WO2018021855A1 - Cas9 단백질 및 가이드 RNA를 포함하는 안질환 치료용 약학 조성물 - Google Patents

Cas9 단백질 및 가이드 RNA를 포함하는 안질환 치료용 약학 조성물 Download PDF

Info

Publication number
WO2018021855A1
WO2018021855A1 PCT/KR2017/008122 KR2017008122W WO2018021855A1 WO 2018021855 A1 WO2018021855 A1 WO 2018021855A1 KR 2017008122 W KR2017008122 W KR 2017008122W WO 2018021855 A1 WO2018021855 A1 WO 2018021855A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
gene
vegf
vegfa
cas9
Prior art date
Application number
PCT/KR2017/008122
Other languages
English (en)
French (fr)
Inventor
김진수
김정훈
박성욱
김경미
Original Assignee
기초과학연구원
서울대학교산학협력단
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기초과학연구원, 서울대학교산학협력단, 서울대학교병원 filed Critical 기초과학연구원
Priority to EP17834796.9A priority Critical patent/EP3492096A4/en
Priority to JP2019504798A priority patent/JP6875500B2/ja
Priority to CN201780058793.4A priority patent/CN109789185A/zh
Publication of WO2018021855A1 publication Critical patent/WO2018021855A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Definitions

  • composition for treating ocular disease including Cas9 protein and guide RNA
  • compositions for the prevention and / or treatment of ocular diseases comprising Cas9 protein and VEGF-targeting guide RNA and ribonucleic acid proteins comprising Cas9 protein and VEGF-targeting guide RNA.
  • RNA-induced genome correction (RNA-guided genome surgery or RNA-guided genome editing) using CRISPR-Cas9 nuclease is expected to be helpful in the treatment of various genetic diseases. The therapeutic effect of clease is seldom revealed.
  • AMD Age-related Macul ar Di sease
  • AMD Age-related Macul ar Di sease
  • AMD is a major cause of blindness in the elderly population of developed countries.
  • Choroidal neovascul ar izat ion (CNV) is a major pathological feature of neovascular AMD, mainly caused by angiogeni cytokines such as vascular endothelial growth factor A (VEGF A).
  • VEGF A vascular endothelial growth factor A
  • monoclonal antibodies or aptamers targeting VEGF-A have mainly been developed as therapeutic agents for AMD.
  • VEGF-A is continuously expressed and secreted in retinal cells, these anti- ⁇ agents have a problem that should be administered at least seven times a year.
  • the present specification proposes a technique that enables long-term or permanent treatment of ocular disease, through the inactivation of VEGF-A, by lowering its level below the pathological threshold.
  • One example provides a composition for preventing and / or treating eye diseases, including an agent for inactivating the VEGF-A gene.
  • the agent for inactivating the VEGF-A gene may be at least one selected from the group consisting of all proteins, nucleic acid molecules (DNA and / or RNA), chemi cal drug, etc., which can inactivate the VEGF-A gene. Can be.
  • the agent for inactivating the VEGF-A gene may include a guide RNA that targets the Cas9 protein and the VEGF 'A gene.
  • Another example provides a method of preventing and / or treating ocular disease comprising inactivating the VEGF-A gene.
  • Inactivating the VEGF-A gene may be performed by administering an agent inactivating the VEGF-A gene to a patient in need of prevention and / or treatment of eye diseases.
  • Inactivation of the VEGF-A gene may be performed by RNA-guided genome surgery (RNA-guided genome surgery or RNA® guided genome editing), in which case the step of inactivating the VEGF-A gene is Cas9 protein and Guide RNA targeting the VEGF-A gene to a patient in need of prevention and / or treatment of eye disease.
  • Another example provides a use for the prevention and / or treatment of an ocular disease of an agent that inactivates the VEGF-A gene, or for use in the manufacture of a therapeutic for an ocular disease.
  • Another example provides guide RNAs for targeting a specific target or target regi on of the VEGFA gene.
  • VEGFA gene specific ribonucleic acid protein comprising a guide RNA comprising a Cas9 protein and a VEGFA gene specific targeting sequence.
  • Another example provides a pharmaceutical composition comprising the guide RNA or VEGFA gene specific ribonucleic acid protein (RNP).
  • RNP VEGFA gene specific ribonucleic acid protein
  • Another example provides a method of treating or preventing ocular disease, comprising administering the VEGFA gene specific ribonucleic acid protein (RNP) to a patient in need of treatment and / or prevention of eye disease.
  • RNP VEGFA gene specific ribonucleic acid protein
  • the present invention provides techniques for treating ocular diseases, such as ocular diseases associated with overexpression of VEGF-A, using genetic correction techniques.
  • One example provides a composition for the prevention and / or treatment of eye diseases, including an agent that deactivates the VEGF-A gene.
  • the agent for inactivating the VEGF-A gene may be at least one selected from the group consisting of all proteins capable of inactivating the VEGF A gene, nucleic acid molecules (DNA and / or RNA), chemical drugs, and the like. Can be.
  • the agent for inactivating the VEGF-A gene may be one comprising a guide RNA targeting Cas9 protein and VEGF-A gene.
  • Another example provides a method of preventing and / or treating ocular disease comprising inactivating the VEGF-A gene.
  • Inactivating the VEGF-A gene may be performed by administering an agent inactivating the VEGF-A gene to a patient in need of prevention and / or treatment of eye diseases.
  • the inactivation of the VEGF-A gene may be performed by RNA-guided genome surgery (RNA-guided genome surgery or RNA® guided genome editing), in which case the step of inactivating the VEGF-A gene is Cas9 protein and Guide RNA targeting the VEGF-A gene to a patient in need of prevention and / or treatment of eye disease.
  • the method may further comprise identifying a patient in need of prevention and / or treatment of eye disease prior to the administering step.
  • Agents that inactivate the VEGF-A gene may be administered in a pharmaceutically effective amount.
  • the VEGF-A solidifying agent inactive genes can be administered through various routes of administration, for example, it can be administered by the topical administration to the affected area, or subretinal injection of the eye.
  • VEGF-A gene which is a target of inactivation, may be located in the eye, for example, the eye in which the neovascular eye disease develops or in the lesion site of the neovascular eye disease.
  • the inactivation of the VEGF-A gene may be one or more selected from the group consisting of:
  • the agent for inactivating the VEGF-A gene may be at least one selected from the group consisting of all proteins, nucleic acid molecules (DNA and / or RNA), chemical drugs, and the like, capable of inactivating the VEGF-A gene.
  • the agent for inactivating the VEGF-A gene may include a guide RNA targeting Cas9 protein and VEGF-A gene.
  • inactivation of the VEGF-A gene may be performed by RNA-guided genome surgery or RNA-guided genome editing.
  • the inactivation of the VEGF-A gene may be one or more selected from the group consisting of:
  • the inserted nucleotides are each independently selected from A, T, C, and G; And (4) combinations thereof.
  • the agent for inactivation of the VEGF-A gene comprises a VEGF-A gene specific guide comprising a Cas9 protein or a gene encoding the same (DNA or mRNA) and a targeting sequence that specifically binds to a target site of the VEGF-A gene.
  • RNA or DNA encoding the same may be included.
  • a complex formed by combining Cas9 protein with VEGF-A gene specific guide RNA ie, pre-assembled prior to administration
  • VEGF-A gene specific guide RNA ie, pre-assembled prior to administration
  • DNA encoding the Cas9 protein and DNA encoding the VEGF-A gene specific guide RNA are each administered (or delivered) in vivo or in cells through separate vectors, or in vivo together through one vector Administered (or delivered) intracellularly to form complexes in vivo or in cells,
  • RNA complex form comprising RNA (mRNA) and VEGF-A gene specific guide RNA encoding Cas9 protein, or
  • the RNA complex may be included in a conventional RNA carrier and delivered in the cell or in vivo.
  • a complex formed by combining Cas9 protein with VEGF-A gene specific guide RNA ie, pre-assembled prior to administration
  • VEGF-A gene specific guide RNA ie, pre-assembled prior to administration
  • ribonucleoprotein ie, ribonucleoprotein, prior to administration to a living body (or lesion site) or cells, etc .
  • RNP in this case, delivered through the cell membrane in the form of ribonucleic acid protein, intracellularly or in vivo
  • a recombinant vector comprising the gene encoding the Cas9 protein (DNA) and the DNA encoding the VEGF-A gene specific guide RNA together in one vector or in separate vectors (ie encoding the Cas9 protein) Recombinant vector and VEGF-A gene specific guide RNA comprising a gene A recombinant vector comprising DNA encoding the recombinant vector), or a recombinant cell comprising the recombinant vector;
  • RNA complex comprising an RNA (mRNA) encoding the Cas9 protein and a VEGF-A gene specific guide RNA;
  • a recombinant vector comprising a gene encoding the Cas9 protein (DNA) and a DNA encoding the VEGF-A gene specific guide RNA, Cas9 Recombinant vector or VEGF-A gene specific guide RNA containing protein encoding RNA (mRNA) and VEGF-A gene specific guide RNA, or Cas9 protein encoding gene (DNA), or correlated with sequence Administration can be carried out sequentially.
  • the guide RNA is targeted (eg, having a complementary nucleic acid sequence) that is capable of hybridizing with the nucleic acid sequence of either strand (eg, the strand complementary to the strand where the PAM sequence is located) of a particular target site of the VEGFA gene. It may be to include a (targeting sequence).
  • VEGFA gene specific ribonucleic acid protein comprising a guide RNA comprising a Cas9 protein and a VEGFA gene specific targeting sequence.
  • Another example provides a pharmaceutical composition comprising the guide RNA or VEGFA gene specific ribonucleic acid protein (RNP).
  • the pharmaceutical composition may be used for the treatment and / or prevention of eye diseases such as macular degeneration (eg, senile macular degeneration (AMD), etc.), retinopathy (eg, diabetic ret inopathy, etc.). .
  • macular degeneration eg, senile macular degeneration (AMD), etc.
  • retinopathy eg, diabetic ret inopathy, etc.
  • VEGFA gene specific ribonucleic acid protein RNP
  • RNP VEGFA gene specific ribonucleic acid protein
  • the VEGFA gene specific ribonucleic acid protein (RNP) may be administered in a pharmaceutically effective amount, for example, by topical administration of the ocular lesion or by subretinal injection.
  • the ocular disease may be an ocular disease associated with overexpression of vascular endothelial growth factor (VEGF) such as VEGF-A, and may be neovascular eye disease.
  • VEGF vascular endothelial growth factor
  • the neovascular eye disease can be any ocular disease caused by neovascular izat ions, such as choroidal neovascularization (CNV), for example macular degeneration (eg, age-related macular degeneration). related macular degeneration (AMD), myopic choroidal neovascularization, etc.), retinopathy (eg diabetic retinopathy, ischemic retinopathy, branch retinal vein occlusion) ), Central retinal vein occlusion, retinopathy of prematurity, and the like.
  • CNV choroidal neovascularization
  • AMD macular degeneration
  • AMD myopic choroidal neovascularization
  • retinopathy eg diabetic reti
  • VEGF-A Vascular endothelial growth factor A
  • mammals including primates such as humans, monkeys, and rodents such as rats and mice.
  • Hdeli an VEGF-A eg, NCBI Accession No. NP_001020537.
  • NP X 1020421, P_001020428, NP_001103736, NP_001103737, NP_001103738, P_001273985, NP_001273986, NP_001273987, NP_001303970, NP_033531 and the like.
  • Cas9 protein may be (isolated), for example, derived from Streptococcus py 0 «2e S ).
  • 'Target gene' refers to a gene to be genetically modified (VEGF-A gene),
  • 'Target site or target region' is a gene correction (cutting and deletion of nucleotides) by Cas9 in the target gene VEGF-A gene, Addition, and / or substitution) refers to the gene site in which the maximum length located adjacent to the 5 'end and / or 3' end of the PAM sequence recognized by the Cas9 protein in the target gene VEGF-A gene) is about 50 bp. Or a genetic site of about 40 bp (in which case genetic correction can occur at one or two target sites of two pairs of chromosomes in a cell),
  • the 'target sequence' is a gene region that is capable of hybridizing with guide RNA in the target gene iVEGF- ⁇ gene, and is the 5 'end and / or 3 of the PAM sequence recognized by the Cas9 protein in the target gene (VEGF-A gene).
  • VEGF-A gene means a continuous 17bp to about 23bp nucleotide sequence, for example, that which is located 20bp long, adjacent to the terminal, and
  • the 'targeting sequence' may be a guide RNA region capable of hybridizing with a target sequence in the target gene, and may be a guide RNA region including 17 to 23, for example, 20 nucleotides.
  • the target sequence is represented by the nucleic acid sequence of the strand where the PAM sequence is located among the two DNA strands of the corresponding gene region of the target gene VEGF-A gene).
  • the targeting sequence included in the guide RNA is a target gene (except for changing T to U in terms of RNA characteristics).
  • VEGF-A gene has the same nucleic acid sequence as the target sequence located in.
  • the targeting sequence of the guide RNA and the target sequence of the target gene VEGF-A gene are represented by the same nucleic acid sequence except that T and U are mutually altered.
  • the PAM sequence is -NGG-S 1 (N is A, T, G, or C), and the target site is the target gene VEGF-A.
  • Gene region located adjacent to the 5 'end and / or 3' end of the 5'-NGG-3 'sequence in the gene for example, a gene site having a maximum length of about 50 bp or about 40 bp.
  • nucleic acid sequence target site
  • nucleic acid sequence target site
  • the nucleotides to be inserted are each independently selected from A, T, C, and G; or
  • the guide RNA may be at least one selected from the group consisting of CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA), and single guide RNA (sgRNA), and specifically, a double-linked crRNA and a tracrRNA.
  • crRNA CRISPR RNA
  • tracrRNA trans-activating crRNA
  • sgRNA single guide RNA
  • Strand crRNA tracrRNA complex, or a single strand guide RNA (sgRNA) in which the crRNA or part thereof and the tracrRNA or part thereof are linked by an oligonucleotide linker.
  • the specific sequence of the guide RNA may be appropriately selected according to the type of Cas9 protein (ie, the derived microorganism), which is easily understood by those skilled in the art.
  • crRNA When using Cas9 protein from Streptococcus pyogenes, crRNA can be expressed by the following general formula (1):
  • N cas9 is a targeting sequence, a site determined according to a target sequence of a target gene ( ⁇ gene), and 1 represents the number of nucleotides included in the targeting sequence, and an integer of 17 to 23 or 18 to 22, for example, 20 There is;
  • the site comprising 12 consecutive nucleotides (GUUUUAGAGCUA) (SEQ ID NO: 359) located adjacent to the 3 'direction of the target sequence is an essential part of the crRNA
  • X cas9 is a site comprising m nucleotides located at the 3 ′ end of the crRNA (ie, located adjacent to the 3 ′ direction of the essential part of the crRNA), where m is an integer from 8 to 12, such as 11
  • the m nucleotides may be the same as or different from each other, and may be independently selected from the group consisting of A, U, C, and G.
  • the X cas9 may include UGCUGUUUUG (SEQ ID NO: 360), but is not limited thereto.
  • tracrRNA may be represented by the following general formula (2):
  • the site marked (UA (X: GUUAAMUMG (UAGUCCGUUAUCMCUUGAAA GUGGCACCGAGUCGGUGC) (SEQ ID NO: 361)) is an integral part of tracrRNA,
  • Y caS 9 is a site comprising P nucleotides located adjacent to the 5 1 end of the essential part of the t racrRNA, p may be an integer of 6 to 20, such as 8 to 19, wherein the p nucleotides are They may be the same as or different from each other, and may be independently selected from the group consisting of A, U, (: and G).
  • sgRNA is a crRNA portion comprising the targeting sequence and the essential portion of the crRNA and a tracrRNA portion comprising the essential portion (60 nucleotides) of the tracrRNA form a hairpin structure (stem-loop structure) through the oligonucleotide linker.
  • the oligonucleotide linker corresponds to the loop structure.
  • the sgRNA is a double-stranded RA molecule in which a crRNA portion including a targeting sequence and an essential portion of the crRNA and a t racrRNA portion including an essential portion of the tracrRNA are bonded to each other.
  • the 5 'end may have a hairpin structure linked through an oligonucleotide linker.
  • the sgRNA can be represented by the following general formula 3: Ligonucleotide linker)-
  • the oligonucleotide linker included in the sgRNA may include 3 to 5, for example, 4 nucleotides, and the nucleotides may be the same or different from each other, and each independently in the group consisting of A, U, C, and G. Can be selected.
  • Said crRNA or sgRNA has a 5 'terminus (ie,
  • 5 ′ terminal may further comprise 1-3 guanine (G).
  • the tracrRNA or sgRNA may further comprise a termination region comprising 5 to 7 uracils (U) at the 3 1 end of the essential portion (60nt) of the tracrRNA.
  • the target sequence of the target gene (1 ⁇ 2 ⁇ gene) may be selected from the group consisting of:
  • Vegfa-V. 5 1 -CTCCTGGAAGATGTCCACCA-3 '(SEQ ID NO: 1) (PAM SEQ ID NO: GGG); Vegfa-2: 5 1 -AGCTCATCTCTCCTATGTGC-3 ′ (SEQ ID NO: 2) (P ⁇ SEQ ID NO: TGG); Vegfsr ⁇ . 5 '-GACCCTGGTGGACATCTTCC-3' (SEQ ID NO: 3) (PAM SEQ ID NO: AGG); VegfrA: 5'-ACTCCTGGAAGATGTCCACC-3 '(SEQ ID NO: 4) (PAM SEQ ID NO: AGG);
  • Vegfa-5 5'- C (TTACCTTGGCATGGTGG-3 1 (SEQ ID NO: 5) (PAM sequence:
  • Vegfa-6 5'-GACCGCTTACCTTGGCATGG-3 '(SEQ ID NO: 6) (PAM sequence:
  • Vegfa-7 5'- CACGACCGCTTACCTTGGCA— 3 '(SEQ ID NO: 7) (PAM sequence:
  • Vegfa-8 5'-GGTGCAGCCTGGGACCACTG-3 1 (SEQ ID NO: 8) (PAM sequence: AGG).
  • the target sequences are well-preserved sequences between mammalian species, eg, present in both humans and rodents (eg mice).
  • the target sequence may include a nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
  • the target sequence is well conserved between mammalian liver, such as the human VEGF-A gene and the mouse ⁇ gene, and genetic modification at the on target site.
  • Very good efficiency e.g. inde l frequency (%)
  • the number of mi smatching nuc leot i de is less than three, less than two, one, or zero (of ft arget)
  • the safety is excellent because there is very little or no chance of genetic correction occurring outside of the on target (of the f-target ef fect).
  • an example of the present invention is a VEGF—A comprising the above guide RNA or DNA encoding the same and Cas9 protein or gene encoding the same (DNA or mRNA).
  • a composition for genetic correction may include a ribonucleic acid protein comprising a guide RNA and a Cas9 protein. At this time, the ribonucleic acid protein may be pre-assembled before administration to a living body or cells.
  • a targeting sequence of a guide RNA capable of hybridizing with a target site of a target gene is 50% or more with the nucleotide sequence of the complementary strand of the DNA strand where the target sequence is located (ie, the DNA strand where the PAM sequence is located).
  • the targeting sequence of crRNA or sgRNA '(Ur 1 may be one having the same sequence as the target sequence of SEQ ID NOS: 1 to 4 above, provided that T is replaced with U.) That is, crRNA or sgRNA is' (N ⁇ may be one comprising a targeting sequence selected from SEQ ID NOs: 9-16:
  • the crRNA or sgRNA may comprise SEQ ID NO: 9 or SEQ ID NO: 10 as the targeting sequence.
  • it is, to use a modified form of RNA in order to solve the problem of reduction when passing in vivo or in a cell in the existing RA 'generated cell viability (cell viability).
  • RNA modified to not include a phosphate-phosphate bond at the 5 'end of the RNA eg, do not include triphosphate or diphosphate at the 5' end
  • the sgRNA (eg, chemically synthesized sgRNA) may comprise one or more (eg, 1-5, or 2-4) modified ribonucleic acids at the 5 'end and / or 3' end, Modifications can then include phosphorothioate and / or modifications of the 2 'position of ribose (eg, 2'-acetyl at ion, 2' methyl at ion, or other modifications).
  • the modified sgRNA has a 2'-0 position of ribose at three nucleotides located at the 5 'and 3' ends, respectively, with methylation (addition of methyl group) and / or phosphorothioate backbone. It may include a transformation into).
  • a guide RNA is provided comprising a target sequence selected from SEQ ID NOs: 1-4.
  • transduction of the guide RNA and Cas9 protein into cells is performed by directly combining the preassembled guide RNA and Cas9 protein complex (ribonucleic acid protein) by conventional methods (eg, electroporation, lipofection, etc.).
  • DNA molecules encoding or introducing guide RNA and genes encoding Cas9 protein (DNA or mRNA) (or at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, Genes having at least 98% or at least 99% sequence homology) can be introduced into cells in a single vector or in a separate vector (e.g., a fulllasmid, viral vector, etc.) or performed via mRNA delivery. Can be.
  • the vector may be a viral vector.
  • the viral vectors are retrovirus, adenovirus, parvovirus (e.g., adeno-associated (adenoassociated) virus (AAV)), coronavirus, ortho myxovirus voice gadik 1 RNA viruses (e.g., influenza virus), such as (orthomyxovirus), Lab Positive-strand RNA viruses such as rhabdoviruses such as rabies and vesicular stomatitis viruses, paramyxoviruses (eg, Heungseng and Sendai, alphaviruses, and picornaviruses) Field, and Double-stranded DNA viruses, including herpesviruses (eg Herpes Simplex virus types 1 and 2, Epstein-Barr virus, cytomegalovi rus) adenovirus, Poxvi rus (eg, vaccinia, fowlpox, and canarypox) and the like.
  • herpesviruses eg
  • the Cas9 protein, guide RNA, ribonucleic acid protein comprising the same, or a vector comprising at least one of them may be electroporation, lipofection, viral vector, nanoparticulates, as well as PTD. ⁇ by a suitable method selected from among (protein trans locat ion domain) fusion protein, a variety of methods known in the art such as can be delivered in vivo or in cells.
  • the Cas9 protein and / or guide RNA further comprise a nuclear local signal (NLS) that is commonly available. can do.
  • NLS nuclear local signal
  • the Cas9 protein may be isolated from a microorganism, or may be non-naturally produced by a recombinant method or a chemical synthesis method. RNA may be produced recombinantly or chemically.
  • VEGF comprising a VEGF-A gene specific guide RNA or a DNA encoding the VEGF-A comprising a Cas9 protein or a gene encoding the same ((DNA or mRNA)) and a targeting sequence that specifically binds to a target site of the A gene.
  • Agents that inactivate the -A gene, or VEGF-A gene specific ribonucleic acid protein may be administered in vivo through a variety of routes of administration, including but not limited to ocular diseases associated with ocular disease VEGF-A gene overexpression) It can be administered to the eye in the path of such local administration or subretinal administration, the site.
  • the agent for inactivating the VEGF-A gene or the VEGF-A gene-specific ribonucleic acid protein is administered to all mammals, such as humans and monkeys, who are suffering from or at risk of suffering from VEGF-A gene overexpression.
  • Animals selected from primates, rodents such as mouse rats, cells isolated therefrom (eg, retinal pigment epithelial cells (RPE), retinal pigment) Epithelial cells (RPE) / choroid / scleral complex (RPE / choroid / scleral complex), etc.) or tissue (ocular tissue), or culture thereof.
  • Agents that inactivate the VEGF-A gene or VEGF-A gene specific ribonucleic acid protein may be administered in a "pharmaceutically effective amount" or included in pharmaceutical compositions.
  • “Pharmaceutically effective amount” means the amount that will produce the desired effect at the site of application, ie VEGF-A genetic correction effect, including the method of formulation, mode of administration, age, weight, sex, morbidity, time of administration, route of administration It could be prescribed in various ways by factors such as discharge rate, reaction response. ⁇ Effects of the Invention ⁇
  • the VEGF-A gene correction technique proposed herein can efficiently and safely perform genetic correction by exhibiting a very low of f-target ef fect as well as a high genetic correction efficiency, thereby pathologically determining VEGF-A protein levels. Lowering below the threshold enables long-term or permanent treatment of eye diseases associated with VEGF-A overexpression.
  • La shows target site sequences of the Vegfa / VEGFA locus of mouse NIH3T3 cells and human ARPE-19 cells (PAM sequence: blue); sgRNA target sequence: blue).
  • Figure lb shows the mutations induced by the introduction of plasmids containing Vegfa-specific Cas9 RNPs or their coding sequences in NIH3T3 and ARPE-19 cells through T7 endonuclease KT7E1) analysis.
  • FIG. Lc is a graph showing mutation frequency induced by introduction of a Vegfa-specific Cas9 RNP comprising Vegfa-1 sgRNA or a plasmid comprising a coding sequence thereof in NIH3T3 and ARPE-19 cells.
  • FIG. ID shows mutant DNA sequences at representative Vegfa / VEGFA loci induced by Vegfa-specific Cas9 RNPs comprising Vegfa-1 sgRNA in NIH3T3 and ARPE—19 cells.
  • FIG. Le contains Vegfa-1 sgRNA in conf luent ARPE-19 cells
  • FIG. is a graph showing the mutation frequency induced by the introduction of Vegfa-specific Cas9 RNP.
  • FIG. If is a graph showing VEGFA mRNA levels in conf luent ARPE-19 cells transfected with Vegfa-specific Cas9 RNP containing Vegfa-1 sgRNA.
  • Lg is a graph showing VEGFA protein levels in conf luent ARPE-19 cells transfected with Vegfa-specific Cas9 RNP containing Vegfa-1 sgRNA.
  • Figure lh shows the introduction of a plasmid comprising / a to specific Cas9 RNPs or their coding sequences comprising four sgRNAs (Vegfa-1 sgRNA, Vegfa-2 sgRNA, Vegfa-3 sgRNA, and Vegfa-4 sgRNA). It is a graph showing the frequency of mutations in NIH3T3 cells caused by.
  • 2A shows confocal microscopy of NIH3T3 cells 24 hours after transfection with Cy3 labeled Cas9 RNP (Cy3 labeled Cas9 and Vegfa-1 sgRNA complex) or Cy3 labeled Cas9 alone (control).
  • FIG. 2B shows the ratio of Cy3 positive nucleus counts to total DAPI positive nucleus counts 24 hours after transfection with Cy3 labeled Cas9 RNP or Cy3 labeled Cas9 alone (100 * [Cy3 positive nucleus counts] / [total DAPI positive nucleus counts] ) Is a graph.
  • Figure 2c shows the results of analysis of T7E1 assay mutations induced in NIH3T3 cells 24 hours after transfection.
  • Figure 2d is a graph showing the frequency of mutations induced in NIH3T3 cells 24 hours after transfection.
  • FIG. 2E is a fluorescence microscope image of RPE f at-mount under fluorescence microscopy at day 3 after injection of Cy3-labeled Cas9 RNP into the mouse eye.
  • FIG. 2E is a fluorescence microscope image of RPE f at-mount under fluorescence microscopy at day 3 after injection of Cy3-labeled Cas9 RNP into the mouse eye.
  • FIG. 2F shows indel s derived in vivo from genomic DNA isolated from retinal pigment epithelial (RPE) / choroid / sclera complex (RPE / choroi d / scleral compl ex) 3 days after Cy3 labeled Cas9 RNP injection
  • RPE retinal pigment epithelial
  • choroid / sclera complex RPE / choroi d / scleral compl ex
  • FIG. 2H is a fluorescence microscopy image of the distribution of retinal pigment epithelial cells (RPE) in the retinal pigment epithelial cells (RPE) / choroid / scleral complex (RPE).
  • RPE retinal pigment epithelial cells
  • FIG. 2i shows Western blotting of Cas9 protein levels in RPE / choroid / sclera complexes at 24 and 72 hours post injection.
  • 3A is a diagram schematically showing a test procedure of Example 3.
  • FIG. 3b is a photograph visualizing laser-induced CNV stained with i solect in B4 (IB4) in C57BL / 6J mice injected with Rosa26-specific Cas9 RNP (control) or Vegfa-specific Cas9 RNP, 7 days after injection.
  • 3C is a graph showing the CNV area of C57BL / 6J mice injected with Vegfa-specific Cas9 RNP compared to the CNV area of the control group injected with Rosa26-specific Cas9 RNP.
  • 3D is a graph showing Vegfa protein expression levels in the CNV region.
  • 3E is a graph showing Indel frequency (%) at the Vegfa target site in the RPE complex.
  • 3F is a graph showing Indel frequency (%) at the Rosa26 target site in the RPE complex.
  • Figure 3g is a photograph showing the results of visualizing the laser-induced CNV structure of the cross section (cross sect m) by hematoxyl in & eosin staining.
  • 3H shows CNV samples for use in mutation analysis via targeted deep sequencing. .
  • FIG. 3I is a photograph of the laser-induced CNV visualized 7 days after laser treatment.
  • FIG. 4A is a Genome-wide Cicos plot showing cut sites in vitro.
  • 4B shows a Sequence logo of 42 sequences, including 41 Digenome-capture sites (see Table 5) and On—target sequences.
  • 4C shows the of f-target site and indel frequency identified in human ARPE—19 cells.
  • a Shows a mutant DNA sequence induced by RNP
  • a shows a representative mutant DNA sequence induced by Vegfa-specific Cas9 RNP in RPE after 3 days of RNP injection
  • b is a laser induced choroidal vessel 7 days after RNP injection.
  • the mutant DNA sequence in RPE with laser-induced choroidal neovascular izat ion (CNV) is shown.
  • Figure 7a is a ⁇ ⁇ specific Cas9 RNP is a fluorescent cross-sectional images obtained from the retina of 7 days after injection Vegfaspecific Cas9-injected mice and normal control mice Cas9 specific e RNP is not injected.
  • 7B is a graph showing an opsin positive area (%).
  • 9 is a cleavage map of the pRG2 vector.
  • sgRNA was generated by in vitro transcription using T7 polymerase (New Engl nd Biolabs) according to the manufacturer's protocol. Briefly, two complementary oligonucleotides (see Table 1) were annealed and extended to generate a template of sgRNA.
  • the generated sgRNA template was combined with a T7 RNA polymerase to prepare a semiaperial fluid (40 mM Tris-HCl, 20 mM MgCl 2 , 2 mM spermidine, 1 mM DTT) containing NTPs (Jena bioscience) and RNase inhibitor (New England Biolabs). , pH7.9) and incubated for 16 hours at 37 ° C. were transferred. Transcribed sgRNAs were incubated with DNase I (New England Biolabs) at 37 ° C. for 30 minutes. sgRNA was purified using RNeasy MinElute Cleanup Kit (Qiagen) and quantified using Nano drop (Thermo Fisher Scientific).
  • sgRNAs (65zg) were incubated with CIP (Calf intestinal; 1000 units; Alkaline Phosphatase, New England Biolabs) at 37 ° C for 1 hour to remove 3-phosphate groups.
  • CIP Calf intestinal; 1000 units; Alkaline Phosphatase, New England Biolabs
  • the obtained sgRNA was purified again using RNeasy MinElute Cleanup Kit (Qiagen) and quantified using Nano drop (Thermo Fisher Scientific). All Cas9 protein and sgRNA stocks were used to test cell survival and genome editing efficiency, and high efficiency Cas9 protein and sgRNA stocks were selected and used for in vivo eye inject ion.
  • pET28-NLS-Cas9 vector (FIG. 8; Cas9: derived from Streptococcus pyogenes (SEQ ID NO: 358)) was transformed with E. coli strain BL21 (DE3), followed by treatment with 0.5 mM isopropyl ⁇ -Dl-thiogalactopyranoside (IPTG) 18 Cas9 protein expression was induced for 12 h at ° C.
  • IPTG isopropyl ⁇ -Dl-thiogalactopyranoside
  • coli cells were sonicated and lysed, centrifuged at 20,000 g for 30 minutes, soluble lysate was taken and mixed with Ni-NTA beads (Qiagen), and Cy3 dye (GE Healthcare) was added to 1 It was added in a ratio of 10 (Cas9 protein: Cy3 dye molecule). The mixture was incubated overnight (more than 12 hours) in dark and 4 ° C conditions.
  • DMEM Dulbecco's Modified Eagle Medium
  • NIH3T3 ATCC® CRL-1658 TM
  • ARPE-19 human retinal pigment epithelial cells
  • NIH3T3 and ARPE-19 cells were not tested for mycoplasma contamination).
  • NIH3T3 and ARPE-19 cells were seeded in 24-well plates in an amount of 2xl0 4 cells / well. Each well contains an antibiotic-free growth medium.
  • Cas9 protein (4 // g; Example 2) was incubated with sgRNA (2.25zg; Example 1) for 5 minutes at room temperature, followed by 50 ⁇ Opt i -MEM (Thermo Fisher Scientific) And Lipofect amine 2000 (Thermo Fisher Scientific) were added. After 10 minutes, the RNP complex was added to the cells of the 24-well plate to transfect the cells. 48 hours after transfection, cells were harvested and subjected to T7E1 analysis, targeted deep sequencing, and qPCR.
  • ARPE human retinal igment epithel ial
  • the prepared ARPE-19 cells were maintained in DMEM / F12 containing l% (v / v) FBS after reaching confluency.
  • a polarized epithelial layer was formed for this purpose.
  • ARPE—19 cells were placed in 12-well plates and transfected with Cas9 protein 8 // g, 4.5 g sgRNA and lipofectamine 2000.
  • transfection growth medium DMEM + l% (v / v) FBS
  • DMEM + l% (v / v) FBS was changed to 0.5 ml of fresh serum free medium. After 16 hours, cells and medium were harvested and subjected to targeted deep sequencing, qPCR, and ELISA. 4. Imaging and Counting of Cy3-labeled Cas9 RNP
  • Genomic DNA was isolated from cells and tissues according to the manufacturer's protocol using the DNeasy Tissue Kit (Qiagen). After amplification of the target site using PCR, the product was denatured and annealed using a thermal cycler. The primers used at this time are summarized in Table 2 below:
  • On-target and potential off-target regions were amplified from DNA. Analysis of paired sequences of PCR amplifications was performed using Illumina MiSeq (LAS Inc. Korea). Primers used are summarized in Tables 3-5:
  • TGT SEQ ID NO: TGCCTTCTCTCTTGGC CTGAACCTACTCTCAT 59
  • TGTAA SEQ ID NO: CGTGCTAC
  • OT10 GGAGTA SEQ ID NO: TATAAA (SEQ ID NO: TCACAGCGAGCCAGAA CTCTGTGCTACCTGAT 75) 76) TACA (SEQ ID NO: CTACTCAAC
  • T17 CCTATC (SEQ ID NO: GTTAAGA TAGATGAATGAGCACC CTAGACAAGAAAGGGC 103) (SEQ ID NO: 104) AGAGAAA AGTAAGAA
  • T19 ncc (SEQ ID NO: CTTCT (SEQ ID NO: TTTGGGACAAGTGTAC CTACCTTCACCTACAG 111) 112) AGAGAAC AGAAGAGA
  • 0T7 TCTT (SEQ ID NO: GAG (SEQ ID NO: TCTTCTCTTCCTGGG ATCTATACCTAGGAA 143) 144) ACCCT (SEQ ID NO: TGCAGAACAAG
  • T26 ACCAT (SEQ ID NO: CAGATT TCTAGATCACACCAT ATCTGCCAGATCAGT 219) (SEQ ID NO: 220) TGCACTCC GTCTGCTAAA
  • T31 ACCTT (SEQ ID NO: TACTG (SEQ ID NO: TCTAGAGGAGGAAAC ATCTACTTTACTGCC 239) 240) TGGAGCTTA ACCAGTGC
  • CTTCATT CTCTC (SEQ ID NO: ACGACGCTCTTCCGA ACGTGTGCTCTTCCG (SEQ ID NO: 259) 260) TCTTGCTGTC TTAG ATCTTTAACCCAGCA
  • ACTAA SEQ ID NO: TCTGGGCCCHCTGC ATCTAGTCTCCCATG
  • mouse Gapdh 5'-GCTGAGTATGTCGTGGAGTCTA-3 1 (forward; SEQ ID NO: 285) 5 '-GTGGTOACACCCATCACAA-3'(reverse; SEQ ID NO: 286);
  • VEGFA-l 5 1 -CGAGTACATCTTCAAGCCATCC-3 1 (forward; SEQ ID NO: 287), 5 1 -GGTGAGGTTTGATCCGCATAAT-3 '(reverse; SEQ ID NO: 288);
  • human VEGFA-2 5'-AGAAGGAGGAGGGCAGAAT-3 1 (forward; SEQ ID NO: 289), 5 '-CACAGGATGGOTGAAGATGTA-3'(reverse; SEQ ID NO: 290); '
  • human GAPDH 5'-CAATGACCCCTTCATTGACC-3 '(forward; SEQ ID NO: 291),
  • Genomic DNA was isolated from ARPE-19 cells (ATCC) using the DNeasy Tissue Kit (Qiagen). For digenome sequencing, genomic DNA was cut in vitro by the following method. In brief, genomic DNA (20 // g) was combined with Cas9 protein (16.7 /) and sgRNA (12.5 / g) in reaction mixture (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl 2) 100ig / ml BAS , pH 7.9) was incubated at 37 ° C for 3 hours to allow cleavage of genomic DNA by Cas9. The cleaved genomic DNA was treated with RNase A (50 // g / ml, Sigma Aldrich) at 37 ° C.
  • RNase A 50 // g / ml, Sigma Aldrich
  • RNPs composed of Cas9 protein (8), sgRNA (4.5) and Lipofectamine 2000 (2OT (v / v)) were mixed to 2 ⁇ or 2> ⁇ (injection volume).
  • the prepared RNP (2fd or 3) was injected into the subretinal space of the mouse using a Nanofil syringe equipped with a 33G blunt needle (World Precision Instruments Inc.) under a surgical microscope (Leica Microsystems Ltd.). Mouse subjects with retinal hemorrhage were excluded from the test. ⁇
  • mice were anesthetized by intraperitoneal injection of a mixture of tiletamine and zolazepam in a 1: 1 ratio of 2.25 mg / kg body weight.
  • the pupils of the mice were dilated with eye drops containing phenylephrine (0.5% (w / v)) and tropicamide (0.5% (w / v)).
  • Laser photocoagulat ion was performed using an indirect head set delivery system (Iridex) and a laser system (Ilooda).
  • the laser wavelength was 532 nm.
  • Laser parameters are as follows: spot size: 200 rni, power: 1 W, and exposure time: 100 ms.
  • Laser burns were induced at 12 o'clock (right eye) or 6 o'clock (left eye) around the modified optic disc. Only laser burns that generated bubbles without vitreous hemorrhage were included in the test subjects. Subretinal injection of RNP was performed in the quadrant of the laser image. Cas9 RNP sgRosa26 (including Rosa26 targeting sgRNA) or sgVegfai Vegfa targeting sgRNA) was randomly assigned to the left or right eye of each mouse. The bleb was made by subretinal injection of Cas9 RNP. It was confirmed that this blister overlapped with the laser burn site. Individuals with blisters superimposed on the laser burn site were later used for testing.
  • RPE spinal igment epithelium
  • choroid / sclera was immunostained by treatment at 4 ° C. overnight with isolectin-B4 (Thermo Fisher Scientific, cat. No. 121413, 1: 100).
  • the stained RPE complex was placed flat on a fluorescence microscope (Eel ipse 90i, Nikon) and observed at x40 magnification. CNV area was measured by blind observer using Image J software (1.47v, NIH).
  • LSM 710 Carl Zeiss
  • mice VEGF-A ELISA In the case of mouse VEGF-A ELISA, a total of 30 laser burns were induced in the eye, and then RNP (3) was injected into the subretinal space. Three days after injection, the entire RPE complex was separated from the retina and frozen for further analysis. Lysate cells with RIPA supernatant (50 niM Tris-HCKpH 8.0), 150 mM NaCl, 1% lgepal CA-630, 0.5% Na.deoxycholate, 0.1% SDS) and mouse VEGF Quant ikine ELISA Kit (MMV00, R & VEGF-A levels were measured according to the manufacturer's instructions.
  • RIPA supernatant 50 niM Tris-HCKpH 8.0
  • 150 mM NaCl 150 mM NaCl
  • 1% lgepal CA-630 0.5% Na.deoxycholate
  • SDS mouse VEGF Quant ikine ELISA Kit
  • sgRNAs single-chain guide RNAs
  • sgRNAs single-chain guide RNAs
  • the four sgRNAs (Vegfa-1, 2 3 and 4) were prepared with reference to Reference Example 1.
  • the targeting sequence of sgRNA targeting the target sequence of CRISPR_Cas9 in the VEGFA / Vefga gene and the number of homologous sites in the human and mouse genomes are summarized in Table 6 below:
  • Specific Cas9 RNPs containing the sgRNAs prepared as described above were transfected into mouse NIH3T3 cells and human ARPE-19 cells, respectively, to proceed with the following test.
  • Introduction of the RNPs into cells is carried out in Reference Example 3
  • the nucleic acid molecules delivered into the cells through the plasmids can be expressed in the cell (expressed as pl asmi d in the figure), or in advance a complex (or common) of the sgRNA and the recombinant Cas9 protein. Combination) was carried out in a manner of introducing into the cells using cationic lipids (Lipofectamine) (indicated by RNP in the figure).
  • the target site sequence of the Vegfa / VEGFA locus of mouse NIH3T3 cells and human ARPE ′ 19 cells is shown in FIG. La (PAM sequence: blue); sgRNA target sequence: blue).
  • Targeted deep sequencing was performed 2 days after transfection to include the four sgRNAs prepared above (Vegfa-1 sgRNA, Vegfa-2 sgRNA, Vegfa-3 sgRNA, and Vegfa-4 sgRNA).
  • T7 endonuclease UT7E1 assay (see Reference Example 5) was performed to determine the plasmid containing the Vegfa-specific Cas9 RNP comprising the Vegfa-1 sgRNA or the coding sequence thereof in NIH3T3 and ARPE-19 cells. Mutations induced by introduction were detected and shown in FIG. Lb. Arrows in FIG. Lb indicate the expected positions of the DNA bands cleaved by T7E1.
  • Vegfa-1 sgRNA out of four sgRNAs showed the highest indel efficiency in NIH3T3 cells when complexed with Cas9 and introduced into cells in R P form.
  • Vegfa-1 sgRNA with the highest indel efficiency causes mutations in NIH3T3 cells and ARPE-19 cells, in particular 82 ⁇ 5% (NIH3T3 cells) or 57 when introduced in RNP form. It has been shown to induce small insertions and indels at the target site with a frequency of ⁇ 3% (ARPE-19 cells).
  • indel efficiency was higher than that of transfection through plasmid (FIG. lc).
  • Cy3 conjugated Cas9 protein (Reference Example 4) was used, and Cy3-Cas9, with or without binding to Vegfa-1 sgRNA, was common with cationic lipids.
  • Combined transfection of NIH3T3 cells or injection of Vegfa specific Cy3 labeled or unlabeled Cas9 RNP into adult mouse eye via subretinal injection was performed to the following test.
  • T7 endonuclease KT7E1 analysis was performed 24 hours after the transfection, and mutations induced by introduction of a Vegfa-specific Cas9 RNP including Vegfa-1 sgRNA in NIH3T3 cells. was detected and shown in FIG. 2C. Arrows in FIG. 2C indicate the expected positions of the DNA bands cleaved by T7E1.
  • RPE retinal pigment epithelial cells
  • RPE retinal pigment epithelial cells
  • RPE retinal pigment epithelial cells
  • RPE choroid / scleral complex
  • DAPI positive RPE cells and other cells were counted in the high magnification field area (100 ⁇ ⁇ 100).
  • FIG. 5 The mutant DNA sequence induced by Vegfa-specific Cas9 R P (including Vegfa-1 sgRNA) in vivo is shown in FIG. 5.
  • a shows a representative mutant DNA sequence induced by Vegfa-specific Cas9 RNP in RPE after 3 days of injection
  • b shows laser-induced choroidal neovascularization (CNV) 7 days after injection
  • CNV laser-induced choroidal neovascularization
  • FIG. 2E-2G and 102-104 show in vivo results.
  • Cy3 fluorescence signal was observed in the nucleus of retinal pigment epithelial cells (RPE) (in vivo, FIG. 2E). Since RPE is a major target of NP delivery by subretinal injection, the mutation frequency can also be ideally analyzed by RPE cells alone. In practice, however, for targeted deep sequencing, it is not easy to classify RPE cells from RPE / choroid / sclera complexes.
  • Vegfa-specific Cas9 RNP Vegfa-speci ic Cas9 RNP; Vegfa
  • Rosa26-R P Rosa26 specific Cas9 RNP
  • mice with laser-induced CNV were administered by subretinal injection of pre-assembled Vegfa-specific Cas9 RNPs.
  • intraocular retinal pigment epithelial (RPE) complexes were lat-mounted and CNV regions were analyzed.
  • Genomic DNA isolated from the Cas9 RNP injection region or the opposite non-scanning region (region without RNP) was analyzed by targeted deep sequencing.
  • Vegfa ELISA was performed three days after injection. The test procedure is schematically illustrated in FIG. 3A.
  • the CNV area was evaluated to evaluate the therapeutic effect.
  • the CNV area of C57BL / 6J mice injected with Vegfa-specific Cas9 RNP was measured to determine the concentration of the Rosa26-specific Cas9 RNP injected control group.
  • FIG. 3g Laser-induced CNV structure of the cross section of the sample was visualized by hematoxylin & eosin staining and is shown in FIG. 3g.
  • the yellow line represents the CNV border and the white triangle represents the retinal pigment epithelial (RPE) layer in the RPE / choroid / sclera complex.
  • RPE retinal pigment epithelial
  • FIG. 3H Representative CNV samples for use in mutation analysis via targeted deep sequencing are shown in FIG. 3H.
  • the red line represents the border of the RPE / choroid / sclera complex for mutation analysis.
  • RPE cells were mainly outside the CNV region, indicated by yellow lines. '
  • FIG. 3I Laser-induced CNV 7 days after laser treatment is shown in FIG. 3I. Endothelial cells costained with IB4 marker and DAPI were recruited to the CNV region (center).
  • the indel frequency at the target site (see FIG. 5B) of each RNP in Vegfa-specific Cas9 RNP-treated CNV and Rosa26-R P-treated CNV, respectively, was 3.5 ⁇ .
  • Figure 4a is a Genome-wide Circos plot showing the in vitro cleavage site, human genomic DNA is shown in red, RGEN-digested genomic DNA is shown in blue.
  • a sequence logo of 42 sequences including 41 Di genome-capture sites (see Table 5) and 0n_target sequences is shown in FIG. 4B.
  • FIG. 4C The off-target sites and indel frequencies identified in human ARPE-19 cells by targeted deep sequencing are shown in FIG. 4C.
  • mismatched nucleotides are shown in red and PAM sequences are shown in blue.
  • RP11-57C13.3 SEQ ID NO: 357
  • targeted deep sequencing was performed using genomic DNA isolated from ARPE-19 cells transfected with Vegfa-specific Cas9 RNP ( See FIG. 4C). As a result, these sites were efficiently cleaved in vitro, but the off-target indel frequency in all 41 cleavage sites did not exceed the sequencing error rate (average 0.1%).
  • modified gRNAs with improved specificity Fu, Y., Sander, JD, eyon, D., Cascio, VM & Joung, JK Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.Nature biotechnology 32 279-284 (2014); Cho, SW et al.
  • the Vegfa-specific Cas9 RNP comprising the sgRNA having the Vegfa targeting sequence provided herein shows very high specificity (in vivo and in vitro) in both mouse and human.
  • Example 5 Side Effects Test of Specific Cas9 RNP
  • senile macular degeneration AMD
  • diabetic retinopathy Another major concern when mutating the Vegfa gene for the treatment of eye diseases such as senile macular degeneration (AMD) or diabetic retinopathy is the role of .Vegfa in nutritional aspects in the eye.
  • the most serious change in Vegfa mutations is the cone dysfunction, observed three days after conditional deletion of the Vegfa gene in mouse RPE.
  • the opsin positive region was observed with a fluorescence microscope with reference to Reference Example 12, and the area thereof was calculated, and FIG. 7A ( Fluorescence image) and FIG. 7B (opsin positive region (%)).
  • FIG. 7A shows from the retinas of normal C57BL / 6J mice injected with Vegfa pecific (normal mice subjected to RNP injection only without laser treatment) and normal control mice not injected with a-specific Cas9 RNP 7 days after Ig " jVspecific Cas9 RNP injection.
  • the e ⁇ / a-specific Cas9 RNP provided herein had no difference in the opsin positive regions of the cones compared to the untreated normal controls even at 7 days after the treatment. This means that no malfunction occurred.
  • the Ke ⁇ / a-specific Cas9 RNP specifically mutates only the target sequence of the ⁇ " / a gene, and that this mutation does not cause serious side effects.
  • treatment After 3 days no side effect Compared with that, no adverse effects occurred even after 7 days of treatment with ⁇ / a to specific Cas9 RNP.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

Cas9 단백질 및 VEGF-A를 표적으로 하는 가이드 RNA를 포함하는 안질환의 예방 및/또는 치료용 약학 조성물 및 Cas9 단백질 및 VEGF-A를 표적으로 하는 가이드 RNA를 포함하는 리보핵산단백질이 제공된다.

Description

【명세세
【발명의 명칭】
Cas9 단백질 및 가이드 RNA를 포함하는 안질환 치료용 약학 조성물 【기술분야】
Cas9 단백질 및 VEGF- 표적으로 하는 가이드 RNA를 포함하는 안질환의 예방 및 /또는 치료용 약학 조성물 및 Cas9 단백질 및 VEGF- 표적으로 하는 가이드 RNA를 포함하는 리보핵산단백질이 제공된다. 【배경기술】
CRISPR-Cas9 뉴클레아제를 이용한 RNA 유도 유전체 교정 (RNA-guided genome surgery 또는 RNA-guided genome edi t ing)은 다양한 유전 질환의 치료에 도움이 될 것으로 기대되지만, 비유전 질환에의 CRISPR-Cas9 뉴클레아제의 치료 효과는 밝혀진 바가 거의 없다.
비유전 질환의 일 예로 황반변성 (예컨대, 노인성 황반변성 (Age- related Macul ar Di sease ; AMD) )을 들 수 있다. AMD 는 선진국의 고령 인구에서의 주요한 실명 원인이다. 맥락막 혈관신생 (choroidal neovascul ar izat ion; CNV)은 신생 혈관성 AMD 의 주요 병리.학적 특징이며 , 주로 혈관 내피 성장 인자 A (VEGF A)와 같은 혈관 신생 사이토카인 (angiogeni c cytokines)에 의해 유발된다. 지금까지는, AMD 의 치료제로서 VEGF-A 를 표적으로 하는 단클론 항체 또는 압타머가 주로 개발되어 왔다. 그러나, VEGF-A 가 망막 세포에서 연속적으로 발현되고 분비되기 때문에, 이들 항 ^ 제제는 1 년에 적어도 일곱 번 이상 투여되어야 하는 문제가 있다.
따라서, 황반변성 등의 안질환의 보다 근본적이면서 지속적인 치료 기술의 개발이 요구된다.
【선행기술문헌】
【특허문헌】
한국특허공개 제 10-2015-0101446호 (2015.09.03 공개)
【발명의 상세한 설명】 【기술적 과제】
본 명세서는 VEGF-A 의 근본적인 불활성화를 통하여, 그 수준을 병리학적 역치 이하로 낮춤으로써, 안질환의 장기적 또는 영구적인 치료를 가능하게 하는 기술을 제안한다.
일 예는 VEGF—A 유전자를 불활성화시키는 제제를 포함하는, 안질환의 예방 및 /또는 치료용 조성물을 제공한다.
상기 VEGF—A 유전자를 불활성화시키는 제제는 VEGF-A 유전자를 불활성화시킬 수 있는 모든 단백질, 핵산 분자 (DNA 및 /또는 RNA) , 화학 약물 (chemi cal drug) , 등으로 이루어진 군에서 선택된 1 종 이상일 수 있다. 일 '예에서, 상기 VEGF-A유전자를 불활성화시키는 제제는 Cas9 단백질 및 VEGFᅳ A 유전자를 타겟팅하는'가이드 RNA를 포함하는 것일 수 있다.
다른 예는, VEGF-A 유전자를 불활성화시키는 단계를 포함하는 안질환의 예방 및 /또는 치료 방법을 제공한다. 상기 VEGF-A 유전자를 불활성화시키는 단계는 VEGF-A 유전자를 불활성화시키는 제제를 안질환의 예방 및 /또는 치료를 필요로 하는 환자에게 투여하는 단계에 의하여 수행될 수 있다. 상기 VEGF-A 유전자의 불활성화는 RNA 유도 유전체 교정 (RNA- guided genome surgery or RNAᅳ guided genome edi t ing)에 의하여 수행될 수 있으며, 이 경우, VEGF-A 유전자를 불활성화시키는 단계는 Cas9 단백질 및 VEGF-A 유전자를 타겟팅하는 가이드 RNA 를 안질환의 예방 및 /또는 치료를 필요로 하는 환자에게 투여하는 단계에 의하여 수행될 수 있다.
다른 예는, VEGF-A 유전자를 불활성화시키는 제제의 안질환의 예방 및 /또는 치료, 또는 안질환의 치료제 제조에 사용하기 위한용도를 제공한다. 다른 예는, VEGFA 유전자의 특정 표적 부위 (target s i te or target regi on)를 표적화하기 위한 가이드 RNA를 제공한다.
다른 예는, Cas9 단백질 및 VEGFA 유전자 특이적 표적화 서열을 포함하는 가이드 RNA 를 포함하는 VEGFA 유전자 특이적 리보핵산단백질 (RNP)을 제공한다.
다른 예는 상기 가이드 RNA 또는 VEGFA 유전자 특이적 리보핵산단백질 (RNP)을 포함하는 약학 조성물을 제공한다.
다른 예는, 상기 VEGFA 유전자 특이적 리보핵산단백질 (RNP)을 안질환의 치료 및 /또는 예방을 필요로 하는 환자에게 투여하는 단계를 포함하는, 안질환의 치료 또는 예방 방법을 제공한다. 【과제 해결 수단】
본 발명은 유전자 교정 기술을 이용하여 안질환, 예컨대, VEGF-A 의 과발현과 관련된 안질환을 치료하는 기술을 제공한다.
일 예는 VEGF-A 유전자를 블활성화시키는 제제를 포함하는, 안질환의 예방 및 /또는 치료용 조성물을 제공한다. 상기 VEGF-A 유전자를 불활성화시키는 제제는 VEGF A 유전자를 불활성화시칼 수 있는 모든 단백질, 핵산 분자 (DNA 및 /또는 RNA) , 화학 약물 (chemi cal drug) , 등으로 이루어진 군에서 선택된 1 종 이상일 수 있다. 일 예에서, 상기 VEGF-A 유전자를 불활성화시키는 제제는 Cas9 단백질 및 VEGF-A 유전자를 타겟팅하는 가이드 RNA를 포함하는 것일 수 있다.
다른 예는, VEGF-A 유전자를 불활성화시키는 단계를 포함하는 안질환의 예방 및 /또는 치료 방법을 제공한다. 상기 VEGF-A 유전자를 불활성화시키는 단계는 VEGF-A 유전자를 불활성화시키는 제제를 안질환의 예방 및 /또는 치료를 필요로 하는 환자에게 투여하는 단계에 의하여 수행될 수 있다. 상기 VEGF-A 유전자의 불활성화는 RNA 유도 유전체 교정 (RNA- guided genome surgery or RNAᅳ guided genome edi t ing)에 의하여 수행될 수 있으며, 이 경우, VEGF-A 유전자를 불활성화시키는 단계는 Cas9 단백질 및 VEGF-A 유전자를 타겟팅하는 가이드 RNA 를 안질환의 예방 및 /또는 치료를 필요로 하는 환자에게 투여하는 단계에 의하여 수행될 수 있다. 상기 방법은, 상기 투여하는 단계 이전에, 안질환의 예방 및 /또는 치료를 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다. 상기 VEGF-A 유전자를 불활성화시키는 제제는 약학적 유효량으로 투여될 수 있다. 상기 VEGF-A 유전자를 불활성화시키는 제제는 다양한 투여 경로를 통하여 투여될 수 있으며, 예컨대, 안구의 병변부위 국소 투여 또는 망막하 주사에 의하여 투여될 수 있다 '.
다른 예는, VEGF-A 유전자를 불활성화시키는 제제의 안질환의 예방 및 /또는 치료, 또는 안질환의 치료제 제조에 사용하기 위한용도를 제공한다. 상기 불활성화의 표적이 되는 VEGF-A 유전자는 눈, 예컨대, 신생혈관성 안질환이 발생한 눈 또는 신생혈관성 안질환의 병변 부위에 위치하는 것일 수 있다. 상기 VEGF—A 유전자의 불활성화는 다음으로 이루어진 군에서 선택된 하나 이상일 수 있다:
(1) VEGF-A 유전자의 전체 또는 l-50bp 또는 l-40bp 길이의 연속적 또는 불연속적 일부분의 결실;
(2) VEGF-A유전자 중 1-20 개, 1-15 개, 또는 1—10 개의 연속적 또는 불연속적인 뉴클레오타이드의 야생형 VEGF-A 유전자와 상이한 뉴클레오타이드로의 치환;
(3) VEGF-A 유전자 내의 1-20 개, 1-15 개, 또는 1-10 개의 뉴클레오타이드의 삽입 (부가), 이 때, 상기 삽입되는 뉴클레오타이드는 각각 독립적으로 A, T, C, 및 G중에서 선택됨; 및
(4) 이들의 조합.
상기 VEGF-A 유전자를 불활성화시키는 제제는 VEGF-A 유전자를 불활성화시킬 수 있는 모든 단백질, 핵산 분자 (DNA 및 /또는 RNA) , 화학 약물 (chemi cal drug) , 등으로 이루어진 군에서 선택된 1 종 이상일 수 있다. 일 예에서, 상기 VEGF-A유전자를 불활성화시키는 제제는 Cas9 단백질 및 VEGF-A 유전자를 타겟팅하는 가이드 RNA를 포함하는 것일 수 있다. 이 경우, VEGF- A유전자의 불활성화는 RNA유도 유전체 교정 (RNA-guided genome surgery or RNA-guided genome edi t ing)에 의하여 수행될 수 있다.
VEGF-A유전자의 불활성화가 Cas9 단백질을 이용하여 수행되는 경우, 상기 VEGF-A 유전자의 불활성화는 다음으로 이루어진 군에서 선택된 하나 이상일 수 있다:
( 1) VEGF-A 유전자 내의 Cas9 단백질의 PAM (proto-spacer-adj acent Mot i f ) 서열에 인접한 l_50bp 또는 l-40bp 길이의 연속적 또는 불연속적 부위에 위치하는 하나 이상의 뉴클레오타이드의 결실;
(2) VEGF-A 유전자 내의 Cas9 단백질의 PAM 서열에 인접한 l-50bp 또는 l_40bp 길이의 연속적 또는 불연속적 부위에 위치하는 1-20개, 1-15개, 또는 1-10 개의 연속적 또는 불연속적인 뉴클레오타이드의 야생형 VEGF-A 유전자와상이한뉴클레오타이드로의 치환;
(3) VEGF-A 유전자 내의 Cas9 단백질의 PAM 서열에 인접한 l-50bp 또는 l-40bp 길이의 연속적 또는 불연속적 부위에 1-20 개, 1-15 개, 또는 1- 10 개의 뉴클레오타이드의 삽입 (부가), 이 때, 상기 삽입되는 뉴클레오타이드는 각각 독립적으로 A, T, C, 및 G중에서 선택됨 ; 및 (4) 이들의 조합.
상기 VEGF-A유전자의 불활성화를 위한 제제는 Cas9 단백질 또는 이를 암호화하는 유전자 (DNA 또는 mRNA) 및 VEGF-A 유전자의 표적 부위에 특이적으로 결합하는 표적화 서열을 포함하는 VEGF-A 유전자 특이적 가이드 RNA또는 이를 암호화하는 DNA를 포함하는 것일 수 있다.
Cas9 단백질과 VEGF-A유전자 특이적 가이드 RNA는
(a) 생체 (또는 병변 부위) 또는 세포 등에 투여되기 전에 Cas9 단백질과 VEGF-A 유전자 특이적 가이드 RNA 가 결합하여 형성된 (즉, 투여 전에 미리 조립된) 복합체, 즉, 리보핵산단백질 (r ibonucleoprotein; RNP) 형태이거나 (이 경우, 리보핵산단백질 형태로 세포막을 통과하여 세포 내 또는 생체 내로 전달됨),
(b) Cas9 단백질을 암호화하는 DNA 및 VEGF-A 유전자 특이적 가이드 RNA를 암호화하는 DNA가 각각 별개의 백터를 통하여 생체 내 또는 세포 내로 투여 (또는 전달)되거나, 하나의 백터를 통하여 함께 생체 내 또는 세포 내로 투여 (또는 전달)되어, 생체 또는 세포 내에서 복합체를 이루는 것,
(c) Cas9 단백질을 암호화하는 RNA (mRNA) 및 VEGF-A 유전자 특이적 가이드 RNA를 포함하는 RNA흔합물 형태, 또는
(d) Cas9 단백질을 암호화하는 유전자 (DNA)를 포함하는 재조합 백터 및 VEGF-A 유전자 특이적 가이드 RNA (예컨대, in vi tro 전사에 의하여 얻어짐)의 흔합물
일 수 있다. 일 예에서, 상기 RNA 흔합물은 통상적인 RNA 전달체에 포함되어 세포 내 또는 생체 내에 전달되는 것일 수 있다.
따라서, 상기 VEGF-A유전자의 불활성화를 위한 제제는,
(a) 생체 (또는 병변 부위) 또는 세포 등에 투여되기 전 Cas9 단백질과 VEGF-A 유전자 특이적 가이드 RNA 가 결합하여 형성된 (즉, 투여 전에 미리 조립된) 복합체, 즉, 리보핵산단백질 (r ibonucleoprotein; RNP) (이 경우, 리보핵산단백질 형태로 세포막을 통과하여 세포 내 또는 생체 내로 전달됨) ;
(b) Cas9 단백질을 암호화하는 유전자 (DNA) 및 VEGF-A유전자 특이적 가이드 RNA 를 암호화하는 DNA 를 하나의 백터에 함께 포함하거나, 또는 별개의 백터에 각각 포함하는 재조합 백터 (즉 Cas9 단백질을 암호화하는 유전자를 포함하는 재조합 백터 및 VEGF-A 유전자 특이적 가이드 RNA 를 암호화하는 DNA 를 포함하는 재조합 백터), 또는 상기 재조합 백터를 포함하는 재조합 세포;
(c) Cas9 단백질을 암호화하는 RNA (mRNA) 및 VEGF-A 유전자 특이적 가이드 RNA를 포함하는 RNA흔합물;
(d) Cas9 단백질을 암호화하는 유전자 (DNA)를 포함하는 재조합 백터 및 VEGF—A 유전자 특이적 가이드 RNA (예컨대, in vi tro 전사에 의하여 얻어짐)의 흔합물; 또는
(e) 이들의 조합
을 포함하는 것일 수 있다.
상기 VEGF-A 유전자의 불활성화를 위한 제제의 투여는, 상기 Cas9 단백질을 암호화하는 유전자 (DNA)를 포함하는 재조합 백터와 VEGF-A 유전자 특이적 가이드 RNA 를 암호화하는 DNA 를 포함하는 재조합 백터, Cas9 단백질을 암호화하는 RNA (mRNA)와 VEGF-A 유전자 특이적 가이드 RNA , 또는 Cas9 단백질을 암호화하는 유전자 (DNA)를 포함하는 재조합 백터와 VEGF—A 유전자 특이적 가이드 RNA 를 동시에 투여하거나, 순서와 상관없이 순차적으로 투여하여 수행될 수 있다.
다른 예는, VEGFA 유전자의 특정 표적 부위 ( target s i te or target regi on)를 표적화하기 위한 가이드 RNA 를 제공한다. 일 예에서, 상기 가이드 RNA 는 VEGFA 유전자의 특정 표적 부위의 어느 한 가닥 (예컨대, PAM 서열이 위치하는 가닥과 상보적인 가닥)의 핵산 서열과 흔성화 가능한 (예컨대, 상보적 핵산 서열을 갖는) 표적화 서열 (target ing sequence)을 포함하는 것일 수 있다.
다른 예는, Cas9 단백질 및 VEGFA 유전자 특이적 표적화 서열을 포함하는 가이드 RNA 를 포함하는 VEGFA 유전자 특이적 리보핵산단백질 (RNP)을 제공한다.
다른 예는, 상기 가이드 RNA 또는 VEGFA 유전자 특이적 리보핵산단백질 (RNP)을 포함하는 약학 조성물을 제공한다. 상기 약학 조성물은 황반변성 (예컨대, 노인성 황반변성 (AMD) 등), 망막병증 (예컨대, 당뇨성 망막병증 (di abet i c ret inopathy) 등) 등과 같은 안질환의 치료 및 /또는 예방에 사용될 수 있다.
다른 예는, 상기 VEGFA 유전자 특이적 리보핵산단백질 (RNP)을 안질환의 치료 및 /또는 예방을 필요로 하는 환자에게 투여하는 단계를 포함하는, 안질환의 치료 또는 예방 방법을 제공한다. 상기 VEGFA 유전자 특이적 리보핵산단백질 (RNP)은 약학적 유효량으로 투여될 수 있으며, 예컨대, ᅳ 안구의 병변부위 국소 투여 또는 망막하주사에 의하여 투여될 수 있다.
상기 안질환은 혈관 내피 성장 인자 (VEGF), 예컨대, VEGF-A 의 과발현과 관련된 안질환일 수 있으며, 신생혈관성 안질환 (neovascular eye disease)일 수 있다. 신생혈관성 안질환은 안구의 혈관신생 (neovascular izat ion), 예컨대, 맥락막 혈관신생 (choroidal neovascularization; CNV)에 의하여 유발되는 모든 안질환일 수 있으며, 예컨대, 황반변성 (예컨대, 노인성 황반변성 (age-related macular degeneration; AMD), 근시성 맥락막 혈관신생 (myopic choroidal neovascularization) 등), 망막병증 (예컨대, 당뇨성 망막병증 (diabetic retinopathy), 허혈성 망막병증 (ischemic retinopathy), 분지정맥폐쇄 (branch retinal vein occlusion) , 중심정맥폐쇄 (central retinal vein occlusion), 미숙아 망막병증 (retinopathy of prematurity) 등) 등으로 이루어진 군에서 선택된 것일 수 있다.
VEGF-A (Vascular endothelial growth factor A)는 인간, 원숭이 등의 영장류, 래트, 마우스 등의 설치류를 포함하는 포유류 유래의 것일 수 있으며, 예컨대, H丽 an VEGF-A (예컨대, NCBI Accession No. NP_001020537, NP_001020538, NP_001020539, NP— 001020540, NP_001020541, NP— 001028928, NP_001165093, NP_001165094, NP_001165095, NP_001165096, NP_001165097, NP_001165098, NP_001165099, NP_001165100, NP_001165101, P_001191313, NP_001191314, NP_001273973, NP_001303939, NP_003367 등), Mouse VEGF-A (NCBI Accession No. NP X) 1020421, P_001020428, NP_001103736, NP_001103737, NP_001103738, P_001273985, NP_001273986, NP_001273987, NP_001303970, NP_033531 등) 등일 수 있다.
Cas9 단백질은 예컨대 스트렙토코커스 피요게네스 Streptococcus py0 «2eS)로부터 유래하는 (분리된) 것일 수 있다.
본 명세서에 사용된 바로서,
'표적 유전자 (target gene)'는 유전자 교정 대상이 되는 유전자 ( VEGF-A유전자)를 의미하고,
'표적 부위 (target site or target region)'는 표적 유전자 VEGF-A 유전자) 내의 Cas9 에 의한 유전자 교정 (절단 및 뉴클레오타이드의 결실, 첨가, 및 /또는 치환)이 일어나는 유전자 부위를 의미하는 것으로 표적 유전자 VEGF-A 유전자) 내의 Cas9 단백질이 인식하는 PAM 서열의 5' 말단 및 /또는 3' 말단에 인접하여 위치하는 최대 길이가 약 50bp 또는 약 40bp 인 유전자 부위를 의미하고 (이 경우, 유전자 교정은 세포 하나에서의 2 쌍의 염색체 중 하나또는 두 개의 표적 부위에서 일어날 수 있음),
'표적 서열 (target sequence)'은 표적 유전자 iVEGF-Α 유전자) 내의 가이드 RNA 와흔성화 가능한 유전자부위로서, 표적 유전자 (VEGF-A유전자) 내의 Cas9 단백질이 인식하는 PAM 서열의 5' 말단 및 /또는 3' 말단에 인접하여 '위치하는 연속하는 17bp 내지 23bp, 예컨대, 20bp 길이의 핵산 서열을 의미하며 ,
'표적화 서열 (targeting sequence)'은 상기 표적 유전자 내의 표적 서열과 흔성화 가능한 가이드 RNA부위로서, 17 내지 23 개, 예컨대, 20 개의 뉴클레오타이드를 포함하는 가이드 RNA부위일 수 있다.
본 명세서에서, 상기 표적 서열은 표적 유전자 VEGF-A 유전자)의 해당 유전자 부위의 두 개의 DNA 가닥 중 PAM 서열이 위치하는 가닥의 핵산 서열로 표시된다. 이 때, 실제로 가이드 R A 가 결합하는 DNA 가닥은 P眉 서열이 위치하는 가닥의 상보적 가닥이므로, 상기 가이드 RNA 에 포함된 표적화 서열은, RNA 특성상 T 를 U 로 변경하는 것을 제외하고, 표적 유전자 ( VEGF-A 유전자)에 위치하는 표적 서열과 동일한 핵산 서열을 갖게 된다. 따라서, 본 명세서에서, 가이드 RNA 의 표적화 서열과 표적 유전자 VEGF-A 유전자)의 표적 서열은 T 와 U 가 상호 변경되는 것을 제외하고 동일한 핵산 서열로 표시된다.
상기 Cas9 단백질이 스트렙토코커스 피요게네스 Streptococcus pyogenes) 유래의 것인 경우, 상기 PAM 서열은 -NGG-S1 (N 은 A, T, G, 또는 C 임)이고, 표적 부위는 표적 유전자 VEGF-A 유전자) 내의 5'-NGG-3' 서열의 5' 말단 및 /또는 3' 말단에 인접하여 위치하는 유전자 부위로서, 예컨대, 최대 길이가 약 50bp 또는 약 40bp인 유전자 부위일 수 있다.
이 경우, 유전자의 불활성화는, 유전자에서,
a) 5'-NGG-3' (N 은 A, T, C 또는 G 임) 서열의 5' 말단 및 /또는 3' 말단에 인접하여 위치하는 최대 50bp또는 최대 40bp 길이의 핵산서열 (표적 부위) 내의 하나 이상의 뉴클레오타이드의 결실, b) 5'-NGG-3' 서열의 5' 말단 및 /또는 3' 말단에 인접하여 위치하는 최대 50bp 또는 최대 40bp 길이의 핵산 서열 (표적 부위) 내의 하나 이상 (예컨대, 1-20 개, 1-15 개, 또는 1-10 개)의 뉴클레오타이드의 야생형 유전자와상이한뉴클레오타이드로의 치환,
c) 5'-NGG-3' 서열의 5' 말단 및 /또는 3' 말단에 인접하여 위치하는 최대 50bp 또는 최대 40bp 길이의 핵산 서열 (표적 부위) 내로의 하나 이상 (예컨대, 1—20 개, 1-15 개, 또는 1-10 개)의 뉴클레오타이드의 삽입 (이 때, 삽입되는 뉴클레오타이드는 각각 독립적으로 A, T, C 및 G 중에서 선택됨), 또는
d) 상기 a) 내지 c) 중에서 선택된 2 가지 이상의 조합
에 의하여 유도된 것일 수 있다.
상기 가이드 RNA 는 CRISPR RNA (crRNA), trans-activating crRNA (tracrRNA), 및 단일 가이드 RNA (single guide RNA; sgRNA)로 이루어진 군에서 선택된 1종 이상일 수 있으며, 구체적으로 crRNA와 tracrRNA가서로 결합된 이중 가닥 crRNA: tracrRNA 복합체, 또는 crRNA 또는 그 일부와 tracrRNA 또는 그 일부가 올리고뉴클레오타이드 링커로 연결된 단일 가닥 가이드 RNA (sgRNA)일 수 있다.
상기 가이드 RNA 의 구체적 서열은 Cas9 단백질의 종류 (즉, 유래 미생물)에 따라서 적절히 선택할 수 있으며, 이는 이 발명이 속하는 기술 분야의 통상의 지식을 가진 자가 용이하게 알 수 있는사항이다.
Streptococcus pyogenes 유래의 Cas9 단백질을 사용하는 경우, crRNA는 다음의 일반식 1로 표현될 수 있다:
5'_(Ncas9)厂 (GUUUUAGAGCUAHXcas9)m-3' (일반식 1)
상기 일반식 1에서,
Ncas9는 표적화 서열로서, 표적 유전자 ( ^ 유전자)의 표적 서열에 따라서 결정되는 부위이며, 1 은 상기 표적화 서열에 포함된 뉴클레오타이드 수를 나타내는 것으로 17 내지 23또는 18 내지 22 의 정수, 예컨대 20 일 수 있고;
상기 표적 서열의 3' 방향으로 인접하여 위치하는 연속하는 12 개의 뉴클레오타이드 (GUUUUAGAGCUA) (서열번호 359)를 포함하는 부위는 crRNA 의 필수적 부분이고, Xcas9는 crRNA 의 3 ' 말단쪽에 위치하는 (즉, 상기 crRNA 의 필수적 부분의 3 ' 방향으로 인접하여 위치하는) m 개의 뉴클레오타이드를 포함하는 부위로, m 은 8 내지 12 의 정수, 예컨대 11 일 수 있으며, 상기 m 개의 뉴클레오타이드들은 서로 같거나 다를 수 있으며, 각각 독립적으로 A , U , C 및 G로 이루어진 군에서 선택될 수 있다.
일 예에서, 상기 Xcas9 는 UGCUGUUUUG (서열번호 360)를 포함할 수 있으나 이에 제한되지 않는다.
또한, 상기 tracrRNA는 다음의 일반식 2로 표현될 수 있다:
Figure imgf000011_0001
(UAGC GUUAAMU (^UAGUCCGUUAUCMCUUGAAAMGUG( ACCGAGUC∞UGC)-3 ' ' (일반식 2)
상기 일반식 2에서,
60 개의 뉴클레오타이드
( UA(X: GUUAAMUMG( UAGUCCGUUAUCMCUUGAAA GUGGCACCGAGUCGGUGC ) (서열번호 361)로 표시된 부위는 tracrRNA의 필수적 부분이고,
YcaS9는 상기 t racrRNA 의 필수적 부분의 5 1 말단에 인접하여 위치하는 P개의 뉴클레오타이드를 포함하는 부위로, p는 6 내지 20의 정수, 예컨대 8 내지 19 의 정수일 수 있으며, 상기 p 개의 뉴클레오타이드들은 서로 같거나 다를 수 있고, A , U, (: 및 G 로 이루어진 군에서 각각 독립적으로 선택될 수 있다ᅵ.
또한, sgRNA 는 상기 crRNA 의 표적화 서열과 필수적 부위를 포함하는 crRNA 부분과 상기 tracrRNA 의 필수적 부분 (60 개 뉴클레오타이드)를 포함하는 tracrRNA 부분이 올리고뉴클레오타이드 링커를 통하여 헤어핀 구조 (stem-loop 구조)를 형성하는 것일 수 있다 (이 때, 올리고뉴클레오타이드 링커가 루프 구조에 해당함) . 보다 구체적으로, 상기 sgRNA 는 crRNA 의 표적화 서열과 필수적 부분을 포함하는 crRNA 부분과 tracrRNA 의 필수적 부분을 포함하는 t racrRNA 부분이 서로 결합된 이중 가닥 R A 분자에서, crRNA 부위의 3 ' 말단과 tracrRNA 부위의 5 ' 말단이 올리고뉴클레오타이드 링커를 통하여 연결된 헤어핀 구조를ᅵ갖는 것일 수 있다.
일 예에서, sgRNA는 다음의 일반식 3으로 표현될 수 있다:
Figure imgf000012_0001
리고뉴클레오타이드 링커) -
(UA( MGUUAAMUM( :UAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)-3 '
(일반식 3)
상기 일반식 3 에서, (Ν^Ε^ 는 표적 서열로서 앞서 일반식 1 에서 설명한 바와같다.
상기 sgRNA 에 포함되는 을리고뉴클레오타이드 링커는 3 내지 5 개, 예컨대 4 개의 뉴클레오타이드를 포함하는 것일 수 있으며, 상기 뉴클레오타이드들은 서로 같거나 다를 수 있고, A, U, C 및 G 로 이루어진 군에서 각각 독립적으로 선택될 수 있다.
상기 crRNA 또는 sgRNA 는 5' 말단 (즉, crRNA 의 타겟팅 서열 부위의
5' 말단)에 1 내지 3개의 구아닌 (G)을 추가로 포함할수 있다.
상기 tracrRNA 또는 sgRNA 는 tracrRNA 의 필수적 부분 (60nt)의 31 말단에 5개 내지 7개의 우라실 (U)을 포함하는 종결부위를 추가로 포함할 수 있다.
일 예에서, 표적 유전자 (½ ᅳ 유전자)의 표적 서열은 다음으로 이루어진 군에서 선택된 것일 수 있다:
Vegfa-V. 51 -CTCCTGGAAGATGTCCACCA-3 ' (서열번호 1) (PAM서열: GGG); Vegfa-2: 51 -AGCTCATCTCTCCTATGTGC-3 ' (서열번호 2) (P崖서열: TGG); Vegfsr^. 5 ' -GACCCTGGTGGACATCTTCC-3 ' (서열번호 3) (PAM서열: AGG); VegfrA: 5 ' -ACTCCTGGAAGATGTCCACC-3 ' (서열번호 4) (PAM서열: AGG);
Vegfa-5: 5'- C( TTACCTTGGCATGGTGG-31 (서열번호 5) (PAM 서열:
AGG);
Vegfa-6: 5'- GACCGCTTACCTTGGCATGG-3 ' (서열번호 6) (PAM 서열:
TGG);
Vegfa-7: 5'- CACGACCGCTTACCTTGGCA— 3 ' (서열번호 7) (PAM 서열:
TGG); 및
Vegfa-8: 5'- GGTGCAGCCTGGGACCACTG-31 (서열번호 8) (PAM 서열 : AGG) . 상기 표적 서열들은 포유류 종간 보존이 잘된 서열로, 예컨대, 인간과 설치류 (예컨대, 마우스)에 모두 존재한다. 예컨대, 상기 표적 서열은 서열번호 1 또는 서열번호 2의 핵산서열을 포함하는 것일 수 있다.
상기 표적 서열은 포유류 간, 예컨대 인간 VEGF-A 유전자와 마우스 ^ 유전자 간에 잘 보존되어 있으며, on target 부위에서의 유전자 교정 효율 (예컨대, inde l 빈도 (%) )가 매우 우수하며, on target 이외의 부분에서는 mi smatching nuc leot i de 개수가 3개 이하, 2개 이하, 1개, 또는 0 개인 부위 (of f t arget 부위)가 거의 존재하지 않아서, on target 이외의 부분에서 유전자 교정이 일어날 확률이 매우 낮거나 없어서 안전성이 우수하다 (of f-target ef fect가 매우 낮거나 거의 없음) .
이러한 우수한 교정 효율 및 낮은 of f-target ef fect 에 근거하여, 본 발명의 일 예는 상기한 가이드 RNA또는 이를 암호화하는 DNA 및 Cas9 단백질 또는 이를 암호화하는 유전자 (DNA 또는 mRNA)를 포함하는 VEGF—A 유전자 교정용 조성물을 제공한다. 상기 VEGF-A유전자 교정용 조성물은 가이드 RNA 및 Cas9 단백질을 포함하는 리보핵산단백질을 포함하는 것일 수 있다. 이 때 상기 리보핵산단백질은 생체 또는 세포에 투여 전 미리 조립된 것일 수 있다. 본 명세서에서, 표적 유전자의 표적 부위와 흔성화 가능한 가이드 RNA 의 표적화 서열은 표적 서열이 위치하는 DNA 가닥 (즉, PAM 서열이 위치하는 DNA가닥)의 상보적인 가닥의 뉴클레오타이드 서열과 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90¾ 이상, 95% 이상, 99% 이상, 또는 100%의 서열 상보성을 갖는 뉴클레오타이드 서열을 의미하는 것으로, 상기 상보적 가닥의 뉴클레오타이드 서열과 상보적 결합이 가능하다.
예컨대, crRNA 또는 sgRNA 의 표적화 서열 ' (Ur1는 상기한 서열번호 1 내지 4 의 표적 서열과 동일한 서열을 갖는 것일 수 있다 (단, T 를 U 로 바꿈) . 즉, crRNA 또는 sgRNA 은 ' (N^^ '은 서열번호 9 내지 16에서 선택된 표적화 서열을 포함하는 것일 수 있다:
Vegfa-1 5 -CUCCUGGAAGAUGUCCACCA-3 ' (서열번호 9) ;
Vegfa—2 5 -AGCUCAUCUCUCCUAUGUGC-3 ' (서열번호 10);
Vegisri 5 -GACCCUGGUGGACAUCUUCC-3 ' (서열번호 11);
Vegfa-i 5 -ACUCCUGGAAGAUGUCCACC-3 ' (서열번호 12) ;
V eg fa~ 5 5 - CGCUUACCUUGGCAUGGUGG-31 (서열번호 13);
Vegfa-6 5 - GACCGCUUACCUUGGCAUGG-3 ' (서열번호 14);
Vegfa-7 5 ' - CACGACCGCUUACCUUGGCA-3 ' (서열번호 15); 및
Vegfa-8 5 ' - GGUGCAGCCUGGGACCACUG-3 ' (서열번호 16) .
예컨대, 상기 crRNA 또는 sgRNA 는 표적화 서열로서 서열번호 9 또는 서열번호 10을 포함할 수 있다. 일 예에서, 기존에 R A 를 생체 내 또는 세포 내 전달 시 '생기는 세포 생존률 (cell viability) 감소의 문제를 해결하기 위하여, 변형된 형태의 RNA 를 사용할 수 있다. 예컨대, RNA 의 5' 말단에 인산 -인산 결합을 포함하지 않도록 변형된 RNA (예컨대, 5' 말단에 트리포스페이트 또는 다이포스페이트를 포함하지 않음)를 가이드 RNA 로 사용할 수 있다. 또는, sgRNA (예컨대, 화학적으로 합성된 sgRNA)는 5' 말단 및 /또는 3' 말단에 하나 이상 (예컨대, 1 내지 5 개, 또는 2 내지 4 개)의 변형된 리보핵산을 포함할 수 있으며, 이때 변형은 포스포로티오에이트 (phosphorothioate) 및 /또는 리보오스의 2' 위치의 변형 (예컨대, 2 '-acetyl at ion, 2' methyl at ion, 또는 기타 변형) 등을 포함할 수 있다. 일 예에서, 상기 변형된 sgRNA는 5' 말단 및 3' 말단 각각에 위치하는 3 개의 뉴클레오타이드에 있는 리보오스의 2'-0 위치가 메틸레이션 (메틸기 첨가) 및 /또는 포스포로티오에이트 백본 (phosphorothioate backbone)으로의 변형 등을 포함하는 것일 수 있다. 다른 예에서, 상기 서열번호 1 내지 4 중에서 선택된 표적 서열을 포함하는 가이드 RNA가 제공된다.
상기 방법에서, 상기 가이드 RNA 와 Cas9 단백질의 세포 내로의 형질도입은 미리 조립된 가이드 RNA 와 Cas9 단백질의 복합체 (리보핵산단백질)를 통상적인 방법 (예컨대, 전기천공, 리포펙션 등)으로 직접 면역세포에 도입하거나, 가이드 RNA 를 암호화하는 DNA 분자와 Cas9 단백질을 암호화하는 유전자 (DNA또는 mRNA) (또는 이와 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상의 염기서열 상동성을 갖는 유전자)를 하나의 백터 또는 각각 별개의 백터 (예컨대, 풀라스미드, 바이러스 백터 등)에 포함된 상태로 세포에 도입하거나, mRNA delivery를 통하여 수행할 수 있다.
일 예에서, 상기 백터는 바이러스 백터일 수 있다. 상기 바이러스 백터는 레트로바이러스, 아데노바이러스 파보바이러스 (예컨대, 아데노관련 (adenoassociated) 바이러스 (AAV)), 코로나바이러스, 오르소믹소바이러스 (orthomyxovirus)와 같은 음성 가딕1 RNA 바이러스들 (예컨대 인플루엔자 바이러스), 랩도바이러스 (rhabdovirus) 예컨대, 광견병 및 소포성 구내염 바이러스), 파라믹소바이러스 (paramyxovirus) (예컨대, 흥역 및 센다이 (Sendai), 알파바이러스 (alphavirus) 및 피코르나바이러스 (picornavirus)와 같은 양성 가닥 RNA 바이러스들, 및 헤르페스바이러스 (예컨대, 단순포진 (Herpes Simplex) 바이러스 타입들 1 및 2 , 엡스타인 (Epstein)-바 (Barr ) 바이러스, 사이토메갈로바이러스 (cytomegalovi rus) ) 아데노바이러스를 포함하는 이중- 가닥의 DNA 바이러스들, 폭스바이러스 (poxvi rus) (예컨대, 우두 (vaccinia), 계두 ( fowlpox) 및 카나리아두창 (canarypox) ) 등으로 이루어진 군에서 선택된 것일 수 있다.
상기 Cas9 단백질, 가이드 RNA, 이를 포함하는 리보핵산단백질, 또는 이들 중 하나 이상을 포함하는 백터는 각각 전기천공법 (electroporat ion) , 리포펙션, 바이러스 백터, 나노파티클 (nanopart i cles) 뿐만 아니라, PTD (Protein trans locat ion domain) 융합 단백질 방법 등 당업계에 공지된 다양한 방법들 중에서 선택된 적절한 방법을 통하여 생체 내 또는 세포 내로 전달될 수 있다.
상기 Cas9 단백질, 가이드 RNA, 이를 포함하는 리보핵산단백질의 핵내 전달을 위하여, 상기 Cas9 단백질 및 /또는 가이드 RNA 는 통상적으로 사용 가능한 핵 위치호 신호 (nuclear local i zat ion signal; NLS)를 추가로 포함할 수 있다.
상기 VEGF-A 유전자 특이적 리보핵산단백질에 있어서, Cas9 단백질은 미생물에서 분리된 것, 또는 재조합적 방법 또는 화학적 합성 방법으로 비자연적 생산된 것 (non-natural ly occurr ing)일 수 있으며, 상기 가이드 RNA는 재조합적 또는 화학적으로 생산된 것일 수 있다 .
Cas9 단백질 또는 이를 암호화하는 유전자 ( (DNA 또는 mRNA) ) 및 VEGF— A유전자의 표적 부위에 특이적으로 결합하는 표적화 서열을 포함하는 VEGF-A 유전자 특이적 가이드 RNA 또는 이를 암호화하는 DNA 를 포함하는 VEGF-A 유전자를 불활성화시키는 제제, 또는 VEGF-A유전자 특이적 리보핵산단백질은 다양한 투여 경로를 통하여 생체 내에 투여될 수 있으며, 이에 제한되지는 않지만, 안질환 VEGF-A 유전자 과발현과 관련된 안질환) 병변부위에 국소 투여 또는 망막하 투여 등의 경로로 안구에 투여될 수'있다.
상기 VEGF-A 유전자를 불활성화시키는 제제 또는 VEGF-A 유전자 특이적 리보핵산단백질의 투여 대상은 VEGF—A 유전자 과발현과 관련된 안질환을 앓고 있거나 앓을 위험이 있는 모든 포유 동물, 예컨대, 인간, 원숭이 등의 영장류, 마우스ᅳ 래트 등의 설치류 등에서 선택된 동물, 이로부터 분리된 세포 (예컨대, 망막 색소 상피세포 (RPE) , 망막 색소 상피세포 (RPE)/맥락막 /공막 복합체 (RPE/choroid/scleral complex) , 등) 또는 조직 (안구 조직), 또는 이의 배양물일 수 있다.
상기 VEGF-A 유전자를 불활성화시키는 제제 또는 VEGF-A 유전자 특이적 리보핵산단백질은 "약학적 유효량 "으로 투여되거나 약학 조성물에 포함될 수 있다. "약학적 유효량 "은 적용 부위에서 소망하는 효과, 즉 VEGF- A 유전자 교정 효과를 나타낼 수 있는 양을 의미하몌 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 투여 시간, 투여 경로, 배출 속도, 및 반웅 감웅성과 같은 요인들에 의해 다양하게 처방될 수 았다. 【발명의 효과】
본 명세서에서 제안되는 VEGF-A유전자 교정 기술은 높은 유전자 교정 효율뿐 아니라 매우 낮은 of f-target ef fect 를 나타냄으로써 효율적이면서도 안전하게 유전자 교정을 수행할 수 있고, 이를 통하여 VEGF-A 단백질 수준을 병리학적 역치 이하로 낮춤으로써, VEGF-A 과발현과 관련된 안질환의 장기적 또는 영구적인 치료를 가능하게 한다.
【도면의 간단한 설명】
도 la는 마우스 NIH3T3 세포와 인간 ARPE-19 세포의 Vegfa/VEGFA 유전자좌의 표적 부위 서열을 보여준다 (PAM 서열: 파란색) ; sgRNA 표적 서열: 청색) .
도 lb는 NIH3T3 및 ARPE-19 세포에서 Vegfa-특이적 Cas9 RNP 또는 이들의 암호화 서열을 포함하는 플라스미드의 도입에 의하여 유도된 돌연변이를 T7 엔도뉴클레아제 KT7E1) 분석을 통하여 확인한 결과이다.
도 lc는 NIH3T3 및 ARPE-19 세포에서 Vegfa-1 sgRNA를 포함하는 Vegfa-특이적 Cas9 RNP 또는 이들의 암호화 서열을 포함하는 플라스미드의 도입에 의하여 유도된 돌연변이 ( indel ) 빈도를 보여주는 그래프이다.
도 Id는 NIH3T3 및 ARPE— 19 세포에서 Vegfa-1 sgRNA를 포함하는 Vegfa—특이적 Cas9 RNP에 의하여 유도되는 대표적인 Vegfa/VEGFA 유전자좌에서의 돌연변이 DNA서열을 보여준다.
도 le는 conf luent ARPE-19 세포에서 Vegfa-1 sgRNA를 포함하는
Vegfa-특이적 Cas9 RNP의 도입에 의하여 유도되는 돌연변이 빈도를 보여주는 그래프이다. 도 If는 Vegfa-1 sgRNA를 포함하는 Vegfa-특이적 Cas9 RNP가 형질 감염된 conf luent ARPE-19 세포에서의 VEGFA mRNA 수준을 보여주는 그래프이다.
도 lg는 Vegfa-1 sgRNA를 포함하는 Vegfa-특이적 Cas9 RNP가 형질 감염된 conf luent ARPE-19 세포에서의 VEGFA 단백질 수준을 보여주는 그래프이다.
도 lh는 4종의 sgRNA (Vegfa-1 sgRNA, Vegfa-2 sgRNA , Vegfa-3 sgRNA , 및 Vegfa-4 sgRNA)를 포함하는 /a~특이적 Cas9 RNP 또는 이들의 암호화 서열을 포함하는 플라스미드의 도입에 의해 유발되는 NIH3T3 세포에서의 돌연변이 빈도를 보여주는 그래프이다.
도 2a는 Cy3 표지된 Cas9 RNP (Cy3 표지된 Cas9 및 Vegfa-1 sgRNA 복합체) 또는 Cy3 표지된 Cas9 단독 (대조군)으로 형질 감염시키고 24시간 후에 NIH3T3 세포를 공초점 현미경으로 관찰한 결과이다.
도 2b는 Cy3 표지된 Cas9 RNP 또는 Cy3 표지된 Cas9 단독으로 형질 감염 24시간 후의 총 DAPI 양성 핵 개수에 대한 Cy3 양성 핵 개수의 비율 ( 100* [Cy3 양성 핵 개수] / [총 DAPI 양성 핵 개수] )을 보여주는 그래프이다. 도 2c는 형질 감염 24시간 후에 NIH3T3 세포에서 유도된 돌연변이를 T7E1 assay로 분석한 결과를 보여준다.
' 도 2d는 형질 감염 24시간 후에 NIH3T3 세포에서 유도된 돌연변이 빈도를 보여주는 그래프이다.
도 2e는 Cy3 표지된 Cas9 RNP를 마우스 눈에 주사 한 후 3 일째에 RPE f l at-mount를 형광 현미경으로 관찰한 형광 이미지이다.
도 2f는 Cy3 표지된 Cas9 RNP주사 후 3일째에 망막 색소 상피세포 (RPE)/맥락막 /공막 복합체 (RPE/choroi d/sc l eral compl ex)로부터 분리된 유전체 DNA에서 생체 내에서 유도된 indel s의 빈도를 보여주는 그래프이다. 도 2g는 주사 후 24시간 및 72시간째에 RPE/맥락막 /공막 복합체에서의 Cas9 단백질의 수준을 웨스턴 블라팅으로 확인한 결과이다.
도 2h는 망막 색소 상피세포 (RPE)/맥락막 /공막 복합체 (RPE/choroid/sc leral comp lex) 중의 망막 색소 상피세포 (RPE)의 분포를 형광 현미경으로 관찰한 형광 이미지이다.
도 2i는 주사 후 24시간 및 72시간째에 RPE/맥락막 /공막 복합체에서의 Cas9 단백질의 수준을 웨스턴 블라팅으로 확인한 결과이다. 도 3a는 실시예 3의 시험 과정을 모식적으로 보여주는 그림이다.
도 3b는 주사 후 7 일째, Rosa26-특이성 Cas9 RNP (대조군) 또는 Vegfa- 특이성 Cas9 RNP를 주사한 C57BL/6J 마우스에서 i solect in B4( IB4)로 염색된 laser- induced CNV를 가시화한사진이다.
도 3c는 Vegfa- 특이성 Cas9 RNP를 주사한 C57BL/6J 마우스에서의 CNV 면적을 Rosa26ᅳ특이성 Cas9 RNP주사한 대조군의 CNV면적과 비교하여 나타낸 그래프이다.
도 3d는 CNV 영역에서의 Vegfa 단백질 발현 수준을 보여주는 그래프이다.
도 3e는 RPE 복합체 내의 Vegfa 표적 부위에서의 Indel 빈도 (%)를 보여주는 그래프이다.
도 3f는 RPE 복합체 내의 Rosa26 표적 부위에서의 Indel 빈도 (%)를 보여주는 그래프이다.
도 3g는 hematoxyl in & eosin 염색으로 시료 단면 (cross sect m)의 Laser-induced CNV구조를 가시화한 결과를 보여주는 사진이다.
도 3h는 targeted deep sequencing를 통한 돌연변이 분석에 사용하기 위한 CNV시료를 보여준다. .
도 3i는 레이저 처리 후 7일째의 Laser— induced CNV를 가시화한 사진이다ᅳ - 도 4a는 in vi tro 절단 부위를 보여주는 Genome-wide Ci rcos plot이다. 도 4b는 41 개의 Digenome-capture si te (표 5 참조) 및 On— target 서열을 포함한 42개 서열의 Sequence logo를 보여준다.
도 4c는 인간 ARPE— 19 세포에서 확인된 of f-target 부위 및 indel 빈도를 보여준다.
도 5는 마우스 RPE에서 Vegfa-1 sgRNA를 포함하는 Vegfa-특이적 Cas9
RNP에 의하여 유도되는 돌연변이 DNA 서열을 나타낸 것으로, a는 RNP 주사 3일 후에 RPE에서 Vegfa-특이적 Cas9 RNP에 의하여 유도되는 대표적인 돌연변이 DNA 서열을 보여주고, b는 RNP 주사 7일 후에 레이저 유도 맥락막 혈관 신생 ( laser-induced choroidal neovascular izat ion (CNV) )을 갖는 RPE에서의 돌연변이 DNA서열을 보여준다.
도 6은 마우스 RPE의 20개의 잠재적 of f-target 부위에서의 indel 빈도 (%)를 보여준다. . 도 7a는 § a~specific Cas9 RNP 주입 7일 후의 Vegfaspecific Cas9 주입된 마우스 및 e specific Cas9 RNP가주입되지 않은 정상 대조군 마우스의 망막으로부터 얻은 형광 단면 이미지이다.
도 7b는 opsin positive 영역 (%)올 보여주는 그래프이다.
도 8은 pET28-NLS_Cas9 백터의 개열지도이다.
도 9는 pRG2 백터의 개열지도이다.
【발명의 실시를 위한 구체적인 내용】
이하 본 발명올 다음의 실시예에 의하여 보다 구체적으로 설명하고자 한다. 그러나 이들은 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 제한되는 것은 아니다.
[참고예]
1. Cas9 RNP의 제조
정제된 Cas9 단백질은 ToolGen Inc. , South Korea에서 구입하여 준비하였다. sgRNA는 T7 폴리머라제 (New Engl nd Biolabs)를 사용하여 제조자의 프로토콜에 따라 in vitro 전사에 의해 생성하였다. 간략하게, 두 개의 상보적인 올리고뉴클레오티드 (표 1 참조)을 annealing 및 extension하여 sgRNA의 템플릿을 생성하였다.
【표 1】
In vitro transcript ion tem lates encoding sgRNAs
sgRNA name RGEN Target (5' to 3')
GAM TAATACGACTCACTATAGCTCCTGGMGATGTCCACCA(nm^
Vegfa-1 (Forward)
(서열번호 17)
GAMTrMTACGACTCACTATAGAGCTCATCTCTCCTATGTGCGTm^
Vegfa-2 (Forward)
(서열번호 18) "
GAMTTMTACGACTCACTATAGGACCCTGGTGGACATCTTCCGTm^
Vegfa-3 (Forward)
(서열번호 19)
GA TMTACGACTCACTATAGACTCCTGGAAGATGTCCACCGTm^
Vegfa-4 (Forward)
(서열번호 20)
GAMTTMTACGACTCACTATAGGGCGGTCCTCAGMGCCAGGGTmA^
_Rosa26 (Forward)
(서열번호 21)
Universal AAAA GCACCGACTCGGTGCCAOTTnCMGHGATMCGGACTAGCCmTm
(Reverse) TAGCTCTAAMC (서열번호 22) (표적 서열: 밑줄로 표시; crRNA의 필수 부분: 굵은 글씨로 표시; 뉴클레오타이드 링커: 이탤릭체로 표시)
상기 생성된 sgRNA 템플릿을 T7 RNA 폴리머라제와 함께 NTPs (Jena bioscience) 및 RNase 저해제 (New England Biolabs)를 포함하는 반웅 완층액 (40 mM Tris-HCl, 20 mM MgCl2, 2 mM spermidine, 1 mM DTT, pH7.9)에 넣고 37°C에서 16시간 동안 배양하여 전사시켰다. 전사된 sgRNA를 37°C에서 30분 동안 DNase I (New England Biolabs)와 함께 배양하였다. sgRNA를 RNeasy MinElute Cleanup Kit (Qiagen)를 사용하여 정제하고, Nano drop (Thermo Fisher Scientific)을 사용하여 정량화하였다. 정제된 sgRNAs (65zg)를 CIP (Calf intestinal; 1000 units; Alkaline Phosphatase, New England Biolabs)와 함께 37°C에서 1시간 동안 배양하여 3-인산기를 제거하였다. 상기 얻어진 sgRNA를 RNeasy MinElute Cleanup Kit (Qiagen)를 사용하여 다시 정제하고 Nano drop (Thermo Fisher Scientific)을사용하여 정량화하였다. 모든 Cas9 단백질 및 sgRNA stock을 사용하여 세포 생존를 및 유전체 교정 (indel) 효율을 시험하여, 고효율의 Cas9 단백질 및 sgRNA stock을 선택하여 in vivo eye inject ion에 사용하였다.
2. Cas9단백질 정제
pET28-NLS-Cas9 백터 (도 8; Cas9: Streptococcus pyogenes 유래임 (서열번호 358))를 대장균 균주 BL21 (DE3)으로 형질 전환시킨 후, 0.5 mM isopropyl β -D-l-thiogalactopyranoside (IPTG)를 처리하여 18°C에서 12시간 동안 Cas9 단백질 발현을 유도하였다. 상기 ·대장균 세포를 초음파 처리하여 용해시키고, 20,000g에서 30분 동안 원심분리 한 후, 용해성 용해액 (soluble lysate)를 취하여 Ni-NTA 비드 (Qiagen)와 흔합하고, Cy3 염료 (GE Healthcare)를 1:10 비율 (Cas9 단백질: Cy3 염료 분자)로 첨가하였다. 상기 흔합물을 암조건 및 4°C 조건에서 밤새 (12 시간 이상) 배양하였다. 용리 완층액 (elution buffer; 50 mM Tris-HCl [pH 7.6], 150-500 mM NaCl, 10- 25%(w/v) 글리세롤, 0.2 M 이미다졸)을사용하여 Cy3-표지 Cas9를 용출시키고 투석용 완충액 (dialyzing buffer; 20 mM HEPES pH 7.5, 150 mM KCl, 1 mM DTT 10%(w/v) 글리세를)을사용하여 투석하였다. 정제된 Cy3-표지 Cas9 단백질을 Ultracel 100K cellulose column (Millipore)을 사용하여 농축시켰다. Cy3- 표지 Cas9 단백질의 순도는 SDS-PAGE에 의해 측정하였다. Cy3 표지 효율은 Cas9 단백질 (280 nm) 및 접합된 Cy3 염료 분자의 흡수 스펙트럼을 비교하여 측정하였다.
3. 세포 배양 및 형질 감염
마우스 NIH3T3 (ATCC® CRL-1658 ™) 및 ARPE-19 (인간 망막 색소 상피세포; ATCC® CRL-2302 ™) 세포주를 10%(v/v) BCS 또는 FBS가 보층된 Dulbecco's Modified Eagle Medium (DMEM)에서 5% C02 , 37°C, 및 습윤 대기 조건 하에서 배양하였다 (NIH3T3 및 ARPE-19 세포는 mycoplasma 오염 여부가 시험되지 않음). 형질 감염 하루 전에, NIH3T3 및 ARPE-19 세포를 24- 웰플레이트에 2xl04세포 /웰의 양으로 접종하였다. 각 웰에는 항생제 무함유 성장배지 가 첨가되어 있다.
플라스미드 전달의 경우, Lipofectamine 2000 (Thermo Fisher Scientific)을 사용하여 제조자의 프로토콜에 따라, Cas9 (l^g; Streptococcus pyogenes 유래; 코딩 서열 (4107bp): 서열번호 358) 발현 플라스미드 (pET vector (Addgene) 사용) 및 sgRNA (1zg; 실시예 1) 발현 플라스미드 (pRG2 vector (도 9 참조) 사용)로 상기 24-웰 플레이트의 세포를 형질 감염시켰다.
RNP 전달의 경우, Cas9 단백질 (4//g; 실시예 2)을 실온에서 5분 동안 sgRNA (2.25zg; 실시예 1)와 함께 배양 한 후, 50^의 Opt i -MEM (Thermo Fisher Scientific)과 의 Lipofect amine 2000 (Thermo Fisher Scientific)을 첨가하였다. 10분 후, 상기 RNP 흔합물을 상기 24-웰 플레이트의 세포에 첨가 하여 세포를 형질감염시켰다. 형질 감염 48 시간후, 세포를 수확하고 T7E1 분석, targeted deep sequencing, 및 qPCR을 수행하였. confluent RPE (human retinal igment epithel ial )에서 VEGF-A를 발현시키는 경우, 상기 준비된 ARPE-19 세포는 confluency에- 도달한 후 l%(v/v) FBS가 함유된 DMEM/F12에서 유지시켜 시험을 위한 polarized epithelial layer가 형성되도록 하였다. ARPE— 19 세포를 12-웰 플레이트에 넣고 Cas9 단백질 8//g, sgRNA 4.5 g 및 lipofectamine 2000 로 형질 감염시켰다. 형질감염 2일 후, 형질 감염 성장 배지 (DMEM + l%(v/v) FBS)를 신선한 무혈청 배지 0.5 ml으로 바꾸어주었다. 16 시간 후, 세포 및 배지를 수확하고 targeted deep sequencing, qPCR, 및 ELISA를 수행하였다. 4. Cy3-표지 Cas9 RNP의 이미징 및 카운팅
형질 감염 후 1일째에, 세포를 실온에서 10분간 4%(w/v) PFA(paraformaldehyde)에 고정시킨 후, 실온에서 15분 동안 4' ,6-diamidino- 2-phenyl indole (DAPI, l/g/ml, Sigma Aldrich)로 염색하였다. 상기 세포를 x630 배율로 공초점 현미경 (LSM510, Carl Zeiss)으로 시각화하였다. 스캐닝 매개 변수는 다음과 같이 하였다: scaling (x = 0.14 /pixel, y = 0.14 /pixel, z = l m/pixel) , dimensions (x=1024, y=1024, z=6, channels: 3, 12-bit) (with objective C-Apochromat 63x/1.20W Korr UV— VIS-IR). ZEN 2 소프트웨어 (검정색 판, Ver 10.0, Carl Zeiss)를 사용하여 Cy3 양성 핵 (Cy3 positive nuclei)을 계수하였다. Cy3 양성 핵의 빈도 (frequency)를 정량화하기 위해, 우리는 배율 630배에서 관찰되는 시야 범위에서 Cy3 염색된 핵을 갖는 세포의 수와 전체 세포수를 세고, 4 개 시야에 걸쳐서 관찰되는 Cy3 양성 핵의 평균 백분율을 계산 하였다 (n = 3).
5. T7E1 Assay
DNeasy Tissue Kit (Qiagen)을 사용하여 제조자의 프로토콜에 따라 세포 및 조직으로부터 유전체 DNA(genomic DNA)를 분리하였다. PCR을 사용하여 표적 부위를 증폭시킨 후, 생성물을 열 순환기를 사용하여 변성시키고 어닐링시켰다. 이 때 사용 된 프라이머를 아래의 표 2에 정리하였다:
【표 2]
List of primers used for the T7E1 assay.
1st PCR 2nd PCR
Forward Reverse Forward Reverse
Target
(5' to 3') (5' to 3') (5' to 3') (5' to 3')
ACACTCTTTCCCTAC GTGACTGGAGTTCA
CAAATCTGGGTG
AGATGGTCAAATCGT ACGACGCTCHCCGA GACGTGTGCTCTTC
Vegfa-l GCGATAGA
GGAGAG TCTCAAATCTGGGTG CGATCTCCAGGGCT
(mouse) (서열번호
(서열번호 24) GCGATAGA TCATCGTTACA
23)
(서열번호 25) (서열번호 26)
CATCGTGTGATC ACACTCTTTCCCTAC GTGACTGGAGTTCA
CCACCTGHCCCAAA
Vegfa-l TCTGGAATGAA ACGACGCTCHCCGA GACGTGTGCTCTTC
GTGTTA
(human) (서열번호 TCTGTGGTGAAGTTC CGATCTAAAGATGC
(서열번호 28)
27) ATGGATGTCTA CCACCTGCAT (서열번호 29) (서열번호 30) 어닐링 된 PCR 산물을 T7 엔도뉴클레아제 I (ToolGen, Inc.)과 함께 37°C에서 25분 동안 인큐베이션하고, 아가로오스 겔 전기 영동으로 분석하였다.
6. Targeted deep sequencing
Phusion 폴리머라제 (Thermo Fisher Scientific)를 사용하여 유전체
DNA로부터 온 -타켓 (on-target) 및 잠재적 오프 -타겟 (off-target) 영역을 증폭시켰다. Illumina MiSeq(LAS Inc. 한국)을 사용하여 PCR 증폭물의 쌍을 이룬 서열의 분석을 수행하였다. 사용된 프라이머를 표 3내지 표 5에 정리하였다:
【표 3】
targeted deep sequencing에 사용된
Figure imgf000023_0001
(서열번호 25) TTACA (서열번호
26)
GTGACTGGAG TCAGA
ACACTCTTTCCCTACACG
CATCGTGTGATCTC CCACCTGTTCCCM CGTGTGCTCTTCCGAT
Vegfa-l ACGCTCnCCGATCTGTG
TGGAATGAA AGTGTTA CTAAAGATGCCCACCT
(human) GTGMGTTCATGGATGTC
(서열번호 27) (서열번호 28) GCAT (서열번호
TA (서열번호 29)
30)
GTGACTGGAGTTCAGA
ACACTCTTTCCCTACACG
CCAAAGTCGCTCTG TCGGGTGAGCATGT CGTGTGCTCTTCCGAT
Rosa26 ACGCTCTTCCGATCTCCA
AGTTGT CTTTAATC . CTCTTTAAGCCTGCCC (mouse) AAGTCGCTCTGAGTTGT
(서열번호 35) (서열번호 36) AGAAGA (서열번호
(서열번호 37)
38)
【표 4】
potent i al of f-target 부위에서의 targeted deep sequencing 에 사용된 프라이머
Figure imgf000024_0001
(서열번호 53) (서열번호 54)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
GCCCAAAGTAGCAGGT CTCAGGCTGTAACTGA CGACGCTCTTCCGATC CGTGTGCTCHCCGAT
0T5 GATTA (서열번호 CGATATG TACAGGATGCAAGTCC CTCATTCTTCACAGGG 55) (서열번호 56) ACATC (서열번호 CCATCA (서열번호
57) 58)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
AGAAGCTAAGGAGCCC TACTTTGCCAAGCCCA CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
0T6 AATTT (서열번호 TGT (서열번호 TGCCTTCTCTCTTGGC CTGAACCTACTCTCAT 59) 60) TGTAA (서열번호 CGTGCTAC
61) (서열번호 62)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
GAGGAGCCCAAGTATA GGTCACCATAGCTACA CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
0T7 TCACAG (서열번호 AGAGAG (서열번호 TAAGGCTCCATTAGCC CTCTGTCATGGTGCAC 63) 64) TCTTC (서열번호 ATCATTC
65) (서열번호 66)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CCCTGCAGCATTCTCT GACCCAGTGTATTGTG CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
0T8 GTAT (서열번호 GGTAG (서열번호 TTGACAAGCCTGACAG CTGGCTGATGGTGAGC 67) 68) nCATC (서열번호 AGAAA (서열번호
69) 70)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CTGGAACCAGAGTCAT TCTGAAGCACACACCA CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
0T9 AGATAGTTG GAAG (서열번호 TCAAGATACCAAAGCA CTGAAGCAGHCAGAG
(서열번호 71) 72) GGTGTTC GTCTATGT
(서열번호 73) (서열번호 74)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CTAGAAGAAGGCAGAG AGGAGGGACAGACTGG CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
OT10 GGAGTA (서열번호 TATAAA (서열번호 TCACAGCGAGCCAGAA CTCTGTGCTACCTGAT 75) 76) TACA (서열번호 CTACTCAAC
77) (서열번호 78)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
GTGTGAATGGAGGCGA GCAGCTGAGAAGCTAA CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
0T11 AATTG (서열번호 GGAATA (서열번호 TTACATAAAGTCCCTG CTTTACCAGGACTCTA 79) 80) CAACCTG GTGAGTGG
(서열번호 81) (서열번호 82)
TAGTACCTGCCCACCA GGGCACTTCTTCMTG ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
0T12
GATAG (서열번호 CTTTAC (서열번호 CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT 83) 84) . TCTCCTGACCAGTGTT CTAAACCTCGAGTAGG
CTGTAAT AAGGGA (서열번호
(서열번호 85) 86)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CCCACTGAGGTTGTAT GATCCAATGGCTTTGC CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
T13 CAGTTC (서열번호 ACATAC (서열번호 TAAAGAAGACCAGTGA CTAGTCTGATGACCCG 87) 88) AGGACTG AGTTCTA
(서열번호 89) (서열번호 90)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
TCTATATAGGCAGGTT AACCAGGACATATGTG CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
T14 ATGAAAGCA GTAGAAA TAATGGCCTTCTGGGA CTCTGAGTCTGAGAGC
(서열번호 91) (서열번호 92) AAGT (서열번호 TTGTAGTG
93) (서열번호 94)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CACAGACAGTCGCCTT TGGAAGCOTAACAGG CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
T15 CAAT (서열번호 TCAATAA TGCCTTCAATGAATCT CTGCTTCATTGGCAGC 95) (서열번호 96) CCCTTTG ACTTAC (서열번호
(서열번호 97) 98)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
GGAAGATCAGCAGTCT CACATTACCTCAMGC CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
T16 CAACTAA TG1TTCTT TCTCAGTGACAGAGAC CTGTGGTGACATGGCT
(서열번호 99) (서열번호 100) TCACCTA GTATCTT
(서열번호 101) (서열번호 102)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CTTCCACCGGGTA TT TCCCAGAGAGAGTTAG CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
T17 CCTATC (서열번호 GTTAAGA TAGATGAATGAGCACC CTAGACAAGAAAGGGC 103) (서열번호 104) AGAGAAA AGTAAGAA
(서열번호 105) (서열번호 106)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CCTGGGAACAACAGCC GMCATTGGGTAGGTG CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
T18 ATM (서열번호 AGGMG (서열번호 nCTCTGTTGAGGTGG CTGTACTGCTTGAGGA 107) 108) GATTTG (서열번호 GCTTGT (서열번호
109) 110)
ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
TGAGCCAGTCCATTCA TCCCTCCTGTTC TCT CGACGCTCTTCCGATC CGTGTGCTCTTCCGAT
T19 ncc (서열번호 CTTCT (서열번호 TTTGGGACAAGTGTAC CTACCTTCACCTACAG 111) 112) AGAGAAC AGAAGAGA
(서열번호 113) (서열번호 114) ACACTCTTTCCCTACA GTGACTGGAGTTCAGA
CCCACAAACCAAGAAC CAGTGTTAAGTGCCTC CGACGCTCnCCGATC CGTGTGCTCHCCGAT
0T20 AACAA (서열번호 TGTAGAT TCAGAAGGGCGGCATC CTTTTAGTCTCTGGTT
115) (서열번호 116) AG (서열번호 TCCACCT
117) (서열번호 118)
【표 5】
Digenome-seq에 의하여 포획된 potent i al of f-target 부위에서의 targeted deep sequencing에 사용된 프라이머.
Figure imgf000027_0001
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
AGTAGGTGGGAGGGT CACCATCTCTGTGTC ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
0T6 TCTTAT TCATCTG TCTAGAAACAGGCAT ATCTTTCAGCATAGT
(서열번호 139) (서열번호 140) CTGGAGAAC C TGCTCGTC
(서열번호 141) (서열번호 142)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
TAAGCCTGGCCTGTC AGAGCAGGACGTGGT ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
0T7 TCTT (서열번호 GAG (서열번호 TCTTCTCTTCCTGGG ATCTATACCTAGGAA 143) 144) ACCCT (서열번호 TGCAGAACAAG
145) (서열번호 146)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
GGGATTGCAC TAGG CTATGCGGTCTCTTG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
0T8 TTCTTCT TGCTAAT TCTGGTCAGGTGGGT ATCTCTAATCTGCCT
(서열번호 147) (서열번호 148) AATGATTTCTG TATGTAATGGGTTCT
(서열번호 149) (서열번호 150)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
GACTCCTCTGTGGAA AGGACTCCAGTGCTG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
0T9 AGAGC (서열번호 AGCAC (서열번호 TCTTCCTCTGTGGAA ATCTACACCGTCTCT 151) 152) AGAGCCT CCTTTGTGC
(서열번호 153) (서열번호 154)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
AGGGACCGTATCAGA TCCMTGTATTGCAG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
OT10 TATTGTTAATC CCATCT TCTAATCAATCCTTG ATCTCAGCCATCTTG (서열번호 155) (서열번호 156) TGCAGCTTAATG CCCTTTGA
(서열번호 157) (서열번호 158)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CATTGAGGAACCTCA ATGMTGTCTTGGTA ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
0T11 CCTTCTAT CTGTCCTC TCTGGAAGAGGTGTA ATCTCCTCTTCTCTC
(서열번호 159) (서열번호 160) TTAGGCCATT TTGCTTCATCTC
(서열번호 161) (서열번호 162)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CAAAGCAGCTCCTCT CAGTGCC1TTCAGTG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
0T12 TCCTC (서열번호 AACCT (서열번호 TCTTCTGGGTATAGA ATCTCACAGCCTGAG 163) 164) GACCATGACA ATAATGATAGAGAG
(서열번호 165) (서열번호 166)
GGAGTCGTACCCTGG GAAGCATTGTTCCAC ACACTCTTTCCCTAC GTGACTGGAGTTCAG
0T13 TTTATTT CTTAACC ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
(서열번호 167) (서열번호 168) TCTGGGATAGAAGAT ATCTTGCATGTTTGA TAGGCAGAGTATG AAGGATGAGC
(서열번호 169) (서열번호 170)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CTCTCAGACCCTACT CACTGGAAGTACCTG ACGACGCTCHCCGA ACGTGTGCTCTTCCG
T14 CACCTAT TGGAAG TCTAGACCCTACTCA ATCTTACCTGTGGAA
(서열번호 171) (서열번호 172) CCTATATCCTTT GCAGGAGA
(서열번호 173) (서열번호 174)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
GGCCATCCTCAAAGA TCTCAAACTCCCGAC ACGACGCTCHCCGA ACGTGTGCTCTTCCG
T15 CATGAA CTCA (서열번호 TCTGCATTTCTATTT ATCTCTGGG ACA
(서열번호 175) 176) ATTCATCTCCCACAG GGCGTGAG
(서열번호 177) (서열번호 178)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
AGAAGTTTCAGGATG CAATCCACATCTGCG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T16 ACAGATCC TGTTTC TCTAGAAGTTTCAGG ATCTCAATCCACATC
(서열번호 179) (서열번호 180) ATGACAGATCC TGCGTGTTTC
(서열번호 181) (서열번호 182)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
TGACTCATTGTGAAT GAGTTGGGTTCTCTG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T17 GCCTTTATTC CAACT (서열번호 TC TATAGAGTCTAG ATCTAAGTCTTATCT (서열번호 183) 184) ATTAGCAGTAGAGC GATACATGGATACC
(서열번호 185) (서열번호 186)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
TGCAGCTCTGGACAG GGTGGGTTTCACCAT ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T18 GAA (서열번호 CCTC (서열번호 TCTGGGTGATTCCCT ATCTCCATCCTCCTG 187) 188) CTGTGG CCCTCT
(서열번호 189) (서열번호 190)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
GACAGCACTTAGGGA GATGGAGCTGCCCAA ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T19 TGATGAA GAM (서열번호 TCTGGGATGATGAAT ATCTCHCTCCATGT
(서열번호 191) 192) GGCTGGAT AGGTGCCTT
(서열번호 193) (서열번호 194)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CCTGAGAACAAGGAG CCATGGAATGCCCAG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T20 TGTCAAG ATACTT TCTGTTGATATCCCA ATCTTTAAACATCAT
(서열번호 195) (서열번호 196) GCTTAAGCAATC nCTGGCACGTC
(서열번호 197) (서열번호 198)T21 AGCTATTGCTGTCAA TACCCAGTCTCAGGT ACACTCTTTCCCTAC GTGACTGGAGTTCAG TCTCTTACT AGTTCTT ACGACGCTCHCCGA ACGTGTGCTCTTCCG
(서열번호 199) (서열번호 200) TCTTGCTGTCAATCT ATCTTAGCAATGCGA
CTTACTGTAACTA GMCAGACTAA
(서열번호 201) (서열번호 202)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
TGCCACACATCCCAT CAGCAGACACAGACT ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T22 CATATC CACAA (서열번호 TCTCMCATGAAATG ATCTCCCATTCAAGT
(서열번호 203) 204) CCAGAGTCAAA TGCAATCACTATC
(서열번호 205) (서열번호 206)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
TCCTGAAAGAAGGGA TGAGGATGGG1TTCG ACGACGCTCTTCCGA ACGTGTGCTCTTCCGT23 TAAGGTAAG GTAAAT TCTATAAGGTAAGCT ATCTGTTTCAACATG
(서열번호 207) (서열번호 208) CAGCCTGTC AAGGCAAGGAG
(서열번호 209) (서열번호 210)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CMGAAGGGTGTTAG ACAGTCAACCCTTM ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T24 GTTATGAAAG GGAAGAG TCTGGGTGTTAGGTT ATCTAAGGAAGAGn (서열번호 211) (서열번호 212) ATGAAAGTTTAAGG GTCTTCACTCG
(서열번호 213) (서열번호 214)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CTTTCACAGCCAGTC CTCACACTCTAGGAA ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T25 ACAMTAAA ACAGATGATAG TCTCAATCCACTCAG ATCTAGACAGGAGTG
(서열번호 215) (서열번호 216) ACTACAGAGAAA TTCTCCAAATC
(서열번호 217) (서열번호 218)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
GTGAGCCAAGATCAC CTCTCAGCAAGAAGG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T26 ACCAT (서열번호 CAGATT TCTAGATCACACCAT ATCTGCCAGATCAGT 219) (서열번호 220) TGCACTCC GTCTGCTAAA
(서열번호 221) (서열번호 222)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
GGACACGCTGAGTCA CCTTTCCTTCGTGCT ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T27 AAGH (서열번호 GATTGA TCTGCAACCACGTCG ATCTGGTGGAAGTGA 223) (서열번호 224) ACAATACA CAAGCAAGTTA
(서열번호 225) (서열번호 226)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CCCAACAATTCCTTC TCTGCTATTAGAGGA ACGACGCTC TCCGA ACGTGTGCTCTTCCG
T28 TTTGAGC GGCTAGAA
TCTCAATTCcrrcTT ATCTGAGGCTAGAAC
(서열번호 227) (서열번호 228)
TGAGCTCACTAT AACCTTGGA (서열번호 229) (서열번호 230)
ACACTCITTCCCTAC GTGACTGGAGTTCAG
GGGCAAATCCATAAC AGGCGATGCATGAGC ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T29 CCAGAATA TTAAA (서열번호 TCTGGGCAAATCCAT ATCTGTAGCTAATCT
(서열번호 231) 232) AACCCAGA GGCTACCATCAC
(서열번호 233) (서열번호 234)
ACACTCITTCCCTAC GTGACTGGAGTTCAG
ATTGGCTGGCACACA CCCAGGATCTAGCAA ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T30 GTAG (서열번호 ACATTCA TCTTGAATGAATGAA ATCTGCAAACATTCA 235) (서열번호 236) GGAAAGAATGGG TCTTTCGAGCTA
(서열번호 237) (서열번호 238)
ACACTCITTCCCTAC GTGACTGGAGTTCAG
CACTTCTCGCCTTTG TGGCTGTGCTCACTT ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T31 ACCTT (서열번호 TACTG (서열번호 TCTAGAGGAGGAAAC ATCTACTTTACTGCC 239) 240) TGGAGCTTA ACCAGTGC
(서열번호 241) (서열번호 242)
ACACTCITTCCCTAC GTGACTGGAGTTCAG
ATCHCCACAGGTGC TTGCCTATGGCTGCC ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T32 AAATCT TTG (서열번호 TCTCTGGTCATTCTC ATCTAACAGTATGGG
(서열번호 243) 244) TTCCGTCAAA CCTGAAAAG
(서열번호 245) (서열번호 246)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CATGTAACCACGACT CCATGGCTTGCAGCA ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T33 ACCTCAA ΑΤΓΤ (서열번호 TCTGTMCCACGACT ATCTCACACAGACGT
(서열번호 247) 248) ACCTCAAGATATAA ACTCTTAAGGA
(서열번호 249) (서열번호 250)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CTTAGAGGAAAGAGA AGTGTGGCTGATTAT ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T34 ACTGGGATTAT GGTGATTA TCTCCAAGAGTAGCC ATCTCACGTAAATTG (서열번호 251) (서열번호 252) TAACCTTTACAA CACCTGTCAC
(서열번호 253) (서열번호 254)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
TTTCTCTGCCATTCT GAATGAAGACACGAG ACGACGCTCTTCCGA ACGTGTGCTCTTCCG
T35 TCCTCTG GCATTTG TCTTCnAGCCCATG ATCTTCCAGAATGTA
(서열번호 255) (서열번호 256) TTGCTTCC CCTTGCAC TT
(서열번호 257) (서열번호 258)
TGCTGTCnTAGTTC TTAACCCAGCATCAG ACACTCTTTCCCTAC GTGACTGGAGTTCAGT36
CTTCATT CTCTC (서열번호 ACGACGCTCTTCCGA ACGTGTGCTCTTCCG (서열번호 259) 260) TCTTGCTGTC TTAG ATCTTTAACCCAGCA
TTCCTTCATT TCAGCTCTC
(서열번호 261) (서열번호 262)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
TTTCCAGAAGAGCCG CCAACAACCACCACG ACGACGCTCHCCGA ACGTGTGCTCTTCCG
0T37 ACAAG (서열번호 ACTAA (서열번호 TCTGGGCCCHCTGC ATCTAGTCTCCCATG
263) 264) TTTGAG AAGGCTGTA
(서열번호 265) (서열번호 266)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
AAAGTACATAGAGGA AGTTCACCACCACCA ACGACGCTCHCCGA ACGTGTGCTCTTCCG
0T38 CGTGCATAG CAAG (서열번호 TCTTGTGCAAATACT ATCTACAAGITTGCA
(서열번호 267) 268) ACGCCATTTC CTTGCTTTCA
(서열번호 269) (서열번호 270)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CACCTGGACCACCAG GCTGITTGCAAATGC ACGACGCTCHCCGA ACGTGTGCTCTTCCG
0T39 AAA (서열번호 CTCA (서열번호 TCTCACCTGGACCAC ATCTACCCATCTCTG
271) 272) CAGAAA CAGACCTTA
(서열번호 273) (서열번호 274)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CTGATTTCCTGAGTT AAGTGTGGGCTGTGC ACGACGCTCnCCGA ACGTGTGCTCTTCCG
0T40 TCTCCCTAA ATM (서열번호 TCTCTGTGAAGGGAT ATCTCGATCAAGGCT
(서열번호 275) 276) nCAAACTTTCC AACGTCATCA
(서열번호 277) (서열번호 278)
ACACTCTTTCCCTAC GTGACTGGAGTTCAG
CATCTCCTGCTGTGT CCAGTCTCGGGTATG ACGACGCTCnCCGA ACGTGTGCTCTTCCG
0T41 CATCTT TC TTATT TCTGACTGACTTCCA ATCTCAGACTAATAC
(서열번호 279) (서열번호 280) TCTTCCTCAC ATCCGGTCTCATC
(서열번호 281) (서열번호 282)
PAM 서열의 상류 3bbp 부위 주위의 돌기는 Cas9 RNP 활성으로 인한 돌연변이로 간주되었다. 긔NA추출및 qPCR
easy-spinTM Total RNA 추출 키트 ( iNtRON, 한국)를 사용하여 제조사의 프로토콜에 따라 NIH3T3 및 ARPE-19 세포로부터 전체 RNA를 분리하였다. Superscr ipt I I (Enzynomics , South Korea)를 사용하여 250 ng의 RNA를 역전사시켰다. SYBR Green (KAPA) 및 다음의 프라이머를 사용하여 정량적 PCR (Quantitative PCR; qPCR)을 수행하였다: mouse Vegfa: 5 ' -ACGTCAGAGAGCAACATCAC-3 ' (forward; 서열번호 283), 5 ' -CTGTCTTTC1TTGGTCTGCATO-31 (reverse; 서열번호 284);
mouse Gapdh: 5 ' -GCTGAGTATGTCGTGGAGTCTA-31 (forward; 서열번호 285) 5 ' -GTGGTOACACCCATCACAA-3 ' (reverse; 서열번호 286);
human VEGFA-l 51 -CGAGTACATCTTCAAGCCATCC-31 (forward; 서열번호 287), 51 -GGTGAGGTTTGATCCGCATAAT-3 ' (reverse; 서열번호 288);
human VEGFA-2: 5 ' -AGAAGGAGGAGGGCAGAAT-31 (forward; 서열번호 289), 5 ' -CACAGGATGGOTGAAGATGTA-3 ' (reverse; 서열번호 290); '
human GAPDH: 5 ' -CAATGACCCCTTCATTGACC-3 ' (forward; 서열번호 291),
5 ' -TTGAmTGGAGGGATCTCG-3 ' (reverse; 서열번호 292).
8. confluent ARPE-19세포를사용한 VEGFA ELISA
인간 VEGFA ELISA를 수행하기 위하여, eᅳ 특이적 Cas9 RNP 처리된 confluent ARPE-19 세포를 무혈청 (serum-free) 배지에서 16시간 동안 배양한 후, 상기 세포 배양물로부터 무혈청 상청액 (supernatant)을 수집하고, 인간 VEGF Quant ikine ELISA Kit (DVE00, R & D systems)를 사용하여 제조사 지침에 따라 분비된 VEGFA단백질 수준을 측정하였다. 9. 유전체 DNA의 in vitro cleavage 및 Digenome sequencing
DNeasy Tissue Kit (Qiagen)을 사용하여 ARPE-19 세포 (ATCC)에서 유전체 DNA를 분리 하였다. Digenome sequencing을 위하여, 유전체 DNA를 다음의 방법으로 in vitro 절단하였다. 간단히 설명하면, 유전체 DNA (20//g)를 Cas9 단백질 (16.7/ ) 및 sgRNA (12.5/g)와 함께 반웅 완충액 (100 mM NaCl , 50 mM Tris-HCl, 10 mM MgCl2) 100ig/ml BAS, pH 7.9)에서 37°C 조건으로 3시간 동안 인큐베이션하여 Cas9에 의한 유전체 DNA의 절단이 일어나도록 하였다. 절단된 유전체 DNA를 RNase A (50//g/ml , Sigma Aldrich)로 37 °C에서 30분간 처리하고, DNeasy Tissue Kit (Qiagen)로 정제하였다. Whole-genome sequencing과 Digenome sequencing은 관련 기술분야에 알려진 방법으로 수행하였다 (Kim, D., Kim, S. , Kim, S., Park, J. & Kim, J. S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenomeᅳ seq. Genome research 26, 406- 415 (2016))
10. RNP가 망막하주입된 동물의 준비
본 명세서의 실시예에서 사용된 모든 동물의 관리, 사용 및 치료는 Seoul National University Institutional Animal Care and Use Co隱 ittee에서 정한 가이드라인 및 'ARVO statement for the Use of Animals in Ophthalmic and Vision Research1을 엄격하게 준수하며 수행하였다. 성체 (6 주령) 수컷 SPF C57BL/6J 마우스를 연구에 사용하였다. 마우스는 12시간 /12시간의 명 /암주기 하에 유지시켰다.
상기 준비된 마우스에 대하여 다음의 방법으로 R P를 망막하 주입 (Subretinal inject ions)하였다 . 우선, Cas9 단백질 (8 ), sgRNA (4.5 ) 및 Lipofectamine 2000 (2OT(v/v))으로 구성된 RNP를 2μΙ 또는 2>μ (injection volume)가 되도록 흔합하였다. 상기 준비된 RNP (2fd 또는 3 )를 수술 현미경 (Leica Microsystems Ltd.) 하에서 33G무딘 바늘 (World Precision Instruments Inc.)이 장착된 Nanofil 주사기를 사용하여 마우스의 망막 밑 공간 (subretinal space)에 주사하였다. 망막 출혈이 있는 마우스 개체는 시험에서 제외시켰다. 、
11. 레이저 유도 맥락막 혈관신생 (Laser-induced choroidal neovascularization; CNV) 동물모델 제작
tiletamine과 zolazepam를 1:1의 증량비로 흔합한 흔합물을 2.25 mg/kg (체중)의 양으로 복강내 주사하여 마우스를 마취시켰다. phenylephrine (0.5%(w/v))과 tropicamide (0.5%(w/v))7> 포함된 점안액으로 마우스의 동공을 확장시켰다. Indirect head set delivery system (Iridex)과 레이저 시스템 (Ilooda)을 사용하여 레이저 광웅고 (Laser photocoagulat ion)를 수행하였다. 레이저 파장은 532 nm로 하였다. 레이저 매개 변수 (Laser parameters)는 다음과 같다: 스팟 크기: 200rni, 전력: 1W, 및 노출 시간: 100ms. 변형된 시신경 원반 (optic disc) 주위의 12시 위치 (우안) 또는 6시 위치 (왼쪽 눈)에 레이저 화상 (laser burn)을 유도시켰다. 유리체 출혈 (vitreous hemorrhage)이 없는 거품을 발생시킨 레이저 화상만을 시험 대상에 포함시켰다. 레이저 화상의 사분면에서 RNP의 망막하 주입을 시행하였다. Cas9 RNP sgRosa26 {Rosa26 targeting sgRNA 포함) 또는 sgVegfai Vegfa targeting sgRNA 포함))는 각 마우스의 왼쪽 눈 또는 오른쪽 눈에 무작위로 할당하였다. Cas9 RNP의 망막하 주사에 의하여 물집 (bleb)이 만들어졌다. 이 물집이 레이저 화상 부위와 중첩되었음을 확인하였다. 물집이 레이저 화상 부위와 중첩된 개체를 이후 시험에 사용하였다. 레이저 처리 7일 후, 안구를 실온에서 1시간 동안 4%(w/v) PFA(paraformaldehyde)에서 고정시켰다. RPE (retinal igment epithelium) 복합체 (RPE/맥락막 /공막)을 isolectin-B4 (Thermo Fisher Scientific, cat. no. 121413, 1:100)으로 4°C에서 밤새 처리하여 면역 염색시켰다. 염색된 RPE 복합체를 형광현미경 (Eel ipse 90i, Nikon)에 편평하게 올려놓고 x40 배율로 관찰하였다. CNV 면적은 blind observer가 Image J 소프트웨어 (1.47v, NIH)를 사용하여 측정하였다.
12. 면역 형광 염색 및 이미징
RPE 복합체 중의 RPE 세포수를 고배율 필드 영역 (high power field area) (100/mx 100卿, n=8)에서 파라핀에 삽입된 단편 시료 (cross section sample, 4 ) 내의 DAPI 염색된 핵을 계수하여 산정하였다. 주사 후 7 일째에 얻은 단편 시료 (n=4)를 anti-opsin 항체 (Millipore, AB5405, 1:1000)와 Alexa Fluor 488 항체 (Thermo Fisher Scientific, 1:500)로 면역염색하였다. opsin positive 영역은 blind observer가 Image J 소프트웨어 (1.47v, NIH)를 사용하여 측정하였다. 공초점현미경 (LSM 710, Carl Zeiss)을 사용하여 RPE flat— mount에서의 Cy3-Cas9 단백질의 세포 내 분포를 이미징하였다. 스캐닝 파라미터는 다음과 같다: scaling
Figure imgf000035_0001
, dimensions (χ=1024, y=1024, ζ=12, channels: 2, 8-bit) , and zoom (5.0) with objective Cᅳ Apochromat 40x/1.20W Korr M27. ZEN 2 소프트웨어를 사용하여 이미지를 처리하였다.
13. CNV 영역 및 RPE복합체로부터 유전체 DNA추출
RNP를 주사하고 3 일째에 RPE 복합체로부터 유전체 DNA를 분리하고, CNV 면적 측정 후 RNP를 주사하고 7 일째 CNV 시료로부터 유전체 DNA를 분리하였으며, 유전체 DNA분리는 NucleoSpin Tissue Kit (Macherey-Nagel )를 사용하여 수행하였다. RNP 효능을 평가하기 위해, 각 RPE 복합체를 4 사분면으로 분할하고, RNP가 주입된 사분면을 처리하여 유전체 DNA를 분리하였다. CNV 영역의 RPE 복합체에서의 indel 빈도를 평가하기 위해, RPE flat-mount를 이미징한 후 PBS로 세척하였다. 유전체 DNA는 다음의 두 개 영역으로부터 분리하였다: (i) CNV의 RNP주입 영역을 포함하는 사분면 (주입 부위를 대표함); 및 (ii) 반대 사분면 (opposite quadrant; 비주입 부위를 대표함).
14. 마우스 VEGF-A ELISA
마우스 VEGF-A ELISA의 경우, 안구에 총 30 개의 레이저 화상을 유발시킨 후, RNP (3 )를 망막하 공간 (subretinal space)에 주사하였다. 주사 후 3 일째, 전체 RPE 복합체를 망막으로부터 분리하고, 추가 분석을 위해 동결시켰다. RIPA 완층액 (50 niM Tris-HCKpH 8.0), 150 mM NaCl , 1% lgepal CA-630, 0.5% Na.deoxycholate, 0.1% SDS)으로 세포를 용해시키고, 마우스 VEGF Quant ikine ELISA Kit (MMV00, R & D systems)를 사용하여 제조자의 지시에 따라 VEGF-A수준을 측정 하였다.
15. 웨스턴 블라팅 (Western blotting)
RNP의 생체내 전달 후 시간 경과에 따른 RNP 수준을 분석하기 위해 주사 후 1 일 및 3 일에 얻은 RPE 복합체에 대하여 웨스턴 블라팅을 수행 하였다. 동량의 단백질 (20/ )을 함유한 시료를 분석하였으며 ; Cas9와 액틴은 각각 항 -HA 고친화성 항체 (Roche, 1:1000) 및 항 -β-액틴 항체 (Sigma Aldrich, 1:1000)를 사용하여 검출하였다. ImageQuant LAS4000 (GE healthcare)를 사용하여 디지털 이미징하였다. 16. 통계처리
데이터 분석은 SPSS 소프트웨어 버전 18.0 (SPSS Inc., Chicago, IL, USA)을 사용하여 수행하였다. P value는 unpaired, two sided Student's t- test 또는 one-way AN0VA 및 Tukey post-hoc test (다수의 시험군의 경우)에 의해 결정하였다. 데이터는 s.e.m (standard error of the mean)과 함께 평균값으로 표시하였다. 실시예 1: Cas9 ribonucleoproteins (RNPs)를 통한 Vegfa/VEGFA 유전자의 표적 돌연변이 유발
마우스 NIH3T3 및 인간 망막 색소 상피 세포주 ARPE-19 에세 VEGF 수용체 1 및 2 에 대한 결합 부위를 암호화하는 Vegfa 유전자의 엑손 3 과 액손 4 에서 표적 부위를 타겟팅하는 4 개의 단일 사슬 가이드 RNAs (sgRNAs) (Vegfa-1, 2, 3 및 4로 표시 )를 시험하였다. 상기 4종의 sgRNA (Vegfa-1, 2 3 및 4)는 참고예 1을 참조하여 제작하였다.
VEGFA/Vefga 유전자 내의 CRISPR_Cas9 의 표적 서열 (target sequence)을 타켓팅하는 sgRNA 의 표적화 서열 (targeting sequence) 및 인간 유전체와 마우스 유전체에서의 homologous site 개수를 아래의 표 6 에 정리하였다:
【표 6】
Number of mismatches
Target sgRNA with PAM (5' to 3') Position Direction at homologous sites*
0 1 2
Vegfa-1
CTCCTGGAAGATGTCCACCAGGG
human Exon 3 - 1 0 1
(서열번호 293)
mouse 1 0 1 ·
Vegfa-2
AGCTCATCTCTCCTATGTGCTGG
human Exon 4 - 1 0 1
(서열번호 294)
mouse 1 0 3
Vegfa— ?>
GACCCTGGTGGACATCnCCAGG
human Exon 3 + 1 0 0
(서열번호 295)
mouse 1 0 1
Vegfa-
ACTCCTGGAAGATGTCCACCAGG
human Exon 3 1 0 1
(서열번호 296)
mouse 1 0 0
(* Determined using Cas一 OFFinder (httpV/www . r genome of finder/);
밑줄: PAM서열)
상기한 바와 같이 제조된 sgRNA를 포함하는 특이적 Cas9 RNP를 마우스 NIH3T3 세포 및 인간 ARPE-19 세포에 각각 도입 (transfection)하여 하기의 시험을 진행하였다. 상기 RNP 의 세포 내로의 도입은, 참조예 3 에 기재된 바와 같이, 플라스미드를 통하여 세포 내에 전달된 핵산 분자가 세포 내에서 sgRNA 와 Cas9 단백질을 발현하도록 하는 방식 (도면에서 pl asmi d 로 표시)으로 수행하거나, 미리 sgRNA 와 재조합 Cas9 단백질의 복합체 (또는 흔합물)를 양이온성 지질 (Lipofectamine)을 사용하여 세포 내로 도입시키는 방식 (도면에서 RNP로 표시 )으로 수행하였다.
마우스 NIH3T3 세포와 인간 ARPEᅳ 19 세포의 Vegfa/VEGFA 유전자좌의 표적 부위 서열을 도 la 에 나타내었다 (PAM 서열: 파란색) ; sgRNA 표적 서열: 청색) .
형질감염 2 일 후에 Targeted deep sequenc ing (참고예 6 참조)을 수행하여 , 상기 제조된 4 종의 sgRNA (Vegfa-1 sgRNA , Vegfa-2 sgRNA , Vegfa- 3 sgRNA , 및 Vegfa-4 sgRNA)를 포함하는 특이적 Cas9 RNP 또는 이들의 암호화 서열을 포함하는 플라스미드의 도입에 의해 유발되는 NIH3T3 세포에서의 돌연변이 빈도를 측정하여, 그 결과를 도 lh 에 나타내었다 (Error bars indi cate s . e . m . (n=3) , One-way ANOVA and Tukey post -hoc tests , *** P < 0.001) .
또한, T7 엔도뉴클레아제 UT7E1) 분석 (참고예 5 참조)을 수행하여, NIH3T3 및 ARPE-19 세포에서 Vegfa-1 sgRNA 를 포함하는 Vegfa-특이적 Cas9 RNP또는 이들의 암호화서열을 포함하는 플라스미드의 도입에 의하여 유도된 돌연변이를 .검출하여 , 도 lb 에 나타내었다. 도 lb 에서 화살표는 T7E1 에 의해 절단된 DNA 밴드의 예상 위치를 나타낸다.
또한, 형질감염 2 일 후에 Targeted deep sequencing (참고예 6 참조)을 수행하여, NIH3T3 및 ARPE-19 세포에서 Vegfa-1 sgRNA 를 포함하는 Vegfa-특이적 Cas9 RNP 또는 이들의 암호화 서열을 포함하는 플라스미드의 도입에 의하여 유도된 돌연변이 빈도를 측정하여, 그 결과를 도 lc 에 나타내었다 (error bar : s . e .m (n=3) ; One-way ANOVA and Tukey post-hoc test s , * P < 0.05 , ** P < 0.01, *** P < 0.001) .
NIH3T3 및 ARPE-19 세포에서 Vegfa-특이적 Cas9 R P(Vegfa-l sgRNA 포함)에 의하여 유도되는 대표적인 Vegfa/VEGFA유전자좌에서의 돌연변이 DNA 서열을 도 Id에 나타내었다 (밑줄: sgRNA가 타겟팅 하는 표적 서열, 파란색 : 삽입된 뉴클레오타이드, - : 결실 부위, WT : 야생형; 삼각형: 절단 위치; 오른쪽 수치 : 삽입 또는 결실된 뉴클레오타이드 수) .
또한, 형질감염 64시간 후에 targeted deep sequenc ing (참고예 6 참조)을 수행하여, confluent ARPE-19 세포에서 Vegfa—1 sgRNA를 포함하는 Vegfa-특이적 Cas9 RNP의 도입에 의하여 유도되는 돌연변이 (indel) 빈도를 측정하였으며, 그 결과를 도 le에 나타내었다. 또한, 정량적 PCR (qPCR) (참고예 7 참조)을 수행하여 측정된 상기 세포에서의 VEGFA mRNA의 상대적 수준을 도 If에 나타내었으며, 참고예 8을 참조하여 VEGFA ELISA를 수행하여 측정된 상기 세포에서의 VEGFA 단백질 수준을 도 2g에 나타내었다 (Error bar: s.e.m. (n = 5), Student's t-test, ** P < 0.01, *** P < 0.001) .
도 lh에 나타난 바와 같이 , 4종의 sgRNA중 Vegfa-1 sgRNA가 Cas9와 복합체를 형성하여 R P 형태로 세포내에 도입되는 경우에 NIH3T3 세포에서 가장높은 indel 효율을 나타냈다. 또한, 도 lb 및 lc 에 나타난 바와 같이, indel 효율이 가장 높은 Vegfa-1 sgRNA 는 NIH3T3 세포 및 ARPE-19 세포에서 돌연변이를 유발하며, 특히 RNP 형태로 도입시 82 ±5 % (NIH3T3 세포) 또는 57±3 %(ARPE-19 세포)의 빈도로 표적 부위에서 작은 삽입 및 결실 (indels)을 유도하는 것이 확인되었다. sgRNA 와 Cas9 가 RNP 형태로 전달되는 경우, 플라스미드를 통한 형질 감염보다 indel 효율이 높게 나타났다 (도 lc).
도 le 에서와 같이, Vegfa-specific Cas9 RNP 처리시, ARPE-19 세포에서의 돌연변이 (indel)는 40±8%의 빈도로 검출되었으며, 도 If 및 lg 에서와 같이, Vegfa-specific Cas9 RNP 는 post-mi tot ic condition하에서 confluent ARPE-19 세포에서의 VEGFA mRNA 수준과 VEGF 단백질 수준을 각각 24 ±4% (mRNA수준) 및 52 ±9% (단백질 수준)의 감소폭으로 감소시켰다. 실시예 2: Cy3-labeled Cas9 RNP의 In vitro및 in vivo전달
in vitro 및 in vivo에서의 Cas9 RNP의 위치를 모니터링하기 위하여, Cy3가 접합된 Cas9 단백질 (참고예 4)을 사용하였으며, Vegfa-1 sgRNA와 결합되거나 결합되지 않은 Cy3-Cas9를 양이온성 지질과 흔합하여 NIH3T3 세포에 형질 감염시키거나, 망막하 주사를 통하여 Vegfa 특이적 Cy3 표지 또는 비표지 Cas9 RNP를 성체 마우스 안구에 주입하여 하기의 시험을 수행하였다.
Cy3 표지된 Cas9 RNP (Cy3 표지된 Cas9 및 Vegfa-1 sgRNA 복합체) 또는 Cy3 표지된 Cas9 단독 (대조군)으로 형질 감염시키고 24시간 후에 NIH3T3 세포를 공초점 현미경으로 관찰하여 세포 내 Cy3 신호의 위치를 이미징하였다 (참고예 4 참조). 상기 얻어진 이미지를 도 2a에 나타내었다. 도 2a에서, 흰색 화살표는 Cy3 염료의 핵 co-localization을 보여주고, 오른쪽의 z 축 이미지는 Cy3 표지된 Cas9가 핵 내부에 위치함을 보여준다. 또한, 상기 형질 감염 24 시간 후에, 총 DAPI 양성 핵 개수에 대한 Cy3 양성 핵 개수의 비율 (100*[Cy3 양성 핵 개수] / [총 DAPI 양성 핵 개수])을 측정하여, 도 2b에 나타내었다 (Error bars indicate s.e.m. (n=3), Student's t— test, *** P < 0.001).
또한, 상기 형질 감염 24 시간 후에ᅳ T7 엔도뉴클레아제 KT7E1) 분석 (참고예 5 참조)을 수행하여, NIH3T3 세포에서 Vegfa-1 sgRNA 를 포함하는 Vegfa-특이적 Cas9 RNP 의 도입에 의하여 유도된 돌연변이를 검출하여, 도 2c 에 나타내었다. 도 2c 에서 화살표는 T7E1 에 의해 절단된 DNA 밴드의 예상 위치를 나타낸다.
또한, 상기 형질 감염 24 시간 후에, Targeted deep sequencing (참고예 6 참조)을 수행하여, NIH3T3 세포에서 Vegfa-1 sgRNA 를 포함하는 Vegfa-특이적 Cas9 RNP 의 도입에 의하여 유도된 돌연변이 빈도를 측정하여, 그 결과를 도 2d 에 나타내었다 (error bar: s.e.m (n=3); One-way ANOVA and Tukey post -hoc tests, *** P < 0.001).
Cy3 표지된 Cas9 RNP 를 마우스 눈에 주사 한 후 3 일째에, 대표적으로 선택된 RPE flat -mount 를 형광 현미경으로 관찰하여 (참고예 11 및 12 참조), 그 결과를 도 2e 에 나타내었다. 도 2e 에서, 흰색 화살표는 Cy3 염료의 핵 co-localization을 나타낸다.
망막 색소 상피세포 (RPE)/맥락막 /공막 복합체 (RPE/choroid/scleral complex) 중의 망막 색소상피세포 (RPE)의 분포를 형광 현미경으로 관찰하여 (참고예 11 및 12 참조), 그 결과를 도 2h 에 나타내었다. 도 2h 는 RPE/맥락막 /공막 복합체의 대표적인 단면도를 보여준다. DAPI 양성 RPE 세포 및 다른 세포는 고배율 필드 영역 (100 μΆ X 100 )에서 계수되었다. 도 2h 의 노란색 선은 RPE 와 맥락막 사이의 경계를 표시하는 것이며, 백색 화살표는 RPE/맥락막 /공막 복합체 중의 RPE 핵 (10.5±2.8%, n=8)을 나타낸다. 참고예 13 을 참조하여, 망막 색소 상피세포 (RPE)/맥락막 /공막 복합체 (RPE/choroid/scleral complex)로부터 분리된 유전체 DNA 를 사용하여, 생체 내에서 유도된 indels 의 빈도를 결정 하였다. Indels 빈도는 주사 후 3 일째에 Targeted deep sequencing (참고예 6 참조)을 수행하여 분석 하였다. 얻어진 결과를 도 2f 에 나타내었다 (Error bars are s.e.m. (n=6), Student's t-test, ** P < 0.01).
생체 내에서 Vegfa-특이적 Cas9 R P (Vegfa-1 sgRNA 포함)에 의하여 유도되는 돌연변이 DNA 서열을 도 5 에 나타내었다. 도 5 에서, a 는 주사 3 일 후에 RPE 에서 Vegfa-특이적 Cas9 RNP 에 의하여 유도되는 대표적인 돌연변이 DNA서열을 보여주고, b는 주사 7일 후에 레이저 유도 맥락막 혈관 신생 (laser- induced choroidal neovascularization (CNV))을 갖는 RPE 에서의 돌연변이 DNA 서열을 보여준다. PAM 서열은 붉은 색으로 나타내고, Ψΐ 는 야생형을 의미하며, 오른쪽 수치는 삽입되거나 결실된 뉴클레오타이드 개수를 나타낸다.
웨스턴 블라팅을 수행하여 (참고예 15), 주사 후 24 시간 및 72 시간째에 RPE/맥락막 /공막 복합체에서의 Cas9 단백질의 수준을 측정하였으며 (n=4)ᅳ 그 결과를 도 2g 및 도 2i에 나타내었다.
도 2a 내지 2d는 in vitro 결과를 보여준다. 도 2a 및 2b에 나타난 바와 같이, Cy3-Cas9 RNP는 다수의 핵에서 검출되며, 도 2c 및 2d에 나타난 바와.같이, 표적 부위에서 indel을 유도하는 것이 확인되었다.
Cy3-Cas9 RNP 처리시의 Cy3 양성 핵의 비율 (42±6%) (도 2b)은 표적 부위에서 indel 빈도 (40±3¾) (도 2d)와 거의 유사하게 나타났으며, 이러한 결과는 핵에 위치한 Cas9에 의하여 세포 내에서 표적 부위가 거의 완전하게 절단되며, 이러한 유전체 교정에 있어서의 rate limiting factor가 Cas9의 핵 위치화라는 것을 의미한다. 한편, Cy3-Cas9가 sgRNA 없이 단독으로 도입된 경우, 핵에서 거의 검출되지 않고 indels을 유도하지 않았다 (도 2a 및 2d). Cas9는 pi 값이 9.12 인 양전하를 띠는 단백질이며 음전하를 띠는 sgRNA가 없을 때 양이온성 지질과 복합체를 형성할 수 없다. Cy3-Cas9 RNP는 Cy3 표지되지 않은 Cas9 RNP보다 활성이 낮았으며, 표지되지 않은 Cas9 RNP는 80%의 빈도로 표적 특이 적 돌연변이를 유도했다 (도 2d).
도 2e 내지 2g 및 도 102 내지 도 104 는 in vivo 결과를 보여준다. Cy3-Cas9 RNP 주사 3 일 후에 , Cy3 형광 신호가 망막 색소 상피세포 (RPE)의 핵에서 관찰되었다 (in vivo, 도 2e). RPE 는 망막하 주사에 의한 NP 전달의 주요 표적이기 때문에, RPE 세포 단독으로도 돌연변이 빈도를 이상적으로 분석 가능하다. 그러나 실제로는 targeted deep sequencing 을 위해, RPE/맥락막 /공막 복합체로부터 RPE 세포를 분류하는 것이 쉽지 않다. 대신, DAPI 양성 핵을 계산하여 RPE 세포의 비율을 계산하였으며, RPE 세포는 RPE/맥락막 /공막 복합체의 세포들 중 11 ± 3%를 차지하였다 (도 2h) . 특히, Cy3-비표지 Cas9 RNP 의 망막하 주사는 주사 후 3 일째에 indel 을 16 ± 2%의 빈도로 유발했으며, 생체 내 RPE 세포의 Vegfa 유전자의 표적 부위의 대부분에서 교정이 일어났다 (n=6 , 도 2f 및 도 5 의 a) . 또한, 웨스턴 블라팅 분석을 통하여, Cas9 단백질이 주입 후 3 일째에 완전히 분해됨을 확인하였으며 (그림 2g 및 20, 이는 Cas9 가 생체 내에서 빠르게 전환됨을 보여준다. 실시예 3: VegfA 표적으로 하는 Cas9 RNP의 망막하 주사의 노인성 황반변성 (AMD) 및 레이저 유발 맥락막 혈관신생 (CNV)에 대한효과 시험
Cas9 RNP가 AMD 마우스 모델에서 CNV의 치료에 사용될 수 있는지 조사하기 위하여, 레이저로 유도된 맥락막 혈관 신생 ( laser- induced CNV)을 갖는 마우스에 Vegfa 특이적 Cas9 RNP (Vegfa-speci f ic Cas9 RNP ; Vegfa-1 sgRNA 포함) 또는 Rosa26 특이적 Cas9 RNP (Rosa26-R P ; Rosa26 sgRNA 포함)를 망막하 주사하여 아래의 시험을 수행하였다. 망막하 주사는 그 자체로 CNV의 크기를 증가시키기 때문에, Rosa26-RNP를 대조군으로 사용하였다.
laser- induced CNV를 갖는 마우스에 미리 조립된 Vegfa-특이적인 Cas9 RNP를 망막하 주사로 투여하였다. 주사 후 7 일째에, 안구 안의 망막 색소 상피세포 (RPE) 복합체를 f lat -mount ing하고, CNV 영역을 분석 하였다. Cas9 RNP 주입 영역 또는 반대쪽 비 주사 영역 (RNP가 없는 영역)에서 분리된 유전체 DNA를 targeted deep sequencing으로 분석하였다. Vegfa ELISA는 주사 후 3 일째에 수행하였다. 상기 시험 과정을 도 3a에 모식적으로 나타내었다.
주사 후 7 일째, Rosa26-특이성 Cas9 RNP (대조군) 또는 Vegfa- 특이성 Cas9 RNP를 주사한 C57BL/6J 마우스에서 i solect in B4( IB4)로 염색된 laser-induced CNV를 가시화하여 (참고예 11 참조), 얻어진 대표적 이미지를 도 3b에 나타내었다. 도 3b에서 노란색 선은 CNV 영역을 구분한다.
주사 후 7 일째, CNV 면적을 평가하여 치료 효과를 평가 하였다. 참고예 11을 참조하여, Vegfa- 특이성 Cas9 RNP를 주사한 C57BL/6J 마우스에서의 CNV 면적을 측정하여, Rosa26-특이성 Cas9 RNP주사한 대조군의 CNV 면적 (100D에 대한 상대값 (%)으로 도 3c에 나타내었다 (Error bars indicate s.e.m. (n=15) , Student's t— test, *** P < 0.001) .
CNV 영역에서의 Vegfa 수준 (pg/ml)을 ELISA로 측정하여 (참고예 14 참조), 그 결과를 도 3d에 나타내었다 (Error bars indicate s.e.m. (n=10) , Student's t-test, ** P < 0.01).
RPE 복합체 내의 Vegfa 표적 부위에서의 Indel 빈도 (%)를 도 3e에 나타내었다 (Error bars indicate s.e.m. (n=7), One-way AN0VA and Tukey post -hoc tests, *** P < 0.001) .
RPE 복합체 내의 Rosa26 표적 부위에서의 Indel 빈도 (%)를 도 3f에 나타내었다 (Error bars indicate s.e.m. (n=7), Student's t-test, * P < 0.05).
hematoxylin & eosin 염색으로 시료 단면 (cross section)의 Laser- induced CNV 구조를 가시화하여 도 3g에 나타내었다. 도 3g에서, 노란색 선은 CNV 경계를 나타내며, 흰색 삼각형은 RPE/맥락막 /공막 복합체 중의 망막 색소 상피세포 (RPE) 층을 나타낸다. 대부분의 RPE 세포는 CNV 영역에서 손상을 입은 것을 확인할 수 있다 (Ch: 맥락막, R: 망막, S: 공막).
targeted deep sequencing를 통한 돌연변이 분석에 사용하기 위한 대표적인 CNV 시료를 도 3h에 나타내었다. 도 3h에서, 빨간 선은 돌연변이 분석을 위한 RPE/맥락막 /공막 복합체의 경계를 나타낸다. RPE 세포는 노란색 선으로 표시된 CNV 영역 외부에 주로 존재하였다. '
레이저 처리 후 7일째의 Laser-induced CNV를 도 3i에 나타내었다. IB4 마커와 DAPI로 공동 염색된 내피 세포를 CNV 영역으로 모집하였다 (가운데).
도 3b 및 3c 에 나타난 바와 같이, Rosa26-R P 를 주입한 마우스와 비교하여, Vegaf— RNP 를 주입한 한 마우스에서 CNV면적이 유의하게 감소했다 (Rosa26-RNP 주입 마우스 대비 58±4%, n = 15, P <0.001, Student 's t_ test ) .
또한, 도 3d 에서 보여지는 바와 같이, Vegfa-specific Cas9 RNP 주입시, CNV 영역에서의 Vegfa 단백질의 농도가 300±20pg/ml (n=10)로, Rosa26-RNP 주입시 (440±30pg/ml, n=10)와 비교하여 CNV 영역에서 Vegfa 단백질의 농도를 효과적으로 감소시킴을 확인할 수 있다. 또한, 도 3e 및 3f 에 나타난 바와 같이, Vegfa-specific Cas9 RNP 처리된 CNV 및 Rosa26-R P 처리된 CNV 에서의 각각의 RNP 의 표적 부위 (도 5 의 b 참조)에서의 indel 빈도가 각각 3.5±0.3% (Vegfa indel) 및 3.3±1·0% (Rosa26 indel)의 빈도로 검출된 반면, 음성 대조군에서는 indel 이 전혀 검출되지 않았다. 이러한 결과는 Vegfa-specific Cas9 RNP 의 망막하 주사에 의하여 크기가 작은 마우스 눈에서도 국소적 치료가 가능함을 보여준다.
한편, 도 3g 에 보여지는 바와 같이, CNV 내의 대부분의 RPE 세포는 레이저 처리에 의해 사멸하였다. 죽은 세포에서는 Cas9 RNP 에 의한 유전자 교정이 일어나지 않고, 살아있는 RPE 세포에서만 유전자 교정이 일어났으며 (도 3h), 그 결과, CNV 가 없는 영역의 세포와 비교하여, 살아있는 RPE 세포에서의 indel 빈도가 더 낮다. 또한, 레이저 치료 후 3 일째에, 내피 세포가 CNV 영역으로 모이고 새로운 혈관이 형성됨을 확인하였다 (도 3i). 이 세포는 유전자 교정되지 않아서 CNV 영역에서의 indel 빈도는 더욱 감소한다. 이러한 결과는 Cas9 RNPs를 이용한 눈에서의 Vegfa의 불활성화가 AMD 또는 당뇨병성 망막증과 같은 안구 질환의 효과적인 치료를 위한 치료적 유전체 교정 (therapeutic genome surgery)을 가능하게 함을 시사한다.
치료적 유전체 교정에서의 중요한 문제는 CRISPR-Cas9 뉴클레아제의 표적 특이성이다ᅳ 본 실험에 사용된 Vegfa-specific Cas9 RNP 가 마우스 눈 또는 사람 세포에서 off-target 돌연변이를 일으켰는지 여부를 조사하였다. 먼저, Cas-OFFinder 를 사용하여, 마우스 유전체에서 Cas9 RNP 의 Vegfa-1 sgRNA 의 표적 서열과 상동성이 가장 높은 20 개의 잠재적인 off-target 부위를 확인하여, 아래의 표 7에 정리하였다:
【표 7】
Potential off-target sites of the Vegfa-1 sgRNA (with PAM) in the mouse genome
No. Gene Sequence Chromosome Position Direction
CTCCTGGAAGATGTCCACCAGGG
On Vegfa Exon chi-17 46025487 - (서열번호 293)
Intergenic CTCCTGGAAGATnrCACCAGGG
0T1 - chr2 123023449 - re ion (서열번호 297)
CTCCTGGAAGATCTCCAGGAAGG
0T2 Arhgef7 Intron chr8 11735358 ―
(서열번호 298) CTCCTGGAAGAGGTTCTCCAGGG
0T3 Gsc Exon chr l2 104472064 +
(서열번호 299)
CTCTTGGCAGATGTCCACAAGGG
0T4 Ptpm2 Exon chr l2 116842612 +
(서열번호 300)
CTCCTGGAAGCTGCCCATCATGG
0T5 Gprl39 Int ron chr7 119178456 - (서열번호 301)
CTCCTGGAAMTGCCCACCCTGG
0T6 Kank4 Int ron chr4 98816689 +
(서열번호 302)
CTCCTGGAAGATGTGGGCCATGG
0T7 Stk32b Int ron chr5 37675822 - (서열번호 303)
CTCCTGAAAGCTGACCACCACGG
0T8 Ptpnll Intron chr5 121146230 +
(서열번호 304)
CACATGGAGGATGTCCACCATGG
0T9 Acadl2 Intron chr5 121606239 +
(서열번호 305)
Intergeni c CTCCTGGAAGCTGTTGACCAGGG
0T10 - chr5 138824186 + ' regi on (서열번호 306)
Int ergeni c CTCCTGGAAGAGGACAACCAAGG
0T11 - chr l3 44510080 - region (서열번호 307) -
CTGCTGGATGTTGTCCACCAGGG
0T12 Fibp Exon chr l9 5462580 - (서열번호 308)
Intergeni c CTCCTGGMG TGTCCTCCTTGG
0T13 - chr l5 87360502 - region (서열번호 309)
Intergeni c CCCCTGGAAGATTTCCATCAAGG
0T14 - chr l7 37793411 + region (서열번호 310)
Intergeni c CTCTTGGCAGCTGTCCACCATGG
0T15 - chr lO 24365585 - region (서열번호 311)
intergeni c CTCCMGAAGATGTCCTCCATGG
0T16 - chr lO 55869098 - region (서열번호 312)
CTCCTGGMGATGTCC GGAAGG
0T17 Faml80a Exon chr6 35325901 - (서열번호 313)
CTCCTGGTAGATGTTCAGCATGG
0T18 Rasgrfl Exon chr9 89970376 - (서열번호. 314)
GTCCTGGAAGCTGTCCACAAAGG
0T19 Abcal3 Intron chr ll 9509771 +
(서열번호 315)
CTCAG GAAGATGTCCACCAAGG
OT20 C130046K22Rik Intron chr ll 103713336 +
(서열번호 316) Cas9 RNP 로 처리된 마우스 눈의 CNV— free RPE 복합체로부터 유전체 DNA를 분리하여 targeted deep sequencing을 수행하여, 상기 20개의 잠재적 off-target 부위에서의 indel 빈도 (%)를 구하여 도 6 에 나타내었다 (Error bars indicate s.e.m. (n=3 for Cas9 Mock, n=5 for Cas9 RNP, respectively) 도 6 에서 Mismatched nucleotide 는 붉은 색으로, PAM 서열은 파란색으로 각각 나타내었다. 도 6 에서 보여지는 바와 같이, Cas9 RNP 이 처리된 경우, 20 개의 잠재적 off-target 부위 모두에서 indel 빈도가 0.1%을 넘지 않았으므로, off-target 돌연변이 비율이 시퀀싱 오류 비율 (sequencing error rate; 평균 으 1%)을 넘지 않음이 입증되었다. 즉, 본 시험에서 사용된 Vegfa-specific Cas9 RNP는 RPE 에서 off-target effect 를 나타내지 않음이 확인되었다. 실시예 4: 인간 유전체에서의 특이적 Cas9 RNP의 전장 유전체 표적 특이성 (Genome一 wide target specificity) 시험
인간 유전체에서의 e / 특이적 Cas9 RNP의 전장 유전체 표적 특이성 (Genome一 wide target specificity^ Digenome一 seq로 확인하였다 (참고예 6 및 9 참조).
도 4a는 in vitro 절단 부위를 보여주는 Genome—wide Circos plot으로 인간 유전체 DNA는 붉은 색으로, RGEN-digested 유전체 DNA는 파란색으로 표시되어 있다.
41 개의 Di genome-capture site (표 5 참조) 및 0n_target 서열을 포함한 42개 서열의 Sequence logo를 도 4b에 나타내었다.
targeted deep sequencing에 의해 인간 ARPE-19 세포에서 확인된 off- target 부위 및 indel 빈도를 도 4c에 나타내었다. 도 4c에서, mismatched 뉴클레오타이드는 붉은색으로, PAM서열은 파란색으로 각각 나타내었다.
도 4a 및 4b 에 나타난 e /a~특이적 Cas9 RNP 의 특정 표적 서열은 인간 VEGFA유전자에서 잘 보존되어 있다.
Digenome-seq (Kim et al ., Nature Methods 12, 237-243 (2015))을 사용하여 전장 유전체 특이성을 확인하였으며, 이 때, 시험관 내에서 (in vitro) 무세포 인간 유전체 DNA (cell-free human genomic DNA)에 Vegf 특이적 Cas9 RNP 를 처리한 후 전체 유전체 시퀀싱을 수행하였다. In vitro 절단 부위에서의 sequence leads 은 무작위로 정렬하기보다는 균일하게 정렬하는 것으로 계산적으로 확인되었고, 이를 통하여 잠재적 of f-target 부위의 리스트를 얻었다. 이와 같이 Digenome-seq 를 사용하여 얻어진 on target 부위를 포함한 Vegfa— speci f i c Cas9 RNP 의 42 개의 in vi tro 절단 부위를 아래의 표 8에 정리하였다:
【표 8】
In vitro cleavage si tes in the human genome ident i f i ed by
Digenome-seq using the VEGFA sgRNA
No . Gene Sequence Chromosome Pos i t ion Direct ion
CTCCTGGAAGATGTCCACCAGGG
On VEGFA Exon chr6 43745263 - (서열번호 293)
ATCCTGTAAGACATCCACCCTGG
0T1 NAALADL2 Int ron chr3 174605831 - (서열번호 317)
Intergen i c TTGCTGGAAGATGTCCaCTTGG
0T2 - chrl2 28147929 - region (서열번호 318)
TACCTGGAAGAATTCCACCACGG
0T3 CPNE4 Intron chr3 131485198 - (서열번호 319)
GCCTGGGAAGATGTCCACCAGGG
0T4 ABTB2 Intron chr ll 34241888 - (서열번호 320)
TTCCAGGAAGAAATCCACCATGG
0T5 ARFGEF3 Int ron chr6 138531951 - (서열번호 321)
Intergenic ACAATAGAAGAAGTCCACCATGG
0T6 - chr5 21242334 + region (서열번호 322)
CTCCAGGAAGTTCTCCACCAAGG
0T7 BAIAP2-AS1 Exon chr l7 79006487 - (서열번호 323)
AATTMTAAGATGTCCACCTACG
0T8 H0MER1 Intron chr5 78719511 ―
(서열번호 324)
GTCCTGGAAGATGAGCACCAAGG
0T9 ABCA3 Exon chr l6 2327650 - (서열번호 325)
Intergeni c GTGATGGAAGATGTCCACITAGG
OT10 - chr2 129298046 - regi on (서열번호 326)
Intergenic CTCCAGGAAGATTTCCATCATGG
0T11 - chr4 16957810 + region (서열번호 327)
Intergeni c GTCCTGGAGGATTTCCACCAGGG
0T12 - chr8 70150186 - region (서열번호 328)
GTCCAGAAAGATATCCACCTAGG
0T13 DSCAM Int ron chr21 42029091 - (서열번호 329) CACCTGGAAGATTTCCACCTTGG
0T14 CLIP2 Intron chr7 73770600 +
(서열번호 330)
Intergeni c CTACTGGAAGAGGTCCACCCTGG
0T15 chr l4 .103748791 + region (서열번호 331)
CTACTGGGAGAAGTCCACCTTGG
0T16 ACSS2 Intron chr20 33506330 +
(서열번호 332)
Intergeni c CTTCAGGAAGATGTCCACAATGG
0T17 chr4 74527941 + region (서열번호 333)
Intergen i c CTCCCGGAAGCTGTCCACCCTGG
0T18 chr l4 106089679 + region (서열번호 334)
ITIH4, RP5- ACTCCTGAAGATGTACACCCTGG
0T19 ' Intron chr3 52863033 +
966M1. 6 (서열번호 335)
Intergen i c GAACTGGATGATGTCCACCTTGG
0T20 chr6 . 157061270 + region (서열번호 336)
GCCTTGGAAGATGTCCCTCATGG
0T21 LINC01170 Exon chr5 123650052 +
(서열번호 337)
Intergenic ' CTCCTTGAAAGAGTCCACCCAGG
0T22 chr2 236108683 + region (서열번호 338)
Intergeni c CTCCTGCAAGATGTCCTCCAGGA
0T23 chr2 120420942 - region (서열번호 339)
Intergeni c GGCCTGGAAAATGTCCACCGTGG
0T24 chr2 122905021 + region (서열번호 340)
TCATGGMGATATTCCACCAGGG
0T25 MGAT5 Intron chr2 134952386 -
(서열번호 341)
AAGATGGAAGACATCCACCAGGG
0T26 U91319. 1 Intron chr l6 13592695 +
(서열번호 342)
Intergeni c CAGCTGGAAGATGTCCACCTTTG
0T27 chr l6 84252079 + region (서열번호 343)
Intergeni c CAGCTGGAAGATGTCCACCACGA
0T28 chr l 59037909 + region (서열번호 344)
Intergeni c CTCCTGGAAGGAGTCCACCATGA
0T29 chr5 72463793 + re ion (서열번호 345)
TACTCCTGGGATCTCCACCCATG
OT30 SLC9A9 Intron chi-3 143166935 ―
(서열번호 346)
CGTCTGAAAGATGTCCACCACGC
0T31 PTPRS Exon chr l9 5207995 +
(서열번호 347)
Intergeni c GGTCTGGAAGATGTCAACCACAG
0T32 chr lO 131177201 - regi on (서열번호 348) Intergenic CTCCTGGTCAATATCCACCCAAG
0T33 - chr22 25944921
region (서열번호 349)
CCC GGAAGAATGTCCACCAGGA
0T34 ERC2 Intron chr3 55563577
(서열번호 350)
TGCCTGAAAGACATCCACCAAGG
0T35 CTD-2130013. llntron chrl8 44830053
(서열번호 351)
Intergenic GACAGGAAGATGTCCACCCATG
0T36 chr9 28979308
region (서열번호 352)
Intergenic CCTCC GCTGATGTCCACCCAGG
0T37 chr 16 1065437
region (서열번호 353)
Intergenic GCTCCTGGAAGAATCCACCACAG
0T38 chrlO 130753819
region (서열번호 354)
CAGCTGGGAGATGTCCACCATGA
0T39 BRD1 Intron chr 22 50174426
(서열번호 355)
TTGGGGGAAGAAGTCCACCAAGG OT40 CACNG3 Intron chr 16 24310237
(서열번호 356)
RP11-57C13.6, CCCTAGGAAGAGGTCCACCAGGG
Intron chr 10 89404735
RP11-57C13.3 (서열번호 357) 상기 표 8 에 열거된 부위를 유효성 확인을 위하여, Vegfa-specific Cas9 RNP 가 형질 감염된 ARPE-19 세포에서 분리된 유전체 DNA 를 사용하여 targeted deep sequencing 를 수행하였다 (도 4c 참조). 그 결과, 이들 부위는 in vitro 에서 효율적으로 절단되지만, 41 개의 off-target 부위의 절단 부위에서 모두 off-target indel 빈도가 sequencing error rate (평균 0.1%)를 넘지 않는 것으로확인되었다.
필요하다면, 개선된 특이성을 갖는 변형 된 gRNA (Fu, Y., Sander , J. D. , eyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature biotechnology 32 279-284 (2014); Cho, S. W. et al . Analysis of off-target effects of CRISPR/Casᅳ derived RNA一 guided endonuc leases and nickases. Genome research 24, 132-141 (2014)) 또는 Cas9 변이체 (Kleinst iver , B. P. et al. High—fidelity CRISPRᅳ Cas9 nucleases with no detectable genome-wide of f- target effects. Nature 529, 490-495 (2016); Slaymaker, I. M. et al. Rational ly engineered Cas9 nucleases with improved specificity. Science 351, 84-88 (2016))를 사용함으로써, 미미하나마 존재하는 0ff-target effect를 더욱 감소시키거나 방지할 수 있다.
상기 결과를 종합하면, 본 명세서에서 제공되는 Vegfa 표적화 서열을 갖는 sgRNA 를 포함하는 Vegfa-특이적 Cas9 RNP 는 마우스와 인간 모두에서 매우 높은 특이성 (in vivo 및 in vitro)을 보임을 확인할 수 있다. 실시예 5: 특이적 Cas9 RNP의 부작용 시험
노인성 황반변성 (AMD) 또는 당뇨병성 망막증과 같은 안과 질환의 치료를 위해 Vegfa 유전자를 돌연변이시킬 때의 또 다른 주요 관심사는 눈에서의 영양적 측면에서의 .Vegfa 의 역할이다. Vegfa 돌연변이시의 가장 심각한 변화는 원추세포 장애 (Cone dysfunction)인데, 마우스 RPE 에서의 Vegfa유전자의 조건부 결실 3 일 후에 관찰된다.
본 명세서에서 제공되는 Vegfa-특이적 Cas9 RNP 가 와 같은 원추세포 장애를 일으키는지 여부를 시험하기 위하여, 참고예 12 를 참조하여 opsin positive 영역을 형광현미경으로 관찰하고 그 면적을 계산하여, 도 7a (형광 이미지) 및 도 7b (opsin positive 영역 (%))에 나타내었다.
도 7a 는 I g"jVspecific Cas9 RNP 주입 7 일 후의 Vegfa pecific 주입된 정상 C57BL/6J 마우스 (레이저 처리 없이 RNP주사만 시행한 정상 마우스) 및 a-specific Cas9 RNP 가 주입되지 않은 정상 대조군 마우스의 망막으로부터 ^은 형광 단면 이미지로, opsin은 녹색으로 DAPI 은 파란색으로 보여진다. 도 7b 는 opsin positive 영역 (%)을 보여주는 그래프로, 정상 대조군 (3.0±0.5%)과 feg/a-specific Cas9 RNP 주입군 (3.1±0.5%) 간 유의미한 차이가 없다 (Error bars indicate s.e.m. (n=4); # P > 0.05 (Student's t-test)).
도 7a 및 7b 에서 확인되는 바와 같이, 본 명세서에서 제공되는 e^/a-specific Cas9 RNP 는 처리 후 7 일째에도 미처리 정상 대조군과 비교하여 원추세포의 opsin positive 영역에 차이가 없었으며, 이는 원추세포에 기능 이상이 발생하지 않았음을 의미한다. 이러한 결과는 상기 Ke^/a-specific Cas9 RNP 가 §"/a 유전자의 표적 서열만 특이적으로 돌연변이 시키며, 이러한 돌연변이가 심각한 부작용을 유발하지 않음을 보여준다. 또한, 기존의 "표적 치료에서, 처리 3 일 후에 부작용이 발생한 것과 비교하여, §/a~speci f i c Cas9 RNP 를 사용하는 경우에는 처리 7일 후에도 부작용이 발생하지 않았다. 이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims

【특허의 범위】
【청구항 1】
Cas9 단백질 또는 이를 암호화하는 유전자 (DNA또는 mRNA) 및 VEGF-A 유전자의 표적 부위에 특이적으로 결합하는 표적화 서열을 포함하는 VEGF-A 유전자 특이적 가이드 RNA 또는 이를 암호화하는 DNA를 포함하는, VEGF-A 과발현과 관련된 안질환의 예방또는 치료용 조성물.
【청구항 2】
제 1항에 있어서, 상기 조성물은 Cas9 단백질 및 가이드 R A를 포함하는 리보핵산단백질을 포함하는 것인, 안질환의 예방 또는 치료용 조성물.
【청구항 3]
거 U항 또는 게 2항에 있어서, 상기 가이드 RNA는 VEGF-A 유전자 내의 서열번호 1 내지 8 중에서 선택된 핵산 서열을 포함하는 표적 부위에 흔성화 가능한 것인, 안질환의 예방 또는 치료용 조성물.
【청구항 4】
거 13항에 있어서, 상기 가이드 RNA는 서열번호 9 내지 16 중에서 선택된 핵산서열을 포함하는 것인, 안질환의 예방또는 치료용 조성물.
【청구항 5]
게 1항 또는 제 2항에 있어서, 상기 VEGF-A 과발현과 관련된 안질환은 황반변성 또는 망막병증인, 안질환의 예방또는 치료용 조성물.
【청구항 6】
Cas9 단백질 및 VEGF-A 유전자의 표적 부위에 특이적으로 결합하는
- 표적화 서열을 포함하는 VEGF-A 유전자 특이적 가이드 RNA를 포함하는 리보핵산단백질ᅳ
【청구항 7】
제 6항에 있어서, 상기 가이드 RNA는 VEGF-A 유전자 내의 서열번호 1 내지 8 중에서 선택된 핵산서열을 포함하는 표적 부위에 흔성화 가능한 것인, 리보핵산단백질.
【청구항 8】 ,
제 7항에 있어서, 상기 가이드 RNA는 서열번호 9 내지 16 중에서 선택된 핵산서열을 포함하는 것인, 리보핵산단백질.
【청구항 9】 서열번호 9 내지 16 중에서 선택된 핵산 서열을 포함하는 가이드 RNA. 【청구항 10】
VEGF-A 과발현과 관련된 안질환의 예방 또는 치료에 사용하기 위한, Cas9 단백질 또는 이를 암호화하는 유전자 (DNA 또는 mRNA) 및 VEGF-A 유전자의 표적 부위에 특이적으로 결합하는 표적화 서열을 포함하는 VEGF-A 유전자 특이적 가이드 RNA또는 이를 암호화하는 DNA를 포함하는 약학 조성물. 【청구항 111
제 10항에 있어서, 상기 조성물은 Cas9 단백질 및 가이드 RNA를 포함하는 리보핵산단백질을 포함하는 것인, 안질환의 예방 또는 치료에 사용하기 위한 약학 조성물.
【청구항 12]
제 10항 또는 제 11항에 있어서, 상기 가이드 RNA는 VEGF-A유전자 내의 서열번호 1 내지 8 중에서 선택된 핵산 서열을 포함하는 표적 부위에 흔성화 가능한 것인, 안질환의 예방또는 치료에 사용하기 위한 약학 조성물.
【청구항 13】
제 12항에 있어서, 상기 가이드 RNA는 서열번호 9 내지 16 중에서 선택된 핵산 서열을 포함하는 것인, 안질환의 예방 또는 치료에 사용하기 위한 약학 조성물. ·
【청구항 14】
제 10항 내지 제 13항 중 어느 한 항에 있어서, 상기 VEGFᅳ A 과발현과 관련된 안질환은 황반변성 또는 망막병증인, 안질환의 예방 또는 치료에 사용하기 위한 약학 조성물.
PCT/KR2017/008122 2016-07-28 2017-07-27 Cas9 단백질 및 가이드 RNA를 포함하는 안질환 치료용 약학 조성물 WO2018021855A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17834796.9A EP3492096A4 (en) 2016-07-28 2017-07-27 PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF EYE DISEASES WITH CAS9 PROTEINS AND GUIDE RNA
JP2019504798A JP6875500B2 (ja) 2016-07-28 2017-07-27 Cas9タンパク質およびガイドRNAを含む眼疾患治療用薬学組成物
CN201780058793.4A CN109789185A (zh) 2016-07-28 2017-07-27 用于治疗眼部疾病的含cas9蛋白和向导rna的药物组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662367674P 2016-07-28 2016-07-28
US62/367,674 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018021855A1 true WO2018021855A1 (ko) 2018-02-01

Family

ID=61016342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008122 WO2018021855A1 (ko) 2016-07-28 2017-07-27 Cas9 단백질 및 가이드 RNA를 포함하는 안질환 치료용 약학 조성물

Country Status (6)

Country Link
US (1) US11123409B2 (ko)
EP (1) EP3492096A4 (ko)
JP (1) JP6875500B2 (ko)
KR (1) KR101961332B1 (ko)
CN (1) CN109789185A (ko)
WO (1) WO2018021855A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034554A1 (ko) 2016-08-19 2018-02-22 주식회사 툴젠 인위적으로 조작된 신생혈관형성 조절 시스템
CN112143701A (zh) * 2019-06-26 2020-12-29 中国科学院脑科学与智能技术卓越创新中心 基于rna定点编辑的抑制脉络膜新生血管形成的方法及试剂
KR20220053671A (ko) * 2019-09-04 2022-04-29 에디진 인크. 오프 타겟 평가 기반의 유전자 편집 치료의 평가 방법
WO2021243105A1 (en) * 2020-05-28 2021-12-02 University Of Southern California Composition and method for treating retinal vascular disease with vegf gene disruption
KR102253939B1 (ko) 2020-06-25 2021-05-20 제주대학교 산학협력단 티로시나아제 유전자 교정용 가이드 rna 및 이의용도
CN112662674B (zh) * 2021-01-12 2023-04-11 广州瑞风生物科技有限公司 靶向编辑VEGFA基因外显子区域的gRNA及其应用
KR20230016751A (ko) * 2021-07-26 2023-02-03 서울대학교산학협력단 염기 편집기 및 이의 용도
KR20240000814A (ko) * 2022-06-24 2024-01-03 연세대학교 산학협력단 망막색소상피에 특이적으로 작동하는 CRISPR/Cas 복합체를 유효성분으로 포함하는 망막질환 치료용 약학조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101446A (ko) 2012-10-23 2015-09-03 주식회사 툴젠 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도
JP2015177801A (ja) * 2008-03-05 2015-10-08 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Eg5およびVEGF遺伝子の発現を阻害するための組成物および方法
US20150376586A1 (en) * 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
KR20160089527A (ko) * 2013-12-12 2016-07-27 더 브로드 인스티튜트, 인코퍼레이티드 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005222902B2 (en) * 2004-03-12 2010-06-10 Alnylam Pharmaceuticals, Inc. iRNA agents targeting VEGF
MX2015007550A (es) * 2012-12-12 2017-02-02 Broad Inst Inc Suministro, modificación y optimización de sistemas, métodos y composiciones para la manipulación de secuencias y aplicaciones terapéuticas.
CA2907198C (en) * 2013-03-15 2019-12-10 The General Hospital Corporation Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
CA2915845A1 (en) * 2013-06-17 2014-12-24 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
US9737604B2 (en) * 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
JP6597248B2 (ja) * 2015-12-04 2019-10-30 ヤマハ株式会社 システムおよび制御方法
WO2017099494A1 (ko) * 2015-12-08 2017-06-15 기초과학연구원 Cpf1을 포함하는 유전체 교정용 조성물 및 그 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177801A (ja) * 2008-03-05 2015-10-08 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Eg5およびVEGF遺伝子の発現を阻害するための組成物および方法
KR20150101446A (ko) 2012-10-23 2015-09-03 주식회사 툴젠 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도
KR20160089527A (ko) * 2013-12-12 2016-07-27 더 브로드 인스티튜트, 인코퍼레이티드 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용
US20150376586A1 (en) * 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHO, S. W. ET AL.: "Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases", GENOME RESEARCH, vol. 24, 2014, pages 132 - 141, XP055227885, DOI: doi:10.1101/gr.162339.113
FU, Y.; SANDER, J. D.; REYON, D.; CASCIO, V. M.; JOUNG, J. K.: "Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.", NATURE BIOTECHNOLOGY, vol. 32, 2014, pages 279 - 284, XP055259718, DOI: doi:10.1038/nbt.2808
KIM ET AL., NATURE METHODS, vol. 12, 2015, pages 237 - 243
KIM, D.; KIM, S.; KIM, S.; PARK, J.; KIM, J. S.: "Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq", GENOME RESEARCH, vol. 26, 2016, pages 406 - 415, XP055448257, DOI: doi:10.1101/gr.199588.115
KLEINSTIVER, B. P. ET AL.: "High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects", NATURE, vol. 529, 2016, pages 490 - 495, XP055536782, DOI: doi:10.1038/nature16526
KOO, TAEYOUNG ET AL.: "Measuring and Reducing Off-target Activities of Programmable Nucleases Including CRISPR-Cas9", MOLECULES AND CELLS, vol. 38, no. 6, 19 May 2015 (2015-05-19), pages 475 - 481, XP055372009, DOI: doi:10.14348/molcells.2015.0103 *
SLAYMAKER, I. M. ET AL.: "Rationally engineered Cas9 nucleases with improved specificity", SCIENCE, vol. 351, 2016, pages 84 - 88, XP055551663, DOI: doi:10.1126/science.aad5227
YIU, GLENN ET AL.: "Genomic Disruption of VEGF in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease", ARVO 2016 ANNUAL MEETING ABSTRACTS, 1 May 2016 (2016-05-01), XP055576195, Retrieved from the Internet <URL:http://www.arvo.org/webs/am2016/sectionpdf/BI/Session__161.pdf> *
YIU, GLENN ET AL.: "Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease", INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 57, no. 13, August 2016 (2016-08-01), pages 5490 - 5497, XP055576195, DOI: doi:10.1167/iovs.16-20296 *

Also Published As

Publication number Publication date
KR20180013780A (ko) 2018-02-07
CN109789185A (zh) 2019-05-21
US20180078620A1 (en) 2018-03-22
JP2019522034A (ja) 2019-08-08
EP3492096A4 (en) 2020-04-15
EP3492096A1 (en) 2019-06-05
US11123409B2 (en) 2021-09-21
JP6875500B2 (ja) 2021-05-26
KR101961332B1 (ko) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2018021855A1 (ko) Cas9 단백질 및 가이드 RNA를 포함하는 안질환 치료용 약학 조성물
US20200392487A1 (en) Excision of retroviral nucleic acid sequences
JP7285220B2 (ja) 連結したインターロイキン-12(il12)ポリペプチドをコードするポリヌクレオチドを含む脂質ナノ粒子
ES2886480T3 (es) Métodos y composiciones para el tratamiento guiado por ARN de una infección por VIH
US10583201B2 (en) Efficient delivery of therapeutic molecules in vitro and in vivo
US20230067480A1 (en) Method for treating usher syndrome and composition thereof
JP2018531261A6 (ja) Cpf1を用いた、rnaガイド遺伝子編集方法および組成物
JP2019512458A (ja) Rnaによって誘導された、ヒトjcウイルス及び他のポリオーマウイルスの根絶
JP2019506156A (ja) Hiv感染症のrna誘導型治療のための方法及び組成物
EP3362104A2 (en) Methods and compositions utilizing cpf1 for rna-guided gene editing
KR20200074283A (ko) 표적 세포 내에서 치료적 단백질의 표적화된 생산을 위한 시스템 및 방법
CN112585268A (zh) 通过***供体多核苷酸用于基因组编辑的组合物和方法
Mohanna et al. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea
US20210260168A1 (en) Compositions and methods of fas inhibition
Lohia et al. Delivery strategies for CRISPR/Cas genome editing tool for retinal dystrophies: challenges and opportunities
WO2018168586A1 (ja) ボルナウイルスベクター及びその利用
CA3158013A1 (en) Mrnas encoding granulocyte-macrophage colony stimulating factor for treating parkinson&#39;s disease
US20240209035A1 (en) Polynucleotides capable of enhanced protein expression and uses thereof
CA3238451A1 (en) Materials and methods for treatment of macular degeneration
TW202417632A (zh) 新穎指環病毒科(anelloviridae)載體組合物及方法
CA3235445A1 (en) Novel anellovector compositions and methods
Cring Genetic Therapeutic Strategies for Bardet-Biedl Syndrome
TW202342064A (zh) 編碼抗融合多肽之環狀多核糖核苷酸
JP2024521793A (ja) 正確な編集修復の効率を向上させるための組成物及び方法
JP2023513188A (ja) 遺伝子の発現増加のためのmirna-485阻害剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834796

Country of ref document: EP

Effective date: 20190228