WO2018011838A1 - エレベータ装置 - Google Patents

エレベータ装置 Download PDF

Info

Publication number
WO2018011838A1
WO2018011838A1 PCT/JP2016/070365 JP2016070365W WO2018011838A1 WO 2018011838 A1 WO2018011838 A1 WO 2018011838A1 JP 2016070365 W JP2016070365 W JP 2016070365W WO 2018011838 A1 WO2018011838 A1 WO 2018011838A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
magnetic pole
rotation
governor
current
Prior art date
Application number
PCT/JP2016/070365
Other languages
English (en)
French (fr)
Inventor
誠人 安岡
直樹 高山
中田 孝則
利治 松熊
寛典 金田
智昭 峰尾
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680085751.5A priority Critical patent/CN109153536A/zh
Priority to JP2018527042A priority patent/JPWO2018011838A1/ja
Priority to PCT/JP2016/070365 priority patent/WO2018011838A1/ja
Publication of WO2018011838A1 publication Critical patent/WO2018011838A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator apparatus.
  • the problem to be solved by the present invention is to improve the magnetic pole position calculation accuracy when the motor encoder is faulty.
  • the present invention provides a synchronous motor having a sheave wound around a main rope as an axis, a car fastened via the main rope, an inverter device for controlling the rotation of the synchronous motor, and an inverter Fixed to the shaft of the synchronous motor, a current detector for measuring the motor current provided on the synchronous motor side of the device, a governor pulley wound with a governor rope connected to the car, a brake for braking the rotation of the synchronous motor
  • a motor encoder that outputs a pulse signal according to the rotation of the synchronous motor, a governor encoder that is fastened to the governor pulley and outputs a pulse signal according to the rotation of the governor pulley, and receives signals from the current detector, the motor encoder, and the governor encoder.
  • Elevator system that controls the operation of the car by calculating the amount of rotation of the synchronous motor and governor pulley
  • An elevator apparatus having a device, The elevator apparatus includes a motor current and governor pulley rotation amount storage unit that stores a motor current and a rotation amount of the governor pulley until the sheave rotation is stopped after detecting an abnormality of the motor encoder, and a motor current and a governor pulley rotation amount storage unit.
  • the motor magnetic pole position calculation unit that calculates the motor magnetic pole position when rotation of the sheave stops, and the elevator using the motor magnetic pole position calculated by the motor magnetic pole position calculation unit after emergency stop due to motor encoder error detection
  • the nearest floor drive unit that moves the car to the nearest floor and the speed control unit that continues to calculate the current motor magnetic pole position based on information from the motor current and governor pulley rotation amount storage unit .
  • the magnetic pole position calculation accuracy can be improved compared to estimating the magnetic pole from the armature inductance.
  • FIG. 2 Schematic configuration diagram of an elevator apparatus according to one embodiment
  • Block configuration diagram showing a schematic configuration of the elevator control device shown in FIG.
  • the flowchart which shows the processing operation of the elevator control apparatus shown in FIG. Waveform diagram showing the relationship between the motor current shown in FIG. 2 and the motor encoder, governor encoder, and magnetic pole position
  • FIG. 1 is a schematic configuration diagram showing an elevator apparatus according to an embodiment of the present invention.
  • the sheave 2 around which the main rope 1 is wound is rotated by a synchronous motor 4 having a brake 3 that brakes rotation, and is configured to drive the elevator car 5 and the counterweight 6 up and down via the main rope 1.
  • a governor rope 7 is fastened to the car 5 and is wound around a governor pulley 8.
  • a motor encoder 9 that outputs a pulse signal according to the rotation and a governor encoder 10 that outputs a pulse signal according to the rotation are also attached to the shaft of the synchronous motor 4.
  • the three-phase AC power source 11 used as a power source has an output side motor output line connected to the synchronous motor 4 via an inverter device 12.
  • the inverter device 12 On the output side of the inverter device 12, the inverter device 12 is stopped in an emergency such as a failure of the motor encoder 9. At this time, the motor output line from the inverter device 12 to the synchronous motor 4 is short-circuited for three-phase dynamic.
  • a dynamic brake device 13 that shortens the time required to stop using the brake is provided, and a current detector 14 that detects the motor current output from the inverter device 12.
  • the elevator control device 15 includes a speed signal from the motor encoder 9 that outputs a pulse signal according to the rotation of the synchronous motor 4 and a current signal from the current detector 14 that detects the current output from the inverter device 12.
  • the inverter device 12 is controlled so as to drive the synchronous motor 4 based on the command value that is taken in and controlled to raise and lower the car 5.
  • FIG. 2 is a block configuration diagram showing a schematic configuration of the elevator control device 15 described above.
  • the elevator controller 15 monitors the motor encoder 9, governor encoder 10, current detector 14, and other 16 signals that are the cause of emergency detection such as door opening and power failure, and detects abnormalities in the motor encoder 9.
  • an emergency braking unit 17 is configured to operate the dynamic brake device 13 to brake the elevator.
  • the elevator control device 15 includes a motor encoder failure detection unit 18 that detects an abnormality of the motor encoder 9, and a motor current acquisition unit that continuously acquires the motor current from the current detector.
  • a governor pulley rotation amount acquisition unit 20 that acquires a pulse signal corresponding to the rotation of the governor pulley from the governor encoder and calculates the rotation amount of the governor pulley, and a motor from when the abnormality of the motor encoder is detected until the rotation of the sheave stops
  • a motor current and governor pulley rotation amount storage unit 21 that stores current and governor pulley rotation amount, and a motor that calculates the motor magnetic pole position when the sheave rotation stops based on information in the motor current and governor pulley rotation amount storage unit
  • the magnetic pole position calculation unit 22 and the motor magnetic pole position calculated by the motor magnetic pole position calculation unit 22 Used to restart the elevator after an emergency stop to move the car to the nearest floor and perform speed control based on the rotation amount and rotation speed of the synchronous motor calculated by the motor magnetic pole calculation section It has a speed control unit 24, a storage unit 25 that stores a program for controlling each of these units, and a control unit 26 that controls each unit based on this program.
  • FIG. 3 is a flowchart showing the processing operation of the elevator control device 15 shown in FIG.
  • the motor encoder failure detection unit 18 monitors the abnormality of the motor encoder 9 in step S2.
  • the emergency braking unit 17 stops the inverter device 12 and starts braking by the brake 2 and also operates the dynamic brake device 13 to brake the elevator in step S3.
  • the motor current acquisition unit 18 acquires the motor current from the current detector 14 from the detection timing of the motor encoder failure detection unit 18 in step S4 and stores the motor current and the governor pulley rotation amount storage unit 21.
  • the governor pulley rotation amount acquisition unit 20 acquires a pulse signal accompanying the rotation of the governor pulley from the governor encoder from the timing of the motor encoder failure detection in step S4, calculates the governor pulley rotation amount, and stores it in the motor current and governor pulley rotation amount storage unit 21.
  • the motor magnetic pole position 27 can be obtained by the motor encoder 9 before the motor encoder normal state t1, but the magnetic pole position cannot be detected after t1 after the motor encoder abnormality is detected. .
  • step S5 the motor magnetic pole position calculation unit 22 calculates the motor magnetic pole position 28 when the rotation of the sheave 2 is stopped based on the information stored in the motor current and the governor pulley rotation amount storage unit.
  • a motor encoder signal that has failed due to an abnormality in the motor encoder 9 is calculated from the governor encoder signal.
  • the governor encoder signal at time t2 is calculated at which the rotation of the sheave 2 stops and the motor current stops flowing. Thereafter, the motor encoder signal is calculated from the governor encoder signal. Since the rotation diameter and resolution are different, the rotation amount of the synchronous motor 4 is calculated from the rotation amount of the governor pulley 8 after conversion.
  • the current motor magnetic pole position 28 can be calculated by adding the rotation amount of the synchronous motor 4 thus obtained, that is, the change amount of the magnetic pole position of the synchronous motor 4 to the magnetic pole position immediately before the abnormality detection of the motor encoder 9. it can. Thereafter, the nearest floor drive unit 23 restarts the elevator after the emergency stop using the motor magnetic pole position calculated and determined by the motor magnetic pole position calculation unit 22 in step S6. Since the motor magnetic pole position calculated from the governor encoder 10 which is the raising / lowering amount of the car is used, the possibility of unstable operation of the synchronous motor 4 such as reversal or step-out of the synchronous motor 4 due to a motor magnetic pole position error is reduced. be able to.
  • step S7 the elevator operation is monitored to determine whether or not there is an abnormal operation. If there is no abnormality as a result of the determination, the nearest floor landing operation is started in step S9. At this time, the speed control unit 24 can perform the nearest floor landing operation using the speed control by continuously calculating the motor magnetic pole position based on the information from the motor current and the governor pulley rotation amount storage unit 21. It becomes. Thereafter, the monitoring in S7 and the nearest floor landing operation in S9 are repeated until the nearest floor is landed in S10. On the other hand, if there is an abnormality as a result of the determination in step S7, the restart operation is stopped in step S8, and the elevator is put into a resting state on the spot.
  • the magnetic pole position calculation accuracy can be improved as compared with the calculation from the motor current and the armature inductance.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

エンコーダ故障時に、モータに電圧を印加し電機子インダクタンスから磁極を推定する手段があるが、正確に磁極位置を演算することは難しい。よって、演算した磁極位置を誤るとモータの反転等の不安定動作が生じ、安全性を担保できない可能性がある。そこで、モータエンコーダの異常を検出した時からシーブの回転が停止するまでのモータ電流及びガバナプーリの回転量を記憶するモータ電流及びガバナプーリ回転量記憶部と、モータ電流及びガバナプーリ回転量記憶部の情報を元に、シーブの回転が停止した時のモータ磁極位置を演算するモータ磁極位置演算部と、モータエンコーダ異常検出による非常停止後、モータ磁極位置演算部により演算したモータ磁極位置を用いてエレベータを再起動し、最寄り階まで乗りかごを移動する最寄り階駆動部と、モータ電流及びガバナプーリ回転量記憶部からの情報を元に、現在のモータ磁極位置を演算し続ける速度制御部とを備えた。

Description

エレベータ装置
 本発明は、エレベータ装置に関する。
 現在のエレベータの主流である永久磁石同期モータは、磁極位置を正確に把握して正確な電流を流さなければ、回転制御させることができない。そのため、磁極検出手段であるエンコーダが故障した場合は安全のためエレベータを非常停止させるため、復旧に時間が掛かる。この復旧を行うため、エンコーダ故障による非常停止時に、モータに電圧を印加し、電機子インダクタンスから磁極を推定する手段がある(特許文献1)。
特開平11-60103号公報
 上記従来技術では電機子インダクタンスから磁極位置を演算するため、正確に磁極位置を演算することは難しい。よって、演算した磁極位置を誤るとモータの反転等の不安定動作が生じ、安全性を担保できない可能性がある。そこで、本発明が解決する課題は、モータエンコーダ故障時の磁極位置演算精度を向上させることである。
 上記課題を解決するために本発明は、主ロープを巻回したシーブを軸とする同期電動機と、主ロープを介して締結された乗りかごと、同期電動機の回転を制御するインバータ装置と、インバータ装置の同期電動機側に設けたモータ電流測定用の電流検出器と、乗りかごに連結されたガバナロープを巻回したガバナプーリと、同期電動機の回転を制動するブレーキと、同期電動機の軸に固定された同期電動機の回転に応じてパルス信号を出力するモータエンコーダと、ガバナプーリに締結されガバナプーリの回転に応じてパルス信号を出力するガバナエンコーダと、電流検出器、モータエンコーダ及びガバナエンコーダからの信号を取り込んで、同期電動機及びガバナプーリの回転量を算出することで、乗りかごの運転を制御するエレベータ制御装置とを有するエレベータ装置において、
 エレベータ装置は、モータエンコーダの異常を検出した時からシーブの回転が停止するまでのモータ電流及びガバナプーリの回転量を記憶するモータ電流及びガバナプーリ回転量記憶部と、モータ電流及びガバナプーリ回転量記憶部の情報を元に、シーブの回転が停止した時のモータ磁極位置を演算するモータ磁極位置演算部と、モータエンコーダ異常検出による非常停止後、モータ磁極位置演算部により演算したモータ磁極位置を用いてエレベータを再起動し、最寄り階まで乗りかごを移動する最寄り階駆動部と、モータ電流及びガバナプーリ回転量記憶部からの情報を元に、現在のモータ磁極位置を演算し続ける速度制御部とを備えた。
電機子インダクタンスから磁極を推定するよりも磁極位置演算精度を向上できる。
一実施例によるエレベータ装置概略構成図 図1に示したエレベータ制御装置の概略構成を示すブロック構成図 図2に示したエレベータ制御装置の処理動作を示すフローチャート 図2に示したモータ電流とモータエンコーダ及びガバナエンコーダ、磁極位置の関係を示す波形図
以下、発明の実施例を図面に基づいて説明する。
 図1は、本発明の一実施例によるエレベータ装置を示す概略構成図である。
 主ロープ1を巻回したシーブ2は、回転を制動するブレーキ3を備えた同期電動機4によって回転され、主ロープ1を介してエレベータの乗りかご5とカウンターウエイト6とを昇降駆動するように構成されている。また、乗りかご5にはガバナロープ7が締結されており、ガバナプーリ8に巻回されている。同期電動機4の軸には回転に応じてパルス信号を出力するモータエンコーダ9、ガバナプーリ8にも同様に回転に応じてパルス信号を出力するガバナエンコーダ10が取り付けられている。電源として利用する三相交流電源11には、インバータ装置12を介してその出力側のモータ出力線が同期電動機4に接続されている。
 またインバータ装置12の出力側には、モータエンコーダ9の故障などの非常時にインバータ装置12を停止させるが、その際に、インバータ装置12から同期電動機4へのモータ出力線を三相短絡させてダイナミックブレーキを利かせて停止までに要する時間を短縮させるダイナミックブレーキ装置13と、インバータ装置12から出力されたモータ電流を検出する電流検出器14とが備えられている。エレベータ制御装置15には、同期電動機4の回転に応じてパルス信号を出力するモータエンコーダ9からの速度信号と、インバータ装置12から出力された電流を検出する電流検出器14からの電流信号とが取り込まれ、乗りかご5を昇降制御するための指令値に基づいて同期電動機4を駆動するようにインバータ装置12を制御している。
 図2は、上述したエレベータ制御装置15の概略構成を示すブロック構成図である。エレベータ制御装置15には、モータエンコーダ9、ガバナエンコーダ10、電流検出器14、扉開走行や停電など非常時検出の要因であるその他16の信号を監視してモータエンコーダ9の異常を検出し、この非常時検出があったとき、ダイナミックブレーキ装置13を作動させてエレベータを制動する非常時制動部17が構成されている。この非常時制動部17に関連して、エレベータ制御装置15には、モータエンコーダ9の異常を検出するモータエンコーダ故障検出部18と、モータ電流を電流検出器から継続して取得するモータ電流取得部19と、ガバナプーリの回転に応じたパルス信号をガバナエンコーダから取得しガバナプーリの回転量を算出するガバナプーリ回転量取得部20と、モータエンコーダの異常を検出した時からシーブの回転が停止するまでのモータ電流及びガバナプーリの回転量を記憶するモータ電流及びガバナプーリ回転量記憶部21と、モータ電流及びガバナプーリ回転量記憶部の情報を元に、前記シーブの回転が停止した時のモータ磁極位置を演算するモータ磁極位置演算部22と、このモータ磁極位置演算部22により演算したモータ磁極位置を用いて非常停止後のエレベータを再起動して最寄り階まで乗りかごを移動する最寄り階駆動部23と、モータ磁極演算部にて演算した同期電動機の回転量及び回転速度を元に速度制御を行う速度制御部24と、これらの各部を制御するプログラムを格納した記憶部25と、このプログラムに基づいて各部を制御する制御部26とを有している。
 図3は、図2に示したエレベータ制御装置15の処理動作を示すフローチャートである。ステップS1のエレベータの通常運転中に、モータエンコーダ故障検出部18は、ステップS2でモータエンコーダ9の異常を監視している。この監視によって異常が検出された場合、非常時制動部17はインバータ装置12を停止させブレーキ2による制動を開始させると共に、ステップS3でダイナミックブレーキ装置13を作動させてエレベータを制動する。このとき、モータ電流取得部18は、ステップS4でモータエンコーダ故障検出部18による検出タイミングから、モータ電流を電流検出器14から取得し、モータ電流及びガバナプーリ回転量記憶部21に記憶させる。また、ガバナプーリ回転量取得部20は、ステップS4でモータエンコーダ故障検出のタイミングからガバナプーリの回転に伴うパルス信号をガバナエンコーダから取得しガバナプーリ回転量を算出、モータ電流及びガバナプーリ回転量記憶部21に記憶させる。
 図4に示す波形図のように、モータエンコーダ正常状態t1以前はモータエンコーダ9によるモータの磁極位置27を得ることができるが、モータエンコーダ異常検出後のt1以降は磁極位置を検出することはできない。
 ステップS5でモータ磁極位置演算部22にてモータ電流及びガバナプーリ回転量記憶部に記憶された情報を元に、シーブ2の回転が停止した時のモータ磁極位置28を演算する。その方法としては、モータエンコーダ9に異常が生じ、捕捉できなかったモータエンコーダ信号をガバナエンコーダ信号から算出する。具体的には、図4に示すように、シーブ2の回転が停止し、モータ電流が流れなくなる時点t2のガバナエンコーダ信号を算出する。その後、ガバナエンコーダ信号からモータエンコーダ信号を算出するが、回転径及び分解能が異なるため、変換を行った上でガバナプーリ8の回転量から同期電動機4の回転量を算出する。このようにして求めた同期電動機4の回転量、つまり同期電動機4の磁極位置の変化量をモータエンコーダ9の異常検出直前の磁極位置に加えることで、現在のモータ磁極位置28を演算することができる。その後、最寄り階駆動部23は、ステップS6でモータ磁極位置演算部22により演算して決定したモータ磁極位置を用いて非常停止後のエレベータを再起動する。かごの昇降量であるガバナエンコーダ10から演算したモータ磁極位置を使用しているため、モータ磁極位置誤りによる同期電動機4の反転や脱調など同期電動機4の不安定動作が生じる可能性を少なくすることができる。その後は、ステップS7でエレベータの動作を監視し、異常動作がないかどうかを判定する。判定の結果、異常がなければステップS9で最寄り階着床運転を開始する。この際、速度制御部24はモータ電流及びガバナプーリ回転量記憶部21からの情報を元に、モータ磁極位置を演算し続けることで、速度制御を用いて最寄階着床運転を行うことが可能となる。その後、S10にて最寄階着床するまでS7での監視及びS9での最寄階着床運転を繰り返す。一方、ステップS7の判定の結果、異常があればステップS8で再起動運転を中止とし、その場でエレベータを休止状態とする。
 このように、かごの昇降量であるガバナエンコーダ10のパルス信号を用いることで、モータ電流や電機子インダクタンスからの演算よりも磁極位置演算精度を向上することができる。また、速度制御を用いて最寄階着床運転を行うことが可能となる。
 なお、上述した本実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。






 1  主ロープ
 2  シーブ
 3  ブレーキ
 4  同期電動機
 5  乗りかご
 6  カウンターウエイト
 7  ガバナローブ
 8  ガバナシーブ
 9  モータエンコーダ
 10 ガバナエンコーダ
 11 三相交流電源
 12 インバータ装置
 13 ダイナミックブレーキ装置
 14 電流検出器
 15 エレベータ制御装置
 16 その他非常制動の要因
 17 非常時制動部
 18 モータエンコーダ異常検出部
 19 モータ電流取得部
 20 ガバナプーリ回転量取得部
 21 モータ電流及びガバナプーリ回転量記憶部
 22 モータエンコーダ磁極位置演算部
 23 最寄り階駆動部
 24 速度制御部
 25 記憶部
 26 制御部
 27 モータエンコーダ異常検出前の磁極位置
 28 シーブ停止時の磁極位置

Claims (3)

  1.  主ロープを巻回したシーブを軸とする同期電動機と、前記主ロープを介して締結された乗りかごと、前記同期電動機の回転を制御するインバータ装置と、前記インバータ装置の前記同期電動機側に設けたモータ電流測定用の電流検出器と、前記乗りかごに連結されたガバナロープを巻回したガバナプーリと、前記同期電動機の回転を制動するブレーキと、前記同期電動機の軸に固定された前記同期電動機の回転に応じてパルス信号を出力するモータエンコーダと、前記ガバナプーリに締結され前記ガバナプーリの回転に応じてパルス信号を出力するガバナエンコーダと、前記電流検出器、前記モータエンコーダ及び前記ガバナエンコーダからの信号を取り込んで、前記同期電動機及び前記ガバナプーリの回転量を算出することで、乗りかごの運転を制御するエレベータ制御装置とを有するエレベータ装置において、前記エレベータ装置は、前記モータエンコーダの異常を検出した時から前記シーブの回転が停止するまでの前記モータ電流及び前記ガバナプーリの回転量を記憶するモータ電流及びガバナプーリ回転量記憶部と、前記モータ電流及びガバナプーリ回転量記憶部の情報を元に、前記シーブの回転が停止した時のモータ磁極位置を演算するモータ磁極位置演算部とを備えたことを特徴とするエレベータ装置。
  2.  請求項1に記載のエレベータ装置において、モータエンコーダ異常検出による非常停止後、前記モータ磁極位置演算部により演算したモータ磁極位置を用いてエレベータを再起動し、最寄り階まで乗りかごを移動する最寄り階駆動部を備えたことを特徴とするエレベータ装置。
  3.  請求項2に記載のエレベータ装置において、前記モータ電流及びガバナプーリ回転量記憶部からの情報を元に、現在のモータ磁極位置を演算し続ける速度制御部を備えたことを特徴とするエレベータ装置。
PCT/JP2016/070365 2016-07-11 2016-07-11 エレベータ装置 WO2018011838A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680085751.5A CN109153536A (zh) 2016-07-11 2016-07-11 电梯设备
JP2018527042A JPWO2018011838A1 (ja) 2016-07-11 2016-07-11 エレベータ装置
PCT/JP2016/070365 WO2018011838A1 (ja) 2016-07-11 2016-07-11 エレベータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070365 WO2018011838A1 (ja) 2016-07-11 2016-07-11 エレベータ装置

Publications (1)

Publication Number Publication Date
WO2018011838A1 true WO2018011838A1 (ja) 2018-01-18

Family

ID=60951706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070365 WO2018011838A1 (ja) 2016-07-11 2016-07-11 エレベータ装置

Country Status (3)

Country Link
JP (1) JPWO2018011838A1 (ja)
CN (1) CN109153536A (ja)
WO (1) WO2018011838A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453637A (zh) * 2020-03-31 2020-07-28 苏州汇川技术有限公司 电梯抱闸控制方法、***、设备及计算机可读存储介质
WO2023100319A1 (ja) * 2021-12-02 2023-06-08 株式会社日立製作所 非常止め装置用電動作動器の点検装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601587B1 (ja) * 2019-07-26 2019-11-06 フジテック株式会社 エレベーターのエンコーダー診断システム及び診断方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240322A (ja) * 2013-06-12 2014-12-25 株式会社日立製作所 エレベーターの閉じ込め防止装置及びエレベーターの閉じ込め防止方法
JP2016029868A (ja) * 2014-07-25 2016-03-03 株式会社日立製作所 エレベータ制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240322A (ja) * 2013-06-12 2014-12-25 株式会社日立製作所 エレベーターの閉じ込め防止装置及びエレベーターの閉じ込め防止方法
JP2016029868A (ja) * 2014-07-25 2016-03-03 株式会社日立製作所 エレベータ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453637A (zh) * 2020-03-31 2020-07-28 苏州汇川技术有限公司 电梯抱闸控制方法、***、设备及计算机可读存储介质
CN111453637B (zh) * 2020-03-31 2021-12-21 苏州汇川技术有限公司 电梯抱闸控制方法、***、设备及计算机可读存储介质
WO2023100319A1 (ja) * 2021-12-02 2023-06-08 株式会社日立製作所 非常止め装置用電動作動器の点検装置

Also Published As

Publication number Publication date
JPWO2018011838A1 (ja) 2019-02-14
CN109153536A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
EP2918536B1 (en) Condition monitoring of vertical transport equipment
JP5743319B2 (ja) エレベータシステム
JP5314888B2 (ja) 乗客コンベアの自動診断運転装置
JP2009154988A (ja) エレベータの戸開走行防止システム
WO2018011838A1 (ja) エレベータ装置
JP6610006B2 (ja) エレベータの診断装置
JP2011042480A (ja) エレベータ装置
JP5089695B2 (ja) エレベータ装置
JP2009051656A (ja) エレベータ制御装置
JP5476681B2 (ja) 昇降システムのモータ制御装置
CN105293231B (zh) 电梯控制装置
JP2005263371A (ja) エレベータの制御装置
JP2011136837A (ja) エレベータシステム
JP5098376B2 (ja) エレベーターの制御装置
JP2013132179A (ja) インバータ制御エレベータの安全装置
JP6754715B2 (ja) エレベーターのカウンターウェイトクリアランス診断装置
JP6190631B2 (ja) エレベーターの閉じ込め防止装置及びエレベーターの閉じ込め防止方法
JP6351391B2 (ja) エレベータ制御装置とその制御方法
JP2007099494A (ja) エレベータ調速機の動作試験装置
JP6495851B2 (ja) エレベーターの乗り心地診断装置及びエレベーターの乗り心地診断方法
CN112789234B (zh) 电梯的控制装置
JP2008133119A (ja) エレベーターのドア制御装置
JP2007288829A (ja) 機械の異常検出方法およびその装置
JP2006206196A (ja) エレベーターの改修工法
JP2009120356A (ja) エレベータかご内乗車確認装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018527042

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908742

Country of ref document: EP

Kind code of ref document: A1