WO2018008400A1 - レーザ加工装置およびレーザ加工方法 - Google Patents

レーザ加工装置およびレーザ加工方法 Download PDF

Info

Publication number
WO2018008400A1
WO2018008400A1 PCT/JP2017/022833 JP2017022833W WO2018008400A1 WO 2018008400 A1 WO2018008400 A1 WO 2018008400A1 JP 2017022833 W JP2017022833 W JP 2017022833W WO 2018008400 A1 WO2018008400 A1 WO 2018008400A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
refrigerant
processing
nozzle
irradiation nozzle
Prior art date
Application number
PCT/JP2017/022833
Other languages
English (en)
French (fr)
Inventor
呉屋 真之
太郎 竹内
竜一 成田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018008400A1 publication Critical patent/WO2018008400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring

Definitions

  • the present invention relates to a laser processing apparatus and a laser processing method.
  • Patent Document 1 laser light is oscillated by a laser oscillator, a laser beam output from the laser oscillator is irradiated onto a cylindrical surface of a metal pipe to be processed, and the cylindrical surface of the metal pipe is cut through.
  • a laser processing method for a metal pipe laser processing of a cylindrical surface of the metal pipe is described while injecting a gas containing dry ice particles into a hollow portion of the metal pipe.
  • CFRP Carbon Fiber Reinforced Plastic
  • AWAJ Abrasive Water Jet
  • carbon fiber reinforced plastic which is a composite material in which carbon fiber and resin are composited
  • thermal processing such as cutting and drilling is performed using laser processing
  • material deterioration or alteration occurs due to thermal effects.
  • the desired processing specifications cannot be satisfied.
  • Patent Document 1 it is conceivable to blow a gas containing dry ice particles (hereinafter referred to as a refrigerant) onto a processing portion of the processing object.
  • a gas containing dry ice particles hereinafter referred to as a refrigerant
  • a coolant when a coolant is sprayed on the processing site, moisture in the atmosphere is frozen and solidified by the coolant, and this is evaporated by the heat of the laser to generate white smoke. And since this white smoke blocks a laser beam, there exists a problem which cannot irradiate the process part of a process target object with the laser beam of sufficient intensity
  • the present invention solves the above-described problems, and an object thereof is to provide a laser processing apparatus and a laser processing method capable of supplying a coolant to a processing portion of a processing object without affecting the laser.
  • a laser processing apparatus includes a cylindrical laser irradiation nozzle that passes a laser irradiated from a condensing optical system, and a laser that passes through the laser irradiation nozzle.
  • Assist gas supply means for injecting an assist gas from the laser irradiation nozzle along the traveling direction
  • annular refrigerant injection nozzle arranged coaxially with the laser outside the laser irradiation nozzle
  • the laser irradiation Refrigerant supply means for injecting refrigerant from the refrigerant injection nozzle along the traveling direction of the laser passing through the nozzle.
  • the coolant is ejected from the coolant ejection nozzle along the traveling direction of the laser outside the laser. Therefore, the processing part by the laser of the processing object is cooled. Furthermore, the assist gas is injected along with the laser along the laser traveling direction passing through the laser irradiation nozzle, thereby preventing interference between the laser and the refrigerant. Prevents white smoke from being evaporated by the heat of the laser. As a result, the coolant can be supplied to the processing site of the processing object without affecting the laser.
  • the laser processing apparatus includes a cylindrical laser irradiation nozzle that allows a laser irradiated from a condensing optical system to pass through, and the laser along a traveling direction of the laser that passes through the laser irradiation nozzle.
  • An assist gas supply means for injecting an assist gas from the irradiation nozzle; a refrigerant injection nozzle comprising a plurality of holes arranged on the circumference coaxial with the laser; and the laser irradiation nozzle passing through the laser irradiation nozzle.
  • Refrigerant supply means for injecting the refrigerant from the refrigerant injection nozzle along the laser traveling direction.
  • the coolant is ejected from the coolant ejection nozzle along the traveling direction of the laser outside the laser. Therefore, the processing part by the laser of the processing object is cooled. Furthermore, the assist gas is injected along with the laser along the laser traveling direction passing through the laser irradiation nozzle, thereby preventing interference between the laser and the refrigerant. Prevents white smoke from being evaporated by the heat of the laser. As a result, the coolant can be supplied to the processing site of the processing object without affecting the laser.
  • the relationship between the injection pressure P1 of the assist gas injected from the laser irradiation nozzle and the injection pressure P2 of the refrigerant injected from the refrigerant injection nozzle is expressed as P2 ⁇ It is preferable to set to P1.
  • the assist gas has a higher pressure than the refrigerant and prevents the refrigerant from being mixed into the assist gas, so that the effect of preventing the interference between the laser and the refrigerant can be remarkably obtained.
  • an annular shield gas injection is arranged outside the laser irradiation nozzle and outside the refrigerant injection nozzle independently of the laser. It is preferable to include a nozzle and a shield gas supply unit that injects a shield gas from the shield gas injection nozzle along the traveling direction of the laser passing through the laser irradiation nozzle.
  • the coolant is ejected from the coolant ejection nozzle along the traveling direction of the laser outside the laser. Therefore, the processing part by the laser of the processing object is cooled. Furthermore, since the shielding gas is injected outside the refrigerant, interference between the refrigerant and the atmosphere is prevented, and a situation in which moisture in the atmosphere is frozen and solidified by the refrigerant is prevented. As a result, the coolant can be supplied to the processing site of the processing object without affecting the laser.
  • the shield includes a plurality of holes disposed on the circumference coaxial with the laser outside the laser irradiation nozzle and outside the coolant jet nozzle. It is preferable to include a gas injection nozzle and a shield gas supply unit that injects a shield gas from the shield gas injection nozzle along the traveling direction of the laser passing through the laser irradiation nozzle.
  • the coolant is ejected from the coolant ejection nozzle along the traveling direction of the laser outside the laser. Therefore, the processing part by the laser of the processing object is cooled. Furthermore, since the shielding gas is injected outside the refrigerant, interference between the refrigerant and the atmosphere is prevented, and a situation in which moisture in the atmosphere is frozen and solidified by the refrigerant is prevented. As a result, the coolant can be supplied to the processing site of the processing object without affecting the laser.
  • the relationship between the injection pressure P2 of the refrigerant injected from the refrigerant injection nozzle and the injection pressure P3 of the shield gas injected from the shield gas injection nozzle is expressed as P2. It is preferable to set> P3.
  • the shield gas since the shield gas has a lower pressure than the refrigerant and prevents the shield gas from being mixed into the refrigerant side, the effect of preventing the interference between the laser and the refrigerant can be obtained remarkably.
  • a laser processing method includes a processing step of moving the laser in a predetermined direction while irradiating the processing target with a laser, and the processing on the rear side in the movement direction of the laser during the processing step.
  • this laser processing method it is possible to effectively cool a portion where the thermal influence of the laser is generated without cooling the processing portion which is not affected by the laser on the front side in the moving direction of the laser.
  • a laser processing method is a laser processing method for cutting an object to be processed with a laser, along the cutting line while leaving a predetermined cutting line.
  • the workpiece is cut by irradiating a laser on the preliminary cutting line along the cutting line while leaving the cutting line, and the coolant is jetted toward the cutting surface of the preliminary cutting line.
  • the thermal influence on the machining portion of the workpiece can be suppressed by the refrigerant when the workpiece is cut along the cutting line.
  • the coolant can be supplied to the processing site of the processing object without affecting the laser.
  • a laser processing method is a laser processing method for performing a through-processing on an object to be processed with a laser, and the through-holes are within a predetermined through-hole range.
  • a through hole having a diameter smaller than the diameter of the through hole is cut within the range of the through hole, and the through hole is cut by injecting the coolant into the preliminary through hole.
  • the coolant can be supplied to the processing site of the processing object without affecting the laser.
  • the coolant can be supplied to the processing portion of the processing object without affecting the laser.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a laser processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the laser processing head shown in FIG.
  • FIG. 3 is a view taken along the line aa in FIG.
  • FIG. 4 is another example of the aa arrow view in FIG.
  • FIG. 5 is a schematic diagram showing a schematic configuration of another example of the laser processing apparatus according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a schematic configuration of the laser processing head shown in FIG.
  • FIG. 7 is a view taken along the line bb in FIG.
  • FIG. 8 is another example of the view taken along the line bb in FIG.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a laser processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the laser processing head shown in FIG.
  • FIG. 3 is a view taken along the line
  • FIG. 9 is an explanatory diagram of the steps of the laser processing method according to the embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of the steps of the laser processing method according to the embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of the steps of the laser processing method according to the embodiment of the present invention.
  • FIG. 12 is an explanatory diagram of a process of another example of the laser processing method according to the embodiment of the present invention.
  • FIG. 13 is an explanatory diagram of a process of another example of the laser processing method according to the embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of a process of another example of the laser processing method according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a laser processing apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the laser processing head shown in FIG.
  • FIG. 3 is a view taken along the line aa in FIG.
  • FIG. 4 is another example of the aa arrow view in FIG.
  • the laser processing apparatus 10 is an apparatus that performs various types of processing such as cutting and drilling on the workpiece 100.
  • the laser processing apparatus 10 of this embodiment performs the cutting process in drilling. Further, the laser processing apparatus 10 also measures the workpiece 100.
  • the laser processing apparatus 10 includes a frame 12, a moving unit 14, a stage unit 16, a laser processing unit 22 including a laser processing head 60, and a control unit 24.
  • the laser processing apparatus 10 irradiates the processing object 100 held by the stage unit 16 with a laser beam by the laser processing unit 22 to laser process the processing object 100.
  • the horizontal plane is the XY plane including the X-axis direction and the Y-axis direction orthogonal to the X-axis
  • the direction orthogonal to the horizontal plane is the Z-axis direction.
  • the direction rotating around the Y axis is defined as the ⁇ Y direction.
  • the frame 12 is a housing of the laser processing apparatus 10 and is fixed to an installation surface such as the ground or a base.
  • the frame 12 has a gate 12a and a base 12b inserted into the space of the gate 12a.
  • the fixed part of the moving unit 14 is fixed to the frame 12. Therefore, in the laser processing apparatus 10 of the present embodiment, the moving unit 14 is fixed to the gate 12a and the base 12b of the frame 12, and the processing object 100 and the laser processing unit 22 are relatively moved by the moving unit 14. This is a so-called gate-type processing device.
  • the moving unit 14 moves the workpiece 100 and the laser processing head 60 relative to each other.
  • the moving unit 14 includes a Y-axis moving mechanism 30, an X-axis moving mechanism 34, a Z-axis moving mechanism 38, and a ⁇ Y rotating mechanism 39.
  • the Y-axis moving mechanism 30 includes a rail 30a that is disposed on the base 12b of the frame 12 and extends in the Y-axis direction, and a Y-axis moving member 30b that moves along the rail 30a. In the Y-axis moving mechanism 30, the stage unit 16 is fixed to the Y-axis moving member 30b.
  • the Y-axis moving mechanism 30 moves the stage unit 16 in the Y-axis direction by moving the Y-axis moving member 30b along the rail 30a.
  • the Y-axis moving mechanism 30 can use various mechanisms as a mechanism for moving the Y-axis moving member 30b in the Y-axis direction. For example, a mechanism in which a ball screw is inserted into the Y-axis moving member 30b and the ball screw is rotated by a motor, a linear motor mechanism, a belt mechanism, or the like can be used. Similarly, various mechanisms can be used for the X-axis moving mechanism 34 and the Z-axis moving mechanism 38.
  • the X-axis moving mechanism 34 includes a rail 33 that is disposed on the gate 12a of the frame 12 and extends in the X-axis direction, and an X-axis moving member 34a that moves along the rail 33.
  • a Z axis moving mechanism 38 is fixed to an X axis moving member 34a.
  • the X-axis moving mechanism 34 moves the Z-axis moving mechanism 38 in the X-axis direction by moving the X-axis moving member 34 a along the rail 33.
  • the Z-axis moving mechanism 38 includes a rail 38a that is fixed to the X-axis moving member 34a and extends in the Z-axis direction, and a Z-axis moving member 38b that moves along the rail 38a.
  • the ⁇ Y rotating mechanism 39 is fixed to the Z-axis moving member 38b.
  • the Z-axis moving mechanism 38 moves the ⁇ Y rotating mechanism 39 in the Z-axis direction by moving the ⁇ Y rotating mechanism 39 along the rail 38a.
  • the ⁇ Y rotation mechanism 39 is fixed to the Z-axis moving member 38b, and the laser processing head 60 is fixed.
  • the ⁇ Y rotation mechanism 39 rotates the laser processing head 60 in the ⁇ Y direction by rotating the laser processing head 60 in the ⁇ Y direction with respect to the Z-axis moving member 38b.
  • the moving unit 14 uses the Y-axis moving mechanism 30, the X-axis moving mechanism 34, and the Z-axis moving mechanism 38 to move the workpiece 100 and the laser processing head 60 in the X-axis direction, the Y-axis direction, and the Z-axis direction. Move relative to each other. Further, the moving unit 14 rotates the laser processing head 60 with respect to the processing object 100 using the ⁇ Y rotation mechanism 39. Thereby, the direction of the laser irradiated to the workpiece 100 from the laser processing head 60 can be adjusted.
  • the moving unit 14 may include a mechanism for rotating the laser processing head 60 around the X axis. Further, a mechanism for adjusting the direction of laser irradiation may be provided in the laser processing head 60.
  • the stage unit 16 is disposed on the Y-axis moving member 30b of the Y-axis moving mechanism 30.
  • the stage unit 16 is a stage that supports the workpiece 100.
  • the member integrated with the Y-axis moving member 30b that is, the Y-axis moving member 30b is used as the stage of the stage unit 16, but another support member is provided on the Y-axis moving member 30b. It may be provided as a stage.
  • the stage unit 16 serves as a stage moving mechanism 42 that causes the Y-axis moving mechanism 30 to move the workpiece 100.
  • the stage unit 16 includes a fixing mechanism that fixes the workpiece 100 at a predetermined position of the Y-axis moving member 30b.
  • the stage unit 16 may further include an adjustment mechanism that adjusts the orientation of the workpiece 100 relative to the Y-axis moving member 30b, that is, the posture, as the stage moving mechanism 42.
  • an adjustment mechanism that adjusts the orientation of the workpiece 100 relative to the Y-axis moving member 30b, that is, the posture, as the stage moving mechanism 42.
  • a mechanism for rotating the workpiece 100 may be provided as the stage moving mechanism 42.
  • the laser processing unit 22 includes a laser processing head 60, a laser light source 62, an assist gas supply unit 64, and a refrigerant supply unit 66.
  • the laser light source 62 includes a fiber laser output device that outputs a laser using an optical fiber as a medium.
  • a fiber laser output device for example, a Fabry-Perot type fiber laser output device or a ring type fiber laser output device can be used, and the laser is oscillated when these output devices are excited.
  • the fiber of the fiber laser output device for example, silica glass to which a rare earth element such as erbium (Er), neodymium (Nd), ytterbium (Yb) is added can be used.
  • a laser that performs nanosecond order pulse oscillation such as a YAG laser or a YVO4 laser can be used as the fiber laser.
  • the laser light source 62 includes a short pulse laser output device that outputs a laser with a short pulse, for example, a frequency of 20 kHz.
  • a short pulse laser output device for example, a titanium sapphire laser can be used as a laser oscillation source, and a pulse having a pulse width of 100 picoseconds or less can be oscillated.
  • the short pulse laser outputs the laser with a short pulse having a pulse width of 100 nanoseconds or less.
  • the short pulse laser is preferably a short pulse having a pulse width of 10 nanoseconds or more, and more preferably a laser having a pulse width of less than 1 nanosecond.
  • Assist gas supply means 64 supplies assist gas to the laser processing head 60.
  • the assist gas supply means 64 includes an assist gas supply unit 64a and an assist gas supply pipe 64b.
  • the assist gas supply unit 64a pumps the assist gas from the assist gas storage tank in which the assist gas is stored to the assist gas supply pipe 64b by a compressor or the like.
  • the assist gas supply pipe 64b is connected to the laser processing head 60, and supplies the assist gas pumped by the assist gas supply unit 64a to the laser processing head 60.
  • an inert gas that is a dry gas such as air, nitrogen gas, oxygen gas, argon gas, xenon gas, helium gas, or a mixed gas thereof is used.
  • the refrigerant supply means 66 supplies the refrigerant to the laser processing head 60.
  • the refrigerant supply means 66 includes a refrigerant supply unit 66a and a refrigerant supply pipe 66b.
  • the refrigerant supply unit 66a pumps the refrigerant from the refrigerant storage tank in which the refrigerant is stored to the refrigerant supply pipe 66b by a compressor or the like.
  • the refrigerant supply pipe 66b is connected to the laser processing head 60, and supplies the refrigerant pumped by the refrigerant supply unit 66a to the laser processing head 60.
  • the refrigerant for example, dry ice particles of about -80 ° C., carbon dioxide gas, liquid nitrogen, or the like is applied.
  • the laser processing head 60 receives the laser output from the laser light source 62 and irradiates the processing target object 100 with the incident laser, thereby laser processing the processing target object 100.
  • the laser output from the laser light source 62 is guided to the laser processing head 60 by an optical member that guides laser light such as an optical fiber.
  • the laser processing head 60 includes a casing 72, a condensing optical system 74, and a nozzle 76, as shown in FIG.
  • the casing 72 receives a laser output from the laser light source 62 and houses a scanning mechanism (not shown) for guiding the laser to the condensing optical system 74 together with the condensing optical system 74.
  • the condensing optical system 74 has a plurality of lenses (one in the figure), condenses the laser L by the plurality of lenses, and sets the predetermined focal length and depth to the processing object 100.
  • a laser L having a spot diameter of 2 is irradiated.
  • the nozzle 76 is attached to the tip of the casing 72 where the condensing optical system 74 is disposed, and is formed in a cylindrical shape so as to allow the laser L condensed by the condensing optical system 74 to pass therethrough.
  • the nozzle 76 is formed in a hollow conical shape whose diameter gradually decreases as the laser L converges toward the front side in the traveling direction of the laser L.
  • the nozzle 76 has a laser irradiation nozzle 76A and a refrigerant injection nozzle 76B.
  • the laser irradiation nozzle 76A is for passing the laser L condensed by the condensing optical system 74 and irradiating the processing object 100 with the laser L. It is a through hole.
  • the laser irradiation nozzle 76A is connected to the assist gas supply pipe 64b of the assist gas supply means 64, and jets the assist gas A together with the laser L along the traveling direction of the laser L passing through the laser irradiation nozzle 76A.
  • the processing speed for the processing object 100 such as metal can be further improved.
  • the assist gas A is a nitrogen gas, an argon gas, or the like that suppresses the formation of an oxide film as a heat-affected layer that affects heat
  • the processing accuracy for the workpiece 100 such as metal can be further improved.
  • the gas type and mixing ratio of the assist gas A, the ejection amount (injection pressure) from the laser irradiation nozzle 76A, and the like can be changed according to the processing conditions such as the type of the processing object 100 and the processing mode.
  • the refrigerant injection nozzle 76B is independently arranged outside the laser irradiation nozzle 76A.
  • the coolant injection nozzle 76B is, for example, a hole formed in an annular shape coaxially with the optical axis La of the laser L so as to surround the laser irradiation nozzle 76A as shown in FIG. 3, or the laser L as shown in FIG.
  • the refrigerant injection nozzle 76B is connected to the refrigerant supply pipe 66b of the refrigerant supply means 66, and injects the refrigerant R outside the laser L along the traveling direction of the laser L passing through the laser irradiation nozzle 76A.
  • the coolant R is sprayed outside the laser L along the traveling direction of the laser L, so that the periphery of the processing portion of the processing object 100 by the laser L is cooled, and the heat of the processing object 100 by the laser L is cooled. The influence can be suppressed.
  • the ejection amount (injection pressure) of the refrigerant R from the refrigerant injection nozzle 76B can be changed according to the processing conditions such as the type of the processing object 100 and the processing mode.
  • the laser processing unit 22 may include a camera having a photographing means for photographing an image at a position where the laser is irradiated, for example, a CCD (Charge Coupled Device) image sensor. Thereby, the irradiation position of a laser, etc. can be adjusted based on the acquired image.
  • a camera having a photographing means for photographing an image at a position where the laser is irradiated for example, a CCD (Charge Coupled Device) image sensor.
  • CCD Charge Coupled Device
  • the laser processing unit 22 opens a through hole by irradiating the processing object 100 with the laser output from the laser light source 62 from the laser processing head 60. Moreover, the laser processing unit 22 can cut the processing object 100 with a line by moving the irradiation position of the laser L, and can also cut the processing object 100.
  • the control unit 24 controls operations of the moving unit 14, the stage unit 16, the laser processing unit 22, the assist gas supply unit 64a, and the refrigerant supply unit 66a.
  • the control unit 24 controls the operation of the stage moving mechanism 42 of the moving unit 14 and the stage unit 16 to move the workpiece 100 and the laser processing head 60 relative to each other. Further, the control unit 24 controls driving of the laser processing unit 22 and irradiates the processing object 100 with the laser L. Further, the control unit 24 controls driving of the assist gas supply unit 64a to control supply of the assist gas A, injection pressure of the assist gas A from the laser irradiation nozzle 76A, and the like. Further, the control unit 24 controls driving of the refrigerant supply unit 66a to control supply of the refrigerant R, injection pressure of the refrigerant R from the refrigerant injection nozzle 76B, and the like.
  • the laser processing apparatus 10 has a cylindrical laser irradiation nozzle 76A that passes the laser L irradiated from the condensing optical system 74 and a traveling direction of the laser L that passes the laser irradiation nozzle 76A.
  • An assist gas supply means 64 for injecting the assist gas A from the laser irradiation nozzle 76A along the ring, an annular refrigerant injection nozzle 76B arranged coaxially with the laser L outside the laser irradiation nozzle 76A, and a laser irradiation nozzle.
  • Refrigerant supply means 66 for injecting the refrigerant R from the refrigerant injection nozzle 76B along the traveling direction of the laser L passing through 76A.
  • the laser processing apparatus 10 of the present embodiment has a cylindrical laser irradiation nozzle 76A that allows the laser L irradiated from the condensing optical system 74 to pass through, and a traveling direction of the laser L that passes the laser irradiation nozzle 76A.
  • the laser processing apparatus 10 processes the workpiece 100 by irradiating the workpiece 100 with the laser L passing through the laser irradiation nozzle 76A.
  • the refrigerant R is injected from the refrigerant injection nozzle 76B outside the laser L along the traveling direction of the laser L, the part to be processed by the laser L of the workpiece 100 is cooled.
  • the assist gas A is jetted together with the laser L along the traveling direction of the laser L passing through the laser irradiation nozzle 76A, thereby preventing interference between the laser L and the refrigerant R, and moisture in the atmosphere is frozen by the refrigerant R. Even if it is solidified, it is prevented from being vaporized by the heat of the laser L and generating white smoke. As a result, the refrigerant R can be supplied to the processing portion of the processing object 100 without affecting the laser L.
  • the laser irradiation nozzle 76A is formed with a through hole having an inner diameter having a gap with the laser L so that the passing laser L does not come in contact, and the assist gas supply means 64 has the gap It is preferable to supply the assist gas A to the through hole so as to satisfy the above condition. Thereby, since the assist gas A is injected so as to surround the laser L, the effect of preventing the interference between the laser L and the refrigerant R can be obtained remarkably.
  • the relationship between the injection pressure P1 of the assist gas A injected from the laser irradiation nozzle 76A and the injection pressure P2 of the refrigerant R injected from the refrigerant injection nozzle 76B is P2 ⁇ P1. It is preferable to set.
  • the setting of the injection pressure P1 of the assist gas A and the injection pressure P2 of the refrigerant R is performed by controlling the driving of the assist gas supply unit 64a and the refrigerant supply unit 66a by the control unit 24.
  • the distance W from the focal point F of the laser L on the innermost side of the injection range of the coolant R is 0 on the processing surface 100 a of the processing object 100. It is preferable to be in the range of 1 mm or more and 50 mm or less. When the thickness is 0.1 mm or more, the effect of preventing interference between the laser L and the refrigerant R can be obtained favorably, and when the thickness is 50 mm or less, the effect of cooling the processing site can be favorably obtained. In order to set such a distance W, an angle along the laser L in the refrigerant injection nozzle 76B is set.
  • the irradiation position of the laser L is moved along the processing surface 100a of the processing object 100 (processing process). May not be performed on the front side in the moving direction of the laser L but only on the rear side (refrigerant injection step). That is, even if the refrigerant R is injected to the front side in the moving direction of the laser L, there is no thermal influence of the laser L (before the thermal influence occurs), and this is not effective. Only the rear side in the moving direction of the laser L is assumed.
  • the refrigerant injection nozzle 76B has a plurality of holes arranged in an annular shape so as to surround the laser irradiation nozzle 76A, and has an on-off valve that selectively supplies the refrigerant R to each hole. This can be realized by providing the switching mechanism.
  • another coolant injection nozzle may be provided so that the coolant R can be further injected from the surface opposite to the processing surface 100a of the processing object 100 irradiated with the laser L.
  • the refrigerant is supplied to the other refrigerant injection nozzle by the refrigerant supply means 66 described above. By doing in this way, the cooling efficiency of the process site
  • FIG. 5 is a schematic diagram showing a schematic configuration of another example of the laser processing apparatus according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a schematic configuration of the laser processing head shown in FIG.
  • FIG. 7 is a view taken along the line bb in FIG.
  • FIG. 8 is another example of the view taken along the line bb in FIG.
  • the laser processing apparatus 110 of another example is different from the laser processing apparatus 10 described with reference to FIGS. 1 and 2 with a shield gas supply means 68 and a shield gas injection nozzle 76C. And the other configurations are the same. Therefore, in the description of the laser processing apparatus 110 of another example, the same parts as those of the laser processing apparatus 10 described above are denoted by the same reference numerals and description thereof is omitted.
  • the shield gas supply means 68 supplies shield gas to the laser processing head 60.
  • the shield gas supply means 68 includes a shield gas supply unit 68a and a shield gas supply pipe 68b. Although not clearly shown in the drawing, the shield gas supply unit 68a pumps the shield gas to the shield gas supply pipe 68b by a compressor or the like from a shield gas storage tank in which the shield gas is stored.
  • the shield gas supply pipe 68b is connected to the laser processing head 60, and supplies the shield gas pumped by the shield gas supply unit 68a to the laser processing head 60.
  • an inert gas that is a dry gas such as air, nitrogen gas, oxygen gas, argon gas, xenon gas, helium gas, or a mixed gas thereof is used.
  • the shield gas injection nozzle 76 ⁇ / b> C is provided in the nozzle 76.
  • the shield gas injection nozzle 76C is independently arranged outside the laser irradiation nozzle 76A and outside the refrigerant injection nozzle 76B. That is, the shield gas injection nozzle 76C is disposed on the outermost side with respect to the laser irradiation nozzle 76A and the refrigerant injection nozzle 76B.
  • the shield gas injection nozzle 76C is, for example, a hole formed in an annular shape coaxially with the optical axis La of the laser L so as to surround the refrigerant injection nozzle 76B as shown in FIG. 7, or a laser as shown in FIG.
  • the laser irradiation nozzle 76A is shown as having the same configuration as that shown in FIG. 3, but it may be the same as that shown in FIG.
  • This shield gas injection nozzle 76C is connected to the shield gas supply pipe 68b of the shield gas supply means 68, and shield gas is provided outside the laser L and inside the refrigerant R along the traveling direction of the laser L passing through the laser irradiation nozzle 76A. S is injected.
  • the control unit 24 controls operations of the moving unit 14, the stage unit 16, the laser processing unit 22, the assist gas supply unit 64a, the refrigerant supply unit 66a, and the shield gas supply unit 68a.
  • the control unit 24 controls the operation of the stage moving mechanism 42 of the moving unit 14 and the stage unit 16 to move the workpiece 100 and the laser processing head 60 relative to each other. Further, the control unit 24 controls driving of the laser processing unit 22 and irradiates the processing object 100 with the laser L. Further, the control unit 24 controls driving of the assist gas supply unit 64a to control supply of the assist gas A, injection pressure of the assist gas A from the laser irradiation nozzle 76A, and the like.
  • control unit 24 controls driving of the refrigerant supply unit 66a to control supply of the refrigerant R, injection pressure of the refrigerant R from the refrigerant injection nozzle 76B, and the like. Further, the control unit 24 controls driving of the shield gas supply unit 68a to control supply of the shield gas S, injection pressure of the shield gas S from the shield gas injection nozzle 76C, and the like.
  • the laser processing apparatus 110 has a cylindrical laser irradiation nozzle 76A that passes the laser L irradiated from the condensing optical system 74 and a traveling direction of the laser L that passes the laser irradiation nozzle 76A.
  • the refrigerant supply means 66 for injecting the refrigerant R from the refrigerant injection nozzle 76B along the direction and the outside of the laser irradiation nozzle 76A and the outside of the refrigerant injection nozzle 76B are independently arranged coaxially with the laser L.
  • An annular shield gas injection nozzle 76C and a laser L passing through the laser irradiation nozzle 76A are aligned along the traveling direction of the laser L.
  • the laser processing apparatus 110 has a cylindrical laser irradiation nozzle 76A that allows the laser L irradiated from the condensing optical system 74 to pass therethrough and a traveling direction of the laser L that passes the laser irradiation nozzle 76A.
  • the assist gas supply means 64 for injecting the assist gas A from the laser irradiation nozzle 76A, the refrigerant injection nozzle 76B arranged independently outside the laser irradiation nozzle 76A, and the laser irradiation nozzle 76A.
  • a shield gas injection nozzle 76C composed of a hole and a laser L that passes through the laser irradiation nozzle 76A are aligned along the traveling direction of the laser L.
  • the laser processing apparatus 110 processes the processing object 100 by irradiating the processing object 100 with the laser L passing through the laser irradiation nozzle 76A.
  • the refrigerant R is injected from the refrigerant injection nozzle 76B outside the laser L along the traveling direction of the laser L, the part to be processed by the laser L of the workpiece 100 is cooled.
  • the shielding gas S is injected outside the refrigerant R, interference between the refrigerant R and the atmosphere is prevented, and a situation in which moisture in the atmosphere freezes and solidifies due to the refrigerant R is prevented.
  • the refrigerant R can be supplied to the processing portion of the processing object 100 without affecting the laser L.
  • the assist gas A is jetted together with the laser L along the traveling direction of the laser L passing through the laser irradiation nozzle 76A, interference between the laser L and the refrigerant R is further prevented. Even if it freezes and solidifies, it is prevented from being vaporized by the heat of the laser L and generating white smoke. As a result, the refrigerant R can be supplied to the processing portion of the processing object 100 without affecting the laser L.
  • the laser irradiation nozzle 76A is formed with a through hole having an inner diameter having a gap with the laser L so that the passing laser L does not come in contact, and the assist gas supply means 64 has the gap It is preferable to supply the assist gas A to the through hole so as to satisfy the above condition. Thereby, since the assist gas A is injected so as to surround the laser L, the effect of preventing the interference between the laser L and the refrigerant R can be obtained remarkably.
  • the relationship between the injection pressure P2 of the refrigerant R injected from the refrigerant injection nozzle 76B and the injection pressure P3 of the shield gas S injected from the shield gas injection nozzle 76C is expressed as P2> P3. It is preferable to set to.
  • the setting of the injection pressure P3 of the shield gas S and the injection pressure P2 of the refrigerant R is performed by controlling the drive of the shield gas supply unit 68a and the refrigerant supply unit 66a by the control unit 24.
  • the relationship is preferably set to P1 ⁇ P2> P3, and the refrigerant R is also prevented from being mixed into the assist gas A, so that the effect of preventing the interference between the laser L and the refrigerant R can be obtained remarkably.
  • the distance W from the focal point F of the laser L on the innermost side of the injection range of the coolant R is 0 on the processing surface 100a of the processing object 100. It is preferable to be in the range of 1 mm or more and 50 mm or less. When the thickness is 0.1 mm or more, the effect of preventing interference between the laser L and the refrigerant R can be obtained favorably, and when the thickness is 50 mm or less, the effect of cooling the processing site can be favorably obtained. In order to set such a distance W, an angle along the laser L in the refrigerant injection nozzle 76B is set.
  • the irradiation position of the laser L is moved along the processing surface 100a of the processing object 100 (processing process). May not be performed on the front side in the moving direction of the laser L but only on the rear side (refrigerant injection step). That is, even if the refrigerant R is injected to the front side in the moving direction of the laser L, there is no thermal influence of the laser L (before the thermal influence occurs), and this is not effective. Only the rear side in the moving direction of the laser L is assumed.
  • the refrigerant injection nozzle 76B has a plurality of holes arranged in an annular shape so as to surround the laser irradiation nozzle 76A, and has an on-off valve that selectively supplies the refrigerant R to each hole. This can be realized by providing the switching mechanism.
  • another coolant injection nozzle may be provided so that the coolant R can be further injected from the surface opposite to the processing surface 100a of the processing object 100 irradiated with the laser L.
  • the refrigerant is supplied to the other refrigerant injection nozzle by the refrigerant supply means 66 described above. By doing in this way, the cooling efficiency of the process site
  • FIGS. 9 to 11 are explanatory diagrams of steps of the laser processing method according to the present embodiment.
  • the laser processing method of the present embodiment is a processing method in the case where the processing object 100 is cut by a predetermined cutting line CL1 with a laser L as shown in FIGS.
  • the workpiece 100 is cut by irradiating the laser L onto the preliminary cutting line CL2 along the cutting line CL1 while leaving the cutting line CL1.
  • processing is performed by irradiating laser L onto the cutting line CL1 while injecting the coolant R toward the cut surface of the preliminary cutting line CL2 in the preliminary processing step.
  • the object 100 is cut.
  • the laser L is irradiated toward the thickness D direction of the workpiece 100, and the depth direction in the figure is the traveling direction.
  • an injection nozzle is provided so that the injection position can be moved in the thickness D direction as the laser L moves the focal point of the workpiece 100 in the thickness D direction. It is preferable that an injection nozzle is provided so that the injection position can be moved in the traveling direction as L progresses.
  • the injection direction of the refrigerant R may be a direction orthogonal to the cut surface of the preliminary cutting line CL2, or may be a direction inclined to the cutting surface of the preliminary cutting line CL2.
  • the processing object 100 is cut by irradiating the laser L onto the preliminary cutting line CL2 along the cutting line CL1 while leaving the cutting line CL1, and the cutting surface of the preliminary cutting line CL2 is cut.
  • the coolant R applies the processing object 100 to the processing site. Thermal effects can be suppressed.
  • the refrigerant R can be supplied to the processing portion of the processing object 100 without affecting the laser L.
  • the laser L when the thickness D of the workpiece 100 is large, the laser L must be irradiated for a long time before penetrating the thickness D of the workpiece 100, but the thermal effect on the workpiece is significant.
  • the preliminary cutting line CL2 is set and cut within a range in which no thermal influence is generated on the processing portion of the cutting line CL1, and then the refrigerant R is injected from the cut surface side of the preliminary cutting line CL2.
  • the cutting since the cutting is performed on the cutting line CL1, it is effective to suppress the thermal influence on the processing site when cutting the cutting line CL1.
  • the distance H of the preliminary cutting line CL2 from the cutting line CL1 is set.
  • FIGS. 12 to FIG. 14 are explanatory diagrams of processes of another example of the laser processing method according to the present embodiment.
  • the laser processing method of the present embodiment is a processing method in the case where a predetermined through hole TH1 is cut in the workpiece 100 by the laser L, as shown in FIGS.
  • a preliminary through hole TH2 having a diameter smaller than the diameter of the through hole TH1 is cut within the range of the through hole TH1.
  • the preliminary through hole TH2 may be plural or single.
  • the through hole TH1 is cut by the laser L while jetting the coolant R into the preliminary through hole TH2 in the preliminary machining step.
  • the laser L is irradiated toward the thickness D direction of the workpiece 100, and the circumferential direction of the through hole TH1 is the traveling direction.
  • the injection of the refrigerant R is performed along the traveling direction of the laser L. Further, the refrigerant R may be injected from the direction opposite to the irradiation direction of the laser L, that is, from the opening on the opposite side of the preliminary through hole TH2.
  • the preliminary through-hole TH2 having a diameter smaller than the diameter of the through-hole TH1 is cut in the range of the through-hole TH1, and the coolant R is injected into the preliminary through-hole TH2 while the through-hole TH1 is formed.
  • the refrigerant R can suppress the thermal influence on the processing part of the processing object 100.
  • the refrigerant R can be supplied to the processing portion of the processing object 100 without affecting the laser L.
  • the position of the preliminary through hole TH2 is set and cut within a range in which no thermal influence is generated on the processed portion of the through hole TH1, and then the refrigerant R is injected into the preliminary through hole TH2.
  • the through-hole TH1 is cut, it is effective to suppress the thermal influence on the machining site when the through-hole TH1 is cut.
  • the intensity of the laser L and the object to be machined Considering the material of 100, the distance of the preliminary through hole TH2 from the cutting line along the peripheral surface of the through hole TH1 is set.
  • the workpiece 100 is a carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastic), or a metal material such as carbon fiber reinforced plastic and titanium, which is easily affected by laser L processing. It is preferable to apply a superposition of and.
  • CFRP Carbon Fiber Reinforced Plastic
  • the coolant R can be supplied to the workpiece of the workpiece without affecting the laser L when the coolant R cools the workpiece. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給する。集光光学系(74)から照射されるレーザ(L)を通過させる筒状のレーザ照射ノズル(76A)と、レーザ照射ノズル(76A)を通過するレーザ(L)の進行方向に沿ってレーザ照射ノズル(76A)からアシストガス(A)を噴射させるアシストガス供給手段(64)と、レーザ照射ノズル(76A)の外側にレーザ(L)と同軸に独立して配置された円環状の冷媒噴射ノズル(76B)と、レーザ照射ノズル(76A)を通過するレーザ(L)の進行方向に沿って冷媒噴射ノズル(76B)から冷媒(R)を噴射させる冷媒供給手段(66)と、を有する。

Description

レーザ加工装置およびレーザ加工方法
 本発明は、レーザ加工装置およびレーザ加工方法に関する。
 従来、例えば、特許文献1には、レーザ発振器によりレーザ光を発振させ、レーザ発振器より出力されたレーザ光線を加工対象物となる金属パイプの円筒面に照射し、金属パイプの円筒面を貫通切断する金属パイプのレーザ加工方法として、金属パイプの中空部にドライアイス粒子を含んだ気体を噴射しながら金属パイプの円筒面をレーザ加工することが記載されている。
特開2006-326615号公報
 ところで、炭素繊維と樹脂とが複合された複合材料である炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastic)は、軽量かつ高強度であることから、例えば、航空機の構造材や自動車の部材として使用されている。この炭素繊維強化プラスチックの加工手法としては、機械加工や研磨剤を混入させたウォータージェット加工(アブレッシブウォータージェット(AWJ:Abrasive Water Jet)加工)が使用されているが、以下の課題を有する。
 例えば、航空機の翼のような板厚が不均一な端部をアブレッシブウォータージェットによりトリム加工する場合、ガーネットなどの研磨剤を含む大量の廃液処理や、研磨剤によるノズル摩耗による工具の消耗が課題であり、研磨剤含有廃液の出ない加工技術の確立が要望されている。また、例えば、航空機のエンジンナセルは、高精度の穴あけ加工が必要であり一気通貫の機械加工が望まれるが、炭素繊維強化プラスチックとチタンなどの金属材とを重ね合わせた材料が用いられる場合、異材・厚板の同時加工のため、加工性の悪い炭素繊維強化プラスチックに加工条件を合わせなければならず、加工時間が非常に長く、工程短縮が要望されている。
 このような課題に対し、レーザ加工は非接触加工であることから、研磨剤含有廃液などの産業廃棄物が発生せず、工具の消耗を抑制することが期待され、また、高密度エネルギーであるため加工時間の短縮に有効と考えられる。
 しかし、炭素繊維と樹脂とが複合された複合材料である炭素繊維強化プラスチックを加工対象物とし、レーザ加工を用いて切断や穴あけの熱加工を実施すると、熱影響により材質劣化や変質が生じ、所望とする加工仕様を満足することができない。
 そこで、上述した特許文献1の記載のように、例えば、ドライアイス粒子を含んだ気体(以下、冷媒という)を加工対象物の加工部位に吹き付けることが考えられる。ところが、レーザ加工において、加工部位に冷媒を吹き付けた場合、冷媒により大気中の水分が凍って固体化し、これがレーザの熱で蒸発して白煙を生じる。そして、この白煙がレーザ光を遮ることで、十分な強度のレーザ光を加工対象物の加工部分に照射することができない問題がある。
 本発明は上述した課題を解決するものであり、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することのできるレーザ加工装置およびレーザ加工方法を提供することを目的とする。
 上述の目的を達成するために、本発明の一態様に係るレーザ加工装置は、集光光学系から照射されるレーザを通過させる筒状のレーザ照射ノズルと、前記レーザ照射ノズルを通過するレーザの進行方向に沿って前記レーザ照射ノズルからアシストガスを噴射させるアシストガス供給手段と、前記レーザ照射ノズルの外側に前記レーザと同軸に独立して配置された円環状の冷媒噴射ノズルと、前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記冷媒噴射ノズルから冷媒を噴射させる冷媒供給手段と、を有する。
 このレーザ加工装置によれば、レーザ照射ノズルを通過するレーザが加工対象物に照射されて当該加工対象物を加工する際、冷媒が冷媒噴射ノズルからレーザの外側でレーザの進行方向に沿って噴射されるため加工対象物のレーザによる加工部位を冷却する。さらに、アシストガスがレーザ照射ノズルを通過するレーザの進行方向に沿ってレーザと共に噴射されることで、レーザと冷媒との干渉を妨げ、冷媒により大気中の水分が凍って固体化しても、これがレーザの熱で蒸発し白煙が発生する事態を防ぐ。この結果、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することができる。
 また、本発明の一態様に係るレーザ加工装置は、集光光学系から照射されるレーザを通過させる筒状のレーザ照射ノズルと、前記レーザ照射ノズルを通過するレーザの進行方向に沿って前記レーザ照射ノズルからアシストガスを噴射させるアシストガス供給手段と、前記レーザ照射ノズルの外側に前記レーザと同軸の円周上に配置した複数の穴からなる冷媒噴射ノズルと、前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記冷媒噴射ノズルから冷媒を噴射させる冷媒供給手段と、を有する。
 このレーザ加工装置によれば、レーザ照射ノズルを通過するレーザが加工対象物に照射されて当該加工対象物を加工する際、冷媒が冷媒噴射ノズルからレーザの外側でレーザの進行方向に沿って噴射されるため加工対象物のレーザによる加工部位を冷却する。さらに、アシストガスがレーザ照射ノズルを通過するレーザの進行方向に沿ってレーザと共に噴射されることで、レーザと冷媒との干渉を妨げ、冷媒により大気中の水分が凍って固体化しても、これがレーザの熱で蒸発し白煙が発生する事態を防ぐ。この結果、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することができる。
 また、本発明の一態様に係るレーザ加工装置では、前記レーザ照射ノズルから噴射させる前記アシストガスの噴射圧力P1と、前記冷媒噴射ノズルから噴射させる前記冷媒の噴射圧力P2との関係を、P2<P1に設定することが好ましい。
 このレーザ加工装置によれば、アシストガスが冷媒よりも圧力が高く、冷媒がアシストガス側に混入することを防ぐため、レーザと冷媒との干渉を防ぐ作用効果を顕著に得ることができる。
 また、本発明の一態様に係るレーザ加工装置では、前記レーザ照射ノズルの外側であって、且つ、前記冷媒噴射ノズルの外側に前記レーザと同軸に独立して配置された円環状のシールドガス噴射ノズルと、前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記シールドガス噴射ノズルからシールドガスを噴射させるシールドガス供給手段と、を有することが好ましい。
 このレーザ加工装置によれば、レーザ照射ノズルを通過するレーザが加工対象物に照射されて当該加工対象物を加工する際、冷媒が冷媒噴射ノズルからレーザの外側でレーザの進行方向に沿って噴射されるため加工対象物のレーザによる加工部位を冷却する。さらに、シールドガスが冷媒よりも外側で噴射されることで、冷媒と大気の干渉を妨げ、冷媒により大気中の水分が凍って固体化する事態を防ぐ。この結果、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することができる。
 また、本発明の一態様に係るレーザ加工装置では、前記レーザ照射ノズルの外側であって、且つ、前記冷媒噴射ノズルの外側に前記レーザと同軸の円周上に配置した複数の穴からなるシールドガス噴射ノズルと、前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記シールドガス噴射ノズルからシールドガスを噴射させるシールドガス供給手段と、を有することが好ましい。
 このレーザ加工装置によれば、レーザ照射ノズルを通過するレーザが加工対象物に照射されて当該加工対象物を加工する際、冷媒が冷媒噴射ノズルからレーザの外側でレーザの進行方向に沿って噴射されるため加工対象物のレーザによる加工部位を冷却する。さらに、シールドガスが冷媒よりも外側で噴射されることで、冷媒と大気の干渉を妨げ、冷媒により大気中の水分が凍って固体化する事態を防ぐ。この結果、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することができる。
 また、本発明の一態様に係るレーザ加工装置では、前記冷媒噴射ノズルから噴射させる前記冷媒の噴射圧力P2と、前記シールドガス噴射ノズルから噴射させる前記シールドガスの噴射圧力P3との関係を、P2>P3に設定することが好ましい。
 このレーザ加工装置によれば、シールドガスが冷媒よりも圧力が低く、シールドガスが冷媒側に混入することを防ぐため、レーザと冷媒との干渉を防ぐ作用効果を顕著に得ることができる。
 本発明の一態様に係るレーザ加工方法は、加工対象物にレーザを照射しつつ前記レーザを所定方向に移動する加工工程と、前記加工工程の際に前記レーザの移動方向の後側において前記加工対象物に向けて冷媒を噴射する冷媒噴射工程と、を含む。
 このレーザ加工方法によれば、レーザの移動方向の前側においてレーザの熱影響がない加工部位を冷却することがなく、レーザによる熱影響が生じる部分に対して効果的に冷却を行うことができる。
 上述の目的を達成するために、本発明の一態様に係るレーザ加工方法は、加工対象物をレーザにて切断加工するレーザ加工方法であって、所定の切断線を残しつつ前記切断線に沿って前記加工対象物を切断する予備加工工程と、前記予備加工工程による切断面に冷媒を噴射しつつ前記切断線上で前記加工対象物を切断する本加工工程と、を含む。
 このレーザ加工方法によれば、切断線を残しつつ当該切断線に沿う予備切断線上にレーザを照射して加工対象物を切断し、予備切断線の切断面に向けて冷媒を噴射しつつ切断線上にレーザを照射して加工対象物を切断することで、切断線で切断する際に、冷媒により加工対象物の加工部位への熱影響を抑制することができる。この結果、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することができる。
 上述の目的を達成するために、本発明の一態様に係るレーザ加工方法は、加工対象物をレーザにて貫通加工するレーザ加工方法であって、所定の貫通孔の範囲内に前記貫通孔の径よりも小径の予備貫通孔を切削する予備加工工程と、前記予備加工工程による前記予備貫通孔内に冷媒を噴射しつつ所定の前記貫通孔を切削する本加工工程と、を含む。
 このレーザ加工方法によれば、貫通孔の範囲内に貫通孔の径よりも小径の予備貫通孔を切削し、予備貫通孔内に冷媒を噴射しつつ貫通孔を切削することで、貫通孔を切削する際に、冷媒により加工対象物の加工部位への熱影響を抑制することができる。この結果、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することができる。
 本発明によれば、レーザに影響を及ぼすことなく冷媒を加工対象物の加工部位に供給することができる。
図1は、本発明の実施形態に係るレーザ加工装置の概略構成を示す模式図である。 図2は、図1に示すレーザ加工ヘッドの概略構成を示す模式図である。 図3は、図2におけるa-a矢視図である。 図4は、図2におけるa-a矢視図の他の例である。 図5は、本発明の実施形態に係るレーザ加工装置の他の例の概略構成を示す模式図である。 図6は、図5に示すレーザ加工ヘッドの概略構成を示す模式図である。 図7は、図6におけるb-b矢視図である。 図8は、図6におけるb-b矢視図の他の例である。 図9は、本発明の実施形態に係るレーザ加工方法の工程の説明図である。 図10は、本発明の実施形態に係るレーザ加工方法の工程の説明図である。 図11は、本発明の実施形態に係るレーザ加工方法の工程の説明図である。 図12は、本発明の実施形態に係るレーザ加工方法の他の例の工程の説明図である。 図13は、本発明の実施形態に係るレーザ加工方法の他の例の工程の説明図である。 図14は、本発明の実施形態に係るレーザ加工方法の他の例の工程の説明図である。
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
[実施形態1]
 図1は、本実施形態に係るレーザ加工装置の概略構成を示す模式図である。図2は、図1に示すレーザ加工ヘッドの概略構成を示す模式図である。図3は、図2におけるa-a矢視図である。図4は、図2におけるa-a矢視図の他の例である。
 図1に示すように、レーザ加工装置10は、加工対象物100に対して、切断加工、穴あけ加工などの各種加工を行う装置である。なお、加工の種類は特に限定されないが、本実施形態のレーザ加工装置10は、穴あけにおける切削加工を行う。また、レーザ加工装置10は、加工対象物100の計測も行う。
 レーザ加工装置10は、フレーム12と、移動ユニット14と、ステージユニット16と、レーザ加工ヘッド60を含むレーザ加工ユニット22と、制御部24と、を有する。レーザ加工装置10は、ステージユニット16に保持される加工対象物100にレーザ加工ユニット22によりレーザを照射し、加工対象物100をレーザ加工する。ここで、本実施形態では、水平面をX軸方向と、X軸に直交するY軸方向とを含むXY平面とし、水平面に直交する方向をZ軸方向とする。また、Y軸周りに回転する方向をθY方向とする。
 フレーム12は、レーザ加工装置10の筐体であり、地面、土台などの設置面に固定されている。フレーム12は、門12aと門12aの空間に挿入された土台12bとを有する。フレーム12は、移動ユニット14の固定部が固定されている。従って、本実施形態のレーザ加工装置10は、フレーム12の門12aと土台12bとに移動ユニット14が固定され、移動ユニット14により加工対象物100と、レーザ加工ユニット22とを相対的に移動させる、いわゆる門型の加工装置である。
 移動ユニット14は、加工対象物100とレーザ加工ヘッド60とを相対移動させる。移動ユニット14は、Y軸移動機構30と、X軸移動機構34と、Z軸移動機構38と、θY回転機構39と、を有する。Y軸移動機構30は、フレーム12の土台12b上に配置され、Y軸方向に延在するレール30aと、レール30aに沿って移動するY軸移動部材30bと、を有する。Y軸移動機構30は、Y軸移動部材30bにステージユニット16が固定されている。Y軸移動機構30は、レール30aに沿って、Y軸移動部材30bを移動させることで、ステージユニット16をY軸方向に移動させる。Y軸移動機構30は、Y軸移動部材30bをY軸方向に移動させる機構として、種々の機構を用いることができる。例えば、Y軸移動部材30bにボールねじを挿入し、ボールねじをモータなどで回転させる機構や、リニアモータ機構、ベルト機構などを用いることができる。X軸移動機構34と、Z軸移動機構38も同様に種々の機構を用いることができる。
 X軸移動機構34は、フレーム12の門12a上に配置され、X軸方向に延在するレール33と、レール33に沿って移動するX軸移動部材34aと、を有する。X軸移動機構34は、X軸移動部材34aにZ軸移動機構38が固定されている。X軸移動機構34は、レール33に沿って、X軸移動部材34aを移動させることで、Z軸移動機構38をX軸方向に移動させる。Z軸移動機構38は、X軸移動部材34aに固定され、Z軸方向に延在するレール38aと、レール38aに沿って移動するZ軸移動部材38bと、を有する。Z軸移動機構38は、Z軸移動部材38bにθY回転機構39が固定されている。Z軸移動機構38は、レール38aに沿って、θY回転機構39を移動させることで、θY回転機構39をZ軸方向に移動させる。θY回転機構39は、Z軸移動部材38bに固定され、レーザ加工ヘッド60が固定されている。θY回転機構39は、Z軸移動部材38bに対して、レーザ加工ヘッド60をθY方向に回転させることで、レーザ加工ヘッド60をθY方向に回転させる。
 移動ユニット14は、Y軸移動機構30とX軸移動機構34とZ軸移動機構38とを用いて、加工対象物100とレーザ加工ヘッド60とをX軸方向、Y軸方向およびZ軸方向のそれぞれに相対移動させる。また、移動ユニット14は、θY回転機構39を用いて、加工対象物100に対してレーザ加工ヘッド60を回転させる。これにより、レーザ加工ヘッド60から加工対象物100に対して照射されるレーザの向きを調整することができる。移動ユニット14は、レーザ加工ヘッド60をX軸周りに回転させる機構を備えていてもよい。また、レーザが照射される向きを調整する機構は、レーザ加工ヘッド60に設けてもよい。
 ステージユニット16は、Y軸移動機構30のY軸移動部材30b上に配置されている。ステージユニット16は、加工対象物100を支持するステージである。本実施形態のステージユニット16は、Y軸移動部材30bと一体化させた部材、つまり、Y軸移動部材30bをステージユニット16のステージとしたが、Y軸移動部材30b上に別の支持部材をステージとして設けてもよい。ステージユニット16は、Y軸移動機構30が加工対象物100を移動させるステージ移動機構42となる。ステージユニット16は、加工対象物100をY軸移動部材30bの所定の位置に固定する固定機構を備えている。また、ステージユニット16は、ステージ移動機構42として、さらにY軸移動部材30bに対して加工対象物100の向きを、つまり姿勢を調整する調整機構を備えていてもよい。具体的には、ステージ移動機構42として、加工対象物100を回転させる機構を備えていてもよい。
 レーザ加工ユニット22は、レーザ加工ヘッド60と、レーザ光源62と、アシストガス供給手段64と、冷媒供給手段66と、を有する。
 レーザ光源62は、光ファイバを媒質としてレーザを出力するファイバレーザ出力装置がある。ファイバレーザ出力装置としては、例えば、ファブリペロー型ファイバレーザ出力装置やリング型ファイバレーザ出力装置を用いることができ、これらの出力装置が励起されることによりレーザが発振される。ファイバレーザ出力装置のファイバは、例えば、エルビウム(Er)、ネオジム(Nd)、イッテルビウム(Yb)などの希土類元素が添加されたシリカガラスを用いることができる。なお、本実施形態では、ファイバレーザとしてYAGレーザやYVO4レーザなどのナノ秒オーダーパルス発振をするレーザも使用可能である。また、レーザ光源62は、レーザを短パルス、例えば、周波数20kHzで出力する短パルスレーザ出力装置がある。短パルスレーザ出力装置としては、レーザの発振源として例えば、チタンサファイアレーザを用いることができ、パルス幅が100ピコ秒以下のパルスを発振することができる。ここで、本実施形態において、短パルスレーザは、パルス幅が100ナノ秒以下の短パルスでレーザを出力するものである。なお、レーザ加工ユニット22は、短パルスレーザを、パルス幅が10ナノ秒以上の短パルスとすることが好ましく、パルス幅が1ナノ秒未満のレーザとすることがより好ましい。
 アシストガス供給手段64は、アシストガスをレーザ加工ヘッド60に供給するものである。アシストガス供給手段64は、アシストガス供給部64aと、アシストガス供給管64bとを含む。アシストガス供給部64aは、図には明示しないが、アシストガスが貯留されるアシストガス貯留タンクからコンプレッサなどでアシストガスをアシストガス供給管64bに圧送する。アシストガス供給管64bは、レーザ加工ヘッド60に接続され、アシストガス供給部64aにより圧送されたアシストガスをレーザ加工ヘッド60に供給する。アシストガスとしては、例えば、空気、窒素ガス、酸素ガス、アルゴンガス、キセノンガス、ヘリウムガス、または、これらの混合ガスなどのドライガスである不活性ガスが適用される。
 冷媒供給手段66は、冷媒をレーザ加工ヘッド60に供給するものである。冷媒供給手段66は、冷媒供給部66aと、冷媒供給管66bとを含む。冷媒供給部66aは、図には明示しないが、冷媒が貯留される冷媒貯留タンクからコンプレッサなどで冷媒を冷媒供給管66bに圧送する。冷媒供給管66bは、レーザ加工ヘッド60に接続され、冷媒供給部66aにより圧送された冷媒をレーザ加工ヘッド60に供給する。冷媒としては、例えば、約-80℃程度のドライアイス粒子や炭酸ガスや液体窒素などが適用される。
 レーザ加工ヘッド60は、レーザ光源62から出力されたレーザが入射され、入射されたレーザを加工対象物100に照射することで、加工対象物100をレーザ加工する。なお、レーザ光源62から出力されたレーザは、光ファイバなどのレーザ光を導く光学部材でレーザ加工ヘッド60まで案内される。
 レーザ加工ヘッド60は、図2に示すように、ケーシング72と、集光光学系74と、ノズル76と、を含む。ケーシング72は、レーザ光源62から出力されたレーザが入射され、このレーザを集光光学系74に導く走査機構(図示せず)が集光光学系74と共に収納されている。集光光学系74は、複数のレンズを有し(図示では1つ)、複数のレンズにより、レーザLを集光し、所定の焦点距離、焦点深度とすることで、加工対象物100に所定のスポット径のレーザLを照射する。ノズル76は、集光光学系74が配置されたケーシング72の先端部に取り付けられ、集光光学系74により集光されたレーザLを通過させるように筒状に形成されている。本実施形態では、ノズル76は、レーザLの集光に合わせてレーザLの進行方向の先側に向かうにつれて次第に径が縮小する中空の円錐形状に形成されている。
 ノズル76は、レーザ照射ノズル76Aと、冷媒噴射ノズル76Bと、を有する。レーザ照射ノズル76Aは、上述したように、集光光学系74により集光されたレーザLを通過させ、加工対象物100にレーザLを照射させるためのもので筒状に形成された筒内の貫通孔である。このレーザ照射ノズル76Aは、アシストガス供給手段64のアシストガス供給管64bが接続され、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザLと共にアシストガスAを噴射する。
 ここで、アシストガスAとして、酸化反応熱を加工処理に利用できる酸素ガスを用いた場合、金属などの加工対象物100に対する加工速度をより向上させることができる。また、アシストガスAとして、熱影響を与える熱影響層としての酸化被膜の生成を抑える窒素ガスやアルゴンガスなどを用いた場合、金属などの加工対象物100に対する加工精度をより向上させることができる。アシストガスAのガス種、混合比、および、レーザ照射ノズル76Aからの噴出量(噴射圧力)などは、加工対象物100の種類や加工モードなどの加工条件に応じて変えることができる。
 冷媒噴射ノズル76Bは、レーザ照射ノズル76Aの外側に独立して配置されている。冷媒噴射ノズル76Bは、例えば、図3に示すようにレーザ照射ノズル76Aの周りを囲むようにレーザLの光軸Laと同軸に円環状に形成された穴、または図4に示すようにレーザLの光軸Laと同軸の円周上に円環状に配置された複数の穴である。この冷媒噴射ノズル76Bは、冷媒供給手段66の冷媒供給管66bが接続され、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザLの外側で冷媒Rを噴射する。
 ここで、冷媒RをレーザLの進行方向に沿ってレーザLの外側で噴射することで、加工対象物100におけるレーザLでの加工部位の周囲を冷却し、レーザLによる加工対象物100の熱影響を抑制することができる。冷媒Rの冷媒噴射ノズル76Bからの噴出量(噴射圧力)は、加工対象物100の種類や加工モードなどの加工条件に応じて変えることができる。
 また、レーザ加工ユニット22は、レーザを照射する位置の画像を撮影する撮影手段、例えば、CCD(Charge Coupled Device)イメージセンサなどを有するカメラを備えていてもよい。これにより、取得した画像に基づいてレーザの照射位置などを調整することができる。
 レーザ加工ユニット22は、レーザ光源62から出力されるレーザをレーザ加工ヘッド60から加工対象物100に照射することで、貫通孔があけられる。また、レーザ加工ユニット22は、レーザLの照射位置を移動させることで、加工対象物100を線で切削することができ、加工対象物100を切断することもできる。
 制御部24は、移動ユニット14、ステージユニット16、レーザ加工ユニット22、アシストガス供給部64a、冷媒供給部66aの各部の動作を制御する。制御部24は、移動ユニット14やステージユニット16のステージ移動機構42の動作を制御し、加工対象物100とレーザ加工ヘッド60とを相対移動させる。また、制御部24はレーザ加工ユニット22の駆動を制御し、加工対象物100にレーザLを照射する。また、制御部24はアシストガス供給部64aの駆動を制御し、アシストガスAの供給や、アシストガスAのレーザ照射ノズル76Aからの噴射圧力などを制御する。また、制御部24は冷媒供給部66aの駆動を制御し、冷媒Rの供給や、冷媒Rの冷媒噴射ノズル76Bからの噴射圧力などを制御する。
 このように、本実施形態のレーザ加工装置10は、集光光学系74から照射されるレーザLを通過させる筒状のレーザ照射ノズル76Aと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザ照射ノズル76AからアシストガスAを噴射させるアシストガス供給手段64と、レーザ照射ノズル76Aの外側にレーザLと同軸に独立して配置された円環状の冷媒噴射ノズル76Bと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿って冷媒噴射ノズル76Bから冷媒Rを噴射させる冷媒供給手段66と、を有する。
 また、本実施形態のレーザ加工装置10は、集光光学系74から照射されるレーザLを通過させる筒状のレーザ照射ノズル76Aと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザ照射ノズル76AからアシストガスAを噴射させるアシストガス供給手段64と、レーザ照射ノズル76Aの外側にレーザLと同軸の円周上に配置した複数の穴からなる冷媒噴射ノズル76Bと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿って冷媒噴射ノズル76Bから冷媒Rを噴射させる冷媒供給手段66と、を有する。
 すなわち、レーザ加工装置10は、レーザ照射ノズル76Aを通過するレーザLが加工対象物100に照射されて当該加工対象物100を加工する。この際、冷媒Rが冷媒噴射ノズル76BからレーザLの外側でレーザLの進行方向に沿って噴射されるため加工対象物100のレーザLによる加工部位を冷却する。さらに、アシストガスAがレーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザLと共に噴射されることで、レーザLと冷媒Rとの干渉を妨げ、冷媒Rにより大気中の水分が凍って固体化しても、これがレーザLの熱で蒸発し白煙が発生する事態を防ぐ。この結果、レーザLに影響を及ぼすことなく冷媒Rを加工対象物100の加工部位に供給することができる。
 また、本実施形態のレーザ加工装置10では、レーザ照射ノズル76Aは、通過するレーザLが接触しないようにレーザLと隙間を有する内径の貫通孔が形成され、アシストガス供給手段64は、前記隙間を満たすように貫通孔にアシストガスAを供給することが好ましい。これにより、アシストガスAがレーザLを囲むように噴射されるため、レーザLと冷媒Rとの干渉を防ぐ作用効果を顕著に得ることができる。
 また、本実施形態のレーザ加工装置10では、レーザ照射ノズル76Aから噴射させるアシストガスAの噴射圧力P1と、冷媒噴射ノズル76Bから噴射させる冷媒Rの噴射圧力P2との関係を、P2<P1に設定することが好ましい。このアシストガスAの噴射圧力P1および冷媒Rの噴射圧力P2の設定は、制御部24によりアシストガス供給部64aおよび冷媒供給部66aの駆動を制御することで実施される。これにより、アシストガスAが冷媒Rよりも圧力が高く、冷媒RがアシストガスA側に混入することを防ぐため、レーザLと冷媒Rとの干渉を防ぐ作用効果を顕著に得ることができる。
 また、本実施形態のレーザ加工装置10では、図2に示すように、加工対象物100の加工面100aにおいて、冷媒Rの噴射範囲の最内側のレーザLの焦点Fからの距離Wは、0.1mm以上50mm以下の範囲とすることが好ましい。0.1mm以上とすることでレーザLと冷媒Rとの干渉を防ぐ作用効果を良好に得ることができ、50mm以下とすることで加工部位を冷却する作用効果を良好に得ることができる。このような距離Wとするため、冷媒噴射ノズル76BにおけるレーザLに沿う角度を設定する。
 なお、加工対象物100をレーザLにて切断などの加工をするにあたりレーザLの照射位置を加工対象物100の加工面100aに沿って移動させるが(加工工程)、この場合、冷媒Rの噴射は、レーザLの移動方向の前側では行わず後側のみとしてもよい(冷媒噴射工程)。すなわち、レーザLの移動方向の前側に冷媒Rを噴射してもレーザLの熱影響がない(熱影響が生じる前)加工部位を冷却することになり効果的ではないため、冷媒Rの噴射をレーザLの移動方向の後側のみとする。この場合、例えば、冷媒噴射ノズル76Bは、レーザ照射ノズル76Aの周りを囲むように円環状に配置された複数の穴とし、各穴に対して選択的に冷媒Rを供給する開閉弁などを有した切換機構を備えることで実現できる。
 なお、図には明示しないが、レーザLを照射する加工対象物100の加工面100aとは反対側の面から冷媒Rをさらに噴射できるように、別の冷媒噴射ノズルを有してもよい。この別の冷媒噴射ノズルへの冷媒の供給は、上述した冷媒供給手段66で行う。このようにすることで、加工対象物100の加工部位の冷却効率を向上することができる。
[実施形態2]
 以下、本実施形態のレーザ加工装置の他の例について説明する。図5は、本発明の実施形態に係るレーザ加工装置の他の例の概略構成を示す模式図である。図6は、図5に示すレーザ加工ヘッドの概略構成を示す模式図である。図7は、図6におけるb-b矢視図である。図8は、図6におけるb-b矢視図の他の例である。
 図5および図6に示すように、他の例のレーザ加工装置110は、図1および図2を参照して説明したレーザ加工装置10に対し、シールドガス供給手段68と、シールドガス噴射ノズル76Cと、をさらに有する点が異なり、その他の構成は同様である。従って、他の例のレーザ加工装置110についての説明において、上述したレーザ加工装置10と同等部分には同一の符号を付して説明を省略する。
 シールドガス供給手段68は、シールドガスをレーザ加工ヘッド60に供給するものである。シールドガス供給手段68は、シールドガス供給部68aと、シールドガス供給管68bとを含む。シールドガス供給部68aは、図には明示しないが、シールドガスが貯留されるシールドガス貯留タンクからコンプレッサなどでシールドガスをシールドガス供給管68bに圧送する。シールドガス供給管68bは、レーザ加工ヘッド60に接続され、シールドガス供給部68aにより圧送されたシールドガスをレーザ加工ヘッド60に供給する。シールドガスとしては、例えば、空気、窒素ガス、酸素ガス、アルゴンガス、キセノンガス、ヘリウムガス、または、これらの混合ガスなどのドライガスである不活性ガスが適用される。
 シールドガス噴射ノズル76Cは、ノズル76に設けられている。シールドガス噴射ノズル76Cは、レーザ照射ノズル76Aの外側であって、且つ、冷媒噴射ノズル76Bの外側に独立して配置されている。すなわち、シールドガス噴射ノズル76Cは、レーザ照射ノズル76Aおよび冷媒噴射ノズル76Bに対して最外側に配置されている。シールドガス噴射ノズル76Cは、例えば、図7に示すように冷媒噴射ノズル76Bの周りを囲むようにレーザLの光軸Laと同軸に円環状に形成された穴、または図8に示すようにレーザLの光軸Laと同軸の円周上に円環状に配置された複数の穴である。なお、図7および図8では、レーザ照射ノズル76Aを図3と同様の構成として示しているが、図4と同様の構成であってもよい。このシールドガス噴射ノズル76Cは、シールドガス供給手段68のシールドガス供給管68bが接続され、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザLの外側かつ冷媒Rの内側でシールドガスSを噴射する。
 制御部24は、移動ユニット14、ステージユニット16、レーザ加工ユニット22、アシストガス供給部64a、冷媒供給部66a、シールドガス供給部68aの各部の動作を制御する。制御部24は、移動ユニット14やステージユニット16のステージ移動機構42の動作を制御し、加工対象物100とレーザ加工ヘッド60とを相対移動させる。また、制御部24はレーザ加工ユニット22の駆動を制御し、加工対象物100にレーザLを照射する。また、制御部24はアシストガス供給部64aの駆動を制御し、アシストガスAの供給や、アシストガスAのレーザ照射ノズル76Aからの噴射圧力などを制御する。また、制御部24は冷媒供給部66aの駆動を制御し、冷媒Rの供給や、冷媒Rの冷媒噴射ノズル76Bからの噴射圧力などを制御する。また、制御部24はシールドガス供給部68aの駆動を制御し、シールドガスSの供給や、シールドガスSのシールドガス噴射ノズル76Cからの噴射圧力などを制御する。
 このように、本実施形態のレーザ加工装置110は、集光光学系74から照射されるレーザLを通過させる筒状のレーザ照射ノズル76Aと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザ照射ノズル76AからアシストガスAを噴射させるアシストガス供給手段64と、レーザ照射ノズル76Aの外側に独立して配置された冷媒噴射ノズル76Bと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿って冷媒噴射ノズル76Bから冷媒Rを噴射させる冷媒供給手段66と、レーザ照射ノズル76Aの外側であって、且つ、冷媒噴射ノズル76Bの外側にレーザLと同軸に独立して配置された円環状のシールドガス噴射ノズル76Cと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってシールドガス噴射ノズル76CからシールドガスSを噴射させるシールドガス供給手段68と、を有する。
 また、本実施形態のレーザ加工装置110は、集光光学系74から照射されるレーザLを通過させる筒状のレーザ照射ノズル76Aと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザ照射ノズル76AからアシストガスAを噴射させるアシストガス供給手段64と、レーザ照射ノズル76Aの外側に独立して配置された冷媒噴射ノズル76Bと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿って冷媒噴射ノズル76Bから冷媒Rを噴射させる冷媒供給手段66と、レーザ照射ノズル76Aの外側であって、且つ、冷媒噴射ノズル76Bの外側にレーザLと同軸の円周上に配置した複数の穴からなるシールドガス噴射ノズル76Cと、レーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってシールドガス噴射ノズル76CからシールドガスSを噴射させるシールドガス供給手段68と、を有する。
 すなわち、レーザ加工装置110は、レーザ照射ノズル76Aを通過するレーザLが加工対象物100に照射されて当該加工対象物100を加工する。この際、冷媒Rが冷媒噴射ノズル76BからレーザLの外側でレーザLの進行方向に沿って噴射されるため加工対象物100のレーザLによる加工部位を冷却する。さらに、シールドガスSが冷媒Rよりも外側で噴射されることで、冷媒Rと大気の干渉を妨げ、冷媒Rにより大気中の水分が凍って固体化する事態を防ぐ。この結果、レーザLに影響を及ぼすことなく冷媒Rを加工対象物100の加工部位に供給することができる。しかも、アシストガスAがレーザ照射ノズル76Aを通過するレーザLの進行方向に沿ってレーザLと共に噴射されることで、レーザLと冷媒Rとの干渉をさらに妨げるため、冷媒Rにより大気中の水分が凍って固体化しても、これがレーザLの熱で蒸発し白煙が発生する事態を防ぐ。この結果、レーザLに影響を及ぼすことなく冷媒Rを加工対象物100の加工部位に供給することができる。
 また、本実施形態のレーザ加工装置110では、レーザ照射ノズル76Aは、通過するレーザLが接触しないようにレーザLと隙間を有する内径の貫通孔が形成され、アシストガス供給手段64は、前記隙間を満たすように貫通孔にアシストガスAを供給することが好ましい。これにより、アシストガスAがレーザLを囲むように噴射されるため、レーザLと冷媒Rとの干渉を防ぐ作用効果を顕著に得ることができる。
 また、本実施形態のレーザ加工装置110では、冷媒噴射ノズル76Bから噴射させる冷媒Rの噴射圧力P2と、シールドガス噴射ノズル76Cから噴射させるシールドガスSの噴射圧力P3との関係を、P2>P3に設定することが好ましい。このシールドガスSの噴射圧力P3および冷媒Rの噴射圧力P2の設定は、制御部24によりシールドガス供給部68aおよび冷媒供給部66aの駆動を制御することで実施される。これにより、シールドガスSが冷媒Rよりも圧力が低く、シールドガスSが冷媒R側に混入することを防ぐため、レーザLと冷媒Rとの干渉を防ぐ作用効果を顕著に得ることができる。
 なお、レーザ照射ノズル76Aから噴射させるアシストガスAの噴射圧力P1と、冷媒噴射ノズル76Bから噴射させる冷媒Rの噴射圧力P2と、シールドガス噴射ノズル76Cから噴射させるシールドガスSの噴射圧力P3との関係は、P1≧P2>P3に設定することが好ましく、冷媒RがアシストガスA側に混入することも防ぐため、レーザLと冷媒Rとの干渉を防ぐ作用効果を顕著に得ることができる。
 また、本実施形態のレーザ加工装置110では、図6に示すように、加工対象物100の加工面100aにおいて、冷媒Rの噴射範囲の最内側のレーザLの焦点Fからの距離Wは、0.1mm以上50mm以下の範囲とすることが好ましい。0.1mm以上とすることでレーザLと冷媒Rとの干渉を防ぐ作用効果を良好に得ることができ、50mm以下とすることで加工部位を冷却する作用効果を良好に得ることができる。このような距離Wとするため、冷媒噴射ノズル76BにおけるレーザLに沿う角度を設定する。
 なお、加工対象物100をレーザLにて切断などの加工をするにあたりレーザLの照射位置を加工対象物100の加工面100aに沿って移動させるが(加工工程)、この場合、冷媒Rの噴射は、レーザLの移動方向の前側では行わず後側のみとしてもよい(冷媒噴射工程)。すなわち、レーザLの移動方向の前側に冷媒Rを噴射してもレーザLの熱影響がない(熱影響が生じる前)加工部位を冷却することになり効果的ではないため、冷媒Rの噴射をレーザLの移動方向の後側のみとする。この場合、例えば、冷媒噴射ノズル76Bは、レーザ照射ノズル76Aの周りを囲むように円環状に配置された複数の穴とし、各穴に対して選択的に冷媒Rを供給する開閉弁などを有した切換機構を備えることで実現できる。
 なお、図には明示しないが、レーザLを照射する加工対象物100の加工面100aとは反対側の面から冷媒Rをさらに噴射できるように、別の冷媒噴射ノズルを有してもよい。この別の冷媒噴射ノズルへの冷媒の供給は、上述した冷媒供給手段66で行う。このようにすることで、加工対象物100の加工部位の冷却効率を向上することができる。
[実施形態3]
 以下、図9から図11を用い、本実施形態のレーザ加工方法について説明する。図9から図11は、本実施形態に係るレーザ加工方法の工程の説明図である。
 本実施形態のレーザ加工方法は、図9から図11に示すように、レーザLにより加工対象物100を所定の切断線CL1で切断する場合の加工方法である。
 まず、図9および図10に示すように、予備加工工程として、切断線CL1を残しつつ当該切断線CL1に沿う予備切断線CL2上にレーザLを照射して加工対象物100を切断する。
 次に、図10および図11に示すように、本加工工程として、予備加工工程による予備切断線CL2の切断面に向けて冷媒Rを噴射しつつ切断線CL1上にレーザLを照射して加工対象物100を切断する。
 レーザLは、加工対象物100の厚さD方向に向けて照射され、図の奥行き方向が進行方向となる。冷媒Rの噴射については、レーザLによる加工対象物100の厚さD方向への焦点移動に伴って厚さD方向に噴射位置を移動できるように噴射ノズルが設けられていることが好ましく、レーザLの進行に伴って進行方向に噴射位置を移動できるように噴射ノズルが設けられていることが好ましい。また、冷媒Rの噴射方向は、予備切断線CL2の切断面に直交する方向であっても、予備切断線CL2の切断面に傾斜する方向であってもよい。
 このようなレーザ加工方法によれば、切断線CL1を残しつつ当該切断線CL1に沿う予備切断線CL2上にレーザLを照射して加工対象物100を切断し、予備切断線CL2の切断面に向けて冷媒Rを噴射しつつ切断線CL1上にレーザLを照射して加工対象物100を切断することで、切断線CL1で切断する際に、冷媒Rにより加工対象物100の加工部位への熱影響を抑制することができる。この結果、レーザLに影響を及ぼすことなく冷媒Rを加工対象物100の加工部位に供給することができる。
 特に、加工対象物100の厚さDが大きい場合は、加工対象物100の厚さDを貫通するまでにレーザLを長時間照射しなければならず加工部位への熱影響が顕著であるが、本実施形態のレーザ加工方法では、切断線CL1の加工部位に熱影響が生じない範囲で予備切断線CL2を設定して切断し、その後に予備切断線CL2の切断面側から冷媒Rを噴射しながら切断線CL1上で切断を行うことから、切断線CL1を切断する際の加工部位への熱影響を抑制することに効果的である。このため、切断線CL1の加工部位に熱影響が生じない範囲で予備切断線CL2を切断するため、および冷媒Rの噴射により加工部位を効果的に冷却するため、レーザLの強度や加工対象物100の材質を考慮して、切断線CL1からの予備切断線CL2の距離Hを設定する。
[実施形態4]
 以下、図12から図14を用い、本実施形態のレーザ加工方法の他の例について説明する。図12から図14は、本実施形態に係るレーザ加工方法の他の例の工程の説明図である。
 本実施形態のレーザ加工方法は、図12から図14に示すように、レーザLにより加工対象物100に所定の貫通孔TH1を切削する場合の加工方法である。
 まず、図12および図13に示すように、予備加工工程として、貫通孔TH1の範囲内に、貫通孔TH1の径よりも小径の予備貫通孔TH2を切削する。予備貫通孔TH2は複数であってもよく、単一であってもよい。
 次に、図13および図14に示すように、本加工工程として、予備加工工程による予備貫通孔TH2内に冷媒Rを噴射しつつレーザLにて貫通孔TH1を切削する。
 レーザLは、加工対象物100の厚さD方向に向けて照射され、貫通孔TH1の孔の周方向が進行方向となる。冷媒Rの噴射については、レーザLの進行方向に沿って行う。また、冷媒Rは、レーザLの照射方向とは逆方向から、すなわち予備貫通孔TH2の反対側の開口から噴射してもよい。
 このようなレーザ加工方法によれば、貫通孔TH1の範囲内に貫通孔TH1の径よりも小径の予備貫通孔TH2を切削し、予備貫通孔TH2内に冷媒Rを噴射しつつ貫通孔TH1を切削することで、貫通孔TH1を切削する際に、冷媒Rにより加工対象物100の加工部位への熱影響を抑制することができる。この結果、レーザLに影響を及ぼすことなく冷媒Rを加工対象物100の加工部位に供給することができる。
 特に、加工対象物100の厚さDが大きい場合は、加工対象物100の厚さDを貫通するまでにレーザLを長時間照射しなければならず加工部位への熱影響が顕著であるが、本実施形態のレーザ加工方法では、貫通孔TH1の加工部位に熱影響が生じない範囲で予備貫通孔TH2の位置を設定して切削し、その後に予備貫通孔TH2内に冷媒Rを噴射しながら貫通孔TH1の切削を行うことから、貫通孔TH1を切削する際の加工部位への熱影響を抑制することに効果的である。このため、貫通孔TH1の加工部位に熱影響が生じない範囲で予備貫通孔TH2を切削するため、および冷媒Rの噴射により効果的に加工部位を冷却するため、レーザLの強度や加工対象物100の材質を考慮して、貫通孔TH1の周面に沿う切削線からの予備貫通孔TH2の距離を設定する。
 なお、上述した各実施形態において、加工対象物100は、レーザLの加工により熱影響を受けやすい、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastic)や、炭素繊維強化プラスチックとチタンなどの金属材とが重ね合わせたものが適用されることが好ましい。このような加工対象物100をレーザLにて加工する際に、冷媒Rにより加工部位を冷却するにあたり、レーザLに影響を及ぼすことなく冷媒Rを加工対象物の加工部位に供給することができる。
 10 レーザ加工装置
 110 レーザ加工装置
 64 アシストガス供給手段
 66 冷媒供給手段
 68 シールドガス供給手段
 74 集光光学系
 76A レーザ照射ノズル
 76B 冷媒噴射ノズル
 76C シールドガス噴射ノズル
 100 加工対象物

Claims (9)

  1.  集光光学系から照射されるレーザを通過させる筒状のレーザ照射ノズルと、
     前記レーザ照射ノズルを通過するレーザの進行方向に沿って前記レーザ照射ノズルからアシストガスを噴射させるアシストガス供給手段と、
     前記レーザ照射ノズルの外側に前記レーザと同軸に独立して配置された円環状の冷媒噴射ノズルと、
     前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記冷媒噴射ノズルから冷媒を噴射させる冷媒供給手段と、
     を有するレーザ加工装置。
  2.  集光光学系から照射されるレーザを通過させる筒状のレーザ照射ノズルと、
     前記レーザ照射ノズルを通過するレーザの進行方向に沿って前記レーザ照射ノズルからアシストガスを噴射させるアシストガス供給手段と、
     前記レーザ照射ノズルの外側に前記レーザと同軸の円周上に配置した複数の穴からなる冷媒噴射ノズルと、
     前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記冷媒噴射ノズルから冷媒を噴射させる冷媒供給手段と、
     を有するレーザ加工装置。
  3.  前記レーザ照射ノズルから噴射させる前記アシストガスの噴射圧力P1と、前記冷媒噴射ノズルから噴射させる前記冷媒の噴射圧力P2との関係を、P2<P1に設定する請求項1または2に記載のレーザ加工装置。
  4.  前記レーザ照射ノズルの外側であって、且つ、前記冷媒噴射ノズルの外側に前記レーザと同軸に独立して配置された円環状のシールドガス噴射ノズルと、
     前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記シールドガス噴射ノズルからシールドガスを噴射させるシールドガス供給手段と、
     を有する請求項1または2に記載のレーザ加工装置。
  5.  前記レーザ照射ノズルの外側であって、且つ、前記冷媒噴射ノズルの外側に前記レーザと同軸の円周上に配置した複数の穴からなるシールドガス噴射ノズルと、
     前記レーザ照射ノズルを通過する前記レーザの進行方向に沿って前記シールドガス噴射ノズルからシールドガスを噴射させるシールドガス供給手段と、
     を有する請求項1または2に記載のレーザ加工装置。
  6.  前記冷媒噴射ノズルから噴射させる前記冷媒の噴射圧力P2と、前記シールドガス噴射ノズルから噴射させる前記シールドガスの噴射圧力P3との関係を、P2>P3に設定する請求項4または5に記載のレーザ加工装置。
  7.  加工対象物にレーザを照射しつつ前記レーザを所定方向に移動する加工工程と、
     前記加工工程の際に前記レーザの移動方向の後側において前記加工対象物に向けて冷媒を噴射する冷媒噴射工程と、
     を含むレーザ加工方法。
  8.  加工対象物をレーザにて切断加工するレーザ加工方法であって、
     所定の切断線を残しつつ前記切断線に沿って前記加工対象物を切断する予備加工工程と、
     前記予備加工工程による切断面に冷媒を噴射しつつ前記切断線上で前記加工対象物を切断する本加工工程と、
     を含むレーザ加工方法。
  9.  加工対象物をレーザにて貫通加工するレーザ加工方法であって、
     所定の貫通孔の範囲内に前記貫通孔の径よりも小径の予備貫通孔を切削する予備加工工程と、
     前記予備加工工程による前記予備貫通孔内に冷媒を噴射しつつ所定の前記貫通孔を切削する本加工工程と、
     を含むレーザ加工方法。
PCT/JP2017/022833 2016-07-05 2017-06-21 レーザ加工装置およびレーザ加工方法 WO2018008400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016133475A JP6746407B2 (ja) 2016-07-05 2016-07-05 レーザ加工装置およびレーザ加工方法
JP2016-133475 2016-07-05

Publications (1)

Publication Number Publication Date
WO2018008400A1 true WO2018008400A1 (ja) 2018-01-11

Family

ID=60912582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022833 WO2018008400A1 (ja) 2016-07-05 2017-06-21 レーザ加工装置およびレーザ加工方法

Country Status (2)

Country Link
JP (1) JP6746407B2 (ja)
WO (1) WO2018008400A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658670A (zh) * 2020-12-02 2021-04-16 江苏普瑞亚动力科技有限公司 用于柴油发动机装配的激光辅助校准工艺
CN113894444A (zh) * 2021-09-28 2022-01-07 武汉大学 一种基于干涉光路设计的水导脉冲激光加工***及方法
US11597035B2 (en) * 2019-09-20 2023-03-07 Shanghai Institute Of Optics And Fine Mechanics, Chinese Academy Of Sciences Debris-free laser ablation processing assisted by condensed frost layer
DE102022209031A1 (de) 2022-08-31 2024-02-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Bearbeitungskopf und Verfahren zum Laserstrahlschneiden von Bauteilen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160757B2 (ja) * 1981-02-06 1986-12-22 Amada Eng & Service
JPH08141768A (ja) * 1994-11-16 1996-06-04 Amada Co Ltd レーザー加工装置の加工ヘッド
JP2010247206A (ja) * 2009-04-17 2010-11-04 Muneharu Kutsuna 複合材料のレーザ加工法
JP2014161903A (ja) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd 加工装置、加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160757B2 (ja) * 1981-02-06 1986-12-22 Amada Eng & Service
JPH08141768A (ja) * 1994-11-16 1996-06-04 Amada Co Ltd レーザー加工装置の加工ヘッド
JP2010247206A (ja) * 2009-04-17 2010-11-04 Muneharu Kutsuna 複合材料のレーザ加工法
JP2014161903A (ja) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd 加工装置、加工方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597035B2 (en) * 2019-09-20 2023-03-07 Shanghai Institute Of Optics And Fine Mechanics, Chinese Academy Of Sciences Debris-free laser ablation processing assisted by condensed frost layer
CN112658670A (zh) * 2020-12-02 2021-04-16 江苏普瑞亚动力科技有限公司 用于柴油发动机装配的激光辅助校准工艺
CN113894444A (zh) * 2021-09-28 2022-01-07 武汉大学 一种基于干涉光路设计的水导脉冲激光加工***及方法
DE102022209031A1 (de) 2022-08-31 2024-02-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Bearbeitungskopf und Verfahren zum Laserstrahlschneiden von Bauteilen
WO2024046813A1 (de) 2022-08-31 2024-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bearbeitungskopf und verfahren zum laserstrahlschneiden von bauteilen

Also Published As

Publication number Publication date
JP6746407B2 (ja) 2020-08-26
JP2018001243A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2018008400A1 (ja) レーザ加工装置およびレーザ加工方法
US10220469B2 (en) Combined machining apparatus and combined machining method
KR101718265B1 (ko) 가공장치 및 가공방법
KR101626312B1 (ko) 레이저 절단방법 및 레이저 절단장치
WO2013002165A1 (ja) 脆性的な部材を切断する装置、方法、および切断された脆性的な部材
JP2007196373A (ja) フライス及びレーザで材料を機械加工するための組み合わせ装置
JP2009511273A5 (ja)
JP6071640B2 (ja) 加工装置、加工方法
JP2012192420A (ja) レーザ加工方法およびレーザ加工装置
US20190176271A1 (en) Laser machining device and laser machining method
JP2013215786A (ja) レーザ加工装置、レーザ加工システム、レーザ加工方法
KR20020010101A (ko) 고밀도 에너지빔 가공 방법 및 장치
JP2014189478A (ja) 強化ガラス板加工方法
JP5873978B2 (ja) レーザ加工方法、およびノズルの製造方法
JP2016043392A (ja) レーザ加工機及びレーザ切断加工方法
KR20130022845A (ko) 레이저 가공장치
JP2001062652A (ja) レーザとウォータジェットの複合加工方法及び装置
JP6348877B2 (ja) 熱切断装置及び方法
JPH0237985A (ja) レーザ加工方法及び装置
WO2021200667A1 (ja) コンクリートの表面処理方法、及び、レーザ処理済みコンクリート表面
JP2000317661A (ja) レーザビームによる切断方法および装置並びに原子炉廃炉を解体するときの黒鉛ブロックの切断方法
JP2013208631A (ja) レーザ加工方法、レーザ加工装置
WO2021095253A1 (ja) レーザ切断方法及びレーザ切断装置
JP6000101B2 (ja) レーザー加工装置
JP5017900B2 (ja) 被加工物の加工方法とその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824007

Country of ref document: EP

Kind code of ref document: A1