WO2018041190A1 - 自移动机器人 - Google Patents

自移动机器人 Download PDF

Info

Publication number
WO2018041190A1
WO2018041190A1 PCT/CN2017/099831 CN2017099831W WO2018041190A1 WO 2018041190 A1 WO2018041190 A1 WO 2018041190A1 CN 2017099831 W CN2017099831 W CN 2017099831W WO 2018041190 A1 WO2018041190 A1 WO 2018041190A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
driving wheel
self
drive wheel
obstacle
Prior art date
Application number
PCT/CN2017/099831
Other languages
English (en)
French (fr)
Inventor
冯书鹏
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Publication of WO2018041190A1 publication Critical patent/WO2018041190A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • B25J11/0085Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the invention relates to a self-mobile robot and belongs to the technical field of small household appliance manufacturing.
  • FIG. 1 is a schematic structural view of a prior art of US8998215B2.
  • this patent document discloses a device 9 for traversing a running obstacle, which device is preferably mounted on a floor cleaning device having a driven running wheel 3 that can travel autonomously on the ground 2.
  • the running wheel 3 is provided with a lifting member 10, and the front end surface 12 of the lifting member 10 can be eccentrically oscillated, and protrudes outward in the traveling direction r beyond the rolling surface 7 of the running wheel 3, lifting Face 13 helps to cross obstacles.
  • the above prior art has the following disadvantages: 1. It is impossible to successfully pass all the obstacles, and the obstacle angle has a dead point; 2.
  • the auxiliary driving force has pulse fluctuation, and the operation is not stable; 3.
  • the auxiliary driving force provided is insufficient.
  • FIG. 2 and 3 are respectively a module connection diagram and a climbing state diagram of the prior art CN204581162U.
  • the patent document discloses an intelligent cleaning robot comprising: a robot body, a control device 100, a power supply device 200, a travel drive device 300, a cleaning device 400, a traveling wheel assembly 311, and a guide wheel.
  • the slope feedback signal is transmitted to the control device 100, and the control device 100 controls the climbing driving device 500 to operate, and drives the climbing wheel assembly 511 to work to assist the robot body to climb. slope.
  • the above prior art also has the following disadvantages: 1.
  • the mechanism occupies a large space and cannot be widely applied to most self-mobile robots. Especially for the self-mobile robot, if the mechanism is used, the water tank cannot be installed; 2. One more drive wheel is provided. The motor has a large increase in power consumption.
  • the technical problem to be solved by the present invention is to provide a self-mobile robot capable of effectively avoiding the dead point phenomenon of the auxiliary obstacle-obstacle device according to the deficiencies of the prior art; the size of the obstacle-adjusting mechanism can be adapted according to the specific product model. Different height requirements; can handle the obstacles of complex ground; use the outer side of the drive wheel In the meantime, it does not affect the arrangement of other components, and the structure is compact and reasonable.
  • a self-moving robot includes a self-moving robot body and a control unit and a main drive wheel assembly disposed on the body, the main drive wheel assembly including a drive motor and a main drive wheel, the self-mobile robot further including a pair a driving wheel assembly, the auxiliary driving wheel assembly includes a connecting rod assembly and a secondary driving wheel disposed at one end of the connecting rod assembly, the connecting rod assembly being movably disposed on the main body or the main driving wheel assembly;
  • the self-moving robot further includes a trigger mechanism coupled to the secondary drive wheel assembly, the trigger mechanism including at least a trigger end, the trigger end being located before the primary drive wheel in a forward direction of the mobile robot; The trigger end is raised after encountering an obstacle, thereby generating a downward force on the auxiliary driving wheel, and the auxiliary driving wheel performs a descending motion or a pair of walking with respect to the body under the downward force Positive pressure on the surface.
  • the auxiliary driving wheel is suspended from the walking surface; the trigger end is raised after encountering an obstacle, and the auxiliary driving wheel is lowered relative to the body In contact with the walking surface.
  • the auxiliary driving wheel When the trigger end does not encounter an obstacle, the auxiliary driving wheel is attached to the walking surface; the trigger end is raised after encountering an obstacle, thereby generating a downward force on the auxiliary driving wheel, and The secondary drive wheel raises its positive pressure against the running surface under the downward force.
  • the link assembly is rotatably disposed on the body or the main drive wheel assembly, and the trigger mechanism is connected to the other end of the link assembly; the trigger end is lifted after encountering an obstacle High, causing the linkage assembly to rotate, the linkage assembly producing a downward force on the secondary drive wheel.
  • the link assembly includes a connecting portion rotatably coupled to the body or the main driving wheel assembly, a straight arm extending forward from the connecting portion, and a connecting arm extending rearward, the trigger end being the straight An end of the arm; the secondary drive wheel is disposed at an end of the link arm, and a middle portion of the link arm is fixed to the body by a tension spring.
  • a torsion spring is arranged between the straight arm and the connecting arm.
  • the link assembly is slidably disposed on the body or the main drive wheel assembly, and a gear transmission assembly is disposed between the trigger mechanism and the link assembly; the trigger end encounters an obstacle After being raised, the gear assembly rotates and causes the linkage assembly to slide downward, and the linkage assembly produces a downward force on the secondary drive wheel.
  • the connecting rod assembly is slidably disposed on the main body or the main driving wheel assembly, and a hydraulic transmission assembly may be disposed between the trigger mechanism and the connecting rod assembly; Being lifted, the hydraulic transmission assembly is forced such that the linkage assembly slides downwardly under compression of the hydraulic transmission assembly, the linkage assembly producing a downward force on the secondary drive wheel.
  • the connecting portion is arranged coaxially with the drive shaft of the main drive wheel.
  • the two sides of the trigger end are respectively provided with guide wheels; meanwhile, the trigger end is provided with a protruding portion on a side edge toward the walking direction of the self-moving robot.
  • the output shaft of the drive motor is coupled to the first pulley through a first belt, the first pulley is disposed coaxially with the drive shaft of the main drive wheel; the drive shaft of the main drive wheel is driven by the second belt and the secondary drive The rotating shaft of the wheel is connected; a reduction gear is further included between the second belt and the auxiliary driving axle.
  • the primary and secondary drive wheels are coupled to the drive motor and are each powered by the drive motor.
  • the main driving wheel assembly and the auxiliary driving wheel assembly are respectively symmetrically disposed on two sides of the self-moving robot body, and the trigger end is disposed outside the main driving wheel.
  • the invention also provides a self-mobile robot comprising a self-moving robot body and a control unit and a main drive wheel assembly disposed on the body, the self-mobile robot further comprising a sub-drive wheel assembly and a trigger mechanism, the self-mobile robot
  • the triggering mechanism In the forward direction, the triggering mechanism is disposed in front of the main driving wheel of the main driving wheel assembly; the triggering end of the triggering mechanism is raised after encountering an obstacle, thereby generating a downward direction on the auxiliary driving wheel assembly a force that the secondary drive wheel of the primary drive wheel assembly descends relative to the body or increases its positive pressure against the travel surface under the downward force; the distance from the trigger end to the chassis of the body Greater than the distance of the secondary drive wheel to the running surface.
  • the present invention provides a self-mobile robot, which can effectively avoid the dead point phenomenon of the auxiliary obstacle-obscuring device; can adapt to various height requirements according to the size of the obstacle-adjusting height adjustment mechanism required by the specific product model;
  • the obstacles of the complex ground require the use of the outer space of the drive wheel, which does not affect the arrangement of other components, and the structure is compact and reasonable.
  • FIG. 2 is a block diagram of a prior art module of CN204581162U;
  • FIG. 3 is a schematic view showing a state of climbing of the prior art CN204581162U;
  • FIG. 4 is a schematic diagram of a normal walking state of a self-moving robot on a leveling working surface according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a connection structure of a secondary driving wheel assembly and a connecting rod assembly connected thereto from a mobile robot according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a walking state when a mobile robot encounters an obstacle according to an embodiment of the present invention
  • FIG. 7 is a partial structural schematic view of a gear transmission assembly according to an embodiment of the present invention.
  • FIG. 8 is a partial structural schematic view of a third hydraulic transmission assembly according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a normal walking state of a self-moving robot on a leveling working surface according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a connection structure of a secondary driving wheel assembly and a connecting rod assembly connected thereto from the mobile robot according to an embodiment of the present invention
  • 6 is a schematic diagram of a walking state when a mobile robot encounters an obstacle according to an embodiment of the present invention.
  • the present invention provides a self-mobile robot comprising a self-moving robot body 1000 and a control unit and a main drive wheel assembly 200 disposed on the body 1000, the main drive wheel assembly 200.
  • the drive motor 100 and the main drive wheel 201 are further included, and the self-moving robot further includes a sub-drive wheel assembly 300 including a link assembly 400 and a sub-drive provided at one end of the link assembly 400
  • the wheel assembly 301 is rotatably fixed to the body 100 or the main drive wheel assembly 200.
  • the self-moving robot further includes a trigger mechanism connected to the secondary driving wheel assembly 300.
  • the triggering mechanism includes at least a triggering end 401.
  • the triggering end 401 is located at the main driving wheel 201 in a forward direction of the mobile robot.
  • the trigger end 401 is raised after encountering an obstacle, thereby generating a downward force on the secondary driving wheel 301, and the secondary driving wheel 301 is opposite to the body 1000 under the downward force Do a descending motion or increase its positive pressure on the walking surface A.
  • the trigger end 401 does not encounter the obstacle B
  • the secondary driving wheel 301 is suspended from the walking surface A
  • the triggering end 401 is raised after encountering an obstacle
  • the secondary driving wheel 301 is raised.
  • the body 100 is lowered relative to the body 100 and is in contact with the walking surface A.
  • the sub-drive wheel 301 is attached to the walking surface A when the trigger end 401 does not encounter the obstacle B; the trigger end 401 is lifted after encountering the obstacle B High, thereby generating a downward force on the secondary drive wheel 301 and increasing the positive pressure of the secondary drive wheel on the running surface A.
  • the secondary driving wheel 301 in the case of normal movement of the mobile robot, as shown in FIG. 4, the secondary driving wheel 301 is suspended from the walking surface A of the self-moving robot; when the self-moving robot is in the moving process
  • the trigger end 401 is raised, such that the link assembly 400 rotates relative to the body 1000 or the main drive wheel assembly 200, the secondary drive wheel The 301 is lowered into contact with the walking surface A to provide additional power for the self-moving robot to cross the obstacle B.
  • the secondary driving wheel 301 may also be in contact with the walking surface A of the self-moving robot, when the self-moving robot encounters during the movement.
  • the trigger end 401 is raised such that the link assembly 400 rotates relative to the body 1000 or the main drive wheel assembly 200, and the secondary drive wheel 301 has a tendency to descend relative to the body 1000. That is, the positive pressure of the secondary driving wheel on the walking surface A is enhanced, and the driving force is provided to the obstacle B from the mobile robot.
  • the link assembly 400 includes a connecting portion 410 rotatably coupled to the body 1000 or the main driving wheel assembly 200, and a straight arm 402 extending forward from the connecting portion 410. And a rearward extending arm 403, the trigger end 401 is an end of the straight arm 402; the secondary driving wheel 301 is disposed at an end of the connecting arm 403, and a middle portion of the connecting arm 403 is passed through a tension spring 405 It is fixed on the body 1000. It should be noted that the present invention is not limited to the position of the tension spring 405.
  • the tension spring 405 may also be disposed at the end of the connecting arm 403 or the like to pull the secondary driving wheel 301 to keep the secondary driving wheel 301.
  • a torsion spring 404 is disposed between the straight arm 402 and the connecting arm 403.
  • the connecting arm 403 swings under the action of the torsion spring 404.
  • the sub-drive wheel 301 is lowered in contact with the traveling surface A.
  • the connecting portion 410 is disposed coaxially with the drive shaft of the main drive wheel 200.
  • the two sides of the triggering end 401 are respectively provided with guide wheels 4011, and at the same time, the triggering end 401 is walking toward the self-moving robot.
  • One side edge of the direction is provided with a projection 4011.
  • the protrusion 4011 first comes into contact with the obstacle B, and under the rolling guidance of the guide wheel 4011, the trigger end 401 is blocked by the obstacle B.
  • the triggering end 401 and the secondary driving wheel 301 are interlocking structures, when the triggering end 401 encounters a high obstacle, the triggering end 401 is lifted to a greater extent, so that the descending driving force of the secondary driving wheel 301 is greater.
  • the positive pressure applied to the traveling surface A by the secondary driving wheel 301 is also larger, so that the auxiliary driving force (surface frictional force) provided by the secondary driving wheel 301 is also larger, that is, the secondary driving wheel 301 can adaptively adjust the obstacle height. Adjust the driving force.
  • the transmission structure is as shown in FIG. 5, the output shaft 101 of the drive motor 100 is connected to the first pulley 103 through the first belt 102, and the first pulley 103 is disposed coaxially with the drive shaft of the main drive wheel 200;
  • the driving shaft of the main driving wheel 200 is connected to the rotating shaft of the auxiliary driving wheel 301 through the second belt 104.
  • a reduction gear may be further disposed between the rotating shafts of the second belt 104 and the auxiliary driving wheel 301, and those skilled in the art may Choose according to the specific speed.
  • the above transmission structure belongs to the conventional technology in the art, and will not be described in detail herein. In order to save energy, both the primary drive wheel 201 and the secondary drive wheel 301 are powered by the drive motor 100.
  • the secondary driving wheel assembly 300 is disposed outside the main driving wheel assembly 200, in particular, the triggering end 401 is The outer side of the main driving wheel 201 makes the triggerable range of the triggering end 401 large, and avoids the phenomenon that the dead point is triggered when the obstacle is “scratched” from the traveling direction of the mobile robot.
  • the main driving wheel assembly 200 and the auxiliary driving wheel assembly 300 are respectively symmetrically disposed on both sides of the self-moving robot body 1000; that is, the driving motor 100 is respectively disposed on the left and right sides of the body 1000, and each The main drive wheel 201 and the secondary drive wheel 301 on the side constitute a double drive wheel.
  • the link assembly 400 and the sub-drive wheel assembly 300 remain in a suspended state.
  • the straight arm 402 in the linkage assembly 400 provides an upward force to the trigger end 401 through the torsion spring 404, causing the trigger end 401 to float off the ground and maintain a certain distance from the walking surface A.
  • the connecting arm 403 is also in the tightened state by the pulling action of the tension spring 405, and the secondary driving wheel 301 is also suspended from the ground and maintained at a certain distance from the running surface A.
  • the secondary drive wheel assembly 300 has no effect. As shown in FIG.
  • the triggering end 401 when the self-moving robot encounters the obstacle B, in the running direction thereof, since the setting position of the triggering end 401 is located in front of the main driving wheel 201, the triggering end 401 first contacts the obstacle B. And being lifted by the obstacle B under the guidance of the guide wheels 406 disposed on both sides of the trigger end 401.
  • the torsion spring 404 Based on the principle of the lever, the torsion spring 404 applies a downward force to the link arm 403 at this time, so that the sub-driver The wheel assembly 300 is lowered to the walking surface A against the pulling force provided by the tension spring 405.
  • the descending height of the secondary driving wheel 301 can be controlled so that its actual position is slightly lower than the running surface A, so that the walking surface can be made.
  • A provides the advanced horizontal traction force to the entire system through the secondary drive wheel 301, and the frictional force on the obstacle B by the main main drive wheel 201 and the frictional thrust of the secondary drive wheel 301 on the travel surface A act together, so that the self-moving robot Increased barrier capabilities.
  • the self-moving robot provided by the present invention triggers the activation of the sub-drive wheel assembly by the contact of the trigger end with the obstacle, and belongs to the mechanical trigger. It is also possible for a person skilled in the art to implement an obstacle to the self-mobile robot through other alternative mechanisms.
  • FIG. 7 is a partial structural schematic view of a gear transmission assembly according to an embodiment of the present invention.
  • the linkage assembly of the mobile robot can be slidably disposed on the body 1000 or the main drive wheel assembly 200, between the trigger mechanism and the linkage assembly is provided with a gear transmission assembly 600;
  • the trigger end is raised after encountering an obstacle, such that the gear transmission assembly rotates and drives the link assembly to slide downward, and the auxiliary drive wheel descends from the body or the main drive wheel assembly and the walk Surface A is in contact.
  • FIG. 8 is a partial structural schematic view of a third hydraulic transmission assembly according to an embodiment of the present invention.
  • the linkage assembly of the mobile robot can be slidably disposed on the body 1000 or the main drive wheel assembly 200, between the trigger mechanism and the linkage assembly is provided with a hydraulic transmission assembly 700;
  • the trigger end is raised after encountering an obstacle, and the hydraulic transmission assembly is pressed, so that the link assembly slides downward under pressure of the hydraulic transmission assembly, and the auxiliary drive wheel
  • the lowering of the body or the main drive wheel assembly is in contact with the walking surface A.
  • a sensing device or a sensor may be disposed on the body of the mobile robot to determine whether an obstacle such as a slope is encountered, and the auxiliary driving wheel is activated by an electronic trigger. The action of the component.
  • the present invention also provides a self-mobile robot comprising a self-moving robot body 1000 and a control unit and a main drive wheel assembly 200 disposed on the body, the self-mobile robot further comprising a secondary drive wheel assembly 300 and a trigger mechanism.
  • the triggering mechanism is disposed in front of the main driving wheel 201 in the forward direction of the mobile robot; the triggering end 401 of the triggering mechanism is raised after encountering the obstacle B, thereby generating a downward direction on the secondary driving wheel 301.
  • a force the secondary drive wheel 301 descends relative to the body under the downward force or increases its positive pressure on the walking surface A; the distance from the trigger end to the body chassis is greater than the secondary drive It is the turn of the running surface.
  • the beneficial effects of the present invention include: 1.
  • the auxiliary driving wheel triggering mechanism is outside the driving wheel, the triggering range is larger than the driving wheel coverage range, and the dead point of the auxiliary obstacle blocking device can be avoided; 2.
  • the required obstacle height, the size of the mechanism is slightly adjusted, can adapt to various height requirements; 3, because the trigger mechanism and the main drive wheel contact points are basically coincident, can meet the complex ground obstacle requirements;
  • the use of a small space outside the drive wheel does not affect the arrangement of other components, and can be widely promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种自移动机器人,包括自移动机器人本体(1000)和其上的控制单元和主驱动轮组件(200),主驱动轮组件包括驱动电机(100)和主驱动轮(201),该机器人还包括副驱动轮组件(300),该组件包括有连杆组件(400)及设于连杆组件一端的副驱动轮(301),连杆组件可动设于本体或主驱动轮组件上;该机器人还包括与副驱动轮组件相连的触发机构,触发机构至少包括触发端(401),在前进方向上,触发端位于主驱动轮之前;触发端遇到障碍物后被抬高,从而对所述副驱动轮产生向下的作用力,副驱动轮在向下作用力下相对本体做下降运动或提高其对行走表面的正压力。有效避免死点现象、高度可调,适应各种复杂地面的越障要求,结构紧凑排布合理。

Description

自移动机器人 技术领域
本发明涉及一种自移动机器人,属于小家电制造技术领域。
背景技术
自移动机器人以其控制方便行走自如的特点而得到广泛的应用,但由于作业环境的复杂,在自移动机器人行走作业的过程中,通常会遇到各种障碍物,因此,如何安全跨越障碍物并保持行走顺畅,是提高自移动机器人工作效率的关键问题所在。
图1为US8998215B2现有技术的结构示意图。如图1所示,该专利文献公开了一种用于跨越行驶障碍物的装置9,该装置优选安装在具有被驱动的行驶轮3的可在地面2上自主行驶的地面清洁设备上。具体来说,在所述行驶轮3上设置有抬升部件10,该抬升部件10的前部端面12可以通过偏心摆动,沿行驶方向r超出所述行驶轮3的滚动面7向外突出,抬举面13帮助跨越障碍物。上述现有技术存在如下不足:1、无法顺利通过所有障碍,越障角度有死点;2、辅助驱动力有脉冲波动,运行不平稳;3、提供的辅助驱动力不足。
图2和图3分别为CN204581162U现有技术的模块连接图和爬坡状态示意图。如图2并结合图3所示,该专利文献公开了一种智能保洁机器人,包括:机器人本体、控制装置100、电源装置200、行走驱动装置300、清洁装置400、行走轮组件311、导向轮组件321、红外避障感应装置620、红外地面检测装置630、爬坡轮组件511、爬坡驱动装置500和红外斜坡检测装置610。当红外斜坡检测装置610检测到前进方向有斜坡时,将斜坡反馈信号传送至控制装置100,控制装置100控制所述爬坡驱动装置500工作,带动爬坡轮组件511工作,以辅助机器人本体爬坡。上述现有技术同样存在如下不足:1、机构占用空间大,不能普遍应用于大部分自移动机器人,尤其对于自移动机器人来说,如果采用该机构则无法安装水箱;2、多设置一个驱动轮电机,功耗大为增加。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种自移动机器人,能有效避免辅助越障装置的死点现象;可根据具体产品型号需要的越障高度调整机构尺寸,适应各种不同的高度要求;可以应付复杂地面的越障要求;使用驱动轮外侧空 间,不影响其他元件的排布,结构紧凑合理。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种自移动机器人,包括自移动机器人本体和设置在所述本体上的控制单元和主驱动轮组件,所述主驱动轮组件包括驱动电机和主驱动轮,所述自移动机器人还包括有副驱动轮组件,所述副驱动轮组件包括有连杆组件及设于所述连杆组件一端的副驱动轮,所述连杆组件可动设于所述本体或所述主驱动轮组件上;所述自移动机器人还包括与所述副驱动轮组件相连的触发机构,所述触发机构至少包括触发端,在自移动机器人前进方向上,所述触发端位于所述主驱动轮之前;所述触发端遇到障碍物后被抬高,从而对所述副驱动轮产生向下的作用力,所述副驱动轮在所述向下作用力下相对所述本体做下降运动或提高其对行走表面的正压力。
具体来说,所述触发端未遇到障碍物时,所述副驱动轮悬离于行走表面;所述触发端遇到障碍物后被抬高,所述副驱动轮相对所述本体下降并与所述行走表面接触。
所述触发端未遇到障碍物时,所述副驱动轮贴于行走表面;所述触发端遇到障碍物后被抬高,从而对所述副驱动轮产生向下的作用力,并在所述向下的作用力下所述副驱动轮提高其对行走表面的正压力。
进一步地,所述连杆组件可旋转设于所述本体或所述主驱动轮组件上,所述触发机构与所述连杆组件的另一端相连;所述触发端遇到障碍物后被抬高,使得所述连杆组件旋转,所述连杆组件对所述副驱动轮产生向下的作用力。
所述连杆组件包括与所述本体或所述主驱动轮组件旋转连接的连接部、自所述连接部向前延伸的直臂及向后延伸的连臂,所述触发端为所述直臂的末端;所述副驱动轮设于所述连臂的末端,所述连臂的中部通过拉簧固定在所述本体上。
另外,所述直臂和连臂之间设有扭簧,当触发端遇到障碍物后被抬高时,在扭簧的作用下所述连臂摆动,使副驱动轮下降与行走表面接触。
根据需要,所述连杆组件可滑动设于所述本体或所述主驱动轮组件上,所述触发机构与所述连杆组件之间设有齿轮传动组件;所述触发端遇到障碍物后被抬高,使得齿轮传动组件转动并带动所述连杆组件向下滑动,所述连杆组件对所述副驱动轮产生向下的作用力。
所述连杆组件可滑动设于所述本体或所述主驱动轮组件上,所述触发机构与所述连杆组件之间还可以设有液压传动组件;所述触发端遇到障碍物后被抬高,压迫所述液压传动组件,使得所述连杆组件在液压传动组件压迫下向下滑动,所述连杆组件对所述副驱动轮产生向下的作用力。
为了使结构更加紧凑,所述连接部与所述主驱动轮的驱动轴同轴设置。
为了方便动作,所述触发端的两侧分别设有导轮;同时,所述触发端在朝着自移动机器人行走方向的一侧边缘设有突出部。
更具体地,所述驱动电机的输出轴通过第一皮带与第一皮带轮相连,所述第一皮带轮与主驱动轮的驱动轴同轴设置;主驱动轮的驱动轴通过第二皮带与副驱动轮的转轴相连;所述第二皮带和副驱动轮轴之间还包括有减速齿轮。
另外,所述主驱动轮和副驱动轮与驱动电机相连且均由所述驱动电机提供动力。
所述主驱动轮组件、副驱动轮组件分别在所述自移动机器人本体的两侧对称设置,所述触发端设置在所述主驱动轮的外侧。
本发明还提供一种自移动机器人,包括自移动机器人本体和设置在所述本体上的控制单元和主驱动轮组件,所述自移动机器人还包括副驱动轮组件及触发机构,在自移动机器人前进方向上,所述触发机构设于所述主驱动轮组件的主驱动轮的前方;所述触发机构的触发端遇到障碍物后被抬高,从而对所述副驱动轮组件产生向下的作用力,所述主驱动轮组件的副驱动轮在所述向下的作用力下相对所述本体下降或者提高其对行走表面的正压力;所述触发端到所述本体的底盘的距离大于所述副驱动轮到运行表面的距离。
综上所述,本发明提供一种自移动机器人,能有效避免辅助越障装置的死点现象;可根据具体产品型号需要的越障高度调整机构尺寸,适应各种不同的高度要求;可以应付复杂地面的越障要求;使用驱动轮外侧空间,不影响其他元件的排布,结构紧凑合理。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为US8998215B2现有技术的结构示意图;
图2为CN204581162U现有技术的模块连接图;
图3为CN204581162U现有技术的爬坡状态示意图;
图4为本发明实施例一自移动机器人在平整工作面正常行走状态示意图;
图5为本发明实施例一自移动机器人中的副驱动轮组件和与其相连的连杆组件的连接结构示意图;
图6为本发明实施例一自移动机器人遇到障碍物时行走状态示意图;
图7为本发明实施例二齿轮传动组件局部结构示意图;
图8为本发明实施例三液压传动组件局部结构示意图。
具体实施方式
图4为本发明实施例一自移动机器人在平整工作面正常行走状态示意图;图5为本发明实施例一自移动机器人中的副驱动轮组件和与其相连的连杆组件的连接结构示意图;图6为本发明实施例一自移动机器人遇到障碍物时行走状态示意图。如图4并结合图5所示,本发明提供一种自移动机器人,包括自移动机器人本体1000和设置在所述本体1000上的控制单元和主驱动轮组件200,所述主驱动轮组件200包括驱动电机100和主驱动轮201,所述自移动机器人还包括有副驱动轮组件300,所述副驱动轮组件300包括有连杆组件400及设于所述连杆组件400一端的副驱动轮301,所述连杆组件400可旋转固设于所述本体100或所述主驱动轮组件200上。所述自移动机器人还包括与所述副驱动轮组件300相连的触发机构,所述触发机构至少包括触发端401,在自移动机器人前进方向上,所述触发端401位于所述主驱动轮201之前;所述触发端401遇到障碍物后被抬高,从而对所述副驱动轮301产生向下的作用力,所述副驱动轮301在所述向下作用力下相对所述本体1000做下降运动或提高其对行走表面A的正压力。具体来说,所述触发端401未遇到障碍物B时,所述副驱动轮301悬离于行走表面A;所述触发端401遇到障碍物后被抬高,所述副驱动轮301相对所述本体100下降并与所述行走表面A接触。除此之外,还存在另一种情形,所述触发端401未遇到障碍物B时,所述副驱动轮301贴于行走表面A;所述触发端401遇到障碍物B后被抬高,从而对所述副驱动轮301产生向下的作用力,并对所述提高所述副驱动轮对行走表面A的正压力。
在本发明的优选的实施例中,在自移动机器人正常移动的情况下,如图4所示,所述副驱动轮301悬离于自移动机器人的行走表面A;当自移动机器人在移动过程中遇到障碍物B时,结合图6所示,所述触发端401被抬高,使得所述连杆组件400相对所述本体1000或所述主驱动轮组件200旋转,所述副驱动轮301下降与所述行走表面A接触,为自移动机器人跨越障碍物B提供额外动力。需要注意的是,在其他实施方式中,在自移动机器人正常移动的情况下,所述副驱动轮301也可以与自移动机器人的行走表面A相接触,当自移动机器人在移动过程中遇到障碍物B时,所述触发端401被抬高,使得所述连杆组件400相对所述本体1000或所述主驱动轮组件200旋转,所述副驱动轮301具有相对于本体1000下降的趋势,即增强了副驱动轮对行走表面A的正压力,为自移动机器人跨越障碍物B提供更大的驱动力。
具体来说,结合图5所示,所述连杆组件400包括与所述本体1000或所述主驱动轮组件200旋转连接的连接部410、自所述连接部410向前延伸的直臂402及向后延伸的连臂403,所述触发端401为所述直臂402的末端;所述副驱动轮301设于所述连臂403的末端,所述连臂403的中部通过拉簧405固定在所述本体1000上。需要注意的是,本发明并不局限所述拉簧405的位置,所述拉簧405也可以设于所述连臂403末端等以牵拉所述副驱动轮301以使副驱动轮301保持悬离所述行走表面A。更进一步的,所述直臂402和连臂403之间设有扭簧404,当触发端401遇到障碍物B后被抬高时,在扭簧404的作用下所述连臂403摆动,使副驱动轮301下降与行走表面A接触。为了使整体结构更加紧凑,所述连接部410与所述主驱动轮200的驱动轴同轴设置。另外,为了使副驱动轮组件300对障碍物B的反应更加灵敏,方便动作,所述触发端401的两侧分别设有导轮4011,同时,所述触发端401在朝着自移动机器人行走方向的一侧边缘设有突出部4011。结合图6所示,当自移动机器人在行走过程中遇到障碍物B时,突出部4011首先与该障碍物B接触,在导轮4011的滚动导引作用下,触发端401被障碍物B抬高,基于杠杆原理,此时扭簧404对连臂403施加向下的力,使得副驱动轮组件300克服拉簧405所提供的上拉力而下降与行走表面A接触。
特别地,由于触发端401和副驱动轮301为联动结构,触发端401在遇到较高的障碍物时,触发端401被抬起的程度将更大,使得副驱动轮301下降趋势越大,副驱动轮301施加到行走表面A上的正压力也越大,从而使得副驱动轮301提供的辅助动力(表面摩擦力)也越大,即,副驱动轮301可以自适应障碍物高度而调整驱动力。
更具体地传动结构如图5所示,所述驱动电机100的输出轴101通过第一皮带102与第一皮带轮103相连,所述第一皮带轮103与主驱动轮200的驱动轴同轴设置;主驱动轮200的驱动轴通过第二皮带104与副驱动轮301的转轴相连;另外,所述第二皮带104和副驱动轮301的转轴之间还可以进一步设置减速齿轮,本领域技术人员可以根据具体的转速需要进行选择。上述传动结构属于本领域的常规技术,在此不再详细赘述。为了节约能源,所述主驱动轮201和副驱动轮301均由驱动电机100提供动力。同时,为了使整机结构更加紧凑合理,各个部件之间不会造成彼此干涉,所述副驱动轮组件300设置在所述主驱动轮组件200的外侧,特别地,所述触发端401设于所述主驱动轮201的外侧,使得触发端401的可触发范围变大,避免自移动机器人行进方向上与障碍物“擦边”相遇时出现触发死点的现象。
同时,所述主驱动轮组件200、副驱动轮组件300分别在所述自移动机器人本体1000的两侧对称设置;即:驱动电机100在本体1000的左、右两侧分别设置,每一 侧的主驱动轮201和副驱动轮301组成双联驱动轮。
结合图4并对照图6,本发明其中一个实施例的具体动作过程是这样的:
当该自移动机器人在平整行走表面A上正常行走作业时,连杆组件400和副驱动轮组件300保持悬空状态。具体来说,连杆组件400中的直臂402通过扭簧404给触发端401提供向上的力,使触发端401悬空离地,与行走表面A之间保持一定距离。与此同时,连臂403在拉簧405的提拉作用下使副驱动轮组件300也处于收紧状态,副驱动轮301也悬空离地,与行走表面A之间保持一定距离。此时,副驱动轮组件300没有任何作用。如图6所示,在自移动机器人遇到障碍B时,在其运行方向上,由于触发端401的设置位置位于主主驱动轮201的前方,因此,触发端401会首先接触到障碍物B,并在设置在所述触发端401两侧的导轮406的导引作用下被障碍物B抬高,基于杠杆原理,此时扭簧404对连臂403施加向下的力,使得副驱动轮组件300克服拉簧405所提供的上拉力而下降到行走表面A,在实际应用中,可以控制副驱动轮301下降的高度,使其实际位置略低于行走表面A,这样才能使行走表面A通过副驱动轮301对整个***提供前进的水平牵引力,通过主主驱动轮201在障碍物B上的摩擦力和副驱动轮301在行走表面A上的摩擦推力共同作用,使自移动机器人越障能力提升。
实施例二
由上述内容可知,本发明所提供的这种自移动机器人是通过触发端与障碍物的接触触发启动副驱动轮组件的,属于机械式触发。对于本领域技术人员来说,同样可以通过其他替代机构实现对自移动机器人的辅助越障。
图7为本发明实施例二齿轮传动组件局部结构示意图。如图7所示,自移动机器人的连杆组件可滑动设于所述本体1000或所述主驱动轮组件200上,所述触发机构与所述连杆组件之间设有齿轮传动组件600;所述触发端遇到障碍物后被抬高,使得齿轮传动组件转动并带动所述连杆组件向下滑动,所述副驱动轮相对所述本体或所述主驱动轮组件下降与所述行走表面A接触。
本实施例中的其他技术特征与实施例一相同,请参照上述实施例一种的内容,在此不再赘述。
实施例三
图8为本发明实施例三液压传动组件局部结构示意图。如图8所示,自移动机器人的连杆组件可滑动设于所述本体1000或所述主驱动轮组件200上,所述触发机构与所述连杆组件之间设有液压传动组件700;所述触发端遇到障碍物后被抬高,压迫所述液压传动组件,使得所述连杆组件在液压传动组件压迫下向下滑动,所述副驱动轮 相对所述本体或所述主驱动轮组件下降与所述行走表面A接触。
本实施例中的其他技术特征与实施例一相同,请参照上述实施例一种的内容,在此不再赘述。
另外,除了采用上述的机械式触发方式,还可以在自移动机器人本体上设置感测装置或传感器,用来测定是否遇到了斜坡之类的障碍物,采用电子式触发的方式来启动副驱动轮组件的动作。
本发明还提供一种自移动机器人,包括自移动机器人本体1000和设置在所述本体上的控制单元和主驱动轮组件200,所述自移动机器人还包括副驱动轮组件300及触发机构,在自移动机器人前进方向上,所述触发机构设于主驱动轮201的前方;所述触发机构的触发端401遇到障碍物B后被抬高,从而对所述副驱动轮301产生向下的作用力,所述副驱动轮301在所述向下的作用力下相对所述本体下降或者提高其对行走表面A的正压力;所述触发端到所述本体底盘的距离大于所述副驱动轮到运行表面的距离。
综上所述,本发明的有益效果包括:1、副驱动轮触发机构在驱动轮外侧,触发范围大于驱动轮覆盖范围,能避免辅助越障装置的死点现象;2、可根据具体产品型号需要的越障高度,对该机构的尺寸略加调整,即可适应各种不同的高度要求;3、因触发机构跟主驱动轮接触点基本重合,可以应付复杂地面的越障要求;4、使用驱动轮外侧小空间,不影响其他元件的排布,可以广泛推广。

Claims (15)

  1. 一种自移动机器人,包括自移动机器人本体(1000)和设置在所述本体上的控制单元和主驱动轮组件(200),所述主驱动轮组件包括驱动电机(100)和主驱动轮(201),其特征在于,所述自移动机器人还包括有副驱动轮组件(300),所述副驱动轮组件包括有连杆组件(400)及设于所述连杆组件一端的副驱动轮(301),所述连杆组件可动设于所述本体或所述主驱动轮组件上;
    所述自移动机器人还包括与所述副驱动轮组件相连的触发机构,所述触发机构至少包括触发端(401),在自移动机器人前进方向上,所述触发端位于所述主驱动轮之前;
    所述触发端遇到障碍物后被抬高,从而对所述副驱动轮产生向下的作用力,所述副驱动轮在所述向下作用力下相对所述本体做下降运动或提高其对行走表面的正压力。
  2. 如权利要求1所述的自移动机器人,其特征在于,所述触发端未遇到障碍物时,所述副驱动轮悬离于行走表面;所述触发端遇到障碍物后被抬高,所述副驱动轮相对所述本体下降并与所述行走表面接触。
  3. 如权利要求1所述的自移动机器人,其特征在于,所述触发端未遇到障碍物时,所述副驱动轮贴于行走表面;所述触发端遇到障碍物后被抬高,从而对所述副驱动轮产生向下的作用力,并在所述向下的作用力下所述副驱动轮提高其对行走表面的正压力。
  4. 如权利要求1所述自移动机器人,其特征在于,所述连杆组件可旋转设于所述本体(1000)或所述主驱动轮组件(200)上,所述触发机构与所述连杆组件的另一端相连;
    所述触发端遇到障碍物后被抬高,使得所述连杆组件旋转,所述连杆组件对所述副驱动轮产生向下的作用力。
  5. 如权利要求4所述的自移动机器人,其特征在于,所述连杆组件(400)包括与所述本体(1000)或所述主驱动轮组件(200)旋转连接的连接部(410)、自所述连接部向前延伸的直臂(402)及向后延伸的连臂(403),所述触发端(401)为所述直臂的末端;所述副驱动轮(301)设于所述连臂(403)的末端,所述连臂的中部通过拉簧(405)固定在所述本体(1000)上。
  6. 如权利要求5所述的自移动机器人,其特征在于,所述直臂(402)和连臂(403)之间设有扭簧(404),当触发端(401)遇到障碍物后被抬高时,在扭簧的作用下所述连臂(403)摆动,使副驱动轮(301)下降与行走表面(A)接触。
  7. 如权利要求1所述的自移动机器人,其特征在于,所述连杆组件可滑动设于所述本体(1000)或所述主驱动轮组件(200)上,所述触发机构与所述连杆组件之间设有齿轮传动组件(600);所述触发端遇到障碍物后被抬高,使得齿轮传动组件转动并带动所述连杆组件向下滑动,所述连杆组件对所述副驱动轮产生向下的作用力。
  8. 如权利要求1所述的自移动机器人,其特征在于,所述连杆组件可滑动设于所述本体(1000)或所述主驱动轮组件(200)上,所述触发机构与所述连杆组件之间设有液压传动组件(700);所述触发端遇到障碍物后被抬高,压迫所述液压传动组件,使得所述连杆组件在液压传动组件压迫下向下滑动,所述连杆组件对所述副驱动轮产生向下的作用力。
  9. 如权利要求5所述的自移动机器人,其特征在于,所述连接部(410)与所述主驱动轮(201)的驱动轴同轴设置。
  10. 如权利要求5或6所述的自移动机器人,其特征在于,所述触发端(401)的两侧分别设有导轮(406)。
  11. 如权利要求10所述的自移动机器人,其特征在于,所述触发端(401)在朝着自移动机器人行走方向的一侧边缘设有突出部(4011)。
  12. 如权利要求1所述的自移动机器人,其特征在于,所述驱动电机(100)的输出轴(101)通过第一皮带(102)与第一皮带轮(103)相连,所述第一皮带轮与主驱动轮(201)的驱动轴同轴设置;主驱动轮的驱动轴通过第二皮带(104)与副驱动轮(301)的转轴相连;所述第二皮带和副驱动轮轴之间还包括有减速齿轮。
  13. 如权利要求1所述的自移动机器人,其特征在于,所述主驱动轮(201)和副驱动轮(301)与驱动电机(100)相连且均由所述驱动电机提供动力。
  14. 如权利要求1所述的自移动机器人,其特征在于,所述主驱动轮组件(200)、副驱动轮组件(300)分别在所述自移动机器人本体(1000)的两侧对称设置,所述触发端(401)设置在所述主驱动轮(201)的外侧。
  15. 一种自移动机器人,包括自移动机器人本体(1000)和设置在所述本体上的控制单元和主驱动轮组件(200),其特征在于,所述自移动机器人还包括副驱动轮组件(300)及触发机构,在自移动机器人前进方向上,所述触发机构设于所述主驱动轮组件的主驱动轮(201)的前方;
    所述触发机构的触发端(401)遇到障碍物后被抬高,从而对所述副驱动轮组件产生向下的作用力,所述副驱动轮组件的副驱动轮在所述向下的作用力下相对所述本体下降或者提高其对行走表面的正压力;所述触发端到所述本体的底盘的距离大于所述副驱动轮到运行表面的距离。
PCT/CN2017/099831 2016-08-31 2017-08-31 自移动机器人 WO2018041190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610790461.2 2016-08-31
CN201610790461.2A CN107791232B (zh) 2016-08-31 2016-08-31 自移动机器人

Publications (1)

Publication Number Publication Date
WO2018041190A1 true WO2018041190A1 (zh) 2018-03-08

Family

ID=61300053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099831 WO2018041190A1 (zh) 2016-08-31 2017-08-31 自移动机器人

Country Status (2)

Country Link
CN (1) CN107791232B (zh)
WO (1) WO2018041190A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108438071A (zh) * 2018-03-12 2018-08-24 苏州科技大学 具有越障功能的机器人
CN109008826A (zh) * 2018-09-10 2018-12-18 江苏美的清洁电器股份有限公司 扫地机器人和扫地机器人的行走组件
CN109397237A (zh) * 2018-10-29 2019-03-01 国网甘肃省电力公司建设分公司 一种检修机器人行走机构
CN109435677A (zh) * 2018-12-05 2019-03-08 深圳市远弗科技有限公司 一种主动越障轮组
DE102018117740A1 (de) * 2018-07-23 2020-01-23 Vorwerk & Co. Interholding Gmbh Sich selbsttätig fortbewegendes Fahrzeug mit einem Steighebel
CN112426103A (zh) * 2020-11-19 2021-03-02 温州复弘机械设备有限公司 一种越障能力强清扫垃圾彻底的扫地机器人
CN113492911A (zh) * 2021-07-05 2021-10-12 上海擎朗智能科技有限公司 底盘、移动式机器人及其过坑过坎方法
CN114610048A (zh) * 2022-02-22 2022-06-10 中国科学院沈阳自动化研究所 基于叉型摇臂轮腿复合越障机构的机器人及自主越障方法
WO2023062344A1 (en) * 2021-10-15 2023-04-20 Dyson Technology Limited Robotic vacuum cleaner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110181529B (zh) * 2019-06-17 2020-09-15 徐州瑞控机电科技有限公司 矿用无人巡检机器人
CN114424912B (zh) * 2022-02-21 2023-08-29 上海高仙自动化科技发展有限公司 清洁机器人
CN117958664B (zh) * 2024-04-02 2024-06-11 追觅创新科技(苏州)有限公司 一种清洁机器人的主动越障控制方法、***及清洁机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099157A (zh) * 2008-08-01 2011-06-15 豪雅机器人有限公司 内置有用于克服地形的辅助轮的小型移动机器人
WO2011085498A1 (en) * 2010-01-14 2011-07-21 Engineering Services Inc. Mobile robot with manipulator arm traction device
US8998215B2 (en) * 2012-12-17 2015-04-07 Vorwerk & Co. Interholding Gmbh Arrangement for overcoming an obstruction to traveling movement
CN204581162U (zh) * 2015-03-26 2015-08-26 张晓冬 智能保洁机器人
CN206105825U (zh) * 2016-08-31 2017-04-19 科沃斯机器人股份有限公司 自移动机器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2412815A1 (fr) * 2002-11-27 2004-05-27 Martin Deschambault Plate-forme robotique mobile et modulaire offrant plusieurs modes de locomotion pour effectuer des mouvements evolues en trois dimensions
CN101229825B (zh) * 2008-02-28 2010-08-25 王芷龙 双腿单支承液压步行装置及步行车
CN101890986B (zh) * 2010-06-13 2012-01-04 上海中为智能机器人有限公司 一种可变形适应全地形的机器人行走机构
CN102303655B (zh) * 2011-06-20 2012-11-07 河北工业大学 一种轮腿复合式移动机器人平台
CN102749920A (zh) * 2012-07-13 2012-10-24 太仓博天网络科技有限公司 一种基于arm7微控制器的清洁机器人控制***
CN105476560B (zh) * 2015-12-30 2018-12-21 马鞍山清净环保科技有限公司 一种墙面清洗机器人及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099157A (zh) * 2008-08-01 2011-06-15 豪雅机器人有限公司 内置有用于克服地形的辅助轮的小型移动机器人
WO2011085498A1 (en) * 2010-01-14 2011-07-21 Engineering Services Inc. Mobile robot with manipulator arm traction device
US8998215B2 (en) * 2012-12-17 2015-04-07 Vorwerk & Co. Interholding Gmbh Arrangement for overcoming an obstruction to traveling movement
CN204581162U (zh) * 2015-03-26 2015-08-26 张晓冬 智能保洁机器人
CN206105825U (zh) * 2016-08-31 2017-04-19 科沃斯机器人股份有限公司 自移动机器人

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108438071A (zh) * 2018-03-12 2018-08-24 苏州科技大学 具有越障功能的机器人
CN108438071B (zh) * 2018-03-12 2023-10-17 苏州科技大学 具有越障功能的机器人
DE102018117740A1 (de) * 2018-07-23 2020-01-23 Vorwerk & Co. Interholding Gmbh Sich selbsttätig fortbewegendes Fahrzeug mit einem Steighebel
CN109008826A (zh) * 2018-09-10 2018-12-18 江苏美的清洁电器股份有限公司 扫地机器人和扫地机器人的行走组件
CN109008826B (zh) * 2018-09-10 2024-04-30 美智纵横科技有限责任公司 扫地机器人和扫地机器人的行走组件
CN109397237A (zh) * 2018-10-29 2019-03-01 国网甘肃省电力公司建设分公司 一种检修机器人行走机构
CN109435677B (zh) * 2018-12-05 2023-09-19 深圳市远弗科技有限公司 一种主动越障轮组
CN109435677A (zh) * 2018-12-05 2019-03-08 深圳市远弗科技有限公司 一种主动越障轮组
CN112426103A (zh) * 2020-11-19 2021-03-02 温州复弘机械设备有限公司 一种越障能力强清扫垃圾彻底的扫地机器人
CN112426103B (zh) * 2020-11-19 2022-01-21 深圳市升阳升人居环境服务有限公司 一种越障能力强清扫垃圾彻底的扫地机器人
CN113492911A (zh) * 2021-07-05 2021-10-12 上海擎朗智能科技有限公司 底盘、移动式机器人及其过坑过坎方法
WO2023062344A1 (en) * 2021-10-15 2023-04-20 Dyson Technology Limited Robotic vacuum cleaner
CN114610048B (zh) * 2022-02-22 2024-04-26 中国科学院沈阳自动化研究所 基于叉型摇臂轮腿复合越障机构的机器人及自主越障方法
CN114610048A (zh) * 2022-02-22 2022-06-10 中国科学院沈阳自动化研究所 基于叉型摇臂轮腿复合越障机构的机器人及自主越障方法

Also Published As

Publication number Publication date
CN107791232B (zh) 2023-12-19
CN107791232A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2018041190A1 (zh) 自移动机器人
CN206105825U (zh) 自移动机器人
JP4721461B2 (ja) 走行用リンク型ダブルトラック装置
KR100518819B1 (ko) 이동로봇
WO2021082290A1 (zh) 清洁机器人底盘以及清洁机器人
US11279043B2 (en) Electronic guide dog
CN106965863B (zh) 单履带的轮-履复合式的可被动自适应的机器人移动平台
CN108313153A (zh) 一种无人驾驶阶梯攀爬机器人
CN105365483A (zh) 越障脚轮组件及包括该越障脚轮组件的移动式装置
CN202203599U (zh) 一种自适应管道小车
CN103750782A (zh) 窗槽清洁机器人装置
CN106627828B (zh) 摆动式升降越障机器人
KR20030088947A (ko) 계단 주행 로보트 및 그 주행방법
CN112956966A (zh) 一种可爬楼梯的清扫机器人
WO2024093362A1 (zh) 自主作业设备制动控制方法、自主作业设备及存储介质
CN210341770U (zh) 一种全浮动吸口装置
CN114766984B (zh) 一种基于可伸缩旋臂的楼梯清洁机器人
KR20130124006A (ko) 이동형 로봇
CN107310654A (zh) 一种六足爬壁爬杆两用攀爬机器人
CN115158503B (zh) 一种基于智能优化算法的多地形适用型移动机器人
CN114343506B (zh) 一种多形态楼阶清扫机器人
KR20180122242A (ko) 휠체어용 캐스터
CN115778221B (zh) 一种爬壁清洁机器人及其跨障方法
CN219070117U (zh) 一种清洁机器人清洁组件及清洁机器人
CN108584623A (zh) 用于代步器的防碰撞机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845492

Country of ref document: EP

Kind code of ref document: A1