar 11 has the source electrode 10 connected thereto.
  • the metal electrode 12, and the low-resistance P-pillar 11 has a low carrier lifetime, so that holes are quickly received in the P-pillar 11; since there is no n-type structure in the P-pillar 11, there is no parasitic transistor. Thereby effectively opening the parasitic transistor.
  • the structure of the present embodiment is such that, on the basis of Embodiment 1, one or more second conductive type current guiding regions 14 are added on the side of the low-resistance second conductive type semiconductor pillar 11, which can be further improved. Resistance to single particle burning.
  • the structure of this example is such that, on the basis of Embodiment 1, the second conductive type semiconductor is replaced with the highly doped second conductive type semiconductor region 15 and the second conductive type semiconductor region 16 containing a large number of recombination centers.
  • the structure of this example is based on the first embodiment, replacing the second with the highly doped second conductive type semiconductor region 15 and the second conductive type semiconductor region 17 having a large number of recombination centers therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种应用于半导体领域的提高抗单粒子烧毁能力的槽栅MOS器件,该器件在外延层(3)中设置与源极(10)相连的第二导电类型半导体柱(11)和第二导电类型的电流引导区(13),藉此改变单粒子效应诱发的电子空穴对径迹,避免发生寄生晶体管开启造成的单粒子烧毁现象,提高槽栅MOS器件的抗单粒子烧毁能力。

Description

一种提高抗单粒子烧毁能力的槽栅MOS器件 技术领域
本发明属于半导体技术领域,涉及一种提高抗单粒子烧毁能力的槽栅MOS器件。
背景技术
随着电力电子技术向高频大功率应用领域的快速发展,VDMOS成为电力电子领域中的不可替代的重要器件之一。该结构器件通常采用二次扩散或离子注入技术形成,是多元胞器件,易于集成,功率密度大,且多子导电,频率特性好。但由于功率VDMOS中存在较大的栅源电容,限制了器件的开关速率。同时,由于VDMOS器件内部存在结型场效应晶体管(JFET),JFET电阻限制了器件内部饱和电流密度。在低压低功耗MOS器件领域,槽栅MOS器件得到迅速发展。槽栅MOS器件结构与VDMOS相比的优点是沟道密度更大,功耗更低,元胞的尺寸可以做的更小。而且,槽栅MOS没有JFET电阻,使得槽栅MOS的单元密度可以随着工艺特征尺寸的降低而迅速提高。
半导体器件的辐照效应是一个复杂的问题,因为不同类型的辐照,对半导体器件的影响是不同的。主要有四种类型的辐照能够对半导体器件产生辐照效应,它们分别是质子、电子、中子和γ射线。对微电子器件产生重要影响且研究最多的因素主要有γ总剂量辐射、γ剂量率辐射、中子辐射及单粒子效应。
槽栅MOS的单粒子效应主要为单粒子烧毁(SEB)。槽栅MOS的N+源、Pbody区和轻掺杂的N-漂移区之间,存在着一个寄生晶体管结构,它们分别构成寄生晶体管的发射区、基区和集电区。一般情况下,寄生晶体管的发射极和基极通过源极金属实现短路,从而对器件的外部特性不产生影响。在辐照环境下,入射粒子沿着入射径迹在槽栅MOS器件内产生大量电子空穴对,在漂移场和扩散双重作用下,形成瞬发电流。关断时,漏极加正电压,源极接地,空穴电流经由Pbody区流向源极,在基区的寄生电阻上产生压降。当压降增大到一定值时,寄生晶体管导通。当MOS晶体管的漏源电压大于击穿电压时,流过晶体管的电流可以进一步反馈,使得耗尽区的电流密度逐渐上升,造成漏-源间二次击穿,如果结温超过允许值,则引起源-漏结的烧毁。因而减小槽栅MOS器件N+源区下方的电阻,即增大P体区浓度是提高器件抗单粒子烧毁的有效方法。考虑对器件阈值的影响,Pbody区浓度不能太大,对减小VDMOS器件N+源区下方的电阻无明显作用,因此传统结构的抗单粒子烧毁能力很差。
发明内容
本发明所要解决的,就是针对上述问题,提出一种提高抗单粒子烧毁能力的槽栅MOS器件。
本发明的技术方案是:一种提高抗单粒子烧毁能力的槽栅MOS器件,其元胞结构包括从下至上依次层叠设置的漏极金属电极1、第一导电类型半导体衬底2、第一导电类型半导体外延层3和源极金属电极10;所述第一导电类型半导体外延层3的上层具有第二导电类型半导体体区6、第一导电类型半导体源区7、第二导电类型半导体体接触区8和槽栅;所述第二导电类型半导体体接触区8位于第一导电类型半导体源区7之间,且第一导电类型半导体源区7和第二导电类型半导体体接触区8的上表面与源极金属电极10连接;所述第二导电类型半导体体区6位于第一导电类型半导体源区7和第二导电类型半导体体接触区8的正下方,第二导电类型半导体体区6的上表面与第一导电类型半导体源区7和第二导电类型半导体体接触区8的下表面连接;所述槽栅位于第二导电类型半导体体区6和第一导电类型半导体源区7的侧面,所述槽栅由栅介质层5和位于栅介质层5中的栅极导电材料4构成;所述栅极导电材料4的上表面与源极金属电极10之间具有隔离介质9;所述隔离介质9的侧面与第一导电类型半导体源区7的侧面连接,所述栅介质层5的侧面与第二导电类型半导体体区6和第一导电类型半导体源区7的侧面连接;所述栅介质层5的结深大于第二导电类型半导体体区6的结深;其特征在于,所述第一导电类型半导体外延层3中还具有第二导电类型半导体柱11和第二导电类型半导体的电流引导区13,所述第二导电类型半导体柱11的上表面与源极金属电极10的下表面连接,第二导电类型半导体柱11的侧面与栅介质层5连接;所述第二导电类型半导体柱11中还具有金属电极12,所述金属电极12与源极金属电极10的下表面连接;所述第二导电类型电流引导区13的侧面与第二导电类型半导体柱11连接,第二导电类型电流引导区13的上表面与栅介质层5的下表面连接,且第二导电类型电流引导区13的横向宽度大于栅介质层5的横向宽度,第二导电类型电流引导区13超出栅介质层5下表面的部分的横向宽度还大于第一导电类型半导体源区7的横向宽度,同时第二导电类型电流引导区13超出栅介质层5下表面的部分向靠近第二导电类型半导体体区6的方向延伸;所述第二导电类型半导体柱11中含有复合中心以降低载流子寿命。
进一步的,所述第一导电类型半导体外延层3中还具有多个电流引导区14,所述电流引导区14位于槽栅的下方,且电流引导区14的侧面与第二导电类型半导体柱11连接。
本发明的有益效果为,相对于传统结构,本发明极大地提高了槽栅MOS的抗单粒子烧毁能力。
附图说明
图1是实施例1所提供的提高抗单粒子烧毁能力的槽栅MOS的剖面结构示意图;
图2是本发明的槽栅MOS和常规槽栅MOS在单粒子入射在位置a时的电子和空穴流向图;(a)为本发明的结构,(b)为常规结构;
图3是本发明的槽栅MOS和常规槽栅MOS在单粒子入射在位置b时的电子和空穴流向图;(a)为本发明的结构,(b)为常规结构;
图4是本发明的槽栅MOS在单粒子入射在位置c时的电子和空穴流向图;
图5是本发明的槽栅MOS在单粒子入射在位置d时的电子和空穴流向图;
图6是实施例2所提供的提高抗单粒子烧毁能力的槽栅MOS的剖面结构示意图;
图7是实施例3所提供的提高抗单粒子烧毁能力的槽栅MOS的剖面结构示意图;
图8是实施例4所提供的提高抗单粒子烧毁能力的槽栅MOS的剖面结构示意图。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
实施例1
如图1所示,本例的一种提高抗单粒子烧毁能力的槽栅MOS器件,其元胞结构包括从下至上依次层叠设置的漏极金属电极1、第一导电类型半导体衬底2、第一导电类型半导体外延层3和源极金属电极10;所述第一导电类型半导体外延层3的上层具有第二导电类型半导体体区6、第一导电类型半导体源区7、第二导电类型半导体体接触区8和槽栅;所述第二导电类型半导体体接触区8位于第一导电类型半导体源区7之间,且第一导电类型半导体源区7和第二导电类型半导体体接触区8的上表面与源极金属电极10连接;所述第二导电类型半导体体区6位于第一导电类型半导体源区7和第二导电类型半导体体接触区8的正下方,第二导电类型半导体体区6的上表面与第一导电类型半导体源区7和第二导电类型半导体体接触区8的下表面连接;所述槽栅位于第二导电类型半导体体区6和第一导电类型半导体源区7的侧面,所述槽栅由栅介质层5和位于栅介质层5中的栅极导电材料4构成;所述栅极导电材料4的上表面与源极金属电极10之间具有隔离介质9;所述隔离介质9的侧面与第一导电类型半导体源区7的侧面连接,所述栅介质层5的侧面与第二导电类型半导体体区6和第一导电类型半导体源区7的侧面连接;所述栅介质层5的结深大于第二导电类型半导体体区6的结深;其特征在于,所述第一导电类型半导体外延层3中还具有第二导电类型半导体柱 11和第二导电类型半导体的电流引导区13,所述第二导电类型半导体柱11的上表面与源极金属电极10的下表面连接,第二导电类型半导体柱11的侧面与栅介质层5连接;所述第二导电类型半导体柱11中还具有金属电极12,所述金属电极12与源极金属电极10的下表面连接;所述第二导电类型电流引导区13的侧面与第二导电类型半导体柱11连接,第二导电类型电流引导区13的上表面与栅介质层5的下表面连接,且第二导电类型电流引导区13的横向宽度大于栅介质层5的横向宽度,第二导电类型电流引导区13超出栅介质层5下表面的部分的横向宽度还大于第一导电类型半导体源区7的横向宽度,同时第二导电类型电流引导区13超出栅介质层5下表面的部分向靠近第二导电类型半导体体区6的方向延伸;所述第二导电类型半导体柱11中含有复合中心以降低载流子寿命。本例中第一导电类型半导体为N型半导体。
本例的工作原理为:
如图2(b)所示,当单粒子入射在常规槽栅MOS的a位置时,沿着粒子径迹激发出电子空穴对,其中空穴只能通过pbody区流到源极,因此易造成寄生三极管的开启,发生单粒子烧毁。如图2(a)所示,当单粒子入射在本例器件的a位置时,由于与源极相连接的高掺杂的P柱11和空穴电流引导区13的引入,高能粒子激发产生电子-空穴对后,电子被漏极接收,只有少部分的空穴通过P+体区到达源极,大部分空穴在空穴电流引导区13的作用下向低电阻的P柱11移动,由于低电阻的P柱11内具有与源电极10相连的金属电极12,且低电阻的P柱11的载流子寿命较低,因此空穴在P柱11内很快被接收;由于P柱11内不存在n型结构,因此不存在寄生三极管,从而有效避免了寄生三极管的开启。
如图3(b)所示,当单粒子入射在常规槽栅MOS的b位置时,沿着粒子径迹激发出电子空穴对,其中空穴同样只能通过n+源区下的pbody区流到源极,因此易造成寄生三极管的开启,发生单粒子烧毁。如图3(a)所示,当单粒子入射在本例器件的b位置时,由于与源极相连接的高掺杂的P柱11和空穴电流引导区13的引入,高能粒子激发产生电子-空穴对后,电子被漏极接收,几乎所有空穴在空穴电流引导区13的作用下向低电阻的P柱11移动,由于低电阻的P柱11内具有与源电极10相连的金属电极12,且低电阻的P柱11的载流子寿命较低,因此空穴在P柱11内很快被接收;由于P柱11内不存在n型结构,因此不存在寄生三极管,从而有效避免了寄生三极管的开启。
如图4所示当单粒子入射在本例的槽栅MOS的c位置时,几乎全部的空穴都通过空穴电流引导区13和P柱11到达源极,有效的提升了抗单粒子烧毁能力。
如图5所示当单粒子入射在本例的槽栅MOS的d位置时,几乎全部的空穴都通过P柱11到达源极,有效的提升了抗单粒子烧毁能力。
实施例2
如图6所示,本例的结构为在实施例1的基础上,在低电阻的第二导电类型半导体柱11的侧面增加了一条或多条第二导电类型电流引导区14,可以进一步提升抗单粒子烧毁能力。
实施例3
如图7所示,本例的结构为在实施例1的基础上,用高掺杂的第二导电类型半导体区15和含有大量复合中心的第二导电类型半导体区16替换第二导电类型半导体柱11和金属电极12。
实施例4
如图8所示,本例的结构为在实施例1的基础上,用高掺杂的第二导电类型半导体区15和位于其中的含有大量复合中心的第二导电类型半导体区17替换第二导电类型半导体柱11和金属电极12。

Claims (2)

  1. 一种提高抗单粒子烧毁能力的槽栅MOS器件,其元胞结构包括从下至上依次层叠设置的漏极金属电极(1)、第一导电类型半导体衬底(2)、第一导电类型半导体外延层(3)和源极金属电极(10);所述第一导电类型半导体外延层(3)的上层具有第二导电类型半导体体区(6)、第一导电类型半导体源区(7)、第二导电类型半导体体接触区(8)和槽栅;所述第二导电类型半导体体接触区(8)位于第一导电类型半导体源区(7)之间,且第一导电类型半导体源区(7)和第二导电类型半导体体接触区(8)的上表面与源极金属电极(10)连接;所述第二导电类型半导体体区(6)位于第一导电类型半导体源区(7)和第二导电类型半导体体接触区(8)的正下方,第二导电类型半导体体区(6)的上表面与第一导电类型半导体源区(7)和第二导电类型半导体体接触区(8)的下表面连接;所述槽栅位于第二导电类型半导体体区(6)和第一导电类型半导体源区(7)的侧面,所述槽栅由栅介质层(5)和位于栅介质层(5)中的栅极导电材料(4)构成;所述栅极导电材料(4)的上表面与源极金属电极(10)之间具有隔离介质(9);所述隔离介质(9)的侧面与第一导电类型半导体源区(7)的侧面连接,所述栅介质层(5)的侧面与第二导电类型半导体体区(6)和第一导电类型半导体源区(7)的侧面连接;所述栅介质层(5)的结深大于第二导电类型半导体体区(6)的结深;其特征在于,所述第一导电类型半导体外延层(3)中还具有第二导电类型半导体柱(11)和第二导电类型电流引导区(13),所述第二导电类型半导体柱(11)的上表面与源极金属电极(10)的下表面连接,第二导电类型半导体柱(11)的侧面与栅介质层(5)连接;所述第二导电类型半导体柱(11)中还具有金属电极(12),所述金属电极(12)与源极金属电极(10)的下表面连接;所述第二导电类型半导体的电流引导区(13)的侧面与第二导电类型半导体柱(11)连接,第二导电类型电流引导区(13)的上表面与栅介质层(5)的下表面连接,且第二导电类型电流引导区(13)的横向宽度大于栅介质层(5)的横向宽度,第二导电类型电流引导区(13)超出栅介质层(5)下表面的部分的横向宽度还大于第一导电类型半导体源区(7)的横向宽度,同时第二导电类型电流引导区(13)超出栅介质层(5)下表面的部分向靠近第二导电类型半导体体区(6)的方向延伸;所述第二导电类型半导体柱(11)中含有复合中心以降低载流子寿命。
  2. 根据权利要求1所述的一种提高抗单粒子烧毁能力的槽栅MOS器件,其特征在于,所述第一导电类型半导体外延层(3)中还具有多个电流引导区(14),所述电流引导区(14)位于槽栅的下方,且电流引导区(14)的侧面与第二导电类型半导体柱(11)连接。
PCT/CN2016/099165 2016-09-17 2016-09-17 一种提高抗单粒子烧毁能力的槽栅mos器件 WO2018049641A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/774,291 US10546951B2 (en) 2016-09-17 2016-09-17 Trench MOS device with improved single event burn-out endurance
PCT/CN2016/099165 WO2018049641A1 (zh) 2016-09-17 2016-09-17 一种提高抗单粒子烧毁能力的槽栅mos器件
CN201680057865.9A CN108352403B (zh) 2016-09-17 2016-09-17 一种提高抗单粒子烧毁能力的槽栅mos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099165 WO2018049641A1 (zh) 2016-09-17 2016-09-17 一种提高抗单粒子烧毁能力的槽栅mos器件

Publications (1)

Publication Number Publication Date
WO2018049641A1 true WO2018049641A1 (zh) 2018-03-22

Family

ID=61618614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099165 WO2018049641A1 (zh) 2016-09-17 2016-09-17 一种提高抗单粒子烧毁能力的槽栅mos器件

Country Status (3)

Country Link
US (1) US10546951B2 (zh)
CN (1) CN108352403B (zh)
WO (1) WO2018049641A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346701B (zh) * 2018-04-12 2020-05-26 电子科技大学 一种屏蔽栅功率dmos器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145826B2 (ja) * 2019-08-27 2022-10-03 三菱電機株式会社 Seb耐性評価方法およびseb耐性評価装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411931A (en) * 2002-12-23 2004-07-01 Yung-Ling Lai Structure of groove-shaped gate double diffusion metal oxide semiconductor transistor with enhanced single event burnout resistance and its manufacturing method
CN105118862A (zh) * 2015-08-24 2015-12-02 电子科技大学 一种具有抗单粒子效应的vdmos器件
CN105633137A (zh) * 2016-01-08 2016-06-01 电子科技大学 一种槽栅功率mosfet器件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988871B2 (ja) * 1995-06-02 1999-12-13 シリコニックス・インコーポレイテッド トレンチゲートパワーmosfet
US6236099B1 (en) * 1996-04-22 2001-05-22 International Rectifier Corp. Trench MOS device and process for radhard device
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
US8067798B2 (en) * 2008-03-31 2011-11-29 Rohm Co., Ltd. Semiconductor device
JP5616665B2 (ja) * 2010-03-30 2014-10-29 ローム株式会社 半導体装置
CN104795328B (zh) * 2014-01-16 2017-11-21 北大方正集团有限公司 一种沟槽型vdmos制造方法和一种沟槽型vdmos
CN105161524A (zh) * 2015-07-21 2015-12-16 北京大学 一种抗单粒子辐射的场效应晶体管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411931A (en) * 2002-12-23 2004-07-01 Yung-Ling Lai Structure of groove-shaped gate double diffusion metal oxide semiconductor transistor with enhanced single event burnout resistance and its manufacturing method
CN105118862A (zh) * 2015-08-24 2015-12-02 电子科技大学 一种具有抗单粒子效应的vdmos器件
CN105633137A (zh) * 2016-01-08 2016-06-01 电子科技大学 一种槽栅功率mosfet器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YUE: "The Simulation Research of Single-Event Effect in Power UMOSFETs", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 April 2014 (2014-04-15), pages 4, ISSN: 1674-0246 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346701B (zh) * 2018-04-12 2020-05-26 电子科技大学 一种屏蔽栅功率dmos器件

Also Published As

Publication number Publication date
US10546951B2 (en) 2020-01-28
CN108352403A (zh) 2018-07-31
US20190371937A1 (en) 2019-12-05
CN108352403B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN105118862B (zh) 一种具有抗单粒子效应的vdmos器件
US9478614B2 (en) Semiconductor device
US7470952B2 (en) Power IGBT with increased robustness
TWI538209B (zh) 半導體功率元件及其製備方法
CN107302025B (zh) 一种具有抗单粒子效应的vdmos器件
US10354992B2 (en) Semiconductor devices and methods for forming a semiconductor device
US10211057B2 (en) Transistor component with reduced short-circuit current
KR940008261B1 (ko) 전력용 반도체장치
JP2015213141A (ja) 縦型半導体装置およびその製造方法
US20120241899A1 (en) Power semiconductor device
CN105097905B (zh) 绝缘栅双极晶体管
JPWO2014188569A1 (ja) ダイオード内蔵igbt
US10490655B2 (en) Insulated gate bipolar transistor (IGBT) with high avalanche withstand
CN106876473B (zh) 用于高压esd保护的高维持电流ldmos结构
JP2017195224A (ja) スイッチング素子
JP2020031155A (ja) 半導体装置
US20080203535A1 (en) Semiconductor device
WO2018049641A1 (zh) 一种提高抗单粒子烧毁能力的槽栅mos器件
KR20140072729A (ko) 전력 반도체 소자 및 그 제조 방법
CN107546273B (zh) 一种具有抗seb能力的vdmos器件
Somayaji et al. Performance and reliability codesign for superjunction drain extended MOS devices
JPS6239069A (ja) 電界効果型半導体装置
CN107425071B (zh) 一种具有抗单粒子辐照能力的vdmos器件
CN108598148B (zh) 一种具有p型岛缓冲层结构的抗辐射mosfet结构
US6780722B2 (en) Field effect transistor on insulating layer and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916021

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16916021

Country of ref document: EP

Kind code of ref document: A1